1
|
Batool F, Shireen H, Malik MF, Abrar M, Abbasi AA. The combinatorial binding syntax of transcription factors in forebrain-specific enhancers. Biol Open 2025; 14:BIO061751. [PMID: 39976127 PMCID: PMC11876843 DOI: 10.1242/bio.061751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Tissue-specific gene regulation in mammals involves the coordinated binding of multiple transcription factors (TFs). Using the forebrain as a model, we investigated the syntax of TF occupancy to determine tissue-specific enhancer regions. We analyzed forebrain-exclusive enhancers from the VISTA Enhancer Browser and a curated set of 23 TFs relevant to forebrain development and disease. Our findings revealed multiple distinct patterns of combinatorial TF binding, with the HES5-FOXP2-GATA3 triad being the most frequent in forebrain-specific enhancers. This syntactic structure was detected in 2614 enhancers from a genome-wide catalog of 25,000 predicted human forebrain enhancers. Notably, this catalog represents a computationally predicted dataset, distinct from the in vivo validated set of enhancers obtained from the VISTA Enhancer Browser. The shortlisted 2614 enhancers were further analyzed using genome-wide epigenetic data and evaluated for evolutionary conservation and disease relevance. Our findings highlight the value of these 2614 enhancers in forebrain-specific gene regulation and provide a framework for discovering tissue-specific enhancers, enhancing the understanding of enhancer function.
Collapse
Affiliation(s)
- Fatima Batool
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Huma Shireen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Faizan Malik
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Abrar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
2
|
Ou F, Liu TT, Desai P, Ferris ST, Kim S, Shen H, Ohara RA, Jo S, Chen J, Postoak JL, Du S, Diamond MS, Murphy TL, Murphy KM. Optimization of the Irf8 +32-kb enhancer disrupts dendritic cell lineage segregation. Nat Immunol 2024; 25:2043-2056. [PMID: 39375550 PMCID: PMC12103213 DOI: 10.1038/s41590-024-01976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
Autoactivation of lineage-determining transcription factors mediates bistable expression, generating distinct cell phenotypes essential for complex body plans. Classical type 1 dendritic cell (cDC1) and type 2 dendritic cell (cDC2) subsets provide nonredundant functions for defense against distinct immune challenges. Interferon regulatory factor 8 (IRF8), the cDC1 lineage-determining transcription factor, undergoes autoactivation in cDC1 progenitors to establish cDC1 identity, yet its expression is downregulated during cDC2 differentiation by an unknown mechanism. This study reveals that the Irf8 +32-kb enhancer, responsible for IRF8 autoactivation, is naturally suboptimized with low-affinity IRF8 binding sites. Introducing multiple high-affinity IRF8 sites into the Irf8 +32-kb enhancer causes a gain-of-function effect, leading to erroneous IRF8 autoactivation in specified cDC2 progenitors, redirecting them toward cDC1 and a novel hybrid DC subset with mixed-lineage phenotypes. Further, this also causes a loss-of-function effect, reducing Irf8 expression in cDC1s. These developmental alterations critically impair both cDC1-dependent and cDC2-dependent arms of immunity. Collectively, our findings underscore the significance of enhancer suboptimization in the developmental segregation of cDCs required for normal immune function.
Collapse
Affiliation(s)
- Feiya Ou
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Pritesh Desai
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Stephen T Ferris
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Haolin Shen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Suin Jo
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jing Chen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - J Luke Postoak
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Siling Du
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Guo K, Huang Z, Wang C, Liu X, Chen Y, Fang J, Jin W, Xu J, Wu F, Zhou X. Nematicidal effects of silencing arginine kinase in the pine wood nematode, Bursaphelenchus xylophilus, determined using a dsRNA-like siRNA assembly. Int J Biol Macromol 2024; 279:135401. [PMID: 39245109 DOI: 10.1016/j.ijbiomac.2024.135401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The pine wood nematode Bursaphelenchus xylophilus is a highly invasive species responsible for the widespread pine wilt disease. Double-stranded RNA (dsRNA) biopesticides represent a novel strategy for controlling plant-parasitic nematodes. The B. xylophilus arginine kinase (BxAK) features a conserved ATP-binding domain and exhibits nematode-specific divergence in the phylogenetic tree. Notably, whole-mount in situ hybridization signals are evident in the nematode head and middle sections, particularly in the juvenile stage before sex differentiation. In this study, we developed a novel dsRNA-like small interfering RNA (siRNA) assembly that specifically targets BxAK and presents highly nematicidal effects. The RNA interference (RNAi) efficiency achieved a 95.9 % reduction in second-stage juveniles. In bioassays, the median lethal concentrations of this siRNA assembly against B. xylophilus were 168.5 ng/μl for juveniles and 603.8 ng/μl for adults within 48 h. Moreover, transcriptomic results revealed significantly downregulated expression levels of genes related to metabolism and development, suggesting that the mode of action of BxAK silencing is related to disruptions in energy homeostasis and juvenile development. In conclusion, BxAK is a molecular target for controlling B. xylophilus, and our siRNA assembly significantly enhances RNAi efficiency and lowers the lethal concentration required, making it a promising candidate for future biocontrol applications.
Collapse
Affiliation(s)
- Kai Guo
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Ziqian Huang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Chunyu Wang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Xuemeng Liu
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Ye Chen
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Jiadi Fang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Weibo Jin
- Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jinfeng Xu
- Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Fangli Wu
- Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Xiang Zhou
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
4
|
Waite JB, Boytz R, Traeger AR, Lind TM, Lumbao-Conradson K, Torigoe SE. A suboptimal OCT4-SOX2 binding site facilitates the naïve-state specific function of a Klf4 enhancer. PLoS One 2024; 19:e0311120. [PMID: 39348365 PMCID: PMC11441684 DOI: 10.1371/journal.pone.0311120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Enhancers have critical functions in the precise, spatiotemporal control of transcription during development. It is thought that enhancer grammar, or the characteristics and arrangements of transcription factor binding sites, underlie the specific functions of developmental enhancers. In this study, we sought to identify grammatical constraints that direct enhancer activity in the naïve state of pluripotency, focusing on the enhancers for the naïve-state specific gene, Klf4. Using a combination of biochemical tests, reporter assays, and endogenous mutations in mouse embryonic stem cells, we have studied the binding sites for the transcription factors OCT4 and SOX2. We have found that the three Klf4 enhancers contain suboptimal OCT4-SOX2 composite binding sites. Substitution with a high-affinity OCT4-SOX2 binding site in Klf4 enhancer E2 rescued enhancer function and Klf4 expression upon loss of the ESRRB and STAT3 binding sites. We also observed that the low-affinity of the OCT4-SOX2 binding site is crucial to drive the naïve-state specific activities of Klf4 enhancer E2. Altogether, our work suggests that the affinity of OCT4-SOX2 binding sites could facilitate enhancer functions in specific states of pluripotency.
Collapse
Affiliation(s)
- Jack B Waite
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - RuthMabel Boytz
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| | - Alexis R Traeger
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Torrey M Lind
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Koya Lumbao-Conradson
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Sharon E Torigoe
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| |
Collapse
|
5
|
Kim S, Liu TT, Ou F, Murphy TL, Murphy KM. Anatomy of a superenhancer. Adv Immunol 2024; 163:51-96. [PMID: 39271259 DOI: 10.1016/bs.ai.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Interferon regulatory factor-8 (IRF8) is the lineage determining transcription factor for the type one classical dendritic cell (cDC1) subset, a terminal selector for plasmacytoid dendritic cells and important for the function of monocytes. Studies of Irf8 gene regulation have identified several enhancers controlling its activity during development of progenitors in the bone marrow that precisely regulate expression at distinct developmental stages. Each enhancer responds to distinct transcription factors that are expressed at each stage. IRF8 is first expressed in early progenitors that form the monocyte dendritic cell progenitor (MDP) in response to induction of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) acting at the Irf8 +56 kb enhancer. IRF8 levels increase further as the MDP transits into the common dendritic cell progenitor (CDP) in response to E protein activity at the Irf8 +41 kb enhancer. Upon Nfil3-induction in CDPs leading to specification of the cDC1 progenitor, abrupt induction of BATF3 forms the JUN/BATF3/IRF8 heterotrimer that activates the Irf8 +32 kb enhancer that sustains Irf8 autoactivation throughout the cDC1 lifetime. Deletions of each of these enhancers has revealed their stage dependent activation. Surprisingly, studies of compound heterozygotes for each combination of enhancer deletions revealed that activation of each subsequent enhancer requires the successful activation of the previous enhancer in strictly cis-dependent mechanism. Successful progression of enhancer activation is finely tuned to alter the functional accessibility of subsequent enhancers to factors active in the next stage of development. The molecular basis for these phenomenon is still obscure but could have implications for genomic regulation in a broader developmental context.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
6
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
7
|
Tan CH, Wang TY, Park H, Lomenick B, Chou TF, Sternberg PW. Single-tissue proteomics in Caenorhabditis elegans reveals proteins resident in intestinal lysosome-related organelles. Proc Natl Acad Sci U S A 2024; 121:e2322588121. [PMID: 38861598 PMCID: PMC11194598 DOI: 10.1073/pnas.2322588121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
The nematode intestine is the primary site for nutrient uptake and storage as well as the synthesis of biomolecules; lysosome-related organelles known as gut granules are important for many of these functions. Aspects of intestine biology are not well understood, including the export of the nutrients it imports and the molecules it synthesizes, as well as the complete functions and protein content of the gut granules. Here, we report a mass spectrometry (MS)-based proteomic analysis of the intestine of the Caenorhabditis elegans and of its gut granules. Overall, we identified approximately 5,000 proteins each in the intestine and the gonad and showed that most of these proteins can be detected in samples extracted from a single worm, suggesting the feasibility of individual-level genetic analysis using proteomes. Comparing proteomes and published transcriptomes of the intestine and the gonad, we identified proteins that appear to be synthesized in the intestine and then transferred to the gonad. To identify gut granule proteins, we compared the proteome of individual intestines deficient in gut granules to the wild type. The identified gut granule proteome includes proteins known to be exclusively localized to the granules and additional putative gut granule proteins. We selected two of these putative gut granule proteins for validation via immunohistochemistry, and our successful confirmation of both suggests that our strategy was effective in identifying the gut granule proteome. Our results demonstrate the practicability of single-tissue MS-based proteomic analysis in small organisms and in its future utility.
