1
|
Shahriari L, Kim S. Toward Circular Polymer Materials and Manufacturing: Dynamic Bonding Strategies for Upcycling Thermoplastics and Thermosets. Macromol Rapid Commun 2025:e2401011. [PMID: 40332098 DOI: 10.1002/marc.202401011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/28/2025] [Indexed: 05/08/2025]
Abstract
The global production of plastics has reached unprecedented levels, with <10% being recycled and even fewer recycled more than once. This lack of circularity poses critical environmental threats. However, upcycling-recycling materials while improving their properties and functionality-through dynamic bonding strategies offers a promising approach to enhancing polymer sustainability. Dynamic bonds enable polymeric structures to reconfigure under specific conditions, improving thermal, chemical, and mechanical resilience and controllability while facilitating recyclability. This review specifically takes the viewpoint of upcycling existing thermoplastics and thermosets to develop sustainable dynamic covalent networks (DCNs). Integrating these DCN upcycling strategies into the design of additive manufacturing (AM) feedstocks creates unique benefits compared to traditional polymer systems. This approach is briefly highlighted in extrusion-based and light-based AM, assessing the potential for improved material processability, recyclability, and the creation of high-value customized products. The combination of upcycling technologies and AM techniques presents a significant opportunity to advance sustainability in macromolecular science.
Collapse
Affiliation(s)
- Leila Shahriari
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sungjin Kim
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
2
|
Huang Z, Deng Y, Qu DH. Adding Value into Elementary Sulfur for Sustainable Materials. Chemistry 2025; 31:e202500125. [PMID: 39971725 DOI: 10.1002/chem.202500125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
Sulfur-rich copolymers, characterized by high sulfur contents and dynamic disulfide bonds, show significant promise as sustainable alternatives to conventional carbon-based plastics. Since the advent of inverse vulcanization in 2013, numerous synthesis strategies have emerged - ranging from thermopolymerization and photoinduced polymerization to the use of crosslinkers such as mercaptans, episulfides, benzoxazines, and cyclic disulfides. These advancements coupled with the rising demand for degradable plastics have driven research for diverse applications, including optical windows, metal uptake, and adhesives. Due to the unique electronic properties of sulfur-rich materials, they are promising candidates for cathodes in Li-S batteries and triboelectric nanogenerators. This review highlight the latest exciting ways of synthesis strategy in which sulfur and sulfur-based reactions are bing utilized to produce sustainable materials in energy, optics, engeneering material, environemtal, and triboelectric nanogenerators. Finally, this review provides a forward-looking perspective on the opportunities and challenges shaping this rapidly evolving field.
Collapse
Affiliation(s)
- Zhengtie Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxin Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Yao G, Guo Z, Zhao G, Dong S. Adhesion and affinity of supramolecular adhesives on fluorinated surfaces. MATERIALS HORIZONS 2025. [PMID: 40094176 DOI: 10.1039/d5mh00071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Fluoroplastics are a fascinating class of artificial polymeric materials with many applications in our daily life, scientific activities, and industrial production. Carbon-fluorine bonds in the main chains of fluoropolymers impart fluoroplastics with chemical inertness and low surface energy. Achieving effective surface wettability and strong adhesion to fluoroplastics is difficult for adhesive materials because of the lack of cohesion affinity and interfacial interactions. The key to the tough adhesion on fluoroplastics lies in realizing good wettability and high compatibility to surface-fluorinated substrates. Here, a new strategy is developed to address the adhesion challenges to fluoroplastics. The dynamic polymerization and cross-linking of thioctic acid and tetrafluorophthalic acid generate multiple fluorine-fluorine interactions and fluorohydrogen bonds, thus facilitating supramolecular adhesives with strong interfacial interactions to fluoroplastics. The macroscopic bulk state, good mechanical toughness, high cohesion energy density, and rapid self-healing capacity originating from non-covalent assembly provide the necessity for effective and long-term stable adhesion to fluoroplastics. This strategy demonstrates that an application-oriented material design is practical for fluoroplastics adhesion.
Collapse
Affiliation(s)
- Guohong Yao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Zhiyuan Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Jiangsu, 210016, Hunan, P. R. China.
| | - Gai Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Jiangsu, 210016, Hunan, P. R. China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| |
Collapse
|
4
|
Karunarathna MS, Rahman MA, Yang G, Gainaru C, Demchuck Z, Bowland CC, Meyer HM, Ghezawi N, Saito T. Tough and circular glass fiber composites via a tailored dynamic boronic ester interface. MATERIALS HORIZONS 2025; 12:788-801. [PMID: 39660428 DOI: 10.1039/d4mh01452a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Glass fiber reinforced polymer (GFRP) composites are valued for their strength and cost-effectiveness. However, traditional GFRPs often face challenges for end-of-life recycling due to their non-depolymerizable thermoset matrices, and long-term performance due to inadequate interfacial adhesion, which can lead to fiber-matrix delamination. Here, we have designed dynamic fiber-matrix interfaces to allow tough and closed-loop recyclable GFRPs by utilizing a vitrimer, derived from upcycled polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) with boronic ester (S-Bpin) and amine-based diol crosslinker. The boronic ester groups in S-Bpin form dynamic covalent bonds with the naturally present hydroxyl groups on the unsized GF surface, which eliminates the need for fiber sizing and enables facile closed-loop recyclability of both the fibers and the vitrimer matrix. The resulting strong fiber-matrix interface, depicted by the Raman mapping, leads to a 552% increase in-plane shear toughness (6.2 ± 0.3 MJ m-3) and 27% ultimate tensile strength (361 ± 89.2 MPa) compared to those of the conventional epoxy-based matrix (0.95 ± 0.05 MJ m-3 and 264 ± 59.7 MPa, respectively). The network rearrangement through dynamic boronic ester exchange enables fast thermoformability and repairability of micro-cracks at elevated temperatures. Additionally, both the matrix and composite demonstrate strong adhesion to various surfaces including steel and glasses exhibiting ≥6 MPa lap shear strength, which expands their suitability for diverse industrial applications. The readily created dynamic interface between boronic ester functionalized vitrimer and neat GFs presents a promising strategy for developing closed-loop recyclable, multifunctional structural materials, offering a sustainable alternative to non-recyclable thermoset GFRPs and contributes to a circular economy in composite materials.
Collapse
Affiliation(s)
| | - Md Anisur Rahman
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Guang Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Catalin Gainaru
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Zoriana Demchuck
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Christopher C Bowland
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Harry M Meyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Natasha Ghezawi
- Bredesen Center for Interdisciplinary Research and Education, University of Tennessee Knoxville, Knoxville, TN 37966, USA
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Bredesen Center for Interdisciplinary Research and Education, University of Tennessee Knoxville, Knoxville, TN 37966, USA
| |
Collapse
|
5
|
Demarteau J, Epstein AR, Reed LJ, Ciccia NR, Hartwig JF, Persson KA, Helms BA. Circularity in polydiketoenamine thermoplastics via control over reactive chain conformation. SCIENCE ADVANCES 2025; 11:eads8444. [PMID: 39841825 PMCID: PMC11753380 DOI: 10.1126/sciadv.ads8444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Controlling the reactivity of bonds along polymer chains enables both functionalization and deconstruction with relevance to chemical recycling and circularity. Because the substrate is a macromolecule, however, understanding the effects of chain conformation on the reactivity of polymer bonds emerges as important yet underexplored. Here, we show how oxy-functionalization of chemically recyclable condensation polymers affects acidolysis to monomers through control over distortion and interaction energies in the rate-limiting transition states. Oxy-functionalization of polydiketoenamines at specific sites on either the amine or triketone monomer segments increased acidolysis rates by more than three orders of magnitude, opening the door to efficient deconstruction of linear chain architectures. These insights substantially broaden the scope of applications for polydiketoenamines in a circular manufacturing economy, including chemically recyclable adhesives for a diverse range of surfaces.
