1
|
Iyengar SA, Tripathi M, Srivastava A, Biswas A, Gray T, Terrones M, Dalton AB, Pimenta MA, Vajtai R, Meunier V, Ajayan PM. Glaphene: A Hybridization of 2D Silica Glass and Graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419136. [PMID: 40434220 DOI: 10.1002/adma.202419136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/02/2025] [Indexed: 05/29/2025]
Abstract
2D materials provide ideal platforms for breakthroughs in both fundamental science and practical, real-world applications. Despite the broad diversity of 2D materials, most integration efforts have focused on homo/hetero-structural stacking and Janus structures. In this paper, we introduce "glaphene"-a hybrid of two fundamentally different materials: 2D silica glass and graphene. We propose a metastable hybrid structure based on first-principles calculations, synthesize it via scalable liquid precursor-based vapor-phase growth, and chemically validate the interlayer structure and hybridization using extensive optical and electron spectroscopy, mass spectrometry, and atomic-resolution electron microscopy. Using probe microscopy, we reveal that electronic cloud redistribution at the interface-beyond conventional van der Waals interactions-drives interlayer hybridization via a strong electronic proximity effect. By reconstructing the energy level diagram of glaphene through both theory and experiment, we show that the combination of semi-metallic graphene (Eg≈0 eV) and insulating 2D silica glass (Eg, exp≈8.2 eV, Eg, th≈7 eV) results in a semiconducting "glaphene" (Eg, exp≈3.6 eV, Eg, th≈4 eV) formed through out-of-plane pz hybridization. This work paves the way for scalable, bottom-up methodologies to bring interlayer hybridization and its emergent properties to the 2D materials toolbox.
Collapse
Affiliation(s)
- Sathvik Ajay Iyengar
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Manoj Tripathi
- Department of Physics and Astronomy, School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, UK
| | - Anchal Srivastava
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Physics, Banaras Hindu University, Varanasi, 221005, India
| | - Abhijit Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Tia Gray
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Mauricio Terrones
- Department of Physics, Department of Chemistry, Department of Materials Science and Engineering and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alan B Dalton
- Department of Physics and Astronomy, School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, UK
| | - Marcos A Pimenta
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
- Centro de Tecnologia em Nanomateriais e Grafeno (CTNano), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Vincent Meunier
- Department of Engineering Science and Mechanics, Department of Physics, Department of Materials Science and Engineering Pennsylvania State University, University Park, PA, 16802, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
2
|
Yang D, Lai J, Fan Z, Wang S, Chang K, Meng L, Cheng J, Sun D. Dimensionality-enhanced mid-infrared light vortex detection based on multilayer graphene. LIGHT, SCIENCE & APPLICATIONS 2025; 14:116. [PMID: 40044647 PMCID: PMC11882842 DOI: 10.1038/s41377-024-01735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 03/09/2025]
Abstract
Recent conceptual demonstrations of direct photocurrent readout of light vortices have enabled the development of light orbital angular momentum-sensitive focal plane arrays and on-chip integration of orbital angular momentum detection. However, known orbital angular momentum-sensitive materials are limited to two topological Weyl Semimetals belonging to the C2v point group, namely, WTe2 and TaIrTe4. Both are fragile under ambient conditions and challenging for large-scale epitaxial growth. In this work, we demonstrate that multilayer graphene, which is complementary metal-oxide-semiconductor compatible and epitaxially growable at the wafer scale, is applicable for orbital angular momentum detection in the mid-infrared region. Using a multilayer graphene photodetector with a designed U-shaped electrode geometry, we demonstrate that the topological charge of orbital angular momentum can be detected directly through the orbital photogalvanic effect and that the orbital angular momentum recognition capability of multilayer graphene is an order of magnitude greater than that of TaIrTe4. We found that the detection capability of multilayer graphene is enabled by the enhanced orbital photogalvanic effect response due to the reduced dimensionality and scattering rate. Our work opens a new technical route to improve orbital angular momentum recognition capability and is immediately applicable for large-scale integration of ambient stable, mid-infrared direct orbital angular momentum photodetection devices.
Collapse
Affiliation(s)
- Dehong Yang
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
| | - Jiawei Lai
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Zipu Fan
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
| | - Shiyu Wang
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
| | - Kainan Chang
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China
| | - Lili Meng
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
| | - Jinluo Cheng
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China.
| | - Dong Sun
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, 100871, Beijing, China.
- Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China.
| |
Collapse
|
3
|
Liu Z, Ju W, Fang Y, Sun D, Zheng X, Hou J, Dai N, Zhang K, Shan Y, Liu Y. In-Plane Adaptive Heteroepitaxy of 2D Cesium Bismuth Halides with Engineered Bandgaps on c-Sapphire. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413852. [PMID: 39629554 DOI: 10.1002/adma.202413852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/05/2024] [Indexed: 02/06/2025]
Abstract
The heteroepitaxy of 2D materials with engineered bandgaps are crucial to broaden the spectral response for their integrated optoelectronic devices. However, it is a challenge to achieve the high-oriented epitaxy and integration of multicomponent 2D materials with varying lattice constants on the same substrate due to the limitation of lattice matching. Here, in-plane adaptive heteroepitaxy of a series of high-oriented 2D cesium bismuth halide (Cs3Bi2X9, X = I, Br, Cl) single crystals with varying lattice constants from 8.41 to 7.71 Å is achieved on c-plane sapphire with distinct lattice constant of 4.76 Å at a low temperature of 160 °C in an air ambient, benefiting from tolerable interfacial strain by switching compressive stress to tensile stress during a 30° rotation of crystal orientation. First-principles calculation demonstrates that those are all thermodynamically stable phases, deriving from multiple minima of interfacial energy between single crystals and sapphire substrate. The detectivity of Cs3Bi2I9 photodetector reaches up to 3.7 × 1012 Jones, deriving from high single-crystal quality. This work provides a promising experimental strategy and basic theory to boost the heteroepitaxy and integration of 2D single crystals with varying lattice constants on low-cost dielectric substrate, paving the way for their applications in integrated optoelectronics.
