1
|
Zhao X, Qiu Y, Liang L, Fu X. Interkingdom signaling between gastrointestinal hormones and the gut microbiome. Gut Microbes 2025; 17:2456592. [PMID: 39851261 PMCID: PMC11776477 DOI: 10.1080/19490976.2025.2456592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The interplay between the gut microbiota and gastrointestinal hormones plays a pivotal role in the health of the host and the development of diseases. As a vital component of the intestinal microecosystem, the gut microbiota influences the synthesis and release of many gastrointestinal hormones through mechanisms such as modulating the intestinal environment, producing metabolites, impacting mucosal barriers, generating immune and inflammatory responses, and releasing neurotransmitters. Conversely, gastrointestinal hormones exert feedback regulation on the gut microbiota by modulating the intestinal environment, nutrient absorption and utilization, and the bacterial biological behavior and composition. The distributions of the gut microbiota and gastrointestinal hormones are anatomically intertwined, and close interactions between the gut microbiota and gastrointestinal hormones are crucial for maintaining gastrointestinal homeostasis. Interventions leveraging the interplay between the gut microbiota and gastrointestinal hormones have been employed in the clinical management of metabolic diseases and inflammatory bowel diseases, such as bariatric surgery and fecal microbiota transplantation, offering promising targets for the treatment of dysbiosis-related diseases.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ye Qiu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Antoine D, Tao J, Singh S, Singh PK, Marin BG, Roy S. Neonatal exposure to morphine results in prolonged pain hypersensitivity during adolescence, driven by gut microbial dysbiosis and gut-brain axis-mediated inflammation. Brain Behav Immun 2025; 126:3-23. [PMID: 39900146 DOI: 10.1016/j.bbi.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Opioids, such as morphine, are used in the Neonatal Intensive Care Unit (NICU) for pain relief in neonates. However, the available evidence concerning the benefits and harms of opioid therapy in neonates remains limited. While previous studies have reported that neonatal morphine exposure (NME) results in long-term heightened pain sensitivity, the underlying mechanisms are not well understood. This study proposes that dysbiosis of the gut microbiome contributes to pain hypersensitivity following NME. Using an adolescent female murine model, pain sensitivity was evaluated using the tail flick and hot plate assays for thermal pain and the Von Frey assay for mechanical pain. Gut microbiome composition was assessed using 16S rRNA sequencing, while transcriptomic changes in midbrain samples were investigated using bulk RNA sequencing. NME induced prolonged hypersensitivity to thermal and mechanical pain in adolescence, accompanied by persistent gut microbial dysbiosis and sustained systemic inflammation, characterized by elevated circulating cytokine levels (e.g., IL-1α, IL-12p70, IFN-γ, IL-10). Transplantation of the microbiome from NME adolescents recapitulated pain hypersensitivity in naïve adolescent mice, while neonatal probiotic intervention with Bifidobacterium infantis (B. infantis) reversed the pain hypersensitivity by preventing gut dysbiosis and associated systemic inflammation. Furthermore, transcriptomic analysis of midbrain tissues revealed that NME upregulated several genes and key signaling pathways, including those related to immune activation and excitatory signaling, which were notably mitigated with neonatal B. infantis administration. Together, these findings highlight the critical role of the gut-brain axis in modulating pain sensitivity and suggest that targeting the gut microbiome offers a promising therapeutic strategy for managing neurobiological disorders following early opioid exposure.
Collapse
Affiliation(s)
- Danielle Antoine
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA; Department of Neuroscience, University of Miami Miller School of Medicine Miami FL USA
| | - Junyi Tao
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA
| | - Salma Singh
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA
| | - Praveen Kumar Singh
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA
| | - Barbara G Marin
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA; Department of Neuroscience, University of Miami Miller School of Medicine Miami FL USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA.
| |
Collapse
|
3
|
Faggin S, Cerantola S, Caputi V, Tietto A, Stocco E, Bosi A, Ponti A, Bertazzo A, Macchi V, Porzionato A, Savarino EV, Giaroni C, Giron MC. Toll-like receptor 4 deficiency ameliorates experimental ileitis and enteric neuropathy: Involvement of nitrergic and 5-hydroxytryptaminergic neurotransmission. Br J Pharmacol 2025; 182:1803-1822. [PMID: 39842456 DOI: 10.1111/bph.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory bowel disease (IBD) patients display genetic polymorphisms in toll-like receptor 4 (TLR4) genes, contributing to dysregulate enteric nervous system (ENS) circuits with increased levels of 5-HT and alteration of the neuroimmune crosstalk. In this study, we investigated the impact of TLR4 signalling on mouse ENS dysfunction caused by dextran sulphate sodium (DSS)-induced ileitis. EXPERIMENTAL APPROACH Male C57BL/6J (wild-type [WT]) and TLR4-/- mice (10 ± 2 weeks old) received 2% DSS in drinking water for 5 days and then were switched to 3-day regular drinking water. Histological analysis and proinflammatory cytokine mRNA levels were assessed in ileal samples. Gut motility was evaluated by changes in transit of a fluorescent-labelled marker and isometric neuromuscular responses of ileal full-thickness segments to receptor and non-receptor-mediated stimuli. Alterations in ENS architecture were assessed by confocal immunohistochemistry in longitudinal muscle-myenteric plexus whole-mount preparations. KEY RESULTS In WT mice, DSS treatment caused delayed gastrointestinal transit, ileal myenteric neurodegeneration, reactive gliosis and release of proinflammatory cytokines. Enhanced cholinergic and tachykinergic excitatory tone, increased inducible nitric oxide synthase (iNOS)-mediated relaxation, and changes in 5-HT2A and 5-HT3 receptor-mediated responses were observed during ileitis in WT mice. TLR4 deficiency reversed most of the functional and morphological abnormalities. CONCLUSION AND IMPLICATIONS Our results demonstrate that TLR4 activity influences the severity of ileitis, neuroglial plasticity, gut motility, and nitrergic and 5-HTergic neurotransmissions. The neuroimmune interaction between TLR4 and 5-HT observed in our study appears to be a potential pharmacological target to treat ENS dysfunction implicated in IBD onset/progression.
Collapse
Affiliation(s)
- Sofia Faggin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, Arkansas, USA
| | - Angela Tietto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- School of Specialization in Clinical Pharmacology and Toxicology, University of Ferrara, Ferrara, Italy
| | - Elena Stocco
- Department of Neuroscience, University of Padua, Padua, Italy
- Department of Women's and Children's Health, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Annalisa Bosi
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Alessandra Ponti
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Veronica Macchi
- Department of Neuroscience, University of Padua, Padua, Italy
| | | | - Edoardo V Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Cristina Giaroni
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Yousefi Y, Haider Z, Grondin JA, Wang H, Haq S, Banskota S, Seto T, Surette M, Khan WI. Gut microbiota regulates intestinal goblet cell response and mucin production by influencing the TLR2-SPDEF axis in an enteric parasitic infection. Mucosal Immunol 2025:S1933-0219(25)00033-9. [PMID: 40164286 DOI: 10.1016/j.mucimm.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Alterations in goblet cell biology constitute one of the most effective host responses against enteric parasites. In the gastrointestinal (GI) tract, millions of bacteria influence these goblet cell responses by binding to pattern recognition receptors such as toll-like receptors (TLRs). Studies suggest that the gut microbiota also interacts bidirectionally with enteric parasites, including Trichuris muris. Here, we study the roles of T. muris-altered microbiota and the TLR2-SPDEF axis in parasitic host defense. In acute T. muris infection, we observed altered gut microbiota composition, which, when transferred to germ-free mice, resulted in increased goblet cell numbers, Th2 cytokines and Muc2 expression, as well as increased Tlr2. Further, antibiotic (ABX)-treated TLR2-/- mice, despite having received the same T. muris-altered microbiota, displayed diminished Th2 response, Muc2 expression, and, intriguingly, diminished SPDEF expression compared to wildtype counterparts. When infected with T. muris, SPDEF-/- mice exhibited a reduced Th2 response and altered microbial composition compared to SPDEF+/+, particularly on day 14 post-infection, and this microbiota was sufficient to alter host goblet cell response when transferred to ABX-treated mice. Taken together, our findings suggest the TLR2-SPDEF axis, via T. muris-induced microbial changes, is an important regulator of goblet cell function and host's parasitic defense.