Collapse
Affiliation(s)
- Jeremy Demarteau
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexander R. Epstein
- Department of Materials Sciences and Engineering, University of California, Berkeley, CA 94720, USA
| | - Laura J. Reed
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicodemo R. Ciccia
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kristin A. Persson
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Sciences and Engineering, University of California, Berkeley, CA 94720, USA
| | - Brett A. Helms
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| |
Collapse
|
6
|
Zhang Z, Quinn EC, Kenny JK, Grigoropoulos A, DesVeaux JS, Chen T, Zhou L, Xu T, Beckham GT, Chen EYX. Stereomicrostructure-regulated biodegradable adhesives. Science 2025; 387:297-303. [PMID: 39818898 DOI: 10.1126/science.adr7175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Commercial adhesives are petroleum-based thermoset networks or nonbiodegradable thermoplastic hot melts, making them ideal targets for replacement by biodegradable alternatives. Poly(3-hydroxybutyrate) (P3HB) is a biorenewable and biodegradable alternative to conventional plastics, but microbial P3HB, which has a stereoperfect stereomicrostructure, exhibits no adhesion. In this study, by elucidating the fundamental relationship between chemocatalytically engineered P3HB stereomicrostructures and adhesion properties, we found that biodegradable syndio-rich P3HB exhibits high adhesion strength and outperforms common commercial adhesives, whereas syndiotactic, isotactic, or iso-rich P3HB shows no measurable adhesion. The syndio-rich stereomicrostructure brings about desired thermomechanical and viscoelastic properties of P3HB that enable strong adhesion to a range of substrates tested, including aluminum, steel, glass, and wood, and its performance is insensitive to molar mass and reprocessing or reuse.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Jacob K Kenny
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- BOTTLE Consortium, Golden, CO, USA
| | - Alexandra Grigoropoulos
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jason S DesVeaux
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- BOTTLE Consortium, Golden, CO, USA
| | - Tiffany Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, Berkeley, CA, USA
| | - Li Zhou
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, Berkeley, CA, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- BOTTLE Consortium, Golden, CO, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Sheng J, Zhang Z, Pang Y, Cheng X, Zeng C, Xu JB, Zhang L, Zeng X, Ren L, Sun R. Balancing Interfacial Toughness and Intrinsic Dissipation for High Adhesion and Thermal Conductivity of Polymer-Based Thermal Interface Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62961-62969. [PMID: 39470633 DOI: 10.1021/acsami.4c13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In recent years, adhesive thermal interface materials have attracted much attention because of their reliable adhesion properties on most substrates, preventing moisture, vibration impact, or chemical corrosion damage to components and equipment, as well as solving the heat dissipation problem. However, thermal interface materials have a huge contradiction between strong adhesion and high thermal conductivity. Here, we report a polymer-based thermal interface material consisting of polydimethylsiloxane/spherical aluminum fillers, which possesses both adhesion properties (adhesion strength of 3.59 MPa and adhesion toughness of 1673 J m-2 and enhanced thermal conductivity of 3.90 W m-1 K-1). These excellent properties are attributed to the modified chain structure by introducing acrylate accelerators into the polydimethylsiloxane network, thereby striking a balance between interfacial toughness and intrinsic dissipation. The addition of thermally conductive aluminum fillers not only increases the thermal conductivity but also improves the bulk energy dissipation of the thermal interface material. This work provides a novel strategy for designing a novel thermal interface material, leading to new ideas in long-term applications in high-power electronics.
Collapse
Affiliation(s)
- Jiashuo Sheng
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Zhian Zhang
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunsong Pang
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaxia Cheng
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Zeng
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian-Bin Xu
- Department of Electronics Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Leicong Zhang
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoliang Zeng
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linlin Ren
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rong Sun
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
8
|
Yu C, Chen Y, Zhu Y, Wang Z, Bian R, Liu P, Li R, Lyu Y, Li J, Li J. Dynamic covalent bonds enabled recyclable chitosan oligosaccharide-based wood adhesive with high adhesion and anti-mildew performances. Int J Biol Macromol 2024; 282:137434. [PMID: 39522904 DOI: 10.1016/j.ijbiomac.2024.137434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Biomass wood adhesives have emerged as a promising alternative to traditional synthetic resins due to their ability to address issues related to formaldehyde pollution and reliance on petrochemical resources. However, these adhesives are generally not recyclable and require high curing temperatures. Herein, a novel eco-friendly, strong, and recyclable chitosan oligosaccharide (CS)-based wood adhesive named CS-PB was developed using CS, lignin-derived 3,4-dihydroxybenzaldehyde, and 1,4-phenylenediboronic acid. The cohesive strength and recyclability of the adhesive were significantly enhanced by the dynamic borate ester and imine networks formed through catalyst-free covalent cross-linking. The adhesive exhibited a maximum bonding strength of 5.60 MPa, surpassing many synthetic and biomass adhesives. Moreover, the recycled adhesive retained 88 % of its original strength. Even under extreme conditions such as 100 °C, -196 °C the CS-PB adhesive can still maintain high bonding strength. Notably, the CS-PB adhesive demonstrated low-temperature curing properties, achieving a high bonding strength of 5.21 MPa when cured at 90 °C, since imine bonds can be formed under mild conditions. Furthermore, the adhesive displayed excellent mildew resistance attributed to the synergistic effects of amino, boronic acid, and benzene rings. The proposed straightforward design strategy provides valuable insights for constructing high-strength and recyclable biomass adhesives.
Collapse
Affiliation(s)
- Caizhi Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Yi Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Ying Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Zhiqin Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Ruohong Bian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Pu Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Renjie Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Yan Lyu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China; Key Laboratory of Wood Materials Science and Application, Beijing Forestry University, Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China.
| | - Jiongjiong Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China.
| |
Collapse
|
9
|
Liu W, Wang X, Chen Y. Fully Recycled Polyolefin Elastomer-Based Vitrimers with Ultra-High, Universal, Stable, and Switchable Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403934. [PMID: 38982940 DOI: 10.1002/smll.202403934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Achieving both robust adhesion to arbitrary surfaces and thermal-switchable/recyclable properties has proven challenging, particularly for commodity polyolefins. Herein, a simple and effective route is reported to transform polyolefins elastomer (POE) into a fully recycled epoxy-functionalized POE vitrimers (E-POE vit) with ultra-high, universal, stable, and switchable adhesion via facile free radical grafting and dynamic cross-linking. The resultant E-POE vit exhibits increase in adhesion strength on glass exceeding three to ten times compared to those commonly used polymers, due to the synergy of dense hydrogen (H)-bonds and strong interfacial affinity. In addition, E-POE vit also displays strong adhesion on diverse surfaces ranging from inorganic to organic while maintaining good stability in various harsh environments. More importantly, temperature-sensitive H-bonds allow E-POE vit to switch between attachment-detachment at alternating temperatures, resulting in reversible adhesion without adhesion loss, even after 10 cycles. Moreover, E-POE vit is able to be fully recycled and reused more than ten times via thermo-activated transesterification reactions with negligible change in structure and performance. This work may unlock strategies to fabricate high-performance commercial polymer-based adhesives with adhesion and recyclable features for intelligent and sustainable applications.