Collapse
Affiliation(s)
- Zhenyu Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
- Shanghai Engineering Research Center of Photodetection Materials and Devices, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, P. R. China
| | - Wei Ju
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
- Shanghai Engineering Research Center of Photodetection Materials and Devices, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
| | - Yongzheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
- Shanghai Engineering Research Center of Photodetection Materials and Devices, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
| | - Dingyue Sun
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
- Shanghai Engineering Research Center of Photodetection Materials and Devices, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
| | - Xiaohong Zheng
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
- Shanghai Engineering Research Center of Photodetection Materials and Devices, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
| | - Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
- Shanghai Engineering Research Center of Photodetection Materials and Devices, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
| | - Ning Dai
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, P. R. China
| | - Kenan Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yufeng Shan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, P. R. China
| | - Yufeng Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
- Shanghai Engineering Research Center of Photodetection Materials and Devices, Shanghai Institute of Technology, Shanghai, 200235, P. R. China
| |
Collapse
|
4
|
Hadke S, Kang MA, Sangwan VK, Hersam MC. Two-Dimensional Materials for Brain-Inspired Computing Hardware. Chem Rev 2025; 125:835-932. [PMID: 39745782 DOI: 10.1021/acs.chemrev.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed. As a result of their diverse unique properties, atomically thin two-dimensional (2D) materials are promising building blocks for next-generation electronics including nonvolatile memory, in-memory and neuromorphic computing, and flexible edge-computing systems. Furthermore, 2D materials achieve biorealistic synaptic and neuronal responses that extend beyond conventional logic and memory systems. Here, we provide a comprehensive review of the growth, fabrication, and integration of 2D materials and van der Waals heterojunctions for neuromorphic electronic and optoelectronic devices, circuits, and systems. For each case, the relationship between physical properties and device responses is emphasized followed by a critical comparison of technologies for different applications. We conclude with a forward-looking perspective on the key remaining challenges and opportunities for neuromorphic applications that leverage the fundamental properties of 2D materials and heterojunctions.
Collapse
Affiliation(s)
- Shreyash Hadke
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min-A Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Yu C, Liang F, Shi J, Jing Z, Sun X, Yin W, Qi Y, Zhang G, Sun X, Liu Z. Kinetic Process of Graphene Growth from Dual-Carbon Sources on Alpha Alumina. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408641. [PMID: 39618009 DOI: 10.1002/smll.202408641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/03/2024] [Indexed: 01/18/2025]
Abstract
As a new member of the super graphene-skinned materials family, graphene-skinned alumina material integrates the excellent characteristics of graphene and alumina, with characteristics like high electrical conductivity and thermal conductivity, light weight, and has broad application prospects in integrated circuits, electric heating, wind power deicing. Based on density functional theory, the cracking, migration of major carbon species, nucleation, and edge growth of ethylene and acetylene on the α-Al2O3(0001) plane are investigated. The results show that: 1) α-Al2O3 substrate has metal-like catalytic activity, the pyrolysis products of C2H2 and C2H4 carbon sources are C2H and C2H2, respectively, and the main active species on the substrate surface are C2H; 2) The adsorption properties and nucleation rate of C2H on the substrate surface are better than C2H2, but C2H is more difficult to migrate than C2H2, and their migration energy barriers are 2.80/0.88 eV, respectively; 3) The microscopic mechanism of the preparation of graphene-skinned alumina materials by dual-carbon sources is that: the dual-carbon sources are cracked into C2H and C2H2, then C2H nucleates to form graphene nuclei on the substrate surface, finally C2H2 participates in the edge growth of graphene on the substrate, and the AC(Armchair) edge growth rate is faster.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Fushun Liang
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jianjian Shi
- School of Electronic Engineering, Chengdu Technological University, Chengdu, 611730, P. R. China
| | - Zhiyu Jing
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Research, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Xiucai Sun
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Wanjian Yin
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, P. R. China
| | - Yue Qi
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Guangping Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, P. R. China
| | - Xiaoli Sun
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
6
|
Choo S, Varshney S, Liu H, Sharma S, James RD, Jalan B. From oxide epitaxy to freestanding membranes: Opportunities and challenges. SCIENCE ADVANCES 2024; 10:eadq8561. [PMID: 39661695 PMCID: PMC11633760 DOI: 10.1126/sciadv.adq8561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Motivated by the growing demand to integrate functional oxides with dissimilar materials, numerous studies have been undertaken to detach a functional oxide film from its original substrate, effectively forming a membrane, which can then be affixed to the desired host material. This review article is centered on the synthesis of functional oxide membranes, encompassing various approaches to their synthesis, exfoliation, and transfer techniques. First, we explore the characteristics of thin-film growth techniques with emphasis on molecular beam epitaxy. We then examine the fundamental principles and pivotal factors underlying three key approaches of creating membranes: (i) chemical lift-off, (ii) the two-dimensional layer-assisted lift-off, and (iii) spalling. We review the methods of exfoliation and transfer for each approach. Last, we provide an outlook into the future of oxide membranes, highlighting their applications and emerging properties.