Collapse
Affiliation(s)
- Yeganeh Yousefi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zarin Haider
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
5
|
Wang D, Sun S, Zhao Q, Zhao B, Ma L, Su T, Xu L, Gui M, Xu D, Chen W, Zeng Y, Shen Y, Liu Y, Jiang C, Ni Q, Cui Y, Lu Y, Lu Q, Dong D, Peng Y, Mao E. Metabolic shifts in tryptophan pathways during acute pancreatitis infections. JCI Insight 2025; 10:e186745. [PMID: 40059826 PMCID: PMC11949050 DOI: 10.1172/jci.insight.186745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/14/2025] [Indexed: 03/29/2025] Open
Abstract
Infectious complications (ICs) in acute pancreatitis (AP) are primarily driven by intestinal bacterial translocation, significantly increasing mortality and hospital stays. Despite this, the role of the gut microenvironment, particularly its metabolic aspects, in AP remains poorly understood. In this study, we investigated a cohort of patients with AP, and conducted supplemental murine studies, to explore the relationship between the gut metabolome and the development of ICs. Metabolomic analysis revealed that disruptions in gut tryptophan metabolism - especially reductions in serotonin and indole pathways - are key features associated with IC occurrence. Additionally, elevated plasma levels of tryptophan metabolites within the kynurenine pathway were identified as valuable predictive biomarkers for ICs. Mechanistic studies in murine models demonstrated that an impaired intestinal Th17 response, modulated by these tryptophan metabolites, plays a critical role in IC development. Serotonin supplementation enhanced Th17 responses, reducing IC incidence, while administration of kynurenic acid, a kynurenine metabolite, exacerbated pancreatic infections, potentially through immunosuppressive effects. These findings highlight the pivotal role of tryptophan metabolites in AP pathogenesis, emphasizing their potential as both predictive markers and therapeutic targets in IC management.
Collapse
Affiliation(s)
- Daosheng Wang
- Department of Emergency
- Department of Laboratory Medicine, and
| | | | | | | | | | | | - Lili Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Wei Chen
- Department of Laboratory Medicine, and
| | - Yu Zeng
- Department of Laboratory Medicine, and
| | | | - Yiyue Liu
- Department of Laboratory Medicine, and
| | - Cen Jiang
- Department of Laboratory Medicine, and
| | - Qi Ni
- Department of Laboratory Medicine, and
| | | | - Yide Lu
- Department of Laboratory Medicine, and
| | - Qiuya Lu
- Department of Laboratory Medicine, and
| | | | - Yibing Peng
- Department of Laboratory Medicine, and
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
6
|
Baskaran K, Moshkovich M, Hart L, Shah N, Chowdhury F, Shanmuganathan M, Britz-McKibbin P, Pai N. The role of urine metabolomics in the diagnosis and management of adult and pediatric Crohn's disease and ulcerative colitis. Biomarkers 2025; 30:104-113. [PMID: 39642943 DOI: 10.1080/1354750x.2024.2438734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Urine metabolomics offers a non-invasive approach to diagnose and manage inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), by identifying distinct metabolic signatures. OBJECTIVES This narrative review summarizes current findings on urinary metabolites in IBD, evaluating their roles in disease differentiation, assessment of activity, and monitoring therapeutic response. METHODS A comprehensive literature search of PubMed and MEDLINE up to October 2023 was conducted using keywords, such as 'urine metabolomics', 'inflammatory bowel disease', 'Crohn's disease', 'ulcerative colitis', and 'urinary biomarkers'. Studies were included that described alterations to metabolic pathways, including those related to the urea cycle, central energy metabolism (Krebs cycle), amino acid metabolism, and neurotransmitters. RESULTS Specific urinary metabolites differentiate IBD patients from healthy controls and between CD and UC. Decreased urinary levels of hippurate, acetate, methanol, formate, and methylamine are observed in IBD, indicating altered gut microbiota. In CD patients, urea cycle alterations include reduced urinary urea and ornithine with increased arginine. Changes in Krebs cycle intermediates show decreased citrate and succinate in adults, but increased fumarate and isocitrate in pediatric patients, reflecting energy metabolism differences. Amino acid metabolism differs by age: Adults exhibit decreased urinary asparagine, lysine, and histidine, while pediatric patients show increased methionine, proline, aspartic acid, and isoleucine. Elevated urinary neurotransmitters like dopamine are noted in pediatric IBD patients. Urine metabolomics also can monitor treatment efficacy by distinguishing responders from non-responders to therapies and differentiating active disease from remission. CONCLUSION Urine metabolomics provides promising, non-invasive biomarkers to enhance IBD diagnostics by distinguishing CD from UC and offering insights into underlying metabolic disturbances, paving the way for more precise, accessible patient care.
Collapse
Affiliation(s)
- Kanish Baskaran
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michal Moshkovich
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lara Hart
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Nyah Shah
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Fariha Chowdhury
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Nikhil Pai
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, McMaster Children's Hospital, Hamilton, Ontario, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Li W, Mu J, Ni S, Pei W, Wan L, Wu X, Zhu J, Zhang Z, Li L. Pentachlorophenol Exposure Delays the Recovery of Colitis in Association With Altered Gut Microbiota and Purine Metabolism. ENVIRONMENTAL TOXICOLOGY 2025; 40:101-110. [PMID: 39285788 DOI: 10.1002/tox.24420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/08/2024] [Accepted: 08/30/2024] [Indexed: 12/11/2024]
Abstract
Pentachlorophenol (PCP) was used widely as preservative and biocide and has been banned due to with various harmful effects, such as carcinogenicity and teratogenicity. However, the effects of PCP on colitis induced by dextrose sodium sulfate (DSS) remain largely unknown. Serum metabolomics and gut microbiota were investigated to elucidate the underlying mechanisms. Exposure to 20 μg/L PCP aggravated DSS-induced body weight loss, colon shortening, severe histological injuries, and upregulation of TNFα, iNOS, IL-1β, and IL-6. Serum metabolomics showed that both DSS and PCP could significantly disrupted tryptophan metabolism in normal mice. Interestingly, PCP exposure intensified the disturbance in purine metabolism but not tryptophan metabolism caused by DSS. Quantitative analysis of tryptophan and metabolites further confirmed that PCP exposure significantly increased the serum contents of serotonin, adenine, guanine, guanosine, inosine monophosphate (IMP), inosine, and hypoxanthine in DSS-treated mice. The overall gut microbial community was significantly modified by PCP and DSS treatment alone. Rikenellaceae_RC9_Gut_group, Colidextribacter, and Desulfovibrio were more abundant in colitis mice following PCP exposure. Further integrative analysis of differential bacteria and purine metabolites highlighted a significant correlation between Desulfovibrio and several purine metabolites, including guanine, guanosine, hypoxanthine, IMP, and inosine. Adenosine ribonucleotides de novo biosynthesis, inosine-5'-phosphate biosynthesis I, and urate biosynthesis/inosine 5'-phosphate degradation pathways were depleted in colitis mice upon PCP treatment. Taken together, PCP exposure delayed the recovery of colitis induced by DSS in association with altered gut microbiota and serum metabolites, which were enriched in tryptophan and purine metabolism.
Collapse
Affiliation(s)
- Wenzheng Li
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Mu
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shanhong Ni
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wenlong Pei
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li Wan
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xin Wu
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun Zhu
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lei Li
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Dawkins JJ, Gerber GK. MMETHANE: interpretable AI for predicting host status from microbial composition and metabolomics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628441. [PMID: 39713330 PMCID: PMC11661223 DOI: 10.1101/2024.12.13.628441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Metabolite production, consumption, and exchange are intimately involved with host health and disease, as well as being key drivers of host-microbiome interactions. Despite the increasing prevalence of datasets that jointly measure microbiome composition and metabolites, computational tools for linking these data to the status of the host remain limited. To address these limitations, we developed MMETHANE, an open-source software package that implements a purpose-built deep learning model for predicting host status from paired microbial sequencing and metabolomic data. MMETHANE incorporates prior biological knowledge, including phylogenetic and chemical relationships, and is intrinsically interpretable, outputting an English-language set of rules that explains its decisions. Using a compendium of six datasets with paired microbial composition and metabolomics measurements, we showed that MMETHANE always performed at least on par with existing methods, including blackbox machine learning techniques, and outperformed other methods on >80% of the datasets evaluated. We additionally demonstrated through two cases studies analyzing inflammatory bowel disease gut microbiome datasets that MMETHANE uncovers biologically meaningful links between microbes, metabolites, and disease status.