Collapse
Affiliation(s)
- Wei Liu
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Xinghuo Wang
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Yukun Chen
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
- Zhongshan Institute of Modern Industrial Technology, South China University of Technology, Zhongshan, 528437, China
| |
Collapse
|
10
|
Ma Z, Feng J, Huo S, Sun Z, Bourbigot S, Wang H, Gao J, Tang LC, Zheng W, Song P. Mussel-Inspired, Self-Healing, Highly Effective Fully Polymeric Fire-Retardant Coatings Enabled by Group Synergy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410453. [PMID: 39212641 DOI: 10.1002/adma.202410453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Fire-retardant coatings represent a universal cost-effective approach to providing fire protection for various substrates without compromising substrates' bulk properties. However, it has been attractive yet highly challenging to create waterborne polymeric fire-retardant coatings combining high-efficiency, generally strong adhesion, and self-repairability due to a lack of rational design principles. Inspired by mussel's unique adhesive, self-healing, and char-forming mechanisms, herein, a "group synergy" design strategy is proposed to realize the combination of self-healing, strong adhesion, and high efficiency in a fully polymeric fire-retardant coating via multiple synergies between catechol, phosphonic, and hydroxyethyl groups. As-created fire-retardant coating exhibits a rapid room-temperature self-healing ability and strong adhesion to (non)polar substrates due to multiple dynamic non-covalent interactions enabled by these groups. Because these functional groups enable the formation of a robust structurally intact yet slightly expanded char layer upon exposure to flame, a 200 µm-thick such coating can make extremely flammable polystyrene foam very difficult to ignite and self-extinguishing, which far outperforms previous strategies. Moreover, this coating can provide universal exceptional fire protection for a variety of substrates from polymer foams, and timber, to fabric and steel. This work presents a promising material design principle to create next-generation sustainable high-performance fire-retardant coatings for general fire protection.
Collapse
Affiliation(s)
- Zhewen Ma
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiabing Feng
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
| | - Siqi Huo
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, 4000, Australia
| | - Serge Bourbigot
- ENSCL, UMR 8207 - UMET - Unité Matériaux et Transformations, Univ. Lille, 42 rue Paul. Duez, Lille, 59000, France
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
| | - Jiefeng Gao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wei Zheng
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, 4300, Australia
| |
Collapse
|
11
|
Foster JC, Damron JT, Zheng J, Guan C, Popovs I, Rahman MA, Galan NJ, Dishner IT, Saito T. Polyalkenamers as Drop-In Additives for Ring-Opening Metathesis Polymerization: A Promising Upcycling Paradigm. J Am Chem Soc 2024. [PMID: 39470583 DOI: 10.1021/jacs.4c10588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report a distinct strategy to upcycle waste polyalkenamers such as polybutadiene into new, performance-advantaged materials by using them as drop-in additives for ring-opening metathesis polymerization (ROMP). The polyalkenamers serve as competent chain-transfer agents in ROMPs of common classes of cyclic olefin monomers, facilitating good molecular weight control, allowing low Ru catalyst loadings, and enabling efficient incorporation of the polyalkenamer into the synthesized polymeric material. We successfully demonstrate ROMP using model polyalkenamers and translate these learnings to leverage commercial polybutadiene and acrylonitrile butadiene styrene (ABS) as chain transfer agents for ROMP copolymerizations. Critically, our strategy is shown to be highly efficient and operationally simple, quantitatively incorporating the polyalkenamer and inheriting aspects of its thermomechanical performance. Our results highlight a promising pathway for the upcycling of polyalkenamers and provide an alternative to existing deconstruction and functional upcycling strategies.
Collapse
Affiliation(s)
- Jeffrey C Foster
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jackie Zheng
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Chao Guan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Md Anisur Rahman
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nicholas J Galan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Isaiah T Dishner
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
12
|
Felsenthal LM, Kim S, Dichtel WR. Robust Self-Healing Adhesives Based on Dynamic Urethane Exchange Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57687-57694. [PMID: 39403893 DOI: 10.1021/acsami.4c12415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Thermoset polyurethanes (PUs) have been successfully reprocessed as covalent adaptable networks (CANs) by catalyzing carbamate exchange. Here we extend bond exchange beyond the internal network cross-links to create a dynamic urethane adhesive. Interfacing PU CANs to substrates with nucleophilic functional groups creates adhesives capable of reversible transcarbamoylation with the substrate, which has not been demonstrated previously by CAN adhesives. Two types of thermoset PU films were synthesized, one containing the green carbamate exchange catalyst Zr(tmhd)4 and the other containing no catalyst. Although otherwise identical in chemical and network properties, as indicated by FT-IR spectroscopy and dynamic mechanical thermal analysis (DMTA), the film containing catalyst showed dynamic bond exchange behavior through stress relaxation analysis. When evaluated as an adhesive, the CAN film exhibited self-healing properties and retained its adhesive strength for five cycles, which is attributed to reversible covalent bonding to the glass substrate. This work expands industrially relevant CANs to structural adhesives and demonstrates their potential value in an application that presently employs PUs as single-use materials.
Collapse
Affiliation(s)
- Lillian M Felsenthal
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subeen Kim
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Wang Y, Liu G, Zhao J, Zhang Z, Zhang H, Ding Y, Zhang X, Liu Z, Yu W, Yan X. Mechanically Interlocked [an]Daisy Chain Adhesives with Simultaneously Enhanced Interfacial Adhesion and Cohesion. Angew Chem Int Ed Engl 2024; 63:e202409705. [PMID: 39072904 DOI: 10.1002/anie.202409705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Adhesives have been widely used to splice and repair materials to meet practical needs of humanity for thousands of years. However, developing robust adhesives with balanced adhesive and cohesive properties still remains a challenging task. Herein, we report the design and preparation of a robust mechanically interlocked [an]daisy chain network (DCMIN) adhesive by orthogonal integration of mechanical bonds and 2-ureido-4[1H]-pyrimidone (UPy) H-bonding in a single system. Specifically, the UPy moiety plays a dual role: it allows the formation of a cross-linked network and engages in multivalent interactions with the substrate for strong interfacial bonding. The mechanically interlocked [an]daisy chain, serving as the polymeric backbone of the adhesive, is able to effectively alleviate applied stress and uphold network integrity through synergistic intramolecular motions, and thus significantly improves the cohesive performance. Comparative analysis with the control made of the same quadruple H-bonding network but with non-interlocked [an]daisy chain backbones demonstrates that our DCMIN possesses superior adhesion properties over a wide temperature range. These findings not only contribute to a deep understanding of the structure-property relationship between microscopic mechanical bond motions and macroscopic adhesive properties but also provide a valuable guide for optimizing design principles of robust adhesives.
Collapse
Affiliation(s)
- Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yi Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhu Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
14
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
15
|
Qin C, Yang H, Li B, Xing Z, Yu B, Cai M, Pei X, Ma Y, Zhou F, Liu W. Branched Oligomer-Based Reversible Adhesives Enabled by Controllable Self-Aggregation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408330. [PMID: 39096066 DOI: 10.1002/adma.202408330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Supramolecular adhesion material systems based on small molecules have shown great potential to unite the great contradiction between strong adhesion and reversibility. However, these material systems suffer from low adhesion strength/narrow adhesion span, limited designability, and single interaction due to fewer covalent bond content and action sites in small molecules. Herein, an ultrahigh-strength and large-span reversible adhesive enabled by a branched oligomer controllable self-aggregation strategy is developed. The dense covalent bonds present in the branched oligomers greatly enhance adhesion strength without compromising reversibility. The resulting adhesive exhibits a large-span reversible adhesion of ≈140 times, switching between ultra-strong and tough adhesion strength (5.58 MPa and 5093.92 N m-1) and ultralow adhesion (0.04 MPa and 87.656 N m-1) with alternating temperature. Moreover, reversible dynamic double cross-linking endows the adhesive with stable reversible adhesion transitions even after 100 cycles. This reversible adhesion property can also be remotely controlled via a voltage of 8 V, with a loading voltage duration of 45 s. This work paves the way for the design of reversible adhesives with long-span outstanding properties using covalent polymers and offers a pathway for the rational design of high-performance adhesives featuring both robust toughness and exceptional reversibility.