Collapse
Affiliation(s)
- Sooho Choo
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shivasheesh Varshney
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huan Liu
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shivam Sharma
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard D. James
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Jankauskas Š, Meškinis Š, Žurauskienė N, Guobienė A. Influence of Synthesis Parameters on Structure and Characteristics of the Graphene Grown Using PECVD on Sapphire Substrate. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1635. [PMID: 39452971 PMCID: PMC11509920 DOI: 10.3390/nano14201635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
The high surface area and transfer-less growth of graphene on dielectric materials is still a challenge in the production of novel sensing devices. We demonstrate a novel approach to graphene synthesis on a C-plane sapphire substrate, involving the microwave plasma-enhanced chemical vapor deposition (MW-PECVD) technique. The decomposition of methane, which is used as a precursor gas, is achieved without the need for remote plasma. Raman spectroscopy, atomic force microscopy and resistance characteristic measurements were performed to investigate the potential of graphene for use in sensing applications. We show that the thickness and quality of graphene film greatly depend on the CH4/H2 flow ratio, as well as on chamber pressure during the synthesis. By varying these parameters, the intensity ratio of Raman D and G bands of graphene varied between ~1 and ~4, while the 2D to G band intensity ratio was found to be 0.05-0.5. Boundary defects are the most prominent defect type in PECVD graphene, giving it a grainy texture. Despite this, the samples exhibited sheet resistance values as low as 1.87 kΩ/□. This reveals great potential for PECVD methods and could contribute toward efficient and straightforward graphene growth on various substrates.
Collapse
Affiliation(s)
- Šarūnas Jankauskas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; (Š.J.); (Š.M.)
| | - Šarūnas Meškinis
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; (Š.J.); (Š.M.)
| | - Nerija Žurauskienė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania;
| | - Asta Guobienė
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; (Š.J.); (Š.M.)
| |
Collapse
|
8
|
Yoo C, Shin HK, Han SS, Lee S, Lee CW, Song YJ, Bae TS, Yoo SJ, Cao J, Kim JH, Lee HJ, Chung HS, Jung Y. Wafer-Scale Freestanding Monocrystalline Chalcogenide Membranes by Strain-Assisted Epitaxy and Spalling. NANO LETTERS 2024. [PMID: 39356826 DOI: 10.1021/acs.nanolett.4c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Monocrystalline chalcogenide thin films in freestanding forms are very much needed in advanced electronics such as flexible phase change memories (PCMs). However, they are difficult to manufacture in a scalable manner due to their growth and delamination challenges. Herein, we report a viable strategy for a wafer-scale epitaxial growth of monocrystalline germanium telluride (GeTe) membranes and their deterministic integrations onto flexible substrates. GeTe films are epitaxially grown on Ge wafers via a tellurization reaction accompanying a formation of confined dislocations along GeTe/Ge interfaces. The as-grown films are subsequently delaminated off the wafers, preserving their wafer-scale structural integrity, enabled by a strain-engineered spalling method that leverages the stress-concentrated dislocations. The versatility of this wafer epitaxy and delamination approach is further expanded to manufacture other chalcogenide membranes, such as germanium selenide (GeSe). These materials exhibit phase change-driven electrical switching characteristics even in freestanding forms, opening up unprecedented opportunities for flexible PCM technologies.
Collapse
Affiliation(s)
- Changhyeon Yoo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Han-Kyun Shin
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Sang Sub Han
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Seohui Lee
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Chemistry, University of Central Florida, Orlando, Florida 32826, United States
| | - Chung Won Lee
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Yu-Jin Song
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Tae-Sung Bae
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Seung Jo Yoo
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Justin Cao
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Jung Han Kim
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Hyo-Jong Lee
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Hee-Suk Chung
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
9
|
Bianco GV, Chen Z, Bruno G. Direct localized growth of graphene on a substrate: a novel nickel-catalyzed CVD process assisted by H 2 plasma. NANOSCALE ADVANCES 2024:d4na00508b. [PMID: 39398625 PMCID: PMC11467777 DOI: 10.1039/d4na00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
An original metal catalyzed CVD methodology assisted by hydrogen plasma for the direct deposition of few-layer graphene on a substrate is presented. Graphene is grown at 900 °C directly on the surface of the substrate of technological interest by carbon diffusion through a nickel film by using methane (CH4) as the carbon precursor. Hydrogen atoms in the H2-plasma downstream are used to promote the solubilization of carbon atoms in Ni, thus favouring the growth of graphene at the Ni/substrate interface. Structural and transport properties of the as-grown multilayer graphene films on SiO2/Si and quartz substrates are provided. We demonstrate the peculiarity of this approach for controlling the thickness and transport properties of as-grown graphene films using process-step times. Finally, the potential of the proposed methodology for the bottom-up direct growth of patterned graphene is demonstrated.
Collapse
Affiliation(s)
- Giuseppe Valerio Bianco
- Institute of Nanotechnology, CNR-NANOTEC, Dipartimento di Chimica, Università di Bari via Orabona, 4 70126 Bari Italy +39-0805442082
| | - Zhuohui Chen
- Huawei Technologies Canada Co., Ltd 303 Terry Fox Drive Kanata Ontario K2K 3J1 Canada
| | - Giovanni Bruno
- Institute of Nanotechnology, CNR-NANOTEC, Dipartimento di Chimica, Università di Bari via Orabona, 4 70126 Bari Italy +39-0805442082
| |
Collapse
|
10
|
Yang Y, Yuan H, Cheng Y, Yang F, Liu M, Huang K, Wang K, Cheng S, Liu R, Li W, Liang F, Zheng K, Liu L, Tu C, Wang X, Qi Y, Liu Z. Fluid-Dynamics-Rectified Chemical Vapor Deposition (CVD) Preparing Graphene-Skinned Glass Fiber Fabric and Its Application in Natural Energy Harvest. J Am Chem Soc 2024; 146:25035-25046. [PMID: 39213649 DOI: 10.1021/jacs.4c07609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Graphene chemical vapor deposition (CVD) growth directly on target using substrates presents a significant route toward graphene applications. However, the substrates are usually catalytic-inert and special-shaped; thus, large-scale, high-uniformity, and high-quality graphene growth is challenging. Herein, graphene-skinned glass fiber fabric (GGFF) was developed through graphene CVD growth on glass fiber fabric, a Widely used engineering material. A fluid dynamics rectification strategy was first proposed to synergistically regulate the distribution of carbon species in 3D space and their collisions with hierarchical-structured substrates, through which highly uniform deposition of high-quality graphene on fibers in large-scale 3D-woven fabric was realized. This strategy is universal and applicable to CVD systems using various carbon precursors. GGFF exhibits high electrical conductivity and photothermal conversion capability, based on which a natural energy harvester was first developed. It can harvest both solar and raindrop energy through solar heating and droplet-based electricity generating, presenting promising potentials to alleviate energy burdens.