Collapse
|
9
|
Yang D, Bai R, Li C, Sun Y, Jing H, Wang Z, Chen Y, Dong Y. Early-Life Stress Induced by Neonatal Maternal Separation Leads to Intestinal 5-HT Accumulation and Causes Intestinal Dysfunction. J Inflamm Res 2024; 17:8945-8964. [PMID: 39588137 PMCID: PMC11586501 DOI: 10.2147/jir.s488290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Background The early childhood period is a critical development stage, and experiencing stress during this time may increase the risk of gastrointestinal disorders, including irritable bowel syndrome (IBS). Neonatal maternal separation (NMS) in rodent models has been shown to cause bowel dysfunctions similar to IBS, and 5-HT is considered to be a key regulator regulating intestinal function, but the precise underlying mechanisms remain unclear. Results We established a maternal separation stress mouse model to simulate early-life stress, exploring the expression patterns of 5-HT under chronic stress and its mechanisms affecting gut function. We observed a significant increase in 5-HT expression due to NMS, leading to disruptions in intestinal structure and function. However, inhibiting 5-HT reversed these effects, suggesting its potential as a therapeutic target. Furthermore, our research revealed that excess 5-HT in mice with early life stress increased intestinal neural network density and promoted excitatory motor neuron expression. Mechanistically, 5-HT activated the Wnt signaling pathway through the 5-HT4 receptor, promoting neurogenesis within the intestinal nervous system. Conclusion These findings shed light on the intricate changes induced by early life stress in the intestines, confirming the regulatory role of 5-HT in the enteric nervous system and providing potential insights for the development of novel therapies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Ding Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Rulan Bai
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, People’s Republic of China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, People’s Republic of China
| | - Hongyu Jing
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Nakashima M, Suga N, Fukumoto A, Yoshikawa S, Matsuda S. Caveolae with serotonin and NMDA receptors as promising targets for the treatment of Alzheimer's disease. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:96-110. [PMID: 39583750 PMCID: PMC11579522 DOI: 10.62347/mtwv3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/13/2024] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease is the most general type of cognitive impairments. Until recently, strategies that prevent its clinical progression have remained more elusive. Consequently, research direction should be for finding effective neuroprotective agents. It has been suggested oxidative stress, mitochondrial injury, and inflammation level might lead to brain cell death in many neurological disorders. Therefore, several autophagy-targeted bioactive compounds may be promising candidate therapeutics for the prevention of brain cell damage. Interestingly, some risk genes to Alzheimer's disease are expressed within brain cells, which may be linked to cholesterol metabolism, lipid transport, endocytosis, exocytosis and/or caveolae formation, suggesting that caveolae may be a fruitful therapeutic target to improve cognitive impairments. This review would highlight the latest advances in therapeutic technologies to improve the treatment of Alzheimer's disease. In particular, a paradigm that serotonin and N-methyl-d-aspartate (NMDA) receptors agonist/antagonist within caveolae structure might possibly improve the cognitive impairment. Consequently, cellular membrane biophysics should improve our understanding of the pathology of the cognitive dysfunction associated with Alzheimer's disease. Here, this research direction for the purpose of therapy may open the potential to move a clinical care toward disease-modifying treatment strategies with certain benefits for patients.
Collapse
Affiliation(s)
- Moeka Nakashima
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Naoko Suga
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Fukumoto
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
11
|
Chen X, Li Q, Xie J, Nie S. Immunomodulatory Effects of Probiotic-Derived Extracellular Vesicles: Opportunities and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19259-19273. [PMID: 39177683 DOI: 10.1021/acs.jafc.4c04223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Probiotics are known to modulate host immune responses in the course of many diseases. Recently, bacterial extracellular vesicles (EVs), which contain bioactive proteins, lipids, nucleic acids, and metabolites released by bacteria, have been identified as potentially important mediators of bacteria-bacterium and bacteria-host interactions. With the deepening of research, it has been found that probiotic-derived EVs play a significant role in regulating host immune function and, thus, exerting health-promoting effects. Nevertheless, current research is in its early stages, and there remains a long way to go to bridge the gap between basic research and clinical practice. In this review, we describe the fundamental aspects of probiotic-derived EVs, including their biogenesis, cargo sorting mechanism, and transport capabilities. We further discussed the potential mechanisms of probiotic-derived EVs in regulating the host's gut microbiota and immune responses. Finally, we speculate about the potential of probiotic-derived EVs as new postbiotics for applications in functional food, disease treatment substitutes, and immune regulatory adjuvants.
Collapse
Affiliation(s)
- Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
12
|
Liu B, Wang G, Wang L, Yan J, Zhu K, Liu Q, Zhao J, Jia B, Fang M, Rudich Y, Morawska L, Chen J. Unraveling Cross-Organ Impacts of Airborne Pollutants: A Multiomics Study on Respiratory Exposure and Gastrointestinal Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15511-15521. [PMID: 39145585 DOI: 10.1021/acs.est.4c06035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Poor air quality is increasingly linked to gastrointestinal diseases, suggesting a potential correlation with human intestine health. However, this relationship remains largely unexplored due to limited research. This study used a controlled mouse model exposed to cooking oil fumes (COFs) and metagenomics, transcriptomics, and metabolomics to elucidate interactions between intestine microbiota and host metabolism under environmental stress. Our findings reveal that short-term COF inhalation induces pulmonary inflammation within 3 days and leads to gastrointestinal disturbances, elucidating a pathway connecting respiratory exposure to intestinal dysfunction. The exposure intensity significantly correlates with changes in intestinal tissue integrity, microbial composition, and metabolic function. Extended exposure of 7 days disrupts intestine microbiota and alters tryptophan metabolism, with further changes observed after 14 days, highlighting an adaptive response. These results highlight the vulnerability of intestinal health to airborne pollutants and suggest a pathway through which inhaled pollutants may affect distant organ systems.
Collapse
Affiliation(s)
- Bailiang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Ge Wang
- Department of Environmental Hygiene, School of Public Health, Fudan University, Shanghai 200030, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Jiaqian Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | | | - Jinzhuo Zhao
- Department of Environmental Hygiene, School of Public Health, Fudan University, Shanghai 200030, China
| | - Boyue Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Mingliang Fang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), School of Earth of Atmospheric Sciences, Queensland University of Technology, Brisbane Queensland 4001, Australia
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| |
Collapse
|
13
|
Schumacher MA. Targeting serotonin signaling in the gut to limit colitis via 5-HT 7 receptor antagonism. Am J Physiol Gastrointest Liver Physiol 2024; 327:G454-G455. [PMID: 39076082 DOI: 10.1152/ajpgi.00181.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Affiliation(s)
- Michael A Schumacher
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California, United States
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
| |
Collapse
|
14
|
Yang D, Sun Y, Wen P, Chen Y, Cao J, Sun X, Dong Y. Chronic Stress-induced Serotonin Impairs Intestinal Epithelial Cell Mitochondrial Biogenesis via the AMPK-PGC-1α Axis. Int J Biol Sci 2024; 20:4476-4495. [PMID: 39247815 PMCID: PMC11380450 DOI: 10.7150/ijbs.97275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Chronic stress is closely associated with gastrointestinal disorders. However, the impact of stress-related neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) on the intestines under chronic stress conditions remains poorly understood. This study aims to elucidate the mechanisms by which 5-HT affects mitochondrial biogenesis and intestinal barrier integrity during chronic stress. Employing a chronic restraint stress (CRS) mouse model, we observed elevated intestinal 5-HT levels, altered colonic mucosal structure, and disrupted tight junctions. The increase in 5-HT was associated with up-regulated serotonin synthesis enzymes and downregulated serotonin reuptake transporters, indicating an imbalance in serotonin homeostasis imbalance caused by chronic stress. Furthermore, serotonin exacerbated oxidative stress and impaired tight junction protein expression, highlighting its role in promoting intestinal barrier dysfunction. Experiments with cells in vitro demonstrated that 5-HT impairs mitochondrial biogenesis by inhibiting the AMPK-PGC-1α axis via 5-HT7 receptors and the cAMP-PKA pathway. Pharmacological inhibition of serotonin synthesis or 5-HT7 receptors alleviated the intestinal barrier damage caused by 5-HT and chronic stress, restoring mitochondrial biogenesis. These findings provide compelling evidence that serotonin exacerbates chronic stress-induced intestinal barrier disruption by inhibiting the AMPK-PGC-1α axis, paving the way for novel therapeutic interventions targeting the detrimental effects of serotonin on the intestine, particularly under chronic stress conditions.