Collapse
Affiliation(s)
- Chenxi Qin
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hao Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| | - Zhencai Xing
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| | - Xiaowei Pei
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| |
Collapse
|
16
|
Saha B, Boykin J, Chung H. Unveiling the Architectural Impact on the Salt-Tunable Adhesion Performance and Toughness of Polyzwitterions. J Am Chem Soc 2024; 146:23467-23475. [PMID: 39134927 DOI: 10.1021/jacs.4c06877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Developing tough adhesives with superior strength and ductility is challenging yet highly sought-after. In this work, we address a strategic approach to achieving diverse toughness and performance by meticulously harnessing weak electrostatic interactions. Two polyzwitterions (PZIs), derived from sulfobetaine methacrylate (SBMA), of different topologies: bottlebrush (BB-PSBMA) and linear (L-PSBMA), were designed. BB-PSBMA was synthesized using a rational "grafting-from" strategy, while L-PSBMA was prepared via atom transfer radical polymerization. Despite their architectural disparities, both PZIs demonstrated a comparable substantial lap-shear adhesion strength of ∼0.4 MPa. Intriguingly, the introduction of NaCl during adhesive preparation revealed contrasting adhesion behaviors. BB-PSBMA transitioned from a strong-brittle to strong-ductile adhesive upon the addition of 70 mM NaCl, evidenced by a 77.4% increase in the work of debonding, i.e., toughness. Further increases in NaCl concentration continued to impart the ductile properties to BB-PSBMA. Conversely, L-PSBMA adhesive predominantly transformed from strong-brittle to ductile regardless of the salt content. We propose a synergistic mechanism involving viscosity-governed optimal adhesion-cohesion balance and mechanical energy dissipation through sacrificial electrostatic association to elucidate the strong and ductile nature of the BB-PSBMA adhesive at 70 mM NaCl. Our findings emphasize the significance of precise control over architecture and salt concentration is necessary in constructing adhesives with enhanced toughness and performance.
Collapse
Affiliation(s)
- Biswajit Saha
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Jacob Boykin
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| |
Collapse
|
17
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
18
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
19
|
Zeng X, Liang T, Cheng X, Fan J, Pang Y, Xu J, Sun R, Xia X, Zeng X. Design of Soft/Hard Interface with High Adhesion Energy and Low Interfacial Thermal Resistance via Regulation of Interfacial Hydrogen Bonding Interaction. NANO LETTERS 2024; 24:6386-6394. [PMID: 38743576 DOI: 10.1021/acs.nanolett.4c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Adhesion ability and interfacial thermal transfer capacity at soft/hard interfaces are of critical importance to a wide variety of applications, ranging from electronic packaging and soft electronics to batteries. However, these two properties are difficult to obtain simultaneously due to their conflicting nature at soft/hard interfaces. Herein, we report a polyurethane/silicon interface with both high adhesion energy (13535 J m-2) and low thermal interfacial resistance (0.89 × 10-6 m2 K W-1) by regulating hydrogen interactions at the interface. This is achieved by introducing a soybean-oil-based epoxy cross-linker, which can destroy the hydrogen bonds in polyurethane networks and meanwhile can promote the formation of hydrogen bonds at the polyurethane/silicon interface. This study provides a comprehensive understanding of enhancing adhesion energy and reducing interfacial thermal resistance at soft/hard interfaces, which offers a promising perspective to tailor interfacial properties in various material systems.
Collapse
Affiliation(s)
- Xiangliang Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, People's Republic of China
| | - Ting Liang
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, People's Republic of China
| | - Xiaxia Cheng
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Jianfeng Fan
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yunsong Pang
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, People's Republic of China
| | - Rong Sun
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, People's Republic of China
| | - Xiaoliang Zeng
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
20
|
Deng Y, Huang Z, Feringa BL, Tian H, Zhang Q, Qu DH. Converting inorganic sulfur into degradable thermoplastics and adhesives by copolymerization with cyclic disulfides. Nat Commun 2024; 15:3855. [PMID: 38719820 PMCID: PMC11079033 DOI: 10.1038/s41467-024-48097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Converting elementary sulfur into sulfur-rich polymers provides a sustainable strategy to replace fossil-fuel-based plastics. However, the low ring strain of eight-membered rings, i.e., S8 monomers, compromises their ring-opening polymerization (ROP) due to lack of an enthalpic driving force and as a consequence, poly(sulfur) is inherently unstable. Here we report that copolymerization with cyclic disulfides, e.g., 1,2-dithiolanes, can enable a simple and energy-saving way to convert elementary sulfur into sulfur-rich thermoplastics. The key strategy is to combine two types of ROP-both mediated by disulfide bond exchange-to tackle the thermodynamic instability of poly(sulfur). Meanwhile, the readily modifiable sidechain of the cyclic disulfides provides chemical space to engineer the mechanical properties and dynamic functions over a large range, e.g., self-repairing ability and degradability. Thus, this simple and robust system is expected to be a starting point for the organic transformation of inorganic sulfur toward sulfur-rich functional and green plastics.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zhengtie Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| |
Collapse
|
21
|
Kim MP, Kayal S, Hwang C, Bae J, Kim H, Hwang DG, Jeon MH, Seo JK, Ahn D, Lee W, Seo S, Chun JH, Yu Y, Hong SY. Iterative SuFEx approach for sequence-regulated oligosulfates and its extension to periodic copolymers. Nat Commun 2024; 15:3381. [PMID: 38643182 PMCID: PMC11032359 DOI: 10.1038/s41467-024-47567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/05/2024] [Indexed: 04/22/2024] Open
Abstract
The synthesis of sequence-regulated oligosulfates has not yet been established due to the difficulties in precise reactivity control. In this work, we report an example of a multi-directional divergent iterative method to furnish oligosulfates based on a chain homologation approach, in which the fluorosulfate unit is regenerated. The oligosulfate sequences are determined by high resolution mass spectrometry of the hydrolyzed fragments, and polysulfate periodic copolymers are synthesized by using oligomeric bisfluorosulfates in a bi-directional fashion. The synthetic utility of this iterative ligation is demonstrated by preparing crosslinked network polymers as synthetic adhesive materials.