Collapse
Affiliation(s)
- Yuyao Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Hao Yuan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Fan Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Mengxiong Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kewen Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kun Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Shuting Cheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Ruojuan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Wenjuan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Fushun Liang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kangyi Zheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- College of Energy Soochow Institute for Energy and Materials Innovations Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Longfei Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
| | - Ce Tu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Xiaobai Wang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Qi
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| |
Collapse
|
11
|
Fang Y, Zhou K, Wei W, Zhang J, Sun J. Recent advances in batch production of transfer-free graphene. NANOSCALE 2024; 16:10522-10532. [PMID: 38739019 DOI: 10.1039/d4nr01339e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Large-area transfer-free graphene films prepared via chemical vapor deposition have proved appealing for various applications, with exciting examples in electronics, photonics, and optoelectronics. To achieve their commercialisation, batch production is a prerequisite. Nevertheless, the prevailing scalable synthesis strategies that have been reported are still obstructed by production inefficiencies and non-uniformity. There has also been a lack of reviews in this realm. We present herein a comprehensive and timely summary of recent advances in the batch production of transfer-free graphene. Primary issues and promising approaches for improving the graphene growth rate are first addressed, followed by a discussion of the strategies to guarantee in-plane and batch uniformity for graphene grown on planar plates and wafer-scale substrates, with the design of the target equipment to meet productivity requirements. Finally, potential research directions are outlined, aiming to offer insights into guiding the scalable production of transfer-free graphene.
Collapse
Affiliation(s)
- Ye Fang
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| | - Kaixuan Zhou
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| | - Wenze Wei
- Beijing Graphene Institute, Beijing 100095, China
| | - Jincan Zhang
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
| | - Jingyu Sun
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| |
Collapse
|
12
|
Lyu P, Feng J, Zeng Y, Zhang Y, Wu S, Gao J, Hu X, Chen J, Zhou G, Zhao W. Harnessing Smectic Ordering for Electric-Field-Driven Guided-Growth of Surface Topography in a Liquid Crystal Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307726. [PMID: 38126679 DOI: 10.1002/smll.202307726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The guided-growth strategy has been widely explored and proved its efficacy in fabricating surface micro/nanostructures in a variety of systems. However, soft materials like polymers are much less investigated partly due to the lack of strong internal driving mechanisms. Herein, the possibility of utilizing liquid crystal (LC) ordering of smectic liquid crystal polymers (LCPs) to induce guided growth of surface topography during the formation of electrohydrodynamic (EHD) patterns is demonstrated. In a two-stage growth, regular stripes are first found to selectively emerge from the homogeneously aligned region of an initially flat LCP film, and then extend neatly along the normal direction of the boundary line between homogeneous and homeotropic alignments. The stripes can maintain their directions for quite a distance before deviating. Coupled with the advanced tools for controlling LC alignment, intricate surface topographies can be produced in LCP films starting from relatively simple designs. The regularity of grown pattern is determined by the LC ordering of the polymer material, and influenced by conditions of EHD growth. The proposed approach provides new opportunities to employ LCPs in optical and electrical applications.
Collapse
Affiliation(s)
- Pengrong Lyu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Jian Feng
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yishu Zeng
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yang Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Sihan Wu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Jie Gao
- YongJiang Laboratory, No. 1792 Cihai South Road, Ningbo, 315202, P. R. China
| | - Xiaowen Hu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jiawen Chen
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd., Shenzhen, 518110, China
| | - Wei Zhao
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
13
|
Celano U, Schmidt D, Beitia C, Orji G, Davydov AV, Obeng Y. Metrology for 2D materials: a perspective review from the international roadmap for devices and systems. NANOSCALE ADVANCES 2024; 6:2260-2269. [PMID: 38694454 PMCID: PMC11059534 DOI: 10.1039/d3na01148h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/30/2024] [Indexed: 05/04/2024]
Abstract
The International Roadmap for Devices and Systems (IRDS) predicts the integration of 2D materials into high-volume manufacturing as channel materials within the next decade, primarily in ultra-scaled and low-power devices. While their widespread adoption in advanced chip manufacturing is evolving, the need for diverse characterization methods is clear. This is necessary to assess structural, electrical, compositional, and mechanical properties to control and optimize 2D materials in mass-produced devices. Although the lab-to-fab transition remains nascent and a universal metrology solution is yet to emerge, rapid community progress underscores the potential for significant advancements. This paper reviews current measurement capabilities, identifies gaps in essential metrology for CMOS-compatible 2D materials, and explores fundamental measurement science limitations when applying these techniques in high-volume semiconductor manufacturing.
Collapse
Affiliation(s)
- Umberto Celano
- School of Electrical, Computer and Energy Engineering, Arizona State University Tempe AZ 85287 USA
| | | | - Carlos Beitia
- Unity-SC 611 Rue Aristide Berges 38330 Montbonnot-Saint-Martin France
| | - George Orji
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD USA
| | - Albert V Davydov
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD USA
| | - Yaw Obeng
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD USA
| |
Collapse
|
14
|
Zhong J, Zhou D, Bai Q, Liu C, Fan X, Zhang H, Li C, Jiang R, Zhao P, Yuan J, Li X, Zhan G, Yang H, Liu J, Song X, Zhang J, Huang X, Zhu C, Zhu C, Wang L. Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces. Nat Commun 2024; 15:3185. [PMID: 38609368 PMCID: PMC11014996 DOI: 10.1038/s41467-024-47241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Conventional liquid-phase methods lack precise control in synthesizing and processing materials with macroscopic sizes and atomic thicknesses. Water interfaces are ubiquitous and unique in catalyzing many chemical reactions. However, investigations on two-dimensional (2D) materials related to water interfaces remain limited. Here we report the growth of millimeter-sized 2D PbI2 single crystals at the water-air interface. The growth mechanism is based on an inherent ion-specific preference, i.e. iodine and lead ions tend to remain at the water-air interface and in bulk water, respectively. The spontaneous accumulation and in-plane arrangement within the 2D crystal of iodide ions at the water-air interface leads to the unique crystallization of PbI2 as well as other metal iodides. In particular, PbI2 crystals can be customized to specific thicknesses and further transformed into millimeter-sized mono- to few-layer perovskites. Additionally, we have developed water-based techniques, including water-soaking, spin-coating, water-etching, and water-flow-assisted transfer to recycle, thin, pattern, and position PbI2, and subsequently, perovskites. Our water-interface mediated synthesis and processing methods represents a significant advancement in achieving simple, cost-effective, and energy-efficient production of functional materials and their integrated devices.