Collapse
Affiliation(s)
- Ding Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, P.R. China
| | - Pei Wen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Xuelin Sun
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
15
|
Zhang N, Zhai L, Wong RMY, Cui C, Law SW, Chow SKH, Goodman SB, Cheung WH. Harnessing immunomodulation to combat sarcopenia: current insights and possible approaches. Immun Ageing 2024; 21:55. [PMID: 39103919 DOI: 10.1186/s12979-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sarcopenia is a complex age-associated syndrome of progressive loss of muscle mass and strength. Although this condition is influenced by many factors, age-related changes in immune function including immune cell dynamics, and chronic inflammation contribute to its progression. The complex interplay between the immune system, gut-muscle axis, and autophagy further underscores their important roles in sarcopenia pathogenesis. Immunomodulation has emerged as a promising strategy to counteract sarcopenia. Traditional management approaches to treat sarcopenia including physical exercise and nutritional supplementation, and the emerging technologies of biophysical stimulation demonstrated the importance of immunomodulation and regulation of macrophages and T cells and reduction of chronic inflammation. Treatments to alleviate low-grade inflammation in older adults by modulating gut microbial composition and diversity further combat sarcopenia. Furthermore, some pharmacological interventions, nano-medicine, and cell therapies targeting muscle, gut microbiota, or autophagy present additional avenues for immunomodulation in sarcopenia. This narrative review explores the immunological underpinnings of sarcopenia, elucidating the relationship between the immune system and muscle during ageing. Additionally, the review discusses new areas such as the gut-muscle axis and autophagy, which bridge immune system function and muscle health. Insights into current and potential approaches for sarcopenia management through modulation of the immune system are provided, along with suggestions for future research directions and therapeutic strategies. We aim to guide further investigation into clinical immunological biomarkers and identify indicators for sarcopenia diagnosis and potential treatment targets to combat this condition. We also aim to draw attention to the importance of considering immunomodulation in the clinical management of sarcopenia.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Liting Zhai
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung-Wai Law
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Zhang W, Zou M, Fu J, Xu Y, Zhu Y. Autophagy: A potential target for natural products in the treatment of ulcerative colitis. Biomed Pharmacother 2024; 176:116891. [PMID: 38865850 DOI: 10.1016/j.biopha.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Menglong Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jia Fu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
17
|
Kwon YH, Blass BE, Wang H, Grondin JA, Banskota S, Korzekwa K, Ye M, Gordon JC, Colussi D, Blattner KM, Canney DJ, Khan WI. Novel 5-HT 7 receptor antagonists modulate intestinal immune responses and reduce severity of colitis. Am J Physiol Gastrointest Liver Physiol 2024; 327:G57-G69. [PMID: 38713616 PMCID: PMC11550998 DOI: 10.1152/ajpgi.00299.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses several debilitating chronic gastrointestinal (GI) inflammatory disorders, including Crohn's disease and ulcerative colitis. In both conditions, mucosal inflammation is a key clinical presentation associated with altered serotonin (5-hydroxytryptamine or 5-HT) signaling. This altered 5-HT signaling is also found across various animal models of colitis. Of the 14 known receptor subtypes, 5-HT receptor type 7 (5-HT7) is one of the most recently discovered. We previously reported that blocking 5-HT signaling with either a selective 5-HT7 receptor antagonist (SB-269970) or genetic ablation alleviated intestinal inflammation in murine experimental models of colitis. Here, we developed novel antagonists, namely, MC-170073 and MC-230078, which target 5-HT7 receptors with high selectivity. We also investigated the in vivo efficacy of these antagonists in experimental colitis by using dextran sulfate sodium (DSS) and the transfer of CD4+CD45RBhigh T cells to induce intestinal inflammation. Inhibition of 5-HT7 receptor signaling with the antagonists, MC-170073 and MC-230078, ameliorated intestinal inflammation in both acute and chronic colitis models, which was accompanied by lower histopathological damage and diminished levels of proinflammatory cytokines compared with vehicle-treated controls. Together, the data reveal that the pharmacological inhibition of 5-HT7 receptors by these selective antagonists ameliorates the severity of colitis across various experimental models and may, in the future, serve as a potential treatment option for patients with IBD. In addition, these findings support that 5-HT7 is a viable therapeutic target for IBD.NEW & NOTEWORTHY This study demonstrates that the novel highly selective 5-HT7 receptor antagonists, MC-170073 and MC-230078, significantly alleviated the severity of colitis across models of experimental colitis. These findings suggest that inhibition of 5-HT7 receptor signaling by these new antagonists may serve as an alternative mode of treatment to diminish symptomology in those with inflammatory bowel disease.
Collapse
Affiliation(s)
- Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Benjamin E Blass
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth Korzekwa
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Min Ye
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - John C Gordon
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Dennis Colussi
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Kevin M Blattner
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Daniel J Canney
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
18
|
Schwartz J, Capistrano KJ, Gluck J, Hezarkhani A, Naqvi AR. SARS-CoV-2, periodontal pathogens, and host factors: The trinity of oral post-acute sequelae of COVID-19. Rev Med Virol 2024; 34:e2543. [PMID: 38782605 PMCID: PMC11260190 DOI: 10.1002/rmv.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | | | - Joseph Gluck
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Armita Hezarkhani
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Afsar R. Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
19
|
Yuan Z, Ye J, Liu B, Zhang L. Unraveling the role of autophagy regulation in Crohn's disease: from genetic mechanisms to potential therapeutics. ADVANCED BIOTECHNOLOGY 2024; 2:14. [PMID: 39883213 PMCID: PMC11740883 DOI: 10.1007/s44307-024-00021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 01/31/2025]
Abstract
Autophagy serves as the primary intracellular degradation mechanism in which damaged organelles and self-cytoplasmic proteins are transported to the lysosome for degradation. Crohn's disease, an idiopathic chronic inflammatory disorder of the gastrointestinal tract, manifests in diverse regions of the digestive system. Recent research suggests that autophagy modulation may be a new avenue for treating Crohn's disease, and several promising small-molecule modulators of autophagy have been reported as therapeutic options. In this review, we discuss in detail how mutations in autophagy-related genes function in Crohn's disease and summarize the modulatory effects on autophagy of small-molecule drugs currently used for Crohn's disease treatment. Furthermore, we delve into the therapeutic potential of small-molecule autophagy inducers on Crohn's disease, emphasizing the prospects for development in this field. We aim to highlight the significance of autophagy modulation in Crohn's disease, with the aspiration of contributing to the development of more efficacious treatments that can alleviate their suffering, and improve their quality of life.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jing Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
20
|
Zhang X, Rao M, Gao P. 5-HT-treated mouse B cells alleviate ulcerative colitis via RIPK1: Insights from proteomic and phosphoproteomic analyses. J Proteomics 2024; 295:105085. [PMID: 38246418 DOI: 10.1016/j.jprot.2024.105085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
5-hydroxytryptamine (5-HT) exerts various physiological effects on the intestine through different signaling pathways and molecular transmission mechanisms, including pro- and anti-inflammatory effects. Adoptive transfer of regulatory B cells (Bregs) into colitis mice has exhibited significant therapeutic benefits. We aimed to elucidate the mechanism through which 5-HT-treated B cells alleviate ulcerative colitis. To this end, we analyzed the proteomic and phosphoproteomic profiles of 5-HT-stimulated B cells from naïve mice. We identified 3124 phosphorylation sites in proteins via tandem mass tagging and found 110 differential peptides after protein phosphorylation. Furthermore, we obtained three differential proteins, RIPK1, ATXN2l, and Q8C5K5 through integration of both proteomic datasets. We discovered and validated that 5-HT binds to 5-HT7R and increases the expression of RIPK1 in B cells. We propose a theoretical and experimental basis for further research on the RIPK1 signaling pathway, kinase prediction, and phosphorylation sites in ulcerative colitis. SIGNIFICANCE: Some researchers demonstrated that 5-HT can effectively suppress colitis through a variety of molecular mechanisms. Our study discovered and consistently validated the 5-HT/5-HT7R/RIPK1 pathway, further clarifying the molecular mechanism through which 5-HT stimulates B cells to alleviate intestinal inflammation.
Collapse
Affiliation(s)
- Xiuna Zhang
- Department of Gastroenterology, Lequn Branch, The First Hospital of Jilin University, Changchun 130000, China
| | - Min Rao
- Department of Gastroenterology, Lequn Branch, The First Hospital of Jilin University, Changchun 130000, China
| | - Pujun Gao
- Department of Gastroenterology, Lequn Branch, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
21
|
Grondin JA, Khan WI. Emerging Roles of Gut Serotonin in Regulation of Immune Response, Microbiota Composition and Intestinal Inflammation. J Can Assoc Gastroenterol 2024; 7:88-96. [PMID: 38314177 PMCID: PMC10836984 DOI: 10.1093/jcag/gwad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Although the exact etiology of inflammatory bowel diseases (IBD) is unknown, studies have shown that dysregulated immune responses, genetic factors, gut microbiota, and environmental factors contribute to their pathogenesis. Intriguingly, serotonin (5-hydroxytryptamine or 5-HT) seems to be a molecule with increasingly strong implications in the pathogenesis of intestinal inflammation, affecting host physiology, including autophagy and immune responses, as well as microbial composition and function. 5-HT may also play a role in mediating how environmental effects impact outcomes in IBD. In this review, we aim to explore the production and important functions of 5-HT, including its impact on the gut. In addition, we highlight the bidirectional impacts of 5-HT on the immune system, the gut microbiota, and the process of autophagy and how these effects contribute to the manifestation of intestinal inflammation. We also explore recent findings connecting 5-HT signalling and the influence of environmental factors, particularly diet, in the pathogenesis of IBD. Ultimately, we explore the pleiotropic effects of this ancient molecule on biology and health in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
22
|
Ma Y, Zhang X, Xuan B, Li D, Yin N, Ning L, Zhou YL, Yan Y, Tong T, Zhu X, Huang X, Hu M, Wang Z, Cui Z, Li H, Wang J, Fang JY, Liu R, Chen H, Hong J. Disruption of CerS6-mediated sphingolipid metabolism by FTO deficiency aggravates ulcerative colitis. Gut 2024; 73:268-281. [PMID: 37734910 DOI: 10.1136/gutjnl-2023-330009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND AND AIMS Deregulation of RNA N6-methyladenosine (m6A) modification in intestinal epithelial cells (IECs) influences intestinal immune cells and leads to intestinal inflammation. We studied the function of fat mass-and obesity-associated protein (FTO), one of the m6A demethylases, in patients with ulcerative colitis (UC). METHODS We analysed colon tissues of Ftoflox/flox; Villin-cre mice and their Ftoflox/flox littermates with dextran sulfate sodium (DSS) using real-time PCR and 16s rRNA sequencing. RNA and methylated RNA immunoprecipitation sequencing were used to analyse immunocytes and IECs. Macrophages were treated with conditioned medium of FTO-knockdown MODE-K cells or sphingosine-1-phosphate (S1P) and analysed for gene expression. Liquid chromatograph mass spectrometry identified C16-ceramide. RESULTS FTO downregulation was identified in our in-house cohort and external cohorts of UC patients. Dysbiosis of gut microbiota, increased infiltration of proinflammatory macrophages, and enhanced differentiation of Th17 cells were observed in Ftoflox/flox;Villin-cre mice under DSS treatment. FTO deficiency resulted in an increase in m6A modification and a decrease in mRNA stability of CerS6, the gene encoding ceramide synthetase, leading to the downregulation of CerS6 and the accumulation of S1P in IECs. Subsequentially, the secretion of S1P by IECs triggered proinflammatory macrophages to secrete serum amyloid A protein 1/3, ultimately inducing Th17 cell differentiation. In addition, through bioinformatic analysis and experimental validation, we identified UC patients with lower FTO expression might respond better to vedolizumab treatment. CONCLUSIONS FTO downregulation promoted UC by decreasing CerS6 expression, leading to increased S1P accumulation in IECs and aggravating colitis via m6A-dependent mechanisms. Lower FTO expression in UC patients may enhance their response to vedolizumab treatment.