Collapse
Affiliation(s)
- Min Pyeong Kim
- Department of Chemistry, Department of Chemical Engineering, and Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Swatilekha Kayal
- Department of Chemistry, Department of Chemical Engineering, and Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chiwon Hwang
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Jonghoon Bae
- UNIST Central Research Facility (UCRF), UNIST, Ulsan, 44919, Republic of Korea
| | - Hyunseok Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Dong Gyu Hwang
- Department of Chemistry, Department of Chemical Engineering, and Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Ho Jeon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility (UCRF), UNIST, Ulsan, 44919, Republic of Korea
| | - Dowon Ahn
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Wonjoo Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Sangwon Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Youngchang Yu
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea.
| | - Sung You Hong
- Department of Chemistry, Department of Chemical Engineering, and Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
22
|
Zhang C, Cui H, Guo R, Chen S, Li W, Han Y, Wang S, Jiang Z, Zeng X, Sun R. Adhesion Energy-Assisted Low Contact Thermal Resistance Epoxy Resin-Based Composite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8108-8114. [PMID: 38568421 DOI: 10.1021/acs.langmuir.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Although intense efforts have been devoted to the development of thermally conductive epoxy resin composites, most previous works ignore the importance of the contact thermal resistance between epoxy resin composites and mating surfaces. Here, we report on epoxy resin/hexagonal boron nitride (h-BN) composites, which show low contact thermal resistance with the contacting surface by tuning adhesion energy. We found that adhesion energy increases with increasing the ratio of soybean-based epoxy resin/amino silicone oil and h-BN contents. The adhesion energy has a negative correlation with the contact thermal resistance; that is, enhancing the adhesion energy will lead to reduced contact thermal resistance. The contact thermal conductance increases with the h-BN contents and is low to 0.025 mm2·K/W for the epoxy resin/60 wt % h-BN composites, which is consistent with the theoretically calculated value. By investigating the wettability and chain dynamics of the epoxy resin/h-BN composites, we confirm that the low contact thermal resistance stems from the increased intermolecular interaction between the epoxy resin chains. The present study provides a practical approach for the development of epoxy resin composites with enhanced thermal conductivity and reduced contact thermal resistance, aiming for effective thermal management of electronics.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Advanced Power Transmission Technology, Beijing 102209, China
| | - Huize Cui
- State Key Laboratory of Advanced Power Transmission Technology, Beijing 102209, China
| | - Ruilu Guo
- State Key Laboratory of Advanced Power Transmission Technology, Beijing 102209, China
| | - Shuo Chen
- State Key Laboratory of Advanced Power Transmission Technology, Beijing 102209, China
| | - Wenpeng Li
- State Key Laboratory of Advanced Power Transmission Technology, Beijing 102209, China
| | - Yu Han
- State Key Laboratory of Advanced Power Transmission Technology, Beijing 102209, China
| | - Shuting Wang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenghong Jiang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
23
|
Zhang X, Nan K, Zhang Y, Song K, Geng Z, Shang D, Guan X, Fan L. A novel injectable hydrogel prepared from phenylboronic acid modified gelatin and oxidized-dextran for bone tissue engineering. Int J Biol Macromol 2024; 261:129666. [PMID: 38272405 DOI: 10.1016/j.ijbiomac.2024.129666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Complicated fractures have always been challenging in orthopaedics. Designing a multifunctional biomaterial that can contribute to the treatment of fractures using a simple operation remains challenging. Here, we developed a trinity hydrogel system consisting of hydrogel prepared from phenylboronic acid modified gelatin and oxidized-dextran, lithium and cobalt co-doped mesoporous bioactive glass nanoparticles (MBGNs), and irisin. This hydrogel material exhibits considerable injectability, fat-to-shape, and self-healing characteristics. In addition, compared to hydrogel prepared from gelatin and oxidized-dextran, the hydrogel material presented a noticeable enhancement in compression stress and adhesion strength towards porcine bone fragments, which enables it more effectively splice bone fragments during surgery. Based on the various interactions between irisin and the hydrogel network, the system exhibited a clear sustained release of irisin. Based on the results of in vitro cell tests, the hydrogel material showed good cytocompatibility. And it also considerably enhanced the in vitro pro-osteogenic and pro-angiogenic capacities of bone marrow mesenchymal stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs). In vivo experimental results indicated that this hydrogel considerably improved the repair of cranial defects in rats. The current study provides a feasible strategy for the treatment of bone fractures and stimulation of fracture healing.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China; Department of Orthopaedics, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Kai Nan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Yuankai Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Keke Song
- Department of Anesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zilong Geng
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Donglong Shang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xin Guan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | - Lihong Fan
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
24
|
Huang H, Zheng S, Luo J, Gao L, Fang Y, Zhang Z, Dong J, Hadjichristidis N. Step-growth Polymerization of Aziridines with Elemental Sulfur: Easy Access to Linear Polysulfides and Their Use as Recyclable Adhesives. Angew Chem Int Ed Engl 2024; 63:e202318919. [PMID: 38169090 DOI: 10.1002/anie.202318919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
The bulk radical polymerization of bis(aziridine) with molten elemental sulfur resulted in brittle, cross-linked polymers. However, when the bis(aziridine) was treated with elemental sulfur in the presence of an organobase, the ring-opening reaction of aziridine with oligosulfide anions occurred, leading to the formation of linear polymers by step-growth polymerization. These newly synthesized polymers possess repeating units containing a sulfonamide or amide functional moiety and oligosulfide bonds with an average sulfur segment of about two. A small molecular model reaction confirmed the nucleophilic addition reaction of elemental sulfur to aziridine. It was verified that S-S dynamic bond exchange takes place in the presence of an organic base within the linear chains. The mixture of the synthesized polysulfides with pyridine exhibits exceptional adhesive properties when applied to steel, and aluminum substrates. Notably, these prepared adhesives displayed good reusability due to the dynamic S-S exchange and complete recyclability due to their solution processability. This elemental sulfur-involved polymerization approach represents an innovative method for the synthesis of advanced sulfur-containing polymers, demonstrating the potential for various applications in adhesives and beyond.
Collapse
Affiliation(s)
- Huishan Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shuojia Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jiye Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Liang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Jinxiang Dong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
25
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Ge S, Tsao YH, Evans CM. Polymer architecture dictates multiple relaxation processes in soft networks with two orthogonal dynamic bonds. Nat Commun 2023; 14:7244. [PMID: 37945556 PMCID: PMC10636115 DOI: 10.1038/s41467-023-43073-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Materials with tunable modulus, viscosity, and complex viscoelastic spectra are crucial in applications such as self-healing, additive manufacturing, and energy damping. It is still challenging to predictively design polymer networks with hierarchical relaxation processes, as many competing factors affect dynamics. Here, networks with both pendant and telechelic architecture are synthesized with mixed orthogonal dynamic bonds to understand how the network connectivity and bond exchange mechanisms govern the overall relaxation spectrum. A hydrogen-bonding group and a vitrimeric dynamic crosslinker are combined into the same network, and multimodal relaxation is observed in both pendant and telechelic networks. This is in stark contrast to similar networks where two dynamic bonds share the same exchange mechanism. With the incorporation of orthogonal dynamic bonds, the mixed network also demonstrates excellent damping and improved mechanical properties. In addition, two relaxation processes arise when only hydrogen-bond exchange is present, and both modes are retained in the mixed dynamic networks. This work provides molecular insights for the predictive design of hierarchical dynamics in soft materials.
Collapse
Affiliation(s)
- Sirui Ge
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Champaign, IL, USA
- Materials Research Laboratory, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Yu-Hsuan Tsao
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Champaign, IL, USA
- Materials Research Laboratory, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Christopher M Evans
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Champaign, IL, USA.