Collapse
Affiliation(s)
- Jingxian Zhong
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Qi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Xinlian Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hehe Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Congzhou Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Ran Jiang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaojiao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hongyu Yang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Junran Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiao Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China.
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China.
| |
Collapse
|
15
|
Chen S, Chen G, Zhao Y, Bu S, Hu Z, Mao B, Wu H, Liao J, Li F, Zhou C, Guo B, Liu W, Zhu Y, Lu Q, Hu J, Shang M, Shi Z, Yu B, Zhang X, Zhao Z, Jia K, Zhang Y, Sun P, Liu Z, Lin L, Wang X. Tunable Adhesion for All-Dry Transfer of 2D Materials Enabled by the Freezing of Transfer Medium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308950. [PMID: 38288661 DOI: 10.1002/adma.202308950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/30/2023] [Indexed: 02/09/2024]
Abstract
The real applications of chemical vapor deposition (CVD)-grown graphene films require the reliable techniques for transferring graphene from growth substrates onto application-specific substrates. The transfer approaches that avoid the use of organic solvents, etchants, and strong bases are compatible with industrial batch processing, in which graphene transfer should be conducted by dry exfoliation and lamination. However, all-dry transfer of graphene remains unachievable owing to the difficulty in precisely controlling interfacial adhesion to enable the crack- and contamination-free transfer. Herein, through controllable crosslinking of transfer medium polymer, the adhesion is successfully tuned between the polymer and graphene for all-dry transfer of graphene wafers. Stronger adhesion enables crack-free peeling of the graphene from growth substrates, while reduced adhesion facilitates the exfoliation of polymer from graphene surface leaving an ultraclean surface. This work provides an industrially compatible approach for transferring 2D materials, key for their future applications, and offers a route for tuning the interfacial adhesion that would allow for the transfer-enabled fabrication of van der Waals heterostructures.
Collapse
Affiliation(s)
- Sensheng Chen
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030002, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Ge Chen
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yixuan Zhao
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Saiyu Bu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhaoning Hu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Boyang Mao
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Haotian Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Junhao Liao
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Fangfang Li
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Chaofan Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Bingbing Guo
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Wenlin Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yaqi Zhu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Chemical Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Qi Lu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Jingyi Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Mingpeng Shang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Zhuofeng Shi
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Chemical Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Beiming Yu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaodong Zhang
- College of Chemical Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhenxin Zhao
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030002, P. R. China
| | - Kaicheng Jia
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Pengzhan Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Zhongfan Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Li Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Xiaomin Wang
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030002, P. R. China
| |
Collapse
|
16
|
Bonaventura E, Martella C, Macis S, Dhungana DS, Krotkus S, Heuken M, Lupi S, Molle A, Grazianetti C. Optical properties of two-dimensional tin nanosheets epitaxially grown on graphene. NANOTECHNOLOGY 2024; 35:23LT01. [PMID: 38467059 DOI: 10.1088/1361-6528/ad3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/10/2024] [Indexed: 03/13/2024]
Abstract
Heterostacks formed by combining two-dimensional materials show novel properties which are of great interest for new applications in electronics, photonics and even twistronics, the new emerging field born after the outstanding discoveries on twisted graphene. Here, we report the direct growth of tin nanosheets at the two-dimensional limit via molecular beam epitaxy on chemical vapor deposited graphene on Al2O3(0001). The mutual interaction between the tin nanosheets and graphene is evidenced by structural and chemical investigations. On the one hand, Raman spectroscopy indicates that graphene undergoes compressive strain after the tin growth, while no charge transfer is observed. On the other hand, chemical analysis shows that tin nanosheets interaction with sapphire is mediated by graphene avoiding the tin oxidation occurring in the direct growth on this substrate. Remarkably, optical measurements show that the absorption of tin nanosheets exhibits a graphene-like behavior with a strong absorption in the ultraviolet photon energy range, therein resulting in a different optical response compared to tin nanosheets on bare sapphire. The optical properties of ultra-thin tin films therefore represent an open and flexible playground for the absorption of light in a broad range of the electromagnetic spectrum and technologically relevant applications for photon harvesting and sensors.
Collapse
Affiliation(s)
- Eleonora Bonaventura
- CNR-IMM Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, Italy
- Dipartment of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, Milano, Italy
| | - Christian Martella
- CNR-IMM Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, Italy
| | - Salvatore Macis
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Roma, Italy
| | - Daya S Dhungana
- CNR-IMM Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, Italy
| | | | | | - Stefano Lupi
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Roma, Italy
- CNR-IOM, Q2 Building, Area Science Park, Basovizza-Trieste, Italy
| | - Alessandro Molle
- CNR-IMM Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, Italy
| | - Carlo Grazianetti
- CNR-IMM Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, Italy
| |
Collapse
|
17
|
Qi Y, Sun L, Liu Z. Super Graphene-Skinned Materials: An Innovative Strategy toward Graphene Applications. ACS NANO 2024. [PMID: 38275278 DOI: 10.1021/acsnano.3c11971] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Super graphene-skinned materials are emerging members of the graphene composite materials family, which are produced through the high-temperature chemical deposition of continuous graphene layers on traditional engineering materials. The high-performance graphene "skin" endows the traditional engineering materials with additional functionalities, and atomically thin graphene films enter the market by hitching a ride on traditional material carriers. Beyond the physical coating of graphene powders onto engineering materials, the directly grown continuous graphene skin keeps its excellent intrinsic properties to a great extent and holds promise for future applications. Super graphene-skinned material is an innovative pathway for applications of continuous graphene films, which avoids the challenging peeling-transfer process and solves the non-self-supporting issue of ultrathin graphene film. It is a big family, including graphene-skinned powders, fibers, foils, and foams. With further processing and molding, we can obtain graphene-dispersed bulk materials, especially for metal-based graphene-skinned materials, which provides a creative pathway for uniformly dispersing graphene into a metal matrix. In practical applications, graphene-skinned materials would exhibit excellent performance with perfect processing compatibility with current engineering materials and be pushed to real industrial applications relying on the broad market of engineering materials.
Collapse
Affiliation(s)
- Yue Qi
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Luzhao Sun
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Zhongfan Liu
- Beijing Graphene Institute (BGI), Beijing 100095, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Cui Y, Wang J, Li Y, Wu Y, Been E, Zhang Z, Zhou J, Zhang W, Hwang HY, Sinclair R, Cui Y. Twisted epitaxy of gold nanodisks grown between twisted substrate layers of molybdenum disulfide. Science 2024; 383:212-219. [PMID: 38207038 DOI: 10.1126/science.adk5947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
We expand the concept of epitaxy to a regime of "twisted epitaxy" with the epilayer crystal orientation between two substrates influenced by their relative orientation. We annealed nanometer-thick gold (Au) nanoparticles between two substrates of exfoliated hexagonal molybdenum disulfide (MoS2) with varying orientation of their basal planes with a mutual twist angle ranging from 0° to 60°. Transmission electron microscopy studies show that Au aligns midway between the top and bottom MoS2 when the twist angle of the bilayer is small (<~7°). For larger twist angles, Au has only a small misorientation with the bottom MoS2 that varies approximately sinusoidally with twist angle of the bilayer MoS2. Four-dimensional scanning transmission electron microscopy analysis further reveals a periodic strain variation (<|±0.5%|) in the Au nanodisks associated with the twisted epitaxy, consistent with the Moiré registry of the two MoS2 twisted layers.
Collapse
Affiliation(s)
- Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jingyang Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94305, USA
| | - Yanbin Li
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yecun Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Emily Been
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zewen Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jiawei Zhou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Wenbo Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Harold Y Hwang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Energy Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Li Y, Zhou K, Ci H, Sun J. Recent Advances in Transfer-Free Synthesis of High-Quality Graphene. CHEMSUSCHEM 2023; 16:e202300865. [PMID: 37491687 DOI: 10.1002/cssc.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
High-quality graphene obtained by chemical vapor deposition (CVD) technique holds significant importance in constructing innovative electronic and optoelectronic devices. Direct growth of graphene over target substrates readily eliminates cumbersome transfer processes, offering compatibility with practical application scenarios. Recent years have witnessed growing strategic endeavors in the preparation of transfer-free graphene with favorable quality. Nevertheless, timely review articles on this topic are still scarce. In this contribution, a systematic summary of recent advances in transfer-free synthesis of high-quality graphene on insulating substrates, with a focus on discussing synthetic strategies designed by elevating reaction temperature, confining gas flow, introducing growth promotor and regulating substrate surface is presented.
Collapse
Affiliation(s)
- Yinghan Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Kaixuan Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Haina Ci
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
20
|
Zeng F, Wang R, Wei W, Feng Z, Guo Q, Ren Y, Cui G, Zou D, Zhang Z, Liu S, Liu K, Fu Y, Kou J, Wang L, Zhou X, Tang Z, Ding F, Yu D, Liu K, Xu X. Stamped production of single-crystal hexagonal boron nitride monolayers on various insulating substrates. Nat Commun 2023; 14:6421. [PMID: 37828069 PMCID: PMC10570391 DOI: 10.1038/s41467-023-42270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Controllable growth of two-dimensional (2D) single crystals on insulating substrates is the ultimate pursuit for realizing high-end applications in electronics and optoelectronics. However, for the most typical 2D insulator, hexagonal boron nitride (hBN), the production of a single-crystal monolayer on insulating substrates remains challenging. Here, we propose a methodology to realize the facile production of inch-sized single-crystal hBN monolayers on various insulating substrates by an atomic-scale stamp-like technique. The single-crystal Cu foils grown with hBN films can stick tightly (within 0.35 nm) to the insulating substrate at sub-melting temperature of Cu and extrude the hBN grown on the metallic surface onto the insulating substrate. Single-crystal hBN films can then be obtained by removing the Cu foil similar to the stamp process, regardless of the type or crystallinity of the insulating substrates. Our work will likely promote the manufacturing process of fully single-crystal 2D material-based devices and their applications.
Collapse
Affiliation(s)
- Fankai Zeng
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Ran Wang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Wenya Wei
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Zuo Feng
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, 100871, China
| | - Quanlin Guo
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, 100871, China
| | - Yunlong Ren
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Guoliang Cui
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Dingxin Zou
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Zhensheng Zhang
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Song Liu
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Kehai Liu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China
| | - Ying Fu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China
| | - Jinzong Kou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China
| | - Li Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xu Zhou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Zhilie Tang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Feng Ding
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dapeng Yu
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, 100871, China.
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China.
| | - Xiaozhi Xu
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China.