Collapse
Affiliation(s)
- Yanru Ma
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Zhang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Nan Yin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Lijun Ning
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Lu Zhou
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Yan
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianying Tong
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqiang Zhu
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Muni Hu
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Wang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Huabin Li
- Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Lin L, Zhang K, Xiong Q, Zhang J, Cai B, Huang Z, Yang B, Wei B, Chen J, Niu Q. Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression. J Autoimmun 2023; 141:103001. [PMID: 36931952 DOI: 10.1016/j.jaut.2023.103001] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 03/17/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by progressive polyarthritis that leads to cartilage and bone damage. Pre-clinical RA is a prolonged state before clinical arthritis and RA develop, in which autoantibodies (antibodies against citrullinated proteins, rheumatoid factors) can be present due to the breakdown of immunologic self-tolerance. As early treatment initiation before the onset of polyarthritis may achieve sustained remission, optimize clinical outcomes, and even prevent RA progression, the pre-clinical RA stage is showing the prospect to be the window of opportunity for RA treatment. Growing evidence has shown the role of the gut microbiota in inducing systemic inflammation and polyarthritis via multiple mechanisms, which may involve molecular mimicry, impaired intestinal barrier function, gut microbiota-derived metabolites mediated immune regulation, modulation of the gut microbiota's effect on immune cells, intestinal epithelial cells autophagy, and the interaction between the microbiome and human leukocyte antigen alleles as well as microRNAs. Since gut microbiota alterations in pre-clinical RA have been reported, potential therapies for modifying the gut microbiota in pre-clinical RA, including natural products, antibiotic therapy, fecal microbiota transplantation, probiotics, microRNAs therapy, vitamin D supplementation, autophagy inducer-based treatment, prebiotics, and diet, holds great promise for the successful treatment and even prevention of RA via altering ongoing inflammation. In this review, we summarized current studies that include pathogenesis of gut microbiota in RA progression and promising therapeutic strategies to provide novel ideas for the management of pre-clinical RA and possibly preventing arthritis progression.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keyi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Infection Control, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Jiang L, Li JC, Tang BS, Guo JF. Associations between gut microbiota and Parkinson disease: A bidirectional Mendelian randomization analysis. Eur J Neurol 2023; 30:3471-3477. [PMID: 37159496 DOI: 10.1111/ene.15848] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND PURPOSE Parkinson disease (PD)-associated alterations in the gut microbiome have been observed in clinical and animal studies. However, it remains unclear whether this association reflects a causal effect in humans. METHODS We performed two-sample bidirectional Mendelian randomization using summary statistics from the international consortium MiBioGen (N = 18,340), the Framingham Heart Study (N = 2076), and the International Parkinson's Disease Genomics Consortium for PD (33,674 cases and 449,056 controls) and PD age at onset (17,996 cases). RESULTS Twelve microbiota features presented suggestive associations with PD risk or age at onset. Genetically increased Bifidobacterium levels correlated with decreased PD risk (odds ratio = 0.77, 95% confidence interval [CI] = 0.60-0.99, p = 0.040). Conversely, high levels of five short-chain fatty acid (SCFA)-producing bacteria (LachnospiraceaeUCG010, RuminococcaceaeUCG002, Clostridium sensustricto1, Eubacterium hallii group, and Bacillales) correlated with increased PD risk, and three SCFA-producing bacteria (Roseburia, RuminococcaceaeUCG002, and Erysipelatoclostridium) correlated with an earlier age at PD onset. Gut production of serotonin was associated with an earlier age at PD onset (beta = -0.64, 95% CI = -1.15 to -0.13, p = 0.013). In the reverse direction, genetic predisposition to PD was related to altered gut microbiota composition. CONCLUSIONS These results support a bidirectional relationship between gut microbiome dysbiosis and PD, and highlight the role of elevated endogenous SCFAs and serotonin in PD pathogenesis. Future clinical studies and experimental evidence are needed to explain the observed associations and to suggest new therapeutic approaches, such as dietary probiotic supplementation.
Collapse
Affiliation(s)
- Li Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Chen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Chen X, Li Z, Wang X, Zhou J, Wei Q, Chen K, Jiang R. Investigation and verification of GIMAP6 as a robust biomarker for prognosis and tumor immunity in lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:11041-11055. [PMID: 37338641 DOI: 10.1007/s00432-023-04980-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND AIM According to previous reports, GTPase of immunity-associated protein 6 (GIMAP6) is essential for autophagy. However, it is unclear how GIMAP6 affects the development and tumor immunity of lung adenocarcinoma (LUAD). METHODS In the present study, the role of GIMAP6 in vivo and in vitro was examined using reverse transcription-quantitative PCR, western blotting, and Cell Counting Kit-8, colony formation and Transwell assays. Datasets from The Cancer Genome Atlas and Genotype-Tissue Expression databases were thoroughly analyzed using R software. A nomogram was created using GIMAP6 and prognostic characteristics. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were applied to explore the potential mechanism of GIMAP6 in lung cancer. The link between GIMAP6 and the immunological landscape was studied using single-cell RNA sequencing datasets from Tumor Immune Estimation Resource (TIMER) 2.0 and Tumor Immune Single-cell Hub. RESULTS Patients with high GIMAP6 expression had improved overall and disease-specific survival compared with those patients with low GIMAP6 expression. According to the receiver operating characteristic and calibration curve, the nomogram based on T stage, N stage and GIMAP6 had predictive value for prognosis. According to functional enrichment analysis, GIMAP6 was primarily involved in T-cell receptor signaling pathway, chemokine signaling pathway, cytokine and cytokine receptor interaction. GIMAP6 was shown to be favorably linked with the infiltration of immune cells and immune-related molecules, including cytotoxic T-lymphocyte associated protein 4, programmed death-ligand 1, and T cell immunoreceptor with Ig and ITIM domains, by single-cell sequencing and TIMER2.0 analysis. The role of GIMAP6 in lung cancer cell proliferation, invasion, migration and immunity was experimentally verified. CONCLUSION These findings confirmed that GIMAP6 was an effective prognostic molecule that was involved in the regulation of the immune microenvironment of LUAD, and may become a predictor for the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Zhaona Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Xinyue Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Jing Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Qianhui Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Kaidi Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
26
|
Reyes CM, Klein H, Stögbauer F, Einwächter H, Boxberg M, Schirren M, Safi S, Hoffmann H. Carcinoid syndrome caused by a pulmonary carcinoid mimics intestinal manifestations of ulcerative colitis: A case report. World J Gastroenterol 2023; 29:5014-5019. [PMID: 37731996 PMCID: PMC10507508 DOI: 10.3748/wjg.v29.i33.5014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Pulmonary carcinoids are rare, low-grade malignant tumors characterized by neuroendocrine differentiation and relatively indolent clinical behavior. Most cases present as a slow-growing polypoidal mass in the major bronchi leading to hemoptysis and pulmonary infection due to blockage of the distal bronchi. Carcinoid syndrome is a paraneoplastic syndrome caused by the systemic release of vasoactive substances that presents in 5% of patients with neuroendocrine tumors. Due to such nonspecific presentation, most patients are misdiagnosed or diagnosed late and may receive several courses of antibiotics to treat recurrent pneumonia before the tumor is diagnosed. CASE SUMMARY We report the case of a 48-year-old male who presented with cough, dyspnea, a history of recurrent pneumonitis, and therapy-refractory ulcerative colitis that completely subsided after the resection of a pulmonary carcinoid. CONCLUSION We report and emphasize pulmonary carcinoid as a differential diagnosis in patients with nonresponding inflammatory bowel diseases and recurrent pneumonia.