- Materials Research Laboratory, University of Illinois Urbana Champaign, Champaign, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Champaign, IL, USA.
| |
Collapse
|
27
|
Shi JX, Ciccia NR, Pal S, Kim DD, Brunn JN, Lizandara-Pueyo C, Ernst M, Haydl AM, Messersmith PB, Helms BA, Hartwig JF. Chemical Modification of Oxidized Polyethylene Enables Access to Functional Polyethylenes with Greater Reuse. J Am Chem Soc 2023; 145:21527-21537. [PMID: 37733607 DOI: 10.1021/jacs.3c07186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Polyethylene is a commodity material that is widely used because of its low cost and valuable properties. However, the lack of functional groups in polyethylene limits its use in applications that include adhesives, gas barriers, and plastic blends. The inertness of polyethylene makes it difficult to install groups that would enhance its properties and enable programmed chemical decomposition. To overcome these deficiencies, the installation of pendent functional groups that imbue polyethylene with enhanced properties is an attractive strategy to overcome its inherent limitations. Here, we describe strategies to derivatize oxidized polyethylene that contains both ketones and alcohols to monofunctional variants with bulk properties superior to those of unmodified polyethylene. Iridium-catalyzed transfer dehydrogenation with acetone furnished polyethylenes with only ketones, and ruthenium-catalyzed hydrogenation with hydrogen furnished polyethylenes with only alcohols. We demonstrate that the ratio of these functional groups can be controlled by reduction with stoichiometric hydride-containing reagents. The ketones and alcohols serve as sites to introduce esters and oximes onto the polymer, thereby improving surface and bulk properties over those of polyethylene. These esters and oximes were removed by hydrolysis to regenerate the original oxygenated polyethylenes, showing how functionalization can lead to materials with circularity. Waste polyethylenes were equally amenable to oxidative functionalization and derivatization of the oxidized material, showing that this low- or negative-value feedstock can be used to prepare materials of higher value. Finally, the derivatized polymers with distinct solubilities were separated from mechanically mixed plastic blends by selective dissolution, demonstrating that functionalization can lead to novel approaches for distinguishing and separating polymers from a mixture.
Collapse
Affiliation(s)
- Jake X Shi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicodemo R Ciccia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Subhajit Pal
- Department of Materials Science and Bioengineering, University of California, Berkeley, California 94720, United States
| | - Diane D Kim
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John N Brunn
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | | | | | - Phillip B Messersmith
- Department of Materials Science and Bioengineering, University of California, Berkeley, California 94720, United States
| | - Brett A Helms
- The Molecular Foundry and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Li C, Dong W, Li L, Dou Z, Li Y, Wei L, Zhang Q, Fu Q, Wu K. A strain-reinforcing elastomer adhesive with superior adhesive strength and toughness. MATERIALS HORIZONS 2023; 10:4183-4191. [PMID: 37534697 DOI: 10.1039/d3mh00966a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Strong and ductile adhesives often undergo both interfacial and cohesive failure during the debonding process. Herein, we report a rare self-reinforcing polyurethane adhesive that shows the different phenomenon of only interfacial failure yet still exhibiting superior adhesive strength and toughness. It is synthesized by designing a hanging adhesive moiety, hierarchical H-bond moieties, and a crystallizable soft segment into one macromolecular polyurethane. The former hanging adhesive moiety allows the hot-melt adhesive to effectively associate with the target substrate, providing sufficient adhesion energy; the latter hierarchical H-bond moieties and a crystallizable soft segment cooperate to enable the adhesive to undergo large lap-shear deformations through sacrificing weak bonds and mechano-responsive strength through the fundamental mechanism of strain-induced crystallization. As a result, this polyurethane adhesive can keep itself intact during the debonding process while still withstanding a high lap-shear strength and dissipating tremendous stress energy. Its adhesive strength and work of debonding are as high as 11.37 MPa and 10.32 kN m-1, respectively, outperforming most reported tough adhesives. This self-reinforcing adhesive is regarded as a new member of the family of strong and ductile adhesives, which will provide innovative chemical and structural inspirations for future conveniently detachable yet high-performance adhesives.
Collapse
Affiliation(s)
- Chuanlong Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Wenbo Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Longyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Zhengli Dou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yuhan Li
- College of Chemistry and Green Catalysis Center, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Liuhe Wei
- College of Chemistry and Green Catalysis Center, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
29
|
Tian R, Gao S, Li K, Lu C. Design of mechanical-robust phosphorescence materials through covalent click reaction. Nat Commun 2023; 14:4720. [PMID: 37543603 PMCID: PMC10404264 DOI: 10.1038/s41467-023-40451-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023] Open
Abstract
It remains a great challenge to engineer materials with strong and stable interactions for the simultaneously mechanical-robust and room temperature phosphorescence-efficient materials. In this work, we demonstrate a covalent cross-linking strategy to engineer mechanical-robust room temperature phosphorescence materials through the B-O click reaction between chromophores, polyvinyl alcohol matrix and inorganic layered double hydroxide nanosheets. Through the covalent cross-linkage between the organic polyvinyl alcohol and inorganic layered double hydroxide, a polymeric composite with ultralong lifetime up to 1.45 s is acquired based on the inhibited non-radiative transition of chromophores. Simultaneously, decent mechanical strength of 97.9 MPa can be realized for the composite materials due to the dissipated loading stress through the covalent-bond-accommodated interfacial interaction. These cross-linked composites also exhibit flexibility, processability, scalability and phosphorescence responses towards the mechanical deformation. It is anticipated that the proposed covalent click reaction could provide a platform for the design and modulation of composites with multi-functionality and long-term durability.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North, Third Ring Road 15, Chaoyang District, Beijing, China.
| | - Shuo Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North, Third Ring Road 15, Chaoyang District, Beijing, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North, Third Ring Road 15, Chaoyang District, Beijing, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North, Third Ring Road 15, Chaoyang District, Beijing, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, No.100 Science Avenue, Zhengzhou, China.
| |
Collapse
|
30
|
Yan T, Balzer AH, Herbert KM, Epps TH, Korley LTJ. Circularity in polymers: addressing performance and sustainability challenges using dynamic covalent chemistries. Chem Sci 2023; 14:5243-5265. [PMID: 37234906 PMCID: PMC10208058 DOI: 10.1039/d3sc00551h] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
The circularity of current and future polymeric materials is a major focus of fundamental and applied research, as undesirable end-of-life outcomes and waste accumulation are global problems that impact our society. The recycling or repurposing of thermoplastics and thermosets is an attractive solution to these issues, yet both options are encumbered by poor property retention upon reuse, along with heterogeneities in common waste streams that limit property optimization. Dynamic covalent chemistry, when applied to polymeric materials, enables the targeted design of reversible bonds that can be tailored to specific reprocessing conditions to help address conventional recycling challenges. In this review, we highlight the key features of several dynamic covalent chemistries that can promote closed-loop recyclability and we discuss recent synthetic progress towards incorporating these chemistries into new polymers and existing commodity plastics. Next, we outline how dynamic covalent bonds and polymer network structure influence thermomechanical properties related to application and recyclability, with a focus on predictive physical models that describe network rearrangement. Finally, we examine the potential economic and environmental impacts of dynamic covalent polymeric materials in closed-loop processing using elements derived from techno-economic analysis and life-cycle assessment, including minimum selling prices and greenhouse gas emissions. Throughout each section, we discuss interdisciplinary obstacles that hinder the widespread adoption of dynamic polymers and present opportunities and new directions toward the realization of circularity in polymeric materials.
Collapse
Affiliation(s)
- Tianwei Yan
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Alex H Balzer
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Katie M Herbert
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Thomas H Epps
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
- Department of Materials Science and Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark 19716 Delaware USA
| | - LaShanda T J Korley
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
- Department of Materials Science and Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark 19716 Delaware USA
| |
Collapse
|
31
|
Wang S, Ren L, Han M, Zhou W, Wong C, Bai X, Sun R, Zeng X. Molecular design of a highly matched and bonded interface achieves enhanced thermal boundary conductance. NANOSCALE 2023; 15:8706-8715. [PMID: 37009676 DOI: 10.1039/d3nr00627a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Interfacial binding and phonon mismatch are two crucial parameters in determining thermal boundary conductance. However, it is difficult for polymer/metal interfaces to possess both significant interfacial binding and weak phonon mismatch to achieve enhanced thermal boundary conductance. Herein, we circumvent this inherent trade-off by synthesizing a polyurethane and thioctic acid (PU-TA) copolymer with multiple hydrogen bonds and dynamic disulfide bonds. Using PU-TA/aluminum (Al) as a model interface, we demonstrate that the thermal boundary conductance of the PU-TA/Al interfaces measured by transient thermoreflectance is 2-5 times higher than that of traditional polymer/Al interfaces, which is attributed to the highly matched and bonded interface. Furthermore, a correlation analysis is developed, which demonstrates that interfacial binding has a greater impact than phonon mismatch on thermal boundary conductance at a highly matched interface. This work provides a systematic understanding of the relative contributions of the two dominant mechanisms to thermal boundary conductance by tailoring the polymer structure, which has applications in thermal management materials.