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Guo YT, Yi SS. Recent Advances in the Preparation and Application of Two-Dimensional Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5798. [PMID: 37687495 PMCID: PMC10488888 DOI: 10.3390/ma16175798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Two-dimensional nanomaterials (2D NMs), consisting of atoms or a near-atomic thickness with infinite transverse dimensions, possess unique structures, excellent physical properties, and tunable surface chemistry. They exhibit significant potential for development in the fields of sensing, renewable energy, and catalysis. This paper presents a comprehensive overview of the latest research findings on the preparation and application of 2D NMs. First, the article introduces the common synthesis methods of 2D NMs from both "top-down" and "bottom-up" perspectives, including mechanical exfoliation, ultrasonic-assisted liquid-phase exfoliation, ion intercalation, chemical vapor deposition, and hydrothermal techniques. In terms of the applications of 2D NMs, this study focuses on their potential in gas sensing, lithium-ion batteries, photodetection, electromagnetic wave absorption, photocatalysis, and electrocatalysis. Additionally, based on existing research, the article looks forward to the future development trends and possible challenges of 2D NMs. The significance of this work lies in its systematic summary of the recent advancements in the preparation methods and applications of 2D NMs.
Collapse
Affiliation(s)
| | - Sha-Sha Yi
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
22
|
Lozano MS, Bernat-Montoya I, Angelova TI, Mojena AB, Díaz-Fernández FJ, Kovylina M, Martínez A, Cienfuegos EP, Gómez VJ. Plasma-Induced Surface Modification of Sapphire and Its Influence on Graphene Grown by Plasma-Enhanced Chemical Vapour Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1952. [PMID: 37446468 DOI: 10.3390/nano13131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
In this work, we study the influence of the different surface terminations of c-plane sapphire substrates on the synthesis of graphene via plasma-enhanced chemical vapor deposition. The different terminations of the sapphire surface are controlled by a plasma process. A design of experiments procedure was carried out to evaluate the major effects governing the plasma process of four different parameters: i.e., discharge power, time, pressure and gas employed. In the characterization of the substrate, two sapphire surface terminations were identified and characterized by means of contact angle measurements, being a hydrophilic (hydrophobic) surface and the fingerprint of an Al- (OH-) terminated surface, respectively. The defects within the synthesized graphene were analyzed by Raman spectroscopy. Notably, we found that the ID/IG ratio decreases for graphene grown on OH-terminated surfaces. Furthermore, two different regimes related to the nature of graphene defects were identified and, depending on the sapphire terminated surface, are bound either to vacancy or boundary-like defects. Finally, studying the density of defects and the crystallite area, as well as their relationship with the sapphire surface termination, paves the way for increasing the crystallinity of the synthesized graphene.
Collapse
Affiliation(s)
- Miguel Sinusia Lozano
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ignacio Bernat-Montoya
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Todora Ivanova Angelova
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Alberto Boscá Mojena
- Institute of Optoelectronic Systems and Microtechnology (ISOM), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Miroslavna Kovylina
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Alejandro Martínez
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Elena Pinilla Cienfuegos
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Víctor J Gómez
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
23
|
Ji J, Kwak HM, Yu J, Park S, Park JH, Kim H, Kim S, Kim S, Lee DS, Kum HS. Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: a review. NANO CONVERGENCE 2023; 10:19. [PMID: 37115353 PMCID: PMC10147895 DOI: 10.1186/s40580-023-00368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Remote epitaxy, which was discovered and reported in 2017, has seen a surge of interest in recent years. Although the technology seemed to be difficult to reproduce by other labs at first, remote epitaxy has come a long way and many groups are able to consistently reproduce the results with a wide range of material systems including III-V, III-N, wide band-gap semiconductors, complex-oxides, and even elementary semiconductors such as Ge. As with any nascent technology, there are critical parameters which must be carefully studied and understood to allow wide-spread adoption of the new technology. For remote epitaxy, the critical parameters are the (1) quality of two-dimensional (2D) materials, (2) transfer or growth of 2D materials on the substrate, (3) epitaxial growth method and condition. In this review, we will give an in-depth overview of the different types of 2D materials used for remote epitaxy reported thus far, and the importance of the growth and transfer method used for the 2D materials. Then, we will introduce the various growth methods for remote epitaxy and highlight the important points in growth condition for each growth method that enables successful epitaxial growth on 2D-coated single-crystalline substrates. We hope this review will give a focused overview of the 2D-material and substrate interaction at the sample preparation stage for remote epitaxy and during growth, which have not been covered in any other review to date.
Collapse
Affiliation(s)
- Jongho Ji
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| | - Hoe-Min Kwak
- School of Electrical Engineering and Computer Science, Gwnagju Institute of Science and Technology, Gwangju, South Korea
| | - Jimyeong Yu
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, South Korea
| | - Sangwoo Park
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| | - Jeong-Hwan Park
- Venture Business Laboratory, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hyunsoo Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, South Korea
| | - Seokgi Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, South Korea
| | - Sungkyu Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, South Korea.
| | - Dong-Seon Lee
- School of Electrical Engineering and Computer Science, Gwnagju Institute of Science and Technology, Gwangju, South Korea.
| | - Hyun S Kum
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea.
| |
Collapse
|
24
|
Xin X, Chen J, Ma L, Ma T, Xin W, Xu H, Ren W, Liu Y. Grain Size Engineering of CVD-Grown Large-Area Graphene Films. SMALL METHODS 2023:e2300156. [PMID: 37075746 DOI: 10.1002/smtd.202300156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Indexed: 05/03/2023]
Abstract
Graphene, a single atomic layer of graphitic carbon, has attracted much attention because of its outstanding properties hold great promise for a wide range of technological applications. Large-area graphene films (GFs) grown by chemical vapor deposition (CVD) are highly desirable for both investigating their intrinsic properties and realizing their practical applications. However, the presence of grain boundaries (GBs) has significant impacts on their properties and related applications. According to the different grain sizes, GFs can be divided into polycrystalline, single-crystal, and nanocrystalline films. In the past decade, considerable progress has been made in engineering the grain sizes of GFs by modifying the CVD processes or developing some new growth approaches. The key strategies involve controlling the nucleation density, growth rate, and grain orientation. This review aims to provide a comprehensive description of grain size engineering research of GFs. The main strategies and underlying growth mechanisms of CVD-grown large-area GFs with nanocrystalline, polycrystalline, and single-crystal structures are summarized, in which the advantages and limitations are highlighted. In addition, the scaling law of physical properties in electricity, mechanics, and thermology as a function of grain sizes are briefly discussed. Finally, the perspectives for challenges and future development in this area are also presented.