Collapse
Affiliation(s)
- Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Henriette Klein
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Fabian Stögbauer
- Institute of Pathology, Technical University of Munich, Munich 81675, Germany
| | - Henrik Einwächter
- Department of Internal Medicine II, Technical University of Munich, Munich 81675, Germany
| | - Melanie Boxberg
- Institute of Pathology, Technical University of Munich, Munich 81675, Germany
| | - Moritz Schirren
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Seyer Safi
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Hans Hoffmann
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany
| |
Collapse
|
27
|
Rosa LF, Haasis E, Knauss A, Guseva D, Bischoff SC. Serotonin reuptake transporter deficiency promotes liver steatosis and impairs intestinal barrier function in obese mice fed a Western-style diet. Neurogastroenterol Motil 2023; 35:e14611. [PMID: 37246491 DOI: 10.1111/nmo.14611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/23/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Intestinal barrier dysfunctions have been associated with liver steatosis and metabolic diseases. Besides nutritional factors, like a Western-style diet (WSD), serotonin has been linked with leaky gut. Therefore, we aimed to evaluate the role of serotonin in the pathogenesis of intestinal barrier dysfunctions and liver steatosis in mice fed high-fat and high-sugar diets. METHODS 6-8 weeks old male serotonin reuptake transporter knockout mice (SERT-/- ) and wild-type controls (SERT+/+ ) were fed either a WSD or a control diet (CD) ad libitum with or without fructose 30% (F) added to the drinking water for 12 weeks. Markers of liver steatosis and intestinal barrier function were assessed. KEY RESULTS SERT-/- mice showed increased weight gain compared with SERT+/+ mice when fed a WSD ± F for 12 weeks (p < 0.05), whereby SERT-/- mice exhibited reduced energy (-21%) intake. Furthermore, SERT knockout resulted in a more pronounced liver steatosis (p < 0.05), enhanced levels of endotoxin in portal vein plasma (p < 0.05), and increased liver expression of Tnf and Myd88 (p < 0.05), when mice were fed a WSD ± F. Finally, SERT-/- mice, when compared with SERT+/+ mice, had a decreased mRNA expression of Muc2 (p < 0.01), Ocln (p < 0.05), Cldn5 (p = 0.054) and 7 (p < 0.01), Defa5 (p < 0.05) and other antimicrobial peptides in the ileum. On the protein level, ZO-1 (p < 0.01) and DEFA5 protein (p < 0.0001) were decreased. CONCLUSION AND INFERENCES Our data demonstrate that SERT knockout causes weight gain, liver steatosis, and leaky gut, especially in mice fed a WSD. Therefore, SERT induction could be a novel therapeutic approach to improve metabolic diseases associated with intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Louisa Filipe Rosa
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Eva Haasis
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Annkathrin Knauss
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Daria Guseva
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
28
|
Xie G, Jin H, Mikhail H, Pavel V, Yang G, Ji B, Lu B, Li Y. Autophagy in sarcopenia: Possible mechanisms and novel therapies. Biomed Pharmacother 2023; 165:115147. [PMID: 37473679 DOI: 10.1016/j.biopha.2023.115147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
With global population aging, age-related diseases, especially sarcopenia, have attracted much attention in recent years. Characterized by low muscle strength, low muscle quantity or quality and low physical performance, sarcopenia is one of the major factors associated with an increased risk of falls and disability. Much effort has been made to understand the cellular biological and physiological mechanisms underlying sarcopenia. Autophagy is an important cellular self-protection mechanism that relies on lysosomes to degrade misfolded proteins and damaged organelles. Research designed to obtain new insight into human diseases from the autophagic aspect has been carried out and has made new progress, which encourages relevant studies on the relationship between autophagy and sarcopenia. Autophagy plays a protective role in sarcopenia by modulating the regenerative capability of satellite cells, relieving oxidative stress and suppressing the inflammatory response. This review aims to reveal the specific interaction between sarcopenia and autophagy and explore possible therapies in hopes of encouraging more specific research in need and unlocking novel promising therapies to ameliorate sarcopenia.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
29
|
He J, Xie X, Xiao Z, Qian W, Zhang L, Hou X. Piezo1 in Digestive System Function and Dysfunction. Int J Mol Sci 2023; 24:12953. [PMID: 37629134 PMCID: PMC10454946 DOI: 10.3390/ijms241612953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1's cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| |
Collapse
|
30
|
Hao Y, Jiang L, Han D, Si D, Sun Z, Wu Z, Dai Z. Limosilactobacillus mucosae and Lactobacillus amylovorus Protect Against Experimental Colitis via Upregulation of Colonic 5-Hydroxytryptamine Receptor 4 and Transforming Growth Factor-β2. J Nutr 2023; 153:2512-2522. [PMID: 37356501 DOI: 10.1016/j.tjnut.2023.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Limosilactobacillusmucosae (LM) exerts anti-inflammatory and health-promoting effects. However, its role in the modulation of gut serotonin or 5-hydroxytryptamine (5-HT) metabolism and 5-HT receptors (HTRs) in inflammation requires further investigation. OBJECTIVES We compared LM with Lactobacillus amylovorus (LA) for the regulation of 5-HT, HTRs, inflammatory mediators, and their correlations in the colon of mice with experimental colitis. METHODS Male C57BL/6 mice were randomly assigned to 6 groups: control (Con), LM, LA, dextran sodium sulfate (DSS), and DSS with pre-administration of LM (+LM) or LA (+LA). After 7 d of DSS treatment, mice were killed to analyze the expression of inflammatory mediators, HTRs, and concentrations of 5-HT and microbial metabolites in the colon. RESULTS LM was more effective than LA in alleviating DSS-induced colonic inflammation. Compared with mice in the DSS group, mice receiving DSS + LM or DSS + LA treatment had lower (P < 0.05) colonic mRNA expression of proinflammatory cytokines. DSS + LM treatment had lower mRNA expression of Il1b, Tnfa, and Ccl3, an abundance of p-STAT3, and greater expression of Tgfb2 and Htr4 in the colon (P < 0.05). The expression of inflammatory mediators (including Tgfb-1) was positively correlated (P < 0.05) with 5-HT and Htr2a and negatively correlated (P < 0.05) with Htr4. However, the expression of Tgfb-2 showed reversed correlations with the 5-HT and HTRs described above. Patterns for these correlations were different for LM and LA. Mice receiving the DSS + LM treatment had greater (P < 0.05) concentrations of acetate and valerate and lower (P < 0.05) concentrations of indole-3-acetic acid in the cecal and colonic contents. CONCLUSIONS LM showed greater efficacy than LA in alleviating DSS-induced colonic inflammation. The coordinated regulation of transforming growth factor-β subtypes and serotonin receptors in the colon may be one of the most important mechanisms underlying the probiotic effects of lactobacilli in gut inflammation.
Collapse
Affiliation(s)
- Youling Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dayong Si
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
31
|
Banskota S, Wang H, Kwon YH, Gautam J, Haq S, Grondin J, Steinberg GR, Khan WI. Inhibition of NADPH Oxidase (NOX) 2 Mitigates Colitis in Mice with Impaired Macrophage AMPK Function. Biomedicines 2023; 11:biomedicines11051443. [PMID: 37239114 DOI: 10.3390/biomedicines11051443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophage adenosine monophosphate-activated protein kinase (AMPK) limits the development of experimental colitis. AMPK activation inhibits NADPH oxidase (NOX) 2 expression, reactive oxygen species (ROS) generation, and pro-inflammatory cytokine secretion in macrophages during inflammation, while increased NOX2 expression is reported in experimental models of colitis and inflammatory bowel disease (IBD) patients. Although there are reductions in AMPK activity in IBD, it remains unclear whether targeted inhibition of NOX2 in the presence of defective AMPK can reduce the severity of colitis. Here, we investigate whether the inhibition of NOX2 ameliorates colitis in mice independent of AMPK activation. Our study identified that VAS2870 (a pan-Nox inhibitor) alleviated dextran sodium sulfate (DSS)-induced colitis in macrophage-specific AMPKβ1-deficient (AMPKβ1LysM) mice. Additionally, VAS2870 blocked LPS-induced TLR-4 and NOX2 expression, ROS production, nuclear translocation of NF-κB, and pro-inflammatory cytokine secretion in bone marrow-derived macrophages (BMDMs) from AMPKβ1LysM mice, whereas sodium salicylate (SS; AMPK β1 activator) did not. Both VAS2870 and SS inhibited LPS-induced NOX2 expression, ROS production, and pro-inflammatory cytokine secretions in bone marrow-derived macrophages (BMDMs) from wildtype (AMPKβ1fl/fl) mice but only VAS2870 inhibited these effects of LPSs in AMPKβ1LysM BMDMs. Furthermore, in macrophage cells (RAW 264.7), both SS and VAS2870 inhibited ROS production and the secretion of pro-inflammatory cytokines and reversed the impaired autophagy induced by LPSs. These data suggest that inhibiting NOX2 can reduce inflammation independent of AMPK in colitis.