Collapse
Affiliation(s)
- Shuting Wang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - LinLin Ren
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Meng Han
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Wei Zhou
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chunyu Wong
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xue Bai
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
32
|
Zheng J, Arifuzzaman M, Tang X, Chen XC, Saito T. Recent development of end-of-life strategies for plastic in industry and academia: bridging their gap for future deployment. MATERIALS HORIZONS 2023; 10:1608-1624. [PMID: 37022098 DOI: 10.1039/d2mh01549h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plastics have advanced society as a lightweight, inexpensive material of choice, and consequently over 400 million metric tons of plastics are produced each year. The difficulty with their reuse, due to varying chemical structures and properties, is leading to one of the major global challenges of the 21st century-plastic waste management. While mechanical recycling has been proven successful for certain types of plastic waste, most of these technologies can only recycle single types of plastics at a time. Since most recycling collection streams today have a mixture of different plastic types, additional sorting is required before the plastic waste can be processed by recyclers. To combat this problem, academics have devoted their efforts to developing technologies such as selective deconstruction catalysts or compatibilizer for commodity plastics and new types of upcycled plastics. In this review, the strengths and challenges of current commercial recycling processes are discussed, followed by examples of the advancement in academic research. Bridging a gap to integrate new recycling materials and processes into current industrial practices will improve commercial recycling and plastic waste management, as well as create new economies. Furthermore, establishing closed-loop circularity of plastics by the combined efforts of academia and industry will contribute toward establishing a net zero carbon society by significant reduction of carbon and energy footprints. This review serves as a guide to understand the gap and help to create a path for new discovery in academic research to be integrated into industrial practices.
Collapse
Affiliation(s)
- Jackie Zheng
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Bredesen Center for Interdisciplinary Research and Education, University of Tennessee Knoxville, Knoxville, TN 37966, USA
| | - Md Arifuzzaman
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Xiaomin Tang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Xi Chelsea Chen
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
33
|
Yang L, Li L, Lu J, Lin B, Fu L, Xu C. Flexible Photothermal Materials with Controllable Accurate Healing and Reversible Adhesive Abilities. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Li Yang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Luji Li
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Junjie Lu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Baofeng Lin
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Lihua Fu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Chuanhui Xu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| |
Collapse
|
34
|
Xu H, Zhao S, Yuan A, Zhao Y, Wu X, Wei Z, Lei J, Jiang L. Exploring Self-Healing and Switchable Adhesives based on Multi-Level Dynamic Stable Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300626. [PMID: 36929671 DOI: 10.1002/smll.202300626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
It is a challenge to develop adhesives simultaneously capable of strong adhesion and efficient switchable ability. Herein, the authors report multifunctional switchable adhesives named Cu2+ -curcumin-imidazole-polyurethane (CIPUs:Cu2+ ) by introducing 1-(3-aminopropyl) imidazole and curcumin into polyurethane system crossed by Cu2+ forming dynamic metal-ligand bonds. This CIPUs:Cu2+ has strong adhesion (up to 2.46 MPa) on various material surfaces due to their specially designed functional groups alike the secretions from mussels. It can achieve fast switching speed (30 s) and high switch efficiency through multiple contactless remote stimulations. Importantly, density functional theory (DFT) calculation reveals that such metal-ligand bonds consisting of two components: stronger Cu2+ -curcumin complexes and weaker Cu2+ -imidazole complexes can aggregate to form multi-level dynamic stable structure . The special structure can not only be acted as sacrificial sites for easily broken and reformed, allowing efficient switchable adhesion and enormous energy dissipation but also acted as firm sites to maintain the cohesion of the adhesive and the reversible reconstruction network. Intriguingly, the CIPUs:Cu2+ can achieve self-healing at room temperature without needing external stimuli. Overall, this strategy can further broaden the design of switchable adhesives in the fields of intelligent gadgets, wearable bio-monitoring devices, etc.
Collapse
Affiliation(s)
- Hualiang Xu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Shiwei Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Anqian Yuan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Youlong Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Xudong Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Zhengkai Wei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Liang Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
35
|
Ge S, Carden GP, Samanta S, Li B, Popov I, Cao PF, Sokolov AP. Associating Polymers in the Strong Interaction Regime: Validation of the Bond Lifetime Renormalization Model. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Sirui Ge
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Gregory Peyton Carden
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Subarna Samanta
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ivan Popov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Alexei P. Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
36
|
Fan ZW, Jin XL, Chen Y, Lu M, Wang YR, Yue K, Wen T, Tang L, Wu ZL, Sun T. Topology and Dynamic Regulations of Comb-like Polymers as Strong Adhesives. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Zhi Wei Fan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiao Lin Jin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mengze Lu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yi Ru Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Liqun Tang
- School of Civil Engineering and Transportation, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Taolin Sun
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
37
|
Huang D, Zhang L, Sun S, Li P, Fu Y, Tian R, Lu C. Three‐Dimensional Fluorescent Imaging to Monitor the Dynamic Distribution of Organic Additives in Polymers. ChemistrySelect 2023. [DOI: 10.1002/slct.202202109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dandan Huang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute of CNTC Zhengzhou 450001 China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC Zhengzhou 450001 China
| | - Yingjie Fu
- Zhengzhou Tobacco Research Institute of CNTC Zhengzhou 450001 China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
- Green Catalysis Center College of Chemistry Zhengzhou 450001 P. R. China
| |
Collapse
|
38
|
Wang ZH, Liu BW, Zeng FR, Lin XC, Zhang JY, Wang XL, Wang YZ, Zhao HB. Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy, and harsh-environment resistance. SCIENCE ADVANCES 2022; 8:eadd8527. [PMID: 36516253 PMCID: PMC9750157 DOI: 10.1126/sciadv.add8527] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Recyclable/reversible adhesives have attracted growing attention for sustainability and intelligence but suffer from low adhesion strength and poor durability in complex conditions. Here, we demonstrate an aromatic siloxane adhesive that exploits stimuli-responsive reversible assembly driven by π-π stacking, allowing for elimination and activation of interfacial interactions via infiltration-volatilization of ethanol. The robust cohesive energy from water-insensitive siloxane assembly enables durable strong adhesion (3.5 MPa shear strength on glasses) on diverse surfaces. Long-term adhesion performances are realized in underwater, salt, and acid/alkali solutions (pH 1-14) and at low/high temperatures (-10-90°C). With reversible assembly/disassembly, the adhesive is closed-loop recycled (~100%) and reused over 100 times without adhesion loss. Furthermore, the adhesive has unique combinations of high transparency (~98% in the visible light region of 400-800 nm) and flame retardancy. The experiments and theoretical calculations reveal the corresponding mechanism at the molecular level. This π-π stacking-driven siloxane assembly strategy opens up an avenue for high-performance adhesives with circular life and multifunctional integration.