Collapse
Affiliation(s)
- Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Ting-Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
8
|
Kock KH, Kimes PK, Gisselbrecht SS, Inukai S, Phanor SK, Anderson JT, Ramakrishnan G, Lipper CH, Song D, Kurland JV, Rogers JM, Jeong R, Blacklow SC, Irizarry RA, Bulyk ML. DNA binding analysis of rare variants in homeodomains reveals homeodomain specificity-determining residues. Nat Commun 2024; 15:3110. [PMID: 38600112 PMCID: PMC11006913 DOI: 10.1038/s41467-024-47396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Homeodomains (HDs) are the second largest class of DNA binding domains (DBDs) among eukaryotic sequence-specific transcription factors (TFs) and are the TF structural class with the largest number of disease-associated mutations in the Human Gene Mutation Database (HGMD). Despite numerous structural studies and large-scale analyses of HD DNA binding specificity, HD-DNA recognition is still not fully understood. Here, we analyze 92 human HD mutants, including disease-associated variants and variants of uncertain significance (VUS), for their effects on DNA binding activity. Many of the variants alter DNA binding affinity and/or specificity. Detailed biochemical analysis and structural modeling identifies 14 previously unknown specificity-determining positions, 5 of which do not contact DNA. The same missense substitution at analogous positions within different HDs often exhibits different effects on DNA binding activity. Variant effect prediction tools perform moderately well in distinguishing variants with altered DNA binding affinity, but poorly in identifying those with altered binding specificity. Our results highlight the need for biochemical assays of TF coding variants and prioritize dozens of variants for further investigations into their pathogenicity and the development of clinical diagnostics and precision therapies.
Collapse
Affiliation(s)
- Kian Hong Kock
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA
| | - Patrick K Kimes
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Sachi Inukai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Sabrina K Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - James T Anderson
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Gayatri Ramakrishnan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Boston Bangalore Biosciences Beginnings Program, Harvard University, Cambridge, MA, USA
| | - Colin H Lipper
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Dongyuan Song
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jesse V Kurland
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Julia M Rogers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA
| | - Raehoon Jeong
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA, USA
| | - Stephen C Blacklow
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA
| | - Rafael A Irizarry
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA.
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA.
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA, USA.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Xu W, Liu J, Qi H, Si R, Zhao Z, Tao Z, Bai Y, Hu S, Sun X, Cong Y, Zhang H, Fan D, Xiao L, Wang Y, Li Y, Du Z. A lineage-resolved cartography of microRNA promoter activity in C. elegans empowers multidimensional developmental analysis. Nat Commun 2024; 15:2783. [PMID: 38555276 PMCID: PMC10981687 DOI: 10.1038/s41467-024-47055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Elucidating the expression of microRNAs in developing single cells is critical for functional discovery. Here, we construct scCAMERA (single-cell cartography of microRNA expression based on reporter assay), utilizing promoter-driven fluorescent reporters in conjunction with imaging and lineage tracing. The cartography delineates the transcriptional activity of 54 conserved microRNAs in lineage-resolved single cells throughout C. elegans embryogenesis. The combinatorial expression of microRNAs partitions cells into fine clusters reflecting their function and anatomy. Notably, the expression of individual microRNAs exhibits high cell specificity and divergence among family members. Guided by cellular expression patterns, we identify developmental functions of specific microRNAs, including miR-1 in pharynx development and physiology, miR-232 in excretory canal morphogenesis by repressing NHR-25/NR5A, and a functional synergy between miR-232 and miR-234 in canal development, demonstrating the broad utility of scCAMERA. Furthermore, integrative analysis reveals that tissue-specific fate determinants activate microRNAs to repress protein production from leaky transcripts associated with alternative, especially neuronal, fates, thereby enhancing the fidelity of developmental fate differentiation. Collectively, our study offers rich opportunities for multidimensional expression-informed analysis of microRNA biology in metazoans.
Collapse
Affiliation(s)
- Weina Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyi Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruolin Si
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiju Tao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yuchuan Bai
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shipeng Hu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaohan Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoye Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duchangjiang Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yangyang Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongbin Li
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Khetan S, Bulyk ML. Overlapping binding sites underlie TF genomic occupancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583629. [PMID: 38496549 PMCID: PMC10942454 DOI: 10.1101/2024.03.05.583629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sequence-specific DNA binding by transcription factors (TFs) is a crucial step in gene regulation. However, current high-throughput in vitro approaches cannot reliably detect lower affinity TF-DNA interactions, which play key roles in gene regulation. Here, we developed PADIT-seq ( p rotein a ffinity to D NA by in vitro transcription and RNA seq uencing) to assay TF binding preferences to all 10-bp DNA sequences at far greater sensitivity than prior approaches. The expanded catalogs of low affinity DNA binding sites for the human TFs HOXD13 and EGR1 revealed that nucleotides flanking high affinity DNA binding sites create overlapping lower affinity sites that together modulate TF genomic occupancy in vivo . Formation of such extended recognition sequences stems from an inherent property of TF binding sites to interweave each other and expands the genomic sequence space for identifying noncoding variants that directly alter TF binding. One-Sentence Summary Overlapping DNA binding sites underlie TF genomic occupancy through their inherent propensity to interweave each other.
Collapse
|
11
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Ghaddar A, Armingol E, Huynh C, Gevirtzman L, Lewis NE, Waterston R, O’Rourke EJ. Whole-body gene expression atlas of an adult metazoan. SCIENCE ADVANCES 2023; 9:eadg0506. [PMID: 37352352 PMCID: PMC10289653 DOI: 10.1126/sciadv.adg0506] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Gene activity defines cell identity, drives intercellular communication, and underlies the functioning of multicellular organisms. We present the single-cell resolution atlas of gene activity of a fertile adult metazoan: Caenorhabditis elegans. This compendium comprises 180 distinct cell types and 19,657 expressed genes. We predict 7541 transcription factor expression profile associations likely responsible for defining cellular identity. We predict thousands of intercellular interactions across the C. elegans body and the ligand-receptor pairs that mediate them, some of which we experimentally validate. We identify 172 genes that show consistent expression across cell types, are involved in basic and essential functions, and are conserved across phyla; therefore, we present them as experimentally validated housekeeping genes. We developed the WormSeq application to explore these data. In addition to the integrated gene-to-systems biology, we present genome-scale single-cell resolution testable hypotheses that we anticipate will advance our understanding of the molecular mechanisms, underlying the functioning of a multicellular organism and the perturbations that lead to its malfunction.
Collapse
Affiliation(s)
- Abbas Ghaddar
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Waterston
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eyleen J. O’Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
13
|
Shahein A, López-Malo M, Istomin I, Olson EJ, Cheng S, Maerkl SJ. Systematic analysis of low-affinity transcription factor binding site clusters in vitro and in vivo establishes their functional relevance. Nat Commun 2022; 13:5273. [PMID: 36071116 PMCID: PMC9452512 DOI: 10.1038/s41467-022-32971-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
Binding to binding site clusters has yet to be characterized in depth, and the functional relevance of low-affinity clusters remains uncertain. We characterized transcription factor binding to low-affinity clusters in vitro and found that transcription factors can bind concurrently to overlapping sites, challenging the notion of binding exclusivity. Furthermore, small clusters with binding sites an order of magnitude lower in affinity give rise to high mean occupancies at physiologically-relevant transcription factor concentrations. To assess whether the observed in vitro occupancies translate to transcriptional activation in vivo, we tested low-affinity binding site clusters in a synthetic and native gene regulatory network in S. cerevisiae. In both systems, clusters of low-affinity binding sites generated transcriptional output comparable to single or even multiple consensus sites. This systematic characterization demonstrates that clusters of low-affinity binding sites achieve substantial occupancies, and that this occupancy can drive expression in eukaryotic promoters.