Collapse
Affiliation(s)
- Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jaya Gautam
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jensine Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
32
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
33
|
Shi W, Peng K, Yu H, Wang Z, Xia S, Xiao S, Tian D, Vallance BA, Yu Q. Autotaxin (ATX) inhibits autophagy leading to exaggerated disruption of intestinal epithelial barrier in colitis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166647. [PMID: 36746254 DOI: 10.1016/j.bbadis.2023.166647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated disease. Autotaxin (ATX) is associated with increased inflammatory molecules, however, its effect on IBD is not well understood. Autophagy plays an important role in IBD, whether ATX and autophagy act in concert in IBD remains unknown. This study is to explore the possible mechanisms of ATX affecting autophagy leading to the disruption of intestinal epithelial barrier, thereby exacerbating colitis. The expression of ATX was upregulated in UC patients and dextran sulfate sodium (DSS)-induced colitis mice. Here, we described that providing an ATX inhibitor during DSS colitis increased autophagy and ameliorated colonic inflammation. Conversely, intrarectal administration with recombinant (r)ATX increased colitis and decreased autophagy. This pro-colitic effect was attenuated in mice treated with rapamycin, resulting in increased autophagy activity and mild colitis. Moreover, the inhibitory effect of rATX on autophagy was confirmed in vitro and was reversed by the addition of rapamycin. The damaging effects of ATX on epithelial barrier function were reversed by ATX inhibitor or rapamycin treatment. In sum, our results show that ATX can inhibit autophagy through the mTOR pathway, resulting in exaggerated damage to the intestinal epithelial barrier during colitis. These findings suggest that ATX may be a key pro-colitic factor, and represent a potential therapeutic target for treating IBD in the future.
Collapse
Affiliation(s)
- Wenjie Shi
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hongbing Yu
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Zi Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shuhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
34
|
Chen M, Wu Q, Zhu Z, Huang A, Zhang J, Bekhit AEDA, Wang J, Ding Y. Selenium-enriched foods and their ingredients: As intervention for the vicious cycle between autophagy and overloaded stress responses in Alzheimer's disease. Crit Rev Food Sci Nutr 2023; 64:6672-6685. [PMID: 36728929 DOI: 10.1080/10408398.2023.2172547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dysfunctional autophagy induced by excessive reactive oxygen species (ROS) load and inflammation accelerates the development of Alzheimer's disease (AD). Recently, there has been an increasing interest in selenium-enriched ingredients (SEIs), such as selenoproteins, selenoamino acids and selenosugars, which could improve AD through antioxidant and anti-inflammation, as well as autophagy modulating effects. This review indicates that SEIs eliminate excessive ROS by activating the nuclear translocation of nuclear factor erythroid2-related factor 2 (Nrf2) and alleviate inflammation by inhibiting the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, they can activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and subsequently promote amyloid beta (Aβ) clearance and reduce memory impairments. SEIs are ubiquitous in many plants and microorganisms, such as Brassicaceae vegetables, yeast, and mushroom. Enzymatic hydrolysis, as well as physical processing, such as thermal, high pressure and microwave treatment, are the main techniques to modify the properties of dietary selenium. This work highlights the fact that SEIs can inhibit inflammation and oxidative stress and provides evidence that supports the potential use of these dietary materials to be a novel strategy for improving AD.
Collapse
Affiliation(s)
- Mengfei Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - AoHuan Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
35
|
Hizay A, Dag K, Oz N, Comak-Gocer EM, Ozbey-Unlu O, Ucak M, Keles-Celik N. Lactobacillus acidophilus regulates abnormal serotonin availability in experimental ulcerative colitis. Anaerobe 2023; 80:102710. [PMID: 36708801 DOI: 10.1016/j.anaerobe.2023.102710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Probiotics are known to play a beneficial role in curing irritable bowel syndrome such as ulcerative colitis. Commensal Lactobacillus species are thought to play a protective role against ulcerative colitis, as they restore homeostasis in intestinal disorders. Abnormal serotonin availability has been described in ulcerative colitis, but the underlying mechanism is still unclear. The aim of this study was to determine the anti-inflammatory role of Lactobacillus acidophilus (L. acidophilus) and its effect on serotonin expression. METHODS Ulcerative colitis was created with the intrarectal administration of acetic acid. A total of 40 adult male rats were divided into five groups of eight rats as control, sham, experimental colitis, treatment (Colitis + L. acidophilus) and protective group (L. acidophilus + colitis). To evaluate the effects of L. acidophilus on serotonin expression in ulcerative colitis, this bacterial strain was administered orally to the rats with acetic acid-induced colitis. After oral administration of L. acidophilus for 14 days, serotonin content was biochemically measured and serotonin expression was evaluated immunohistochemically. RESULTS The expression of serotonin and its protein content was significantly increased in colitis compared to the control and sham groups. Abnormal serotonin availability in the rats with acetic acid-induced colitis was significantly reduced by the L. acidophilus. CONCLUSIONS In our study, it was observed that the amount of serotonin in the intestinal tissue increased excessively with ulcerative colitis. In addition, L.acidophilus has been found to reduce the abnormally increased amount of serotonin in the colon tissue, as well as reduce the inflammation in the intestinal tissue that occurs with ulcerative colitis. With our findings, it is predicted that probiotic application can be used as a treatment option in ulcerative colitis.
Collapse
Affiliation(s)
- Arzu Hizay
- Department of Anatomy, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Kubra Dag
- Department of Anatomy, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Nuriye Oz
- Department of Anatomy, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Emine Mine Comak-Gocer
- Department of Nutrition and Dietetics, Akdeniz University, Faculty of Health Sciences, Antalya, Turkey.
| | - Ozlem Ozbey-Unlu
- Department of Histology and Embryology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Melike Ucak
- Department of Histology and Embryology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Nigar Keles-Celik
- Department of Anatomy, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|
36
|
Kwon YH, Banskota S, Wang H, Rossi L, Grondin JA, Syed SA, Yousefi Y, Schertzer JD, Morrison KM, Wade MG, Holloway AC, Surette MG, Steinberg GR, Khan WI. Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat Commun 2022; 13:7617. [PMID: 36539404 PMCID: PMC9768151 DOI: 10.1038/s41467-022-35309-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Chemicals in food are widely used leading to significant human exposure. Allura Red AC (AR) is a highly common synthetic colorant; however, little is known about its impact on colitis. Here, we show chronic exposure of AR at a dose found in commonly consumed dietary products exacerbates experimental models of colitis in mice. While intermittent exposure is more akin to a typical human exposure, intermittent exposure to AR in mice for 12 weeks, does not influence susceptibility to colitis. However, exposure to AR during early life primes mice to heightened susceptibility to colitis. In addition, chronic exposure to AR induces mild colitis, which is associated with elevated colonic serotonin (5-hydroxytryptamine; 5-HT) levels and impairment of the epithelial barrier function via myosin light chain kinase (MLCK). Importantly, chronic exposure to AR does not influence colitis susceptibility in mice lacking tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme for 5-HT biosynthesis. Cecal transfer of the perturbed gut microbiota by AR exposure worsens colitis severity in the recipient germ-free (GF) mice. Furthermore, chronic AR exposure elevates colonic 5-HT levels in naïve GF mice. Though it remains unknown whether AR has similar effects in humans, our study reveals that chronic long-term exposure to a common synthetic colorant promotes experimental colitis via colonic 5-HT in gut microbiota-dependent and -independent pathway in mice.