Collapse
|
39
|
Bok M, Zhao ZJ, Hwang SH, Ahn J, Ko J, Jung JY, Lee J, Jeon S, Jeong JH. Functional Asymmetry-Enabled Self-Adhesive Film via Phase Separation of Binary Polymer Mixtures for Soft Bio-Integrated Electronics. ACS NANO 2022; 16:18157-18167. [PMID: 36240045 DOI: 10.1021/acsnano.2c05159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biocompatible adhesive films are important for many applications (e.g., wearable devices, implantable devices, and attachable sensors). In particular, achieving self-adhesion on one side of a film with biocompatible materials is a compelling goal in adhesion science. Herein, we report a simple and easy manufacturing process using water-soluble hyaluronic acid (HA) that allows adhesiveness on only one side using binary polymer mixtures based on a phase-separation strategy with an elastomer. HA influx allows for the entangled polymer chains of the elastomer to spontaneously deform, permitting tunable mechanical elasticity, conformability, and adhesion. The proposed adhesive film enables the transfer of nanopatterning and the attachment of various surfaces without the use of additional chemicals. In addition, the film can be used for measuring epidermal biopotential and for skin fixation of drug devices. Therefore, the developed facile asymmetric adhesion can block the interferences of other materials on the unnecessary adhesion side, providing considerable potential for the development of functional, multifunctional, and smart bioadhesives.
Collapse
Affiliation(s)
- Moonjeong Bok
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Zhi-Jun Zhao
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Pidu District, Chengdu, Sichuan 610097, China
| | - Soon Hyoung Hwang
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Junseong Ahn
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Jiwoo Ko
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Joo-Yun Jung
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Jihye Lee
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Sohee Jeon
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Jun-Ho Jeong
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| |
Collapse
|
40
|
Liu YB, Peng LM, Bao RY, Yang MB, Yang W. Vitrimeric Polylactide by Two-step Alcoholysis and Transesterification during Reactive Processing for Enhanced Melt Strength. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45966-45977. [PMID: 36166428 DOI: 10.1021/acsami.2c15595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Because of its rather low melt strength, polylactide (PLA) has yet to fulfill its promise as advanced biobased and biodegradable foams to replace fossil-based polymer foams. In this work, PLA vitrimers were prepared by two-step reactive processing from commercial PLA thermoplastics, glycerol, and diphenylmethane diisocyanate (MDI) using Zn(II)-catalyzed addition and transesterification chemistry. The transesterification reaction of PLA and glycerol occurs with zinc acetate as the catalyst, and chain scission will take place due to the alcoholysis of the PLA chains by the free hydroxyl groups from the glycerol. Long-chain PLA with hydroxyl groups can be obtained and then cross-linked with MDI. Rheological analysis shows that the formed cross-linked network can significantly improve melt strength and promote strain hardening under extensional flow. PLA vitrimers still maintain the ability of thermoplastic processing via extrusion and compression. The enhanced melt strength and the rearrangement of network topology facilitate the foaming processing. An expansion ratio as large as 49.2-fold and microcellular foam with a uniform cell morphology can be obtained for PLA vitrimers with a gel fraction of 51.8% through a supercritical carbon dioxide foaming technique. This work provides a new way with the scale-up possibility to enhance the melt strength of PLA, and the broadened range of PLA applicability brought by PLA vitrimers is truly valuable in terms of the realization of a sustainable society.
Collapse
Affiliation(s)
- Yong-Bo Liu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Li-Mei Peng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
41
|
Wang Z, Huang K, Wan X, Liu M, Chen Y, Shi X, Wang S. High‐Strength Plus Reversible Supramolecular Adhesives Achieved by Regulating Intermolecular Pt
II
⋅⋅⋅Pt
II
Interactions. Angew Chem Int Ed Engl 2022; 61:e202211495. [DOI: 10.1002/anie.202211495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Kang Huang
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Laboratory of Theoretical and Computational Nanoscience Key Laboratory for Nanosystem and Hierarchy Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yong Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinghua Shi
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Laboratory of Theoretical and Computational Nanoscience Key Laboratory for Nanosystem and Hierarchy Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
42
|
Wang Z, Huang K, wan X, Liu M, Chen Y, Shi X, Wang S. High‐Strength Plus Reversible Supramolecular Adhesives Achieved by Regulating Intermolecular Pt(II)···Pt(II) Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhao Wang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Kang Huang
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology CAS Center for Excellence in Nanoscience CHINA
| | - Xizi wan
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Mingqian Liu
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Yong Chen
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials CHINA
| | - Xinghua Shi
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology CAS Center for Excellence in Nanoscience CHINA
| | - Shutao Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences CAS Key Laboratory of Bio-inspired Materials and Interfacial Science 29 Zhongguancun East Road 100190 Beijing CHINA
| |
Collapse
|
43
|
Chen J, Dong Z, Li M, Li X, Chen K, Yin P. Ultra‐Strong and Proton Conductive Aqua‐Based Adhesives from Facile Blending of Polyvinyl Alcohol and Tungsten Oxide Clusters. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202111892] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 09/11/2024]
Abstract
AbstractThe explosive growth of binder industry spurs the development of strong adhesives with the integration of multi‐functionalities as well as cost‐effective and eco‐friendly processability. Here, polyvinyl alcohol (PVA) and sub‐nanoscale metal oxide cluster, phosphotungstic acid (PTA), both with broad commercial availability, are complexed through hydrogen bonding in water. The obtained nanocomposites demonstrate promising light transmittance and proton conductivity, and most importantly, unprecedentedly high adhesive strengths as ≈4 kN m–1 for peeling strength and 8.2 ± 1.7 MPa for single lap shear strength on typical glass substrate. The supramolecular complexation of PVA with PTA can significantly reduce its crystallinity and accelerate PVA chain dynamics for negligible internal stress and membrane shrinkage upon drying, leading to close contact with glass substrates for strong adhesion. Meanwhile, the supramolecular interaction between PVA and PTA contributes to the nanocomposites’ enhanced mechanical strength and resolves the issue of cohesion failure to ensure high adhesive strengths. The fast chain dynamics also benefit rapid proton transportation, contributing to the high proton conductivities. The binder design protocol can be extended to general polymer systems integrated with desired functionalities and allows scale up processing, providing great opportunities for functional adhesives for safety glass and electronic industry.
Collapse
Affiliation(s)
- Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Zhenchuan Dong
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Mu Li
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Xinpei Li
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Kun Chen
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
44
|
Wang Z, Zhang L, Feng J, Tang P, Chen S, Yu H, Hu Y, Wang Z, Jiang F. Ultra-stretchable chitin-based branched elastomers with enhanced mechanical properties via RAFT polymerization. Carbohydr Polym 2022; 288:119381. [PMID: 35450643 DOI: 10.1016/j.carbpol.2022.119381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 01/08/2023]
Abstract
In this work, a chitin-based macromolecular chain transfer agent (Chitin-CTA) was designed to graft polymers from chitin at the molecular level. Homogeneous reversible addition-fragmentation chain transfer (RAFT) polymerization was performed to prepare branched MA elastomers, chitin-graft-poly(methyl acrylate) (Chitin-g-PMA) copolymers, which were thermally stable and showed tunable glass transition temperatures. These ultra-stretchable branched MA elastomers exhibit unique strain-hardening behavior and significantly enhanced mechanical properties. Mechanical tests indicate that the chitin backbones in branched MA elastomers can act as cross-linking points to improve the tensile strength, toughness, and elasticity simultaneously. The macroscopic performance of branched MA elastomers c be further promoted by introducing hydrogen bonding as non-covalent interaction to form an additional reversible physical network. This robust and versatile grafting strategy can provide new opportunities to prepare chitin-based branched MA elastomers with extraordinary mechanical properties.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Lujun Zhang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiajun Feng
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pengfei Tang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuaishuai Chen
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hanqing Yu
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yueyao Hu
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Feng Jiang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|