1
|
Sánchez-Arribas N, Velasco Rodríguez B, Aicart E, Guerrero-Martínez A, Junquera E, Taboada P. Lipid nanoparticles as nano-Trojan-horses for siRNA delivery and gene-knockdown. J Colloid Interface Sci 2025; 679:975-987. [PMID: 39488022 DOI: 10.1016/j.jcis.2024.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
The therapeutic messenger RNA strategies, such as those using small interfering RNAs, take several advantages (versatility, efficiency and selectivity) over plasmid DNA-based strategies. However, the challenge remains to find nanovectors capable of properly loading the genetic material, transporting it through troublesome environments, like a tumoral site, and delivering it into the cytoplasm of target cells. Here, lipid nanoparticles, consisting of a gemini cationic/neutral helper lipid mixture, are proposed as siRNA nanovector. Cells from cervical and brain cancer overexpressing the green fluorescent protein (GFP) were chosen to analyse the biological response as well as the efficiency and safety of the siRNA-loaded nanovector according to the cell phenotype. Flow cytometry and epifluorescence or confocal microscopy were used to follow the gene knockdown in these overexpressed cells. The effect of the nanovector on cellular proliferation was evaluated with cytotoxicity assays while their potential oxidative stress generation was determined by quantifying the generation of reactive oxygen species. To explore the mechanism of cellular uptake, different inhibitors of endocytic pathways were used during incubation with cells. Finally, nanovectors were incubated in 3D-grown cells (spheroids) to see whether they can penetrate the complex tumoral microenvironments, their efficiency to knockdown GFP expression being monitored by confocal microscopy.
Collapse
Affiliation(s)
- Natalia Sánchez-Arribas
- Dpto. Química Física, Fac. CC. Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Brenda Velasco Rodríguez
- Departamento de Física de Partículas-Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Emilio Aicart
- Dpto. Química Física, Fac. CC. Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Andrés Guerrero-Martínez
- Dpto. Química Física, Fac. CC. Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Elena Junquera
- Dpto. Química Física, Fac. CC. Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Pablo Taboada
- Departamento de Física de Partículas-Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Yiu SPT, Liao Y, Yan J, Weekes MP, Gewurz BE. Epstein-Barr virus BALF0/1 subverts the Caveolin and ERAD pathways to target B cell receptor complexes for degradation. Proc Natl Acad Sci U S A 2025; 122:e2400167122. [PMID: 39847318 PMCID: PMC11789056 DOI: 10.1073/pnas.2400167122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains. Here, we used proteomic and biochemical approaches to identify that the EBV early lytic protein BALF0/1 is responsible for EBV lytic cycle BCR degradation. Mechanistically, an immunoglobulin heavy chain (HC) cytoplasmic tail KVK motif was required for ubiquitin-mediated BCR degradation, while CD79A and CD79B were dispensable. BALF0/1 subverted caveolin-mediated endocytosis to internalize PM BCR complexes and to deliver them to the endoplasmic reticulum. BALF0/1 stimulated immunoglobulin HC cytoplasmic tail ubiquitination, which together with the ATPase valosin-containing protein/p97 drove ER-associated degradation of BCR complexes by cytoplasmic proteasomes. BALF0/1 knockout reduced the viral load of secreted EBV particles from B cells that expressed a monoclonal antibody against EBV glycoprotein 350 but not a control anti-influenza hemagglutinin antibody and increased viral particle immunoglobulin incorporation. Consistent with downmodulation of PM BCR, BALF0/1 overexpression reduced viability of a diffuse large B cell lymphoma cell line whose survival is dependent upon BCR signaling. Collectively, our results suggest that EBV BALF0/1 downmodulates immunoglobulin upon lytic reactivation to block BCR signaling and support virion release, but await the development of suitable models to test its roles in EBV reactivation in vivo.
Collapse
Affiliation(s)
- Stephanie Pei Tung Yiu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Graduate Program in Virology, Boston, MA02115
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Yifei Liao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Jinjie Yan
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Graduate Program in Virology, Boston, MA02115
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
3
|
Moreno-Vargas LM, Prada-Gracia D. Exploring the Chemical Features and Biomedical Relevance of Cell-Penetrating Peptides. Int J Mol Sci 2024; 26:59. [PMID: 39795918 PMCID: PMC11720145 DOI: 10.3390/ijms26010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/13/2025] Open
Abstract
Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake. Clinical trials have highlighted the potential of CPPs in diagnosing and treating various diseases, including cancer, central nervous system disorders, eye disorders, and diabetes. This review provides a comprehensive overview of CPP classifications, potential applications, transduction mechanisms, and the most relevant algorithms to improve the accuracy and reliability of predictions in CPP development.