Collapse
Affiliation(s)
- Amir Shahein
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maria López-Malo
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ivan Istomin
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Evan J Olson
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Shiyu Cheng
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Choi Y, Luo Y, Lee S, Jin H, Yoon HJ, Hahn Y, Bae J, Lee HH. FOXL2 and FOXA1 cooperatively assemble on the TP53 promoter in alternative dimer configurations. Nucleic Acids Res 2022; 50:8929-8946. [PMID: 35920317 PMCID: PMC9410875 DOI: 10.1093/nar/gkac673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Although both the p53 and forkhead box (FOX) family proteins are key transcription factors associated with cancer progression, their direct relationship is unknown. Here, we found that FOX family proteins bind to the non-canonical homotypic cluster of the p53 promoter region (TP53). Analysis of crystal structures of FOX proteins (FOXL2 and FOXA1) bound to the p53 homotypic cluster indicated that they interact with a 2:1 stoichiometry accommodated by FOX-induced DNA allostery. In particular, FOX proteins exhibited distinct dimerization patterns in recognition of the same p53-DNA; dimer formation of FOXA1 involved protein-protein interaction, but FOXL2 did not. Biochemical and biological functional analyses confirmed the cooperative binding of FOX proteins to the TP53 promoter for the transcriptional activation of TP53. In addition, up-regulation of TP53 was necessary for FOX proteins to exhibit anti-proliferative activity in cancer cells. These analyses reveal the presence of a discrete characteristic within FOX family proteins in which FOX proteins regulate the transcription activity of the p53 tumor suppressor via cooperative binding to the TP53 promoter in alternative dimer configurations.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yongyang Luo
- School of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Seunghwa Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Hanyong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Rodriguez K, Do A, Senay-Aras B, Perales M, Alber M, Chen W, Reddy GV. Concentration-dependent transcriptional switching through a collective action of cis-elements. SCIENCE ADVANCES 2022; 8:eabo6157. [PMID: 35947668 PMCID: PMC9365274 DOI: 10.1126/sciadv.abo6157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Gene expression specificity of homeobox transcription factors has remained paradoxical. WUSCHEL activates and represses CLAVATA3 transcription at lower and higher concentrations, respectively. We use computational modeling and experimental analysis to investigate the properties of the cis-regulatory module. We find that intrinsically each cis-element can only activate CLAVATA3 at a higher WUSCHEL concentration. However, together, they repress CLAVATA3 at higher WUSCHEL and activate only at lower WUSCHEL, showing that the concentration-dependent interactions among cis-elements regulate both activation and repression. Biochemical experiments show that two adjacent functional cis-elements bind WUSCHEL with higher affinity and dimerize at relatively lower levels. Moreover, increasing the distance between cis-elements prolongs WUSCHEL monomer binding window, resulting in higher CLAVATA3 activation. Our work showing a constellation of optimally spaced cis-elements of defined affinities determining activation and repression thresholds in regulating CLAVATA3 transcription provides a previously unknown mechanism of cofactor-independent regulation of transcription factor binding in mediating gene expression specificity.
Collapse
Affiliation(s)
- Kevin Rodriguez
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Albert Do
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Betul Senay-Aras
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Mariano Perales
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Weitao Chen
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92521, USA
| | - G. Venugopala Reddy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Ragipani B, Albritton SE, Morao AK, Mesquita D, Kramer M, Ercan S. Increased gene dosage and mRNA expression from chromosomal duplications in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac151. [PMID: 35731207 PMCID: PMC9339279 DOI: 10.1093/g3journal/jkac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022]
Abstract
Isolation of copy number variations and chromosomal duplications at high frequency in the laboratory suggested that Caenorhabditis elegans tolerates increased gene dosage. Here, we addressed if a general dosage compensation mechanism acts at the level of mRNA expression in C. elegans. We characterized gene dosage and mRNA expression in 3 chromosomal duplications and a fosmid integration strain using DNA-seq and mRNA-seq. Our results show that on average, increased gene dosage leads to increased mRNA expression, pointing to a lack of genome-wide dosage compensation. Different genes within the same chromosomal duplication show variable levels of mRNA increase, suggesting feedback regulation of individual genes. Somatic dosage compensation and germline repression reduce the level of mRNA increase from X chromosomal duplications. Together, our results show a lack of genome-wide dosage compensation mechanism acting at the mRNA level in C. elegans and highlight the role of epigenetic and individual gene regulation contributing to the varied consequences of increased gene dosage.
Collapse
Affiliation(s)
- Bhavana Ragipani
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sarah Elizabeth Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Diogo Mesquita
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Maxwell Kramer
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
17
|
Vidal B, Gulez B, Cao WX, Leyva-Diaz E, Reilly MB, Tekieli T, Hobert O. The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene ceh-34. eLife 2022; 11:76003. [PMID: 35324425 PMCID: PMC8989417 DOI: 10.7554/elife.76003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Burcu Gulez
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Wen Xi Cao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Eduardo Leyva-Diaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Tessa Tekieli
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
18
|
Ali MZ, Brewster RC. Controlling gene expression timing through gene regulatory architecture. PLoS Comput Biol 2022; 18:e1009745. [PMID: 35041641 PMCID: PMC8797265 DOI: 10.1371/journal.pcbi.1009745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 01/28/2022] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Gene networks typically involve the regulatory control of multiple genes with related function. This connectivity enables correlated control of the levels and timing of gene expression. Here we study how gene expression timing in the single-input module motif can be encoded in the regulatory DNA of a gene. Using stochastic simulations, we examine the role of binding affinity, TF regulatory function and network size in controlling the mean first-passage time to reach a fixed fraction of steady-state expression for both an auto-regulated TF gene and a target gene. We also examine how the variability in first-passage time depends on these factors. We find that both network size and binding affinity can dramatically speed up or slow down the response time of network genes, in some cases predicting more than a 100-fold change compared to that for a constitutive gene. Furthermore, these factors can also significantly impact the fidelity of this response. Importantly, these effects do not occur at “extremes” of network size or binding affinity, but rather in an intermediate window of either quantity.
Collapse
Affiliation(s)
- Md Zulfikar Ali
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Robert C. Brewster
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Poon GMK. The Non-continuum Nature of Eukaryotic Transcriptional Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1371:11-32. [PMID: 33616894 PMCID: PMC8380751 DOI: 10.1007/5584_2021_618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Eukaryotic transcription factors are versatile mediators of specificity in gene regulation. This versatility is achieved through mutual specification by context-specific DNA binding on the one hand, and identity-specific protein-protein partnerships on the other. This interactivity, known as combinatorial control, enables a repertoire of complex transcriptional outputs that are qualitatively disjoint, or non-continuum, with respect to binding affinity. This feature contrasts starkly with prokaryotic gene regulators, whose activities in general vary quantitatively in step with binding affinity. Biophysical studies on prokaryotic model systems and more recent investigations on transcription factors highlight an important role for folded state dynamics and molecular hydration in protein/DNA recognition. Analysis of molecular models of combinatorial control and recent literature in low-affinity gene regulation suggest that transcription factors harbor unique conformational dynamics that are inaccessible or unused by prokaryotic DNA-binding proteins. Thus, understanding the intrinsic dynamics involved in DNA binding and co-regulator recruitment appears to be a key to understanding how transcription factors mediate non-continuum outcomes in eukaryotic gene expression, and how such capability might have evolved from ancient, structurally conserved counterparts.
Collapse
Affiliation(s)
- Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Lehmann C, Pohl C. A Maternal-Effect Toxin Affects Epithelial Differentiation and Tissue Mechanics in Caenorhabditis elegans. Front Cell Dev Biol 2021; 9:743496. [PMID: 34722524 PMCID: PMC8551626 DOI: 10.3389/fcell.2021.743496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Selfish genetic elements that act as post-segregation distorters cause lethality in non-carrier individuals after fertilization. Two post-segregation distorters have been previously identified in Caenorhabditis elegans, the peel-1/zeel-1 and the sup-35/pha-1 elements. These elements seem to act as modification-rescue systems, also called toxin/antidote pairs. Here we show that the maternal-effect toxin/zygotic antidote pair sup-35/pha-1 is required for proper expression of apical junction (AJ) components in epithelia and that sup-35 toxicity increases when pathways that establish and maintain basal epithelial characteristics, die-1, elt-1, lin-26, and vab-10, are compromised. We demonstrate that pha-1(e2123) embryos, which lack the antidote, are defective in epidermal morphogenesis and frequently fail to elongate. Moreover, seam cells are frequently misshaped and mispositioned and cell bond tension is reduced in pha-1(e2123) embryos, suggesting altered tissue material properties in the epidermis. Several aspects of this phenotype can also be induced in wild-type embryos by exerting mechanical stress through uniaxial loading. Seam cell shape, tissue mechanics, and elongation can be restored in pha-1(e2123) embryos if expression of the AJ molecule DLG-1/Discs large is reduced. Thus, our experiments suggest that maternal-effect toxicity disrupts proper development of the epidermis which involves distinct transcriptional regulators and AJ components.
Collapse
Affiliation(s)
- Christina Lehmann
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| | - Christian Pohl
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| |
Collapse
|
21
|
Zboril E, Yoo H, Chen L, Liu Z. Dynamic Interactions of Transcription Factors and Enhancer Reprogramming in Cancer Progression. Front Oncol 2021; 11:753051. [PMID: 34616687 PMCID: PMC8488287 DOI: 10.3389/fonc.2021.753051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023] Open
Abstract
While improved tumor treatment has significantly reduced the overall mortality rates, invasive progression including recurrence, therapy resistance and metastasis contributes to the majority of deaths caused by cancer. Enhancers are essential distal DNA regulatory elements that control temporal- or spatial-specific gene expression patterns during development and other biological processes. Genome-wide sequencing has revealed frequent alterations of enhancers in cancers and reprogramming of distal enhancers has emerged as one of the important features for tumors. In this review, we will discuss tumor progression-associated enhancer dynamics, its transcription factor (TF) drivers and how enhancer reprogramming modulates gene expression during cancer invasive progression. Additionally, we will explore recent advancements in contemporary technology including single-cell sequencing, spatial transcriptomics and CUT&RUN, which have permitted integrated studies of enhancer reprogramming in vivo. Given the essential roles of enhancer dynamics and its drivers in controlling cancer progression and treatment outcome, understanding these changes will be paramount in mitigating invasive events and discovering novel therapeutic targets.
Collapse
Affiliation(s)
- Emily Zboril
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Hannah Yoo
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lizhen Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cell Systems and Anatomy, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
22
|
Wasson JA, Harris G, Keppler-Ross S, Brock TJ, Dar AR, Butcher RA, Fischer SEJ, Kagias K, Clardy J, Zhang Y, Mango SE. Neuronal control of maternal provisioning in response to social cues. SCIENCE ADVANCES 2021; 7:7/34/eabf8782. [PMID: 34417172 PMCID: PMC8378817 DOI: 10.1126/sciadv.abf8782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/30/2021] [Indexed: 05/03/2023]
Abstract
Mothers contribute cytoplasmic components to their progeny in a process called maternal provisioning. Provisioning is influenced by the parental environment, but the molecular pathways that transmit environmental cues between generations are not well understood. Here, we show that, in Caenorhabditis elegans, social cues modulate maternal provisioning to regulate gene silencing in offspring. Intergenerational signal transmission depends on a pheromone-sensing neuron and neuronal FMRFamide (Phe-Met-Arg-Phe)-like peptides. Parental FMRFamide-like peptide signaling dampens oxidative stress resistance and promotes the deposition of mRNAs for translational components in progeny, which, in turn, reduces gene silencing. This study identifies a previously unknown pathway for intergenerational communication that links neuronal responses to maternal provisioning. We suggest that loss of social cues in the parental environment represents an adverse environment that stimulates stress responses across generations.
Collapse
Affiliation(s)
| | - Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Biology, California State University Channel Islands, Camarillo, CA, USA
| | | | | | - Abdul R Dar
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Sylvia E J Fischer
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Konstantinos Kagias
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Cambridge, MA, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Susan E Mango
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
23
|
A 4D single-cell protein atlas of transcription factors delineates spatiotemporal patterning during embryogenesis. Nat Methods 2021; 18:893-902. [PMID: 34312566 DOI: 10.1038/s41592-021-01216-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Complex biological processes such as embryogenesis require precise coordination of cell differentiation programs across both space and time. Using protein-fusion fluorescent reporters and four-dimensional live imaging, we present a protein expression atlas of transcription factors (TFs) mapped onto developmental cell lineages during Caenorhabditis elegans embryogenesis, at single-cell resolution. This atlas reveals a spatiotemporal combinatorial code of TF expression, and a cascade of lineage-specific, tissue-specific and time-specific TFs that specify developmental states. The atlas uncovers regulators of embryogenesis, including an unexpected role of a skin specifier in neurogenesis and the critical function of an uncharacterized TF in convergent muscle differentiation. At the systems level, the atlas provides an opportunity to model cell state-fate relationships, revealing a lineage-dependent state diversity within functionally related cells and a winding trajectory of developmental state progression. Collectively, this single-cell protein atlas represents a valuable resource for elucidating metazoan embryogenesis at the molecular and systems levels.
Collapse
|
24
|
Oda-Ishii I, Yu D, Satou Y. Two distinct motifs for Zic-r.a drive specific gene expression in two cell lineages. Development 2021; 148:269043. [PMID: 34100063 DOI: 10.1242/dev.199538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022]
Abstract
Zic-r.a, a maternal transcription factor, specifies posterior fate in ascidian embryos. However, its direct target, Tbx6-r.b, does not contain typical Zic-r.a-binding sites in its regulatory region. Using an in vitro selection assay, we found that Zic-r.a binds to sites dissimilar to the canonical motif, by which it activates Tbx6-r.b in a sub-lineage of muscle cells. These sites with non-canonical motifs have weak affinity for Zic-r.a; therefore, it activates Tbx6-r.b only in cells expressing Zic-r.a abundantly. Meanwhile, we found that Zic-r.a expressed zygotically in late embryos activates neural genes through canonical sites. Because different zinc-finger domains of Zic-r.a are important for driving reporters with canonical and non-canonical sites, it is likely that the non-canonical motif is not a divergent version of the canonical motif. In other words, our data indicate that the non-canonical motif represents a motif distinct from the canonical motif. Thus, Zic-r.a recognizes two distinct motifs to activate two sets of genes at two timepoints in development. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
25
|
Zhao Z, Fan R, Xu W, Kou Y, Wang Y, Ma X, Du Z. Single-cell dynamics of chromatin activity during cell lineage differentiation in Caenorhabditis elegans embryos. Mol Syst Biol 2021; 17:e10075. [PMID: 33900055 PMCID: PMC8073016 DOI: 10.15252/msb.202010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
Elucidating the chromatin dynamics that orchestrate embryogenesis is a fundamental question in developmental biology. Here, we exploit position effects on expression as an indicator of chromatin activity and infer the chromatin activity landscape in every lineaged cell during Caenorhabditis elegans early embryogenesis. Systems-level analyses reveal that chromatin activity distinguishes cellular states and correlates with fate patterning in the early embryos. As cell lineage unfolds, chromatin activity diversifies in a lineage-dependent manner, with switch-like changes accompanying anterior-posterior fate asymmetry and characteristic landscapes being established in different cell lineages. Upon tissue differentiation, cellular chromatin from distinct lineages converges according to tissue types but retains stable memories of lineage history, contributing to intra-tissue cell heterogeneity. However, the chromatin landscapes of cells organized in a left-right symmetric pattern are predetermined to be analogous in early progenitors so as to pre-set equivalent states. Finally, genome-wide analysis identifies many regions exhibiting concordant chromatin activity changes that mediate the co-regulation of functionally related genes during differentiation. Collectively, our study reveals the developmental and genomic dynamics of chromatin activity at the single-cell level.
Collapse
Affiliation(s)
- Zhiguang Zhao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rong Fan
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weina Xu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yahui Kou
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yangyang Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Xuehua Ma
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
26
|
Jindal GA, Farley EK. Enhancer grammar in development, evolution, and disease: dependencies and interplay. Dev Cell 2021; 56:575-587. [PMID: 33689769 PMCID: PMC8462829 DOI: 10.1016/j.devcel.2021.02.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Each language has standard books describing that language's grammatical rules. Biologists have searched for similar, albeit more complex, principles relating enhancer sequence to gene expression. Here, we review the literature on enhancer grammar. We introduce dependency grammar, a model where enhancers encode information based on dependencies between enhancer features shaped by mechanistic, evolutionary, and biological constraints. Classifying enhancers based on the types of dependencies may identify unifying principles relating enhancer sequence to gene expression. Such rules would allow us to read the instructions for development within genomes and pinpoint causal enhancer variants underlying disease and evolutionary changes.
Collapse
Affiliation(s)
- Granton A Jindal
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Grimbert S, Mastronardi K, Richard V, Christensen R, Law C, Zardoui K, Fay D, Piekny A. Multi-tissue patterning drives anterior morphogenesis of the C. elegans embryo. Dev Biol 2021; 471:49-64. [PMID: 33309948 PMCID: PMC8597047 DOI: 10.1016/j.ydbio.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022]
Abstract
Complex structures derived from multiple tissue types are challenging to study in vivo, and our knowledge of how cells from different tissues are coordinated is limited. Model organisms have proven invaluable for improving our understanding of how chemical and mechanical cues between cells from two different tissues can govern specific morphogenetic events. Here we used Caenorhabditis elegans as a model system to show how cells from three different tissues are coordinated to give rise to the anterior lumen. While some aspects of pharyngeal morphogenesis have been well-described, it is less clear how cells from the pharynx, epidermis and neuroblasts coordinate to define the location of the anterior lumen and supporting structures. Using various microscopy and software approaches, we define the movements and patterns of these cells during anterior morphogenesis. Projections from the anterior-most pharyngeal cells (arcade cells) provide the first visible markers for the location of the future lumen, and facilitate patterning of the surrounding neuroblasts. These neuroblast patterns control the rate of migration of the anterior epidermal cells, whereas the epidermal cells ultimately reinforce and control the position of the future lumen, as they must join with the pharyngeal cells for their epithelialization. Our studies are the first to characterize anterior morphogenesis in C. elegans in detail and should lay the framework for identifying how these different patterns are controlled at the molecular level.
Collapse
Affiliation(s)
- Stéphanie Grimbert
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Karina Mastronardi
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Victoria Richard
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, NIH/NIBIB, 13 South Drive, Bethesda, MD, 20892, USA
| | - Christopher Law
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Khashayar Zardoui
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - David Fay
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA
| | - Alisa Piekny
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| |
Collapse
|
28
|
Abstract
As multi-cellular organisms evolved from small clusters of cells to complex metazoans, biological tubes became essential for life. Tubes are typically thought of as mainly playing a role in transport, with the hollow space (lumen) acting as a conduit to distribute nutrients and waste, or for gas exchange. However, biological tubes also provide a platform for physiological, mechanical, and structural functions. Indeed, tubulogenesis is often a critical aspect of morphogenesis and organogenesis. C. elegans is made up of tubes that provide structural support and protection (the epidermis), perform the mechanical and enzymatic processes of digestion (the buccal cavity, pharynx, intestine, and rectum), transport fluids for osmoregulation (the excretory system), and execute the functions necessary for reproduction (the germline, spermatheca, uterus and vulva). Here we review our current understanding of the genetic regulation, molecular processes, and physical forces involved in tubulogenesis and morphogenesis of the epidermal, digestive and excretory systems in C. elegans.
Collapse
Affiliation(s)
- Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago-College of Medicine, Chicago, IL, United States.
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
29
|
Analysis of Fox genes in Schmidtea mediterranea reveals new families and a conserved role of Smed-foxO in controlling cell death. Sci Rep 2021; 11:2947. [PMID: 33536473 PMCID: PMC7859237 DOI: 10.1038/s41598-020-80627-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
The forkhead box (Fox) genes encode transcription factors that control several key aspects of development. Present in the ancestor of all eukaryotes, Fox genes underwent several duplications followed by loss and diversification events that gave rise to the current 25 families. However, few Fox members have been identified from the Lophotrochozoa clade, and specifically from planarians, which are a unique model for understanding development, due to the striking plasticity of the adult. The aim of this study was to identify and perform evolutionary and functional studies of the Fox genes of lophotrochozoan species and, specifically, of the planarian Schmidtea mediterranea. Generating a pipeline for identifying Forkhead domains and using phylogenetics allowed us the phylogenetic reconstruction of Fox genes. We corrected the annotation for misannotated genes and uncovered a new family, the QD, present in all metazoans. According to the new phylogeny, the 27 Fox genes found in Schmidtea mediterranea were classified into 12 families. In Platyhelminthes, family losses were accompanied by extensive gene diversification and the appearance of specific families, the A(P) and N(P). Among the newly identified planarian Fox genes, we found a single copy of foxO, which shows an evolutionary conserved role in controlling cell death.
Collapse
|
30
|
Aditham AK, Markin CJ, Mokhtari DA, DelRosso N, Fordyce PM. High-Throughput Affinity Measurements of Transcription Factor and DNA Mutations Reveal Affinity and Specificity Determinants. Cell Syst 2020; 12:112-127.e11. [PMID: 33340452 DOI: 10.1016/j.cels.2020.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 11/24/2020] [Indexed: 01/28/2023]
Abstract
Transcription factors (TFs) bind regulatory DNA to control gene expression, and mutations to either TFs or DNA can alter binding affinities to rewire regulatory networks and drive phenotypic variation. While studies have profiled energetic effects of DNA mutations extensively, we lack similar information for TF variants. Here, we present STAMMP (simultaneous transcription factor affinity measurements via microfluidic protein arrays), a high-throughput microfluidic platform enabling quantitative characterization of hundreds of TF variants simultaneously. Measured affinities for ∼210 mutants of a model yeast TF (Pho4) interacting with 9 oligonucleotides (>1,800 Kds) reveal that many combinations of mutations to poorly conserved TF residues and nucleotides flanking the core binding site alter but preserve physiological binding, providing a mechanism by which combinations of mutations in cis and trans could modulate TF binding to tune occupancies during evolution. Moreover, biochemical double-mutant cycles across the TF-DNA interface reveal molecular mechanisms driving recognition, linking sequence to function. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Craig J Markin
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel A Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Nicole DelRosso
- Graduate Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA.
| |
Collapse
|
31
|
Loganathan R, Kim JH, Wells MB, Andrew DJ. Secrets of secretion-How studies of the Drosophila salivary gland have informed our understanding of the cellular networks underlying secretory organ form and function. Curr Top Dev Biol 2020; 143:1-36. [PMID: 33820619 DOI: 10.1016/bs.ctdb.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Secretory organs are critical for organismal survival. Yet, the transcriptional regulatory mechanisms governing their development and maintenance remain unclear for most model secretory organs. The Drosophila embryonic salivary gland (SG) remedies this deficiency as one of the few organs wherein direct connections from the expression of the early patterning genes to cell specification to organ architecture and functional specialization can be made. Few other models of secretion can be accorded this distinction. Studies from the past three decades have made enormous strides in parsing out the roles of distinct transcription factors (TFs) that direct major steps in furnishing this secretory organ. In the first step of specifying the salivary gland, the activity of the Hox factors Sex combs reduced, Extradenticle, and Homothorax activate expression of fork head (fkh), sage, and CrebA, which code for the major suite of TFs that carry forward the task of organ building and maintenance. Then, in the second key step of building the SG, the program for cell fate maintenance and morphogenesis is deployed. Fkh maintains the secretory cell fate by regulating its own expression and that of sage and CrebA. Fkh and Sage maintain secretory cell viability by actively blocking apoptotic cell death. Fkh, along with two other TFs, Hkb and Rib, also coordinates organ morphogenesis, transforming two plates of precursor cells on the embryo surface into elongated internalized epithelial tubes. Acquisition of functional specialization, the third key step, is mediated by CrebA and Fkh working in concert with Sage and yet another TF, Sens. CrebA directly upregulates expression of all of the components of the secretory machinery as well as other genes (e.g., Xbp1) necessary for managing the physiological stress that inexorably accompanies high secretory load. Secretory cargo specificity is controlled by Sage and Sens in collaboration with Fkh. Investigations have also uncovered roles for various signaling pathways, e.g., Dpp signaling, EGF signaling, GPCR signaling, and cytoskeletal signaling, and their interactions within the gene regulatory networks that specify, build, and specialize the SG. Collectively, studies of the SG have expanded our knowledge of secretory dynamics, cell polarity, and cytoskeletal mechanics in the context of organ development and function. Notably, the embryonic SG has made the singular contribution as a model system that revealed the core function of CrebA in scaling up secretory capacity, thus, serving as the pioneer system in which the conserved roles of the mammalian Creb3/3L-family orthologues were first discovered.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ji Hoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael B Wells
- Idaho College of Osteopathic Medicine, Meridian, ID, United States
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
32
|
Tsai A, Galupa R, Crocker J. Robust and efficient gene regulation through localized nuclear microenvironments. Development 2020; 147:147/19/dev161430. [PMID: 33020073 DOI: 10.1242/dev.161430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Developmental enhancers drive gene expression in specific cell types during animal development. They integrate signals from many different sources mediated through the binding of transcription factors, producing specific responses in gene expression. Transcription factors often bind low-affinity sequences for only short durations. How brief, low-affinity interactions drive efficient transcription and robust gene expression is a central question in developmental biology. Localized high concentrations of transcription factors have been suggested as a possible mechanism by which to use these enhancer sites effectively. Here, we discuss the evidence for such transcriptional microenvironments, mechanisms for their formation and the biological consequences of such sub-nuclear compartmentalization for developmental decisions and evolution.
Collapse
Affiliation(s)
- Albert Tsai
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Rafael Galupa
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Justin Crocker
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
33
|
Charest J, Daniele T, Wang J, Bykov A, Mandlbauer A, Asparuhova M, Röhsner J, Gutiérrez-Pérez P, Cochella L. Combinatorial Action of Temporally Segregated Transcription Factors. Dev Cell 2020; 55:483-499.e7. [PMID: 33002421 PMCID: PMC7704111 DOI: 10.1016/j.devcel.2020.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 01/05/2023]
Abstract
Combinatorial action of transcription factors (TFs) with partially overlapping expression is a widespread strategy to generate novel gene-expression patterns and, thus, cellular diversity. Known mechanisms underlying combinatorial activity require co-expression of TFs within the same cell. Here, we describe the mechanism by which two TFs that are never co-expressed generate a new, intersectional expression pattern in C. elegans embryos: lineage-specific priming of a gene by a transiently expressed TF generates a unique intersection with a second TF acting on the same gene four cell divisions later; the second TF is expressed in multiple cells but only activates transcription in those where priming occurred. Early induction of active transcription is necessary and sufficient to establish a competent state, maintained by broadly expressed regulators in the absence of the initial trigger. We uncover additional cells diversified through this mechanism. Our findings define a mechanism for combinatorial TF activity with important implications for generation of cell-type diversity. Lineage-specific priming enables asymmetric gene expression in L/R neuron pairs Transient, lineage-specific TFs prime a locus for later activation by a bilateral TF An early active transcriptional state is necessary and sufficient for priming Maintenance of asymmetric primed state occurs in a symmetric regulatory environment
Collapse
Affiliation(s)
- Julien Charest
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Thomas Daniele
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Aleksandr Bykov
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Ariane Mandlbauer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Mila Asparuhova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Josef Röhsner
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Paula Gutiérrez-Pérez
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
34
|
Ali MZ, Parisutham V, Choubey S, Brewster RC. Inherent regulatory asymmetry emanating from network architecture in a prevalent autoregulatory motif. eLife 2020; 9:56517. [PMID: 32808926 PMCID: PMC7505660 DOI: 10.7554/elife.56517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Predicting gene expression from DNA sequence remains a major goal in the field of gene regulation. A challenge to this goal is the connectivity of the network, whose role in altering gene expression remains unclear. Here, we study a common autoregulatory network motif, the negative single-input module, to explore the regulatory properties inherited from the motif. Using stochastic simulations and a synthetic biology approach in E. coli, we find that the TF gene and its target genes have inherent asymmetry in regulation, even when their promoters are identical; the TF gene being more repressed than its targets. The magnitude of asymmetry depends on network features such as network size and TF-binding affinities. Intriguingly, asymmetry disappears when the growth rate is too fast or too slow and is most significant for typical growth conditions. These results highlight the importance of accounting for network architecture in quantitative models of gene expression.
Collapse
Affiliation(s)
- Md Zulfikar Ali
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Vinuselvi Parisutham
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Sandeep Choubey
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Robert C Brewster
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
35
|
Begg BE, Jens M, Wang PY, Minor CM, Burge CB. Concentration-dependent splicing is enabled by Rbfox motifs of intermediate affinity. Nat Struct Mol Biol 2020; 27:901-912. [PMID: 32807990 PMCID: PMC7554199 DOI: 10.1038/s41594-020-0475-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
The Rbfox family of splicing factors regulate alternative splicing during animal development and in disease, impacting thousands of exons in the maturing brain, heart, and muscle. Rbfox proteins have long been known to bind to the RNA sequence GCAUG with high affinity, but just half of Rbfox binding sites contain a GCAUG motif in vivo. We incubated recombinant RBFOX2 with over 60,000 mouse and human transcriptomic sequences to reveal substantial binding to several moderate-affinity, non-GCAYG sites at a physiologically relevant range of RBFOX concentrations. We find that many of these “secondary motifs” bind Rbfox robustly in cells and that several together can exert regulation comparable to GCAUG in a trichromatic splicing reporter assay. Furthermore, secondary motifs regulate RNA splicing in neuronal development and in neuronal subtypes where cellular Rbfox concentrations are highest, enabling a second wave of splicing changes as Rbfox levels increase.
Collapse
Affiliation(s)
- Bridget E Begg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marvin Jens
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Y Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christine M Minor
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Wencong M, Jinghan W, Yong Y, Jianyang A, Bin L, Qingbao C, Chen L, Xiaoqing J. FOXK1 Promotes Proliferation and Metastasis of Gallbladder Cancer by Activating AKT/mTOR Signaling Pathway. Front Oncol 2020; 10:545. [PMID: 32363163 PMCID: PMC7180204 DOI: 10.3389/fonc.2020.00545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/26/2020] [Indexed: 01/10/2023] Open
Abstract
Gallbladder cancer (GBC) is one of the most lethal malignancies worldwide, with extremely poor prognosis. Recently, forkhead box k1 (FOXK1), a member of the FOX transcription factor family, has been reported to be correlated with tumor progression in multiple malignancies. However, the role of FOXK1 in GBC has not been elucidated. In this study, we demonstrated that the expression level of FOXK1 was elevated in human GBC tissues and associated with increased liver metastasis, poor histological differentiation, advanced TNM stage, and shorter overall survival. Knockdown of FOXK1 expression inhibited GBC cells proliferation and metastasis. Consistently, overexpression of FOXK1 promoted GBC cells progression. Mechanical investigations verified that knockdown of FOXK1 could lead to G1/S cell cycle arrest through downregulating CDK4, CDK6, cyclin D1, and cyclin E1. And FOXK1 could regulate the expression of epithelial–mesenchymal transition (EMT) related proteins E-cad, N-cad, and Vimentin. Moreover, we found that FOXK1 could regulate the activation of Akt/mTOR signaling pathway. In addition, AKT special inhibitor MK-2206 could abolish the proliferation and metastasis discrepancy between FOXK1 overexpression GBC cells and control cells, which suggested the tumorpromoting effect of FOXK1 may be partially related with the activations of Akt/mTOR signaling pathway. Collectively, our results suggested that FOXK1 promotes GBC cells progression and represent a novel prognostic biomarker and potential therapeutic target in GBC.
Collapse
Affiliation(s)
- Ma Wencong
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Wang Jinghan
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Yu Yong
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Ao Jianyang
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Li Bin
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Cheng Qingbao
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Liu Chen
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jiang Xiaoqing
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| |
Collapse
|
37
|
Hajheidari M, Wang Y, Bhatia N, Vuolo F, Franco-Zorrilla JM, Karady M, Mentink RA, Wu A, Oluwatobi BR, Müller B, Dello Ioio R, Laurent S, Ljung K, Huijser P, Gan X, Tsiantis M. Autoregulation of RCO by Low-Affinity Binding Modulates Cytokinin Action and Shapes Leaf Diversity. Curr Biol 2019; 29:4183-4192.e6. [PMID: 31761704 DOI: 10.1016/j.cub.2019.10.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/28/2022]
Abstract
Mechanisms through which the evolution of gene regulation causes morphological diversity are largely unclear. The tremendous shape variation among plant leaves offers attractive opportunities to address this question. In cruciferous plants, the REDUCED COMPLEXITY (RCO) homeodomain protein evolved via gene duplication and acquired a novel expression domain that contributed to leaf shape diversity. However, the molecular pathways through which RCO regulates leaf growth are unknown. A key question is to identify genome-wide transcriptional targets of RCO and the DNA sequences to which RCO binds. We investigate this question using Cardamine hirsuta, which has complex leaves, and its relative Arabidopsis thaliana, which evolved simple leaves through loss of RCO. We demonstrate that RCO directly regulates genes controlling homeostasis of the hormone cytokinin to repress growth at the leaf base. Elevating cytokinin signaling in the RCO expression domain is sufficient to both transform A. thaliana simple leaves into complex ones and partially bypass the requirement for RCO in C. hirsuta complex leaf development. We also identify RCO as its own target gene. RCO directly represses its own transcription via an array of low-affinity binding sites, which evolved after RCO duplicated from its progenitor sequence. This autorepression is required to limit RCO expression. Thus, evolution of low-affinity binding sites created a negative autoregulatory loop that facilitated leaf shape evolution by defining RCO expression and fine-tuning cytokinin activity. In summary, we identify a transcriptional mechanism through which conflicts between novelty and pleiotropy are resolved during evolution and lead to morphological differences between species.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Yi Wang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Francesco Vuolo
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - José Manuel Franco-Zorrilla
- Unidad de Genómica and Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Calle Darwin 3, 28049 Madrid, Spain
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Remco A Mentink
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Anhui Wu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Bello Rilwan Oluwatobi
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Bruno Müller
- Leibniz Institute of Plant Genetics and Crop Plant Research, Correnstr. 3, 06466 Seeland, Gatersleben, Germany
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
38
|
Zheleva A, Gómez-Orte E, Sáenz-Narciso B, Ezcurra B, Kassahun H, de Toro M, Miranda-Vizuete A, Schnabel R, Nilsen H, Cabello J. Reduction of mRNA export unmasks different tissue sensitivities to low mRNA levels during Caenorhabditis elegans development. PLoS Genet 2019; 15:e1008338. [PMID: 31525188 PMCID: PMC6762213 DOI: 10.1371/journal.pgen.1008338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/26/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022] Open
Abstract
Animal development requires the execution of specific transcriptional programs in different sets of cells to build tissues and functional organs. Transcripts are exported from the nucleus to the cytoplasm where they are translated into proteins that, ultimately, carry out the cellular functions. Here we show that in Caenorhabditis elegans, reduction of mRNA export strongly affects epithelial morphogenesis and germline proliferation while other tissues remain relatively unaffected. Epithelialization and gamete formation demand a large number of transcripts in the cytoplasm for the duration of these processes. In addition, our findings highlight the existence of a regulatory feedback mechanism that activates gene expression in response to low levels of cytoplasmic mRNA. We expand the genetic characterization of nuclear export factor NXF-1 to other members of the mRNA export pathway to model mRNA export and recycling of NXF-1 back to the nucleus. Our model explains how mutations in genes involved in general processes, such as mRNA export, may result in tissue-specific developmental phenotypes.
Collapse
Affiliation(s)
- Angelina Zheleva
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Eva Gómez-Orte
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | | | - Begoña Ezcurra
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Henok Kassahun
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - María de Toro
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ralf Schnabel
- Institute of Genetics, Technische Universität Braunschweig, Germany
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Juan Cabello
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| |
Collapse
|
39
|
Selective deployment of transcription factor paralogs with submaximal strength facilitates gene regulation in the immune system. Nat Immunol 2019; 20:1372-1380. [PMID: 31451789 PMCID: PMC6754753 DOI: 10.1038/s41590-019-0471-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
In multicellular organisms, duplicated genes can diverge through tissue-specific gene expression patterns, as exemplified by highly regulated expression of Runx transcription factor paralogs with apparent functional redundancy. Here we asked what cell type-specific biologies might be supported by the selective expression of Runx paralogs during Langerhans cell and inducible regulatory T cell differentiation. We uncovered functional non-equivalence between Runx paralogs. Selective expression of native paralogs allowed integration of transcription factor activity with extrinsic signals, while non-native paralogs enforced differentiation even in the absence of exogenous inducers. DNA-binding affinity was controlled by divergent amino acids within the otherwise highly conserved RUNT domain, and evolutionary reconstruction suggested convergence of RUNT domain residues towards sub-maximal strength. Hence, the selective expression of gene duplicates in specialized cell types can synergize with the acquisition of functional differences to enable appropriate gene expression, lineage choice and differentiation in the mammalian immune system.
Collapse
|
40
|
Tsai A, Alves MRP, Crocker J. Multi-enhancer transcriptional hubs confer phenotypic robustness. eLife 2019; 8:e45325. [PMID: 31294690 PMCID: PMC6650246 DOI: 10.7554/elife.45325] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/08/2019] [Indexed: 01/08/2023] Open
Abstract
We previously showed in Drosophila melanogaster embryos that low-affinity Ultrabithorax (Ubx)-responsive shavenbaby (svb) enhancers drive expression using localized transcriptional environments and that active svb enhancers on different chromosomes tended to colocalize (Tsai et al., 2017). Here, we test the hypothesis that these multi-enhancer 'hubs' improve phenotypic resilience to stress by buffering against decreases in transcription factor concentrations and transcriptional output. Deleting a redundant enhancer from the svb locus led to reduced trichome numbers in embryos raised at elevated temperatures. Using high-resolution fluorescence microscopy, we observed lower Ubx concentration and transcriptional output in this deletion allele. Transcription sites of the full svb cis-regulatory region inserted into a different chromosome colocalized with the svb locus, increasing Ubx concentration, the transcriptional output of svb, and partially rescuing the phenotype. Thus, multiple enhancers could reinforce a local transcriptional hub to buffer against environmental stresses and genetic perturbations, providing a mechanism for phenotypical robustness.
Collapse
Affiliation(s)
- Albert Tsai
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Mariana RP Alves
- European Molecular Biology LaboratoryHeidelbergGermany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of BiosciencesHeidelbergGermany
| | | |
Collapse
|
41
|
Kribelbauer JF, Rastogi C, Bussemaker HJ, Mann RS. Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes. Annu Rev Cell Dev Biol 2019; 35:357-379. [PMID: 31283382 DOI: 10.1146/annurev-cellbio-100617-062719] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotic transcription factors (TFs) from the same structural family tend to bind similar DNA sequences, despite the ability of these TFs to execute distinct functions in vivo. The cell partly resolves this specificity paradox through combinatorial strategies and the use of low-affinity binding sites, which are better able to distinguish between similar TFs. However, because these sites have low affinity, it is challenging to understand how TFs recognize them in vivo. Here, we summarize recent findings and technological advancements that allow for the quantification and mechanistic interpretation of TF recognition across a wide range of affinities. We propose a model that integrates insights from the fields of genetics and cell biology to provide further conceptual understanding of TF binding specificity. We argue that in eukaryotes, target specificity is driven by an inhomogeneous 3D nuclear distribution of TFs and by variation in DNA binding affinity such that locally elevated TF concentration allows low-affinity binding sites to be functional.
Collapse
Affiliation(s)
- Judith F Kribelbauer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; .,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA;
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; .,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA;
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; .,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA;
| | - Richard S Mann
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA; .,Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10031, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
42
|
Huang K, Xhani S, Albrecht AV, Ha VLT, Esaki S, Poon GMK. Mechanism of cognate sequence discrimination by the ETS-family transcription factor ETS-1. J Biol Chem 2019; 294:9666-9678. [PMID: 31048376 DOI: 10.1074/jbc.ra119.007866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Indexed: 12/19/2022] Open
Abstract
Functional evidence increasingly implicates low-affinity DNA recognition by transcription factors as a general mechanism for the spatiotemporal control of developmental genes. Although the DNA sequence requirements for affinity are well-defined, the dynamic mechanisms that execute cognate recognition are much less resolved. To address this gap, here we examined ETS1, a paradigm developmental transcription factor, as a model for which cognate discrimination remains enigmatic. Using molecular dynamics simulations, we interrogated the DNA-binding domain of murine ETS1 alone and when bound to high-and low-affinity cognate sites or to nonspecific DNA. The results of our analyses revealed collective backbone and side-chain motions that distinguished cognate versus nonspecific as well as high- versus low-affinity cognate DNA binding. Combined with binding experiments with site-directed ETS1 mutants, the molecular dynamics data disclosed a triad of residues that respond specifically to low-affinity cognate DNA. We found that a DNA-contacting residue (Gln-336) specifically recognizes low-affinity DNA and triggers the loss of a distal salt bridge (Glu-343/Arg-378) via a large side-chain motion that compromises the hydrophobic packing of two core helices. As an intact Glu-343/Arg-378 bridge is the default state in unbound ETS1 and maintained in high-affinity and nonspecific complexes, the low-affinity complex represents a unique conformational adaptation to the suboptimization of developmental enhancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Gregory M K Poon
- From the Department of Chemistry and .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
43
|
Kostyuchenko RP, Kozin VV, Filippova NA, Sorokina EV. FoxA expression pattern in two polychaete species, Alitta virens and Platynereis dumerilii: Examination of the conserved key regulator of the gut development from cleavage through larval life, postlarval growth, and regeneration. Dev Dyn 2019; 248:728-743. [PMID: 30566266 DOI: 10.1002/dvdy.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/23/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND foxA orthologs are involved in various processes from embryo patterning to regulation of metabolism. Since foxA conserved role in the development of the gut of errant annelids has never been thoroughly studied, we used a candidate gene approach to unravel the molecular profile of the alimentary canal in two closely related nereid worms with a trochophore-type lecithotrophic larva. RESULTS The character of foxA expression in the two polychaetes was similar but not identical. The genes were successively activated first in blastoporal cells, then in the stomodeum, the midgut, and hindgut primordia, and in the cells of central and peripheral nervous system. Before the start of active feeding of nectochaetes, we observed a short phase of foxA expression in the entire digestive tract. After amputation of posterior segments, foxA expression was established de novo in the new terminal part of the intestine, and then in the developing hindgut and the anus. CONCLUSIONS We discovered an early marker of endoderm formation previously unknown in errant annelids. Its expression dynamics provided valuable insights into the gut development. Comparative analysis of foxA activity suggests its primary role in gastrulation morphogenesis independently of its type and in midgut and foregut specification. Developmental Dynamics 248:728-743, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Roman P Kostyuchenko
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Vitaly V Kozin
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Nadezhda A Filippova
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Ekaterina V Sorokina
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
44
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
45
|
Food-Dependent Plasticity in Caenorhabditis elegans Stress-Induced Sleep Is Mediated by TOR-FOXA and TGF-β Signaling. Genetics 2018; 209:1183-1195. [PMID: 29925566 DOI: 10.1534/genetics.118.301204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023] Open
Abstract
Behavioral plasticity allows for context-dependent prioritization of competing drives, such as sleep and foraging. Despite the identification of neuropeptides and hormones implicated in dual control of sleep drive and appetite, our understanding of the mechanism underlying the conserved sleep-suppressing effect of food deprivation is limited. Caenorhabditis elegans provides an intriguing model for the dissection of sleep function and regulation as these nematodes engage a quiescence program following exposure to noxious conditions, a phenomenon known as stress-induced sleep (SIS). Here we show that food deprivation potently suppresses SIS, an effect enhanced at high population density. We present evidence that food deprivation reduces the need to sleep, protecting against the lethality associated with defective SIS. Additionally, we find that SIS is regulated by both target of rapamycin and transforming growth factor-β nutrient signaling pathways, thus identifying mechanisms coordinating sleep drive with internal and external indicators of food availability.
Collapse
|
46
|
Zandvakili A, Campbell I, Gutzwiller LM, Weirauch MT, Gebelein B. Degenerate Pax2 and Senseless binding motifs improve detection of low-affinity sites required for enhancer specificity. PLoS Genet 2018; 14:e1007289. [PMID: 29617378 PMCID: PMC5902045 DOI: 10.1371/journal.pgen.1007289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/16/2018] [Accepted: 03/05/2018] [Indexed: 12/01/2022] Open
Abstract
Cells use thousands of regulatory sequences to recruit transcription factors (TFs) and produce specific transcriptional outcomes. Since TFs bind degenerate DNA sequences, discriminating functional TF binding sites (TFBSs) from background sequences represents a significant challenge. Here, we show that a Drosophila regulatory element that activates Epidermal Growth Factor signaling requires overlapping, low-affinity TFBSs for competing TFs (Pax2 and Senseless) to ensure cell- and segment-specific activity. Testing available TF binding models for Pax2 and Senseless, however, revealed variable accuracy in predicting such low-affinity TFBSs. To better define parameters that increase accuracy, we developed a method that systematically selects subsets of TFBSs based on predicted affinity to generate hundreds of position-weight matrices (PWMs). Counterintuitively, we found that degenerate PWMs produced from datasets depleted of high-affinity sequences were more accurate in identifying both low- and high-affinity TFBSs for the Pax2 and Senseless TFs. Taken together, these findings reveal how TFBS arrangement can be constrained by competition rather than cooperativity and that degenerate models of TF binding preferences can improve identification of biologically relevant low affinity TFBSs. While all cells in an organism share a common genome, each cell type must express the appropriate combination of genes needed for its specific function. Cells activate and repress different parts of the genome using transcription factor proteins that bind regulatory regions known as enhancers. We currently have an incomplete view of how enhancers recruit transcription factors to yield accurate gene activation and repression. This problem is complicated by the fact that most animals contain over a thousand different transcription factors, and each can generally bind multiple DNA sequences. Thus, it is difficult to predict which transcription factors interact with which enhancers. To gain insights into this process, we focused on determining how an enhancer that activates a gene needed to make liver-like cells is regulated in a precise manner in the fruit-fly embryo. We demonstrate that the specific activity of this enhancer depends on weak and overlapping transcription factor binding sites. Furthermore, we demonstrate that computational models that include weak transcription factor interactions yield better predictive accuracy. These results shed light on how DNA sequences determine enhancer activity and the types of strategies that are most useful for predicting transcription factor binding sites in the genome.
Collapse
Affiliation(s)
- Arya Zandvakili
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States of America
- Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Ian Campbell
- Division of Developmental Biology, Cincinnati Children’s Hospital, MLC, Cincinnati, OH, United States of America
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital, MLC, Cincinnati, OH, United States of America
| | - Matthew T. Weirauch
- Division of Developmental Biology, Cincinnati Children’s Hospital, MLC, Cincinnati, OH, United States of America
- Center for Autoimmune Genomics and Etiology & Division of Biomedical Informatics, Cincinnati Children’s Hospital, MLC, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital, MLC, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
47
|
Shen N, Zhao J, Schipper JL, Zhang Y, Bepler T, Leehr D, Bradley J, Horton J, Lapp H, Gordan R. Divergence in DNA Specificity among Paralogous Transcription Factors Contributes to Their Differential In Vivo Binding. Cell Syst 2018; 6:470-483.e8. [PMID: 29605182 DOI: 10.1016/j.cels.2018.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/29/2022]
Abstract
Paralogous transcription factors (TFs) are oftentimes reported to have identical DNA-binding motifs, despite the fact that they perform distinct regulatory functions. Differential genomic targeting by paralogous TFs is generally assumed to be due to interactions with protein co-factors or the chromatin environment. Using a computational-experimental framework called iMADS (integrative modeling and analysis of differential specificity), we show that, contrary to previous assumptions, paralogous TFs bind differently to genomic target sites even in vitro. We used iMADS to quantify, model, and analyze specificity differences between 11 TFs from 4 protein families. We found that paralogous TFs have diverged mainly at medium- and low-affinity sites, which are poorly captured by current motif models. We identify sequence and shape features differentially preferred by paralogous TFs, and we show that the intrinsic differences in specificity among paralogous TFs contribute to their differential in vivo binding. Thus, our study represents a step forward in deciphering the molecular mechanisms of differential specificity in TF families.
Collapse
Affiliation(s)
- Ning Shen
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Jingkang Zhao
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Joshua L Schipper
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Tristan Bepler
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Dan Leehr
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - John Bradley
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - John Horton
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Hilmar Lapp
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Raluca Gordan
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA; Department of Computer Science, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
48
|
Wu J, Jiang X, Li Y, Zhu T, Zhang J, Zhang Z, Zhang L, Zhang Y, Wang Y, Zou X, Liang B. PHA-4/FoxA senses nucleolar stress to regulate lipid accumulation in Caenorhabditis elegans. Nat Commun 2018; 9:1195. [PMID: 29567958 PMCID: PMC5864837 DOI: 10.1038/s41467-018-03531-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
The primary function of the nucleolus is ribosome biogenesis, which is an extremely energetically expensive process. Failures in ribosome biogenesis cause nucleolar stress with an altered energy status. However, little is known about the underlying mechanism linking nucleolar stress to energy metabolism. Here we show that nucleolar stress is triggered by inactivation of RSKS-1 (ribosomal protein S6 kinase), RRP-8 (ribosomal RNA processing 8), and PRO-2/3 (proximal proliferation), all of which are involved in ribosomal RNA processing or inhibition of rDNA transcription by actinomycin D (AD), leading to excessive lipid accumulation in Caenorhabditis elegans. The transcription factor PHA-4/FoxA acts as a sensor of nucleolar stress to bind to and transactivate the expression of the lipogenic genes pod-2 (acetyl-CoA carboxylase), fasn-1 (fatty acid synthase), and dgat-2 (diacylglycerol O-acyltransferase 2), consequently promoting lipid accumulation. Importantly, inactivation of pha-4 or dgat-2 is sufficient to abolish nucleolar stress-induced lipid accumulation and prolonged starvation survival. The results revealed a distinct PHA-4-mediated lipogenesis pathway that senses nucleolar stress and shifts excessive energy for storage as fat.
Collapse
Affiliation(s)
- Jieyu Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xue Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yamei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- School of Life Science, University of Science and Technology of China, Hefei, 230027, China
| | - Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Jingjing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yuru Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yanli Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaoju Zou
- Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Department of Life Science and Biotechnology, Kunming University, Kunming, 650214, China.
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
49
|
Wu Y, Peng Y, Wu M, Zhang W, Zhang M, Xie R, Zhang P, Bai Y, Zhao J, Li A, Nan Q, Chen Y, Ren Y, Liu S, Wang J. Oncogene FOXK1 enhances invasion of colorectal carcinoma by inducing epithelial-mesenchymal transition. Oncotarget 2018; 7:51150-51162. [PMID: 27223064 PMCID: PMC5239465 DOI: 10.18632/oncotarget.9457] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 04/06/2016] [Indexed: 01/10/2023] Open
Abstract
Transcriptional factor FOXK1 is a member of the FOX family, involved in the cell growth and metabolism. The higher expression of FOXK1 leads to a variety of diseases and may play an important role in the development of various tumors. However, the role of FOXK1 in the progression of colorectal cancer (CRC) remains unknown. We demonstrated that FOXK1 was overexpressed in 16 types of solid tumor tissues via tissue multi-array (TMA). We found that FOXK1 induced elevated expressions and transactivities of five major oncogenes in CRC. Moreover, the elevated expression of FOXK1 was showed to be correlated with tumor progression and was a significant predictor of overall survival in CRC patients. Furthermore, it was showed that the depletion of FOXK1 expression could inhibit the migratory and invasive abilities of CRC cells. In contrast, ectopic expression of FOXK1 elicited the opposite effects on these phenotypes in vitro. FOXK1 promoted tumor metastasis through EMT program induction. In addition, TGF-β1 induced FOXK1 expression in a time-dependent pattern and the knockdown of FOXK1 inhibited TGF-β1-induced EMT. In vivo, higher expression of FOXK1 promotes CRC cell invasion and metastasis, and induces EMT in CRC as well. Alltogether, it was concluded that the higher expression of FOXK1 could indicate a poor prognosis in CRC patients since that FOXK1 induces EMT and promotes CRC cell invasion in vitro and in vivo.
Collapse
Affiliation(s)
- Yao Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ying Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Meiyan Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenjing Zhang
- Department of Medical Oncology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, 650032, China
| | - Mengnan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ruyi Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pei Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinjun Zhao
- Department of Rheumatism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qingzhen Nan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuexin Ren
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
50
|
Spickard EA, Joshi PM, Rothman JH. The multipotency-to-commitment transition in Caenorhabditis elegans-implications for reprogramming from cells to organs. FEBS Lett 2018; 592:838-851. [PMID: 29334121 DOI: 10.1002/1873-3468.12977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
In animal embryos, cells transition from a multipotential state, with the capacity to adopt multiple fates, into an irreversible, committed state of differentiation. This multipotency-to-commitment transition (MCT) is evident from experiments in which cell fate is reprogrammed by transcription factors for cell type-specific differentiation, as has been observed extensively in Caenorhabditis elegans. Although factors that direct differentiation into each of the three germ layer types cannot generally reprogram cells after the MCT in this animal, transcription factors for endoderm development are able to do so in multiple differentiated cell types. In one case, these factors can redirect the development of an entire organ in the process of "transorganogenesis". Natural transdifferentiation also occurs in a small number of differentiated cells during normal C. elegans development. We review these reprogramming and transdifferentiation events, highlighting the cellular and developmental contexts in which they occur, and discuss common themes underlying direct cell lineage reprogramming. Although certain aspects may be unique to the model system, growing evidence suggests that some mechanisms are evolutionarily conserved and may shed light on cellular plasticity and disease in humans.
Collapse
Affiliation(s)
- Erik A Spickard
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| | - Pradeep M Joshi
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| |
Collapse
|