Collapse
Affiliation(s)
- Yun Han Kwon
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Suhrid Banskota
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Huaqing Wang
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Laura Rossi
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Jensine A. Grondin
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Saad A. Syed
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Yeganeh Yousefi
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Jonathan D. Schertzer
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Katherine M. Morrison
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Pediatrics, McMaster University, Hamilton, ON Canada
| | - Michael G. Wade
- grid.57544.370000 0001 2110 2143Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Alison C. Holloway
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON Canada
| | - Michael G. Surette
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Gregory R. Steinberg
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Waliul I. Khan
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| |
Collapse
|
37
|
Cheng Y, Wang C, Wang H, Zhang Z, Yang X, Dong Y, Ma L, Luo J. Combination of an autophagy inhibitor with immunoadjuvants and an anti-PD-L1 antibody in multifunctional nanoparticles for enhanced breast cancer immunotherapy. BMC Med 2022; 20:411. [PMID: 36303207 PMCID: PMC9615197 DOI: 10.1186/s12916-022-02614-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The application of combination therapy for cancer treatment is limited due to poor tumor-specific drug delivery and the abscopal effect. METHODS Here, PD-L1- and CD44-responsive multifunctional nanoparticles were developed using a polymer complex of polyethyleneimine and oleic acid (PEI-OA) and loaded with two chemotherapeutic drugs (paclitaxel and chloroquine), an antigen (ovalbumin), an immunopotentiator (CpG), and an immune checkpoint inhibitor (anti-PD-L1 antibody). RESULTS PEI-OA greatly improved the drug loading capacity and encapsulation efficiency of the nanoplatform, while the anti-PD-L1 antibody significantly increased its cellular uptake compared to other treatment formulations. Pharmacodynamic experiments confirmed that the anti-PD-L1 antibody can strongly inhibit primary breast cancer and increase levels of CD4+ and CD8+ T cell at the tumor site. In addition, chloroquine reversed the "immune-cold" environment and improved the anti-tumor effect of both chemotherapeutics and immune checkpoint inhibitors, while it induced strong immune memory and prevented lung metastasis. CONCLUSIONS Our strategy serves as a promising approach to the rational design of nanodelivery systems for simultaneous active targeting, autophagy inhibition, and chemotherapy that can be combined with immune-checkpoint inhibitors for enhanced breast cancer treatment.
Collapse
Affiliation(s)
- Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Caixia Wang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Huihui Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Zhiwei Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Xiaopeng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China.
| | - Jingwen Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China.
| |
Collapse
|
38
|
Kwon YH, Khan WI. Peripheral Serotonin: Cultivating Companionship with Gut Microbiota in Intestinal Homeostasis. Am J Physiol Cell Physiol 2022; 323:C550-C555. [PMID: 35759441 DOI: 10.1152/ajpcell.00433.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT), is an evolutionarily ancient and phylogenetically conserved monoamine that regulates multifaceted physiological functions in mammals. 5-HT was, at one time, most extensively studied as a neurotransmitter within the central nervous system but is now known to regulate non-neuronal functions including immune responses in an autocrine-paracrine-endocrine manner. Compelling evidence from intervention studies using germ-free mice or antibiotic-associated microbiota perturbation suggests that novel interactions between 5-HT and the gut microbiota are essential in maintaining intestinal homeostasis. Importantly, recent studies reveal that bidirectional host-microbial interactions mediated by the host serotonergic system can promote distinct changes within the gut microbiota. These changes may potentially lead to a state known as 'dysbiosis' which has been strongly associated with various gut pathologies including inflammatory bowel disease (IBD). In this review, we update the current understanding of host-microbiota interaction by focusing on the impact of peripheral 5-HT signaling within this dynamic. We also briefly highlight key environmental risk factors for IBD, such as Western diet, and draw attention to the interaction of synthetic food colorants with 5-HT signaling that may facilitate future research.
Collapse
Affiliation(s)
- Yun Han Kwon
- Department of Pathology and Molecular Medicine, McMaster University; Hamilton, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Department of Pathology and Molecular Medicine, McMaster University; Hamilton, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Laboratory Medicine, Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
39
|
Fei Y, Zhang S, Han S, Qiu B, Lu Y, Huang W, Li F, Chen D, Berglund B, Xiao H, Li L, Yao M. The Role of Dihydroresveratrol in Enhancing the Synergistic Effect of Ligilactobacillus salivarius Li01 and Resveratrol in Ameliorating Colitis in Mice. Research (Wash D C) 2022; 2022:9863845. [PMID: 35935130 PMCID: PMC9275091 DOI: 10.34133/2022/9863845] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/14/2022] [Indexed: 12/13/2022] Open
Abstract
Currently approved therapeutical strategies for inflammatory bowel diseases (IBD) suffer from variable efficacy and association with risk of serious side effects. Therefore, efforts have been made in searching for alternative therapeutics strategies utilizing gut microbiota manipulation. In this study, we show that the probiotic strain Ligilactobacillus salivarius Li01 (Li01) and the phytochemical prebiotic resveratrol (RSV) have synergistic effect in ameliorating colitis in mice. Oral coadministration of Li01 (109 CFU/d) and RSV (1.5 g/kg/d) promoted restoration of various inflammatory injuries and gut microbiota composition, exhibiting a favorable anti-inflammatory effect in DSS-induced colitis mice. The combination treatment was associated with reductions in the levels of proinflammatory cytokines IL-1β and IL-6 and increases in the levels of the anti-inflammatory cytokine IL-17A in mouse serum. Moreover, the combination treatment was found to alter the composition and metabolism of the gut microbiota, especially influencing the production of short chain fatty acids and anti-inflammatory related molecules. The mechanism underlying the improved anti-inflammatory effect from the RSV and Li01 combination treatment was found to be associated with the environmental sensor mammalian aryl hydrocarbon receptor (AHR) and tryptophan metabolism pathway. Administration of RSV in combination with Li01 in different mouse model led to enhanced conversion of RSV into metabolites, including dihydroresveratrol (DHR), resveratrol-sulfate, and resveratrol-glucuronide. DHR was found to be the dominant metabolite of RSV in conventional and colitis mice. An increased DHR/RSV ratio was confirmed to activate AHR and contribute to an enhanced anti-inflammatory effect. DHR is considered as a potential AHR ligand. The DHR/RSV ratio also affected the serotonin pathway by controlling the expression of Tph1, SERT, and 5-HT7R leading to amelioration of colitis in mice. Our data suggest that treatment with a combination of Li01 and RSV has potential as a therapeutic strategy for IBD; further investigation of this combination in clinical settings is warranted.
Collapse
Affiliation(s)
- Yiqiu Fei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Weixing Huang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Zhejiang Tongchuang Yuecheng Health Science and Technology Co., Ltd., Shaoxing, China
| | - Fang Li
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, P&S10-401, New York, NY 10032, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Björn Berglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
40
|
Gill PA, Inniss S, Kumagai T, Rahman FZ, Smith AM. The Role of Diet and Gut Microbiota in Regulating Gastrointestinal and Inflammatory Disease. Front Immunol 2022; 13:866059. [PMID: 35450067 PMCID: PMC9016115 DOI: 10.3389/fimmu.2022.866059] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Diet is an important lifestyle factor that is known to contribute in the development of human disease. It is well established that poor diet plays an active role in exacerbating metabolic diseases, such as obesity, diabetes and hypertension. Our understanding of how the immune system drives chronic inflammation and disease pathogenesis has evolved in recent years. However, the contribution of dietary factors to inflammatory conditions such as inflammatory bowel disease, multiple sclerosis and arthritis remain poorly defined. A western diet has been associated as pro-inflammatory, in contrast to traditional dietary patterns that are associated as being anti-inflammatory. This may be due to direct effects of nutrients on immune cell function. Diet may also affect the composition and function of gut microbiota, which consequently affects immunity. In animal models of inflammatory disease, diet may modulate inflammation in the gastrointestinal tract and in other peripheral sites. Despite limitations of animal models, there is now emerging evidence to show that anti-inflammatory effects of diet may translate to human gastrointestinal and inflammatory diseases. However, appropriately designed, larger clinical studies must be conducted to confirm the therapeutic benefit of dietary therapy.
Collapse
Affiliation(s)
- Paul A Gill
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Saskia Inniss
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Tomoko Kumagai
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Farooq Z Rahman
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom.,Department of Gastroenterology, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Andrew M Smith
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
41
|
Banskota S, Khan WI. Gut-derived serotonin and its emerging roles in immune function, inflammation, metabolism and the gut-brain axis. Curr Opin Endocrinol Diabetes Obes 2022; 29:177-182. [PMID: 35197425 DOI: 10.1097/med.0000000000000713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To shed light on the recently uncovered diverse role of serotonin (5-hydroxytryptamine; 5-HT) in the regulation of immune functions, inflammation, metabolism, and gut-brain axis. RECENT FINDINGS Peripheral 5-HT which accounts for approximately 95% of the total is largely synthesized in the gut by enterochromaffin cells. Enterochromaffin cells release 5-HT in response to various stimuli including microbial products. Released 5-HT influences secretomotor, sensory and immune functions as well as inflammatory processes in the gut. 5-HT released from enterochromaffin cells enters circulation and is taken up and concentrated in platelets. 5-HT released from the activated platelets interacts with different organs to alter their metabolic activity. 5-HT also serves as a link in the gut-brain axis. SUMMARY Emerging evidence regarding the role of peripheral 5-HT in the regulation of various physiological and pathophysiological conditions opens up new targets for researchers to explore and for clinicians to treat and manage different diseases associated with the altered 5-HT signalling.
Collapse
Affiliation(s)
- Suhrid Banskota
- Department of Pathology and Molecular Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|