Collapse
Affiliation(s)
- Xing Xin
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jiamei Chen
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Laipeng Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Material Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Teng Ma
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Material Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| |
Collapse
|
25
|
Hu L, Dong Y, Xie Y, Qian F, Chang P, Fan M, Deng J, Xu C. In Situ Growth of Graphene Catalyzed by a Phase-Change Material at 400 °C for Wafer-Scale Optoelectronic Device Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206738. [PMID: 36592430 DOI: 10.1002/smll.202206738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The use of metal foil catalysts in the chemical vapor deposition of graphene films makes graphene transfer an ineluctable part of graphene device fabrication, which greatly limits industrialization. Here, an oxide phase-change material (V2 O5 ) is found to have the same catalytic effect on graphene growth as conventional metals. A uniform large-area graphene film can be obtained on a 10 nm V2 O5 film. Density functional theory is used to quantitatively analyze the catalytic effect of V2 O5 . Due to the high resistance property of V2 O5 at room temperature, the obtained graphene can be directly used in devices with V2 O5 as an intercalation layer. A wafer-scale graphene-V2 O5 -Si (GVS) Schottky photodetector array is successfully fabricated. When illuminated by a 792 nm laser, the responsivity of the photodetector can reach 266 mA W-1 at 0 V bias and 420 mA W-1 at 2 V. The transfer-free device fabrication process enables high feasibility for industrialization.
Collapse
Affiliation(s)
- Liangchen Hu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Yibo Dong
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiyang Xie
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Fengsong Qian
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Pengying Chang
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Mengqi Fan
- School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Jun Deng
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Chen Xu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| |
Collapse
|
26
|
Pang J, Peng S, Hou C, Zhao H, Fan Y, Ye C, Zhang N, Wang T, Cao Y, Zhou W, Sun D, Wang K, Rümmeli MH, Liu H, Cuniberti G. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sens 2023; 8:482-514. [PMID: 36656873 DOI: 10.1021/acssensors.2c02790] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Graphene remains of great interest in biomedical applications because of biocompatibility. Diseases relating to human senses interfere with life satisfaction and happiness. Therefore, the restoration by artificial organs or sensory devices may bring a bright future by the recovery of senses in patients. In this review, we update the most recent progress in graphene based sensors for mimicking human senses such as artificial retina for image sensors, artificial eardrums, gas sensors, chemical sensors, and tactile sensors. The brain-like processors are discussed based on conventional transistors as well as memristor related neuromorphic computing. The brain-machine interface is introduced for providing a single pathway. Besides, the artificial muscles based on graphene are summarized in the means of actuators in order to react to the physical world. Future opportunities remain for elevating the performances of human-like sensors and their clinical applications.
Collapse
Affiliation(s)
- Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center and Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Chongyang Hou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co. Ltd., Xinwai Street 2, Beijing 100088, People's Republic of China
| | - Yingju Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Chen Ye
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Nuo Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking and People's Republic of China School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, No. 3501 Daxue Road, Jinan 250353, People's Republic of China
| | - Yu Cao
- Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology (Ministry of Education) and School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Ding Sun
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Kai Wang
- School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China
| | - Mark H Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden, D-01171, Germany.,College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.,Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland.,Institute for Complex Materials, IFW Dresden, 20 Helmholtz Strasse, Dresden 01069, Germany.,Center for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.,State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials and Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
27
|
Khan M, Assal ME, Nawaz Tahir M, Khan M, Ashraf M, Rafe Hatshan M, Khan M, Varala R, Mohammed Badawi N, Farooq Adil S. Graphene/Inorganic Nanocomposites: Evolving Photocatalysts for Solar Energy Conversion for Environmental Remediation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Chang CJ, Tsai PC, Su WY, Huang CY, Lee PT, Lin SY. Layered Graphene Growth Directly on Sapphire Substrates for Applications. ACS OMEGA 2022; 7:13128-13133. [PMID: 35474834 PMCID: PMC9026027 DOI: 10.1021/acsomega.2c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Layer-by-layer graphene growth is demonstrated by repeating CVD growth cycles directly on sapphire substrates. Improved field-effect mobility values are observed for the bottom-gate transistors fabricated by using the bilayer graphene channel, which indicates an improved crystallinity is obtained after the second CVD growth cycle. Despite the poor wettability of copper on graphene surfaces, graphene may act as a thin and effective diffusion barrier for copper atoms. The low resistivity values of thin copper films deposited on thin monolayer MoS2/monolayer graphene heterostructures have demonstrated its potential to replace current thick liner/barrier stacks in back-end interconnects. The unique van der Waals epitaxy growth mode will be helpful for both homo- and heteroepitaxy on 2D material surfaces.
Collapse
Affiliation(s)
- Che-Jia Chang
- Department
of Photonics, National Yang Ming Chiao Tung
University, No. 1001, Daxue Road, Hsinchu City 300093, Taiwan
- Research
Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| | - Po-Cheng Tsai
- Research
Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
- Graduate
Institute of Electronics Engineering, National
Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Ya Su
- Department
of Applied Science, National Taitung University, 369, Sec. 2, University Road, Taitung 950, Taiwan
| | - Chun-Yuan Huang
- Department
of Applied Science, National Taitung University, 369, Sec. 2, University Road, Taitung 950, Taiwan
| | - Po-Tsung Lee
- Department
of Photonics, National Yang Ming Chiao Tung
University, No. 1001, Daxue Road, Hsinchu City 300093, Taiwan
| | - Shih-Yen Lin
- Research
Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
- Graduate
Institute of Electronics Engineering, National
Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Department
of Applied Science, National Taitung University, 369, Sec. 2, University Road, Taitung 950, Taiwan
| |
Collapse
|