Collapse
|
4
|
Moreno-Vargas LM, Prada-Gracia D. Cancer-Targeting Applications of Cell-Penetrating Peptides. Int J Mol Sci 2024; 26:2. [PMID: 39795861 PMCID: PMC11720565 DOI: 10.3390/ijms26010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 01/13/2025] Open
Abstract
Cell-penetrating peptides (CPPs) offer a unique and efficient mechanism for delivering therapeutic agents directly into cancer cells. These peptides can traverse cellular membranes, overcoming one of the critical barriers in drug delivery systems. In this review, we explore recent advancements in the application of CPPs for cancer treatment, focusing on mechanisms, delivery strategies, and clinical potential. The review highlights the use of CPP-drug conjugates, CPP-based vaccines, and their role in targeting and inhibiting tumor growth.
Collapse
Affiliation(s)
- Liliana Marisol Moreno-Vargas
- Research Unit on Computational Biology and Drug Design, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Diego Prada-Gracia
- Research Unit on Computational Biology and Drug Design, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
5
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Sandvig K, Iversen TG, Skotland T. Entry of nanoparticles into cells and tissues: status and challenges. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1017-1029. [PMID: 39161463 PMCID: PMC11331539 DOI: 10.3762/bjnano.15.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
In this article we discuss how nanoparticles (NPs) of different compositions may interact with and be internalized by cells, and the consequences of that for cellular functions. A large number of NPs are made with the intention to improve cancer treatment, the goal being to increase the fraction of injected drug delivered to the tumor and thereby improve the therapeutic effect and decrease side effects. Thus, we discuss how NPs are delivered to tumors and some challenges related to investigations of biodistribution, pharmacokinetics, and excretion. Finally, we discuss requirements for bringing NPs into clinical use and aspects when it comes to usage of complex and slowly degraded or nondegradable NPs.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, 0379 Oslo, Norway
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tore Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, 0379 Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, 0379 Oslo, Norway
| |
Collapse
|
7
|
Bannunah A, Cavanagh R, Shubber S, Vllasaliu D, Stolnik S. Difference in Endocytosis Pathways Used by Differentiated Versus Nondifferentiated Epithelial Caco-2 Cells to Internalize Nanosized Particles. Mol Pharm 2024; 21:3603-3612. [PMID: 38864426 PMCID: PMC11220748 DOI: 10.1021/acs.molpharmaceut.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Understanding the internalization of nanosized particles by mucosal epithelial cells is essential in a number of areas including viral entry at mucosal surfaces, nanoplastic pollution, as well as design and development of nanotechnology-type medicines. Here, we report our comparative study on pathways of cellular internalization in epithelial Caco-2 cells cultured in vitro as either a polarized, differentiated cell layer or as nonpolarized, nondifferentiated cells. The study reveals a number of differences in the extent that endocytic processes are used by cells, depending on their differentiation status and the nature of applied nanoparticles. In polarized cells, actin-driven and dynamin-independent macropinocytosis plays a prominent role in the internalization of both positively and negatively charged nanoparticles, contrary to its modest contribution in nonpolarized cells. Clathrin-mediated cellular entry plays a prominent role in the endocytosis of positive nanoparticles and cholesterol inhibition in negative nanoparticles. However, in nonpolarized cells, dynamin-dependent endocytosis is a major pathway in the internalization of both positive and negative nanoparticles. Cholesterol depletion affects both nonpolarized and polarized cells' internalization of positive and negative nanoparticles, which, in addition to the effect of cholesterol-binding inhibitors on the internalization of negative nanoparticles, indicates the importance of membrane cholesterol in endocytosis. The data collectively provide a new contribution to understanding endocytic pathways in epithelial cells, particularly pointing to the importance of the cell differentiation stage and the nature of the cargo.
Collapse
Affiliation(s)
- Azzah Bannunah
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Robert Cavanagh
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Saif Shubber
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Driton Vllasaliu
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London,
Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.
| | - Snow Stolnik
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
8
|
Bussoletti M, Gallo M, Bottacchiari M, Abbondanza D, Casciola CM. Mesoscopic elasticity controls dynamin-driven fission of lipid tubules. Sci Rep 2024; 14:14003. [PMID: 38890460 PMCID: PMC11189461 DOI: 10.1038/s41598-024-64685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Mesoscale physics bridges the gap between the microscopic degrees of freedom of a system and its large-scale continuous behavior and highlights the role of a few key quantities in complex and multiscale phenomena, like dynamin-driven fission of lipid membranes. The dynamin protein wraps the neck formed during clathrin-mediated endocytosis, for instance, and constricts it until severing occurs. Although ubiquitous and fundamental for life, the cooperation between the GTP-consuming conformational changes within the protein and the full-scale response of the underlying lipid substrate is yet to be unraveled. In this work, we build an effective mesoscopic model from constriction to fission of lipid tubules based on continuum membrane elasticity and implicitly accounting for ratchet-like power strokes of dynamins. Localization of the fission event, the overall geometry, and the energy expenditure we predict comply with the major experimental findings. This bolsters the idea that a continuous picture emerges soon enough to relate dynamin polymerization length and membrane rigidity and tension with the optimal pathway to fission. We therefore suggest that dynamins found in in vivo processes may optimize their structure accordingly. Ultimately, we shed light on real-time conductance measurements available in literature and predict the fission time dependency on elastic parameters.
Collapse
Affiliation(s)
- Marco Bussoletti
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Mirko Gallo
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Matteo Bottacchiari
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Dario Abbondanza
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Fan M, Wu H, Sferruzzi-Perri AN, Wang YL, Shao X. Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense. Front Immunol 2024; 15:1415794. [PMID: 38957469 PMCID: PMC11217186 DOI: 10.3389/fimmu.2024.1415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingming Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Howell RA, Wang S, Khambete M, McDonald DM, Spiegel DA. Bifunctional Molecules That Induce Both Targeted Degradation and Transcytosis of Extracellular Proteins in Brain Cells. J Am Chem Soc 2024. [PMID: 38855935 DOI: 10.1021/jacs.3c13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Targeted protein degradation (TPD) has emerged as an effective therapeutic strategy for a wide range of diseases; however, the blood-brain barrier (BBB) limits access of degraders into the central nervous system (CNS). Here, we present a new class of bifunctional small molecules, called TransMoDEs (Transcytosis-inducing molecular degraders of extracellular proteins), capable of both (1) removal of target protein via lysosomal proteolysis and (2) transcytosis of protein targets across brain endothelial cells. TransMoDEs are derived from Angiopep-2, a peptide motif previously employed as a covalent tag to facilitate receptor-mediated transcytosis across the BBB. We demonstrate that TransMoDEs containing either a biotin or chloroalkane ligand can trigger endocytosis of streptavidin or HaloTag protein, respectively. Interestingly, although low-density lipoprotein receptor-related protein 1 (LRP1) has been reported as the primary receptor for Angiopep-2, TransMoDE-mediated target uptake does not rely exclusively on this pathway. Furthermore, TransMoDE-mediated endocytosis of streptavidin in a bEnd.3 BBB model occurs in a clathrin-mediated mechanism and results in both lysosomal localization and transcytosis of the target protein. This study demonstrates that TransMoDEs can recruit, transcytose, and degrade proteins of interest in cells relevant to the CNS, supporting their further development for the removal of pathogenic neuroproteins.
Collapse
Affiliation(s)
- Rebecca A Howell
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Shikun Wang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Mihir Khambete
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - David M McDonald
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - David A Spiegel
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Jiang Z, Cai G, Liu H, Liu L, Huang R, Nie X, Gui R, Li J, Ma J, Cao K, Luo Y. A combination of a TLR7/8 agonist and an epigenetic inhibitor suppresses triple-negative breast cancer through triggering anti-tumor immune. J Nanobiotechnology 2024; 22:296. [PMID: 38811964 PMCID: PMC11134718 DOI: 10.1186/s12951-024-02525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Combination therapy involving immune checkpoint blockade (ICB) and other drugs is a potential strategy for converting immune-cold tumors into immune-hot tumors to benefit from immunotherapy. To achieve drug synergy, we developed a homologous cancer cell membrane vesicle (CM)-coated metal-organic framework (MOF) nanodelivery platform for the codelivery of a TLR7/8 agonist with an epigenetic inhibitor. METHODS A novel biomimetic codelivery system (MCM@UN) was constructed by MOF nanoparticles UiO-66 loading with a bromodomain-containing protein 4 (BRD4) inhibitor and then coated with the membrane vesicles of homologous cancer cells that embedding the 18 C lipid tail of 3M-052 (M). The antitumor immune ability and tumor suppressive effect of MCM@UN were evaluated in a mouse model of triple-negative breast cancer (TNBC) and in vitro. The tumor immune microenvironment was analyzed by multicolor immunofluorescence staining. RESULTS In vitro and in vivo data showed that MCM@UN specifically targeted to TNBC cells and was superior to the free drug in terms of tumor growth inhibition and antitumor immune activity. In terms of mechanism, MCM@UN blocked BRD4 and PD-L1 to prompt dying tumor cells to disintegrate and expose tumor antigens. The disintegrated tumor cells released damage-associated molecular patterns (DAMPs), recruited dendritic cells (DCs) to efficiently activate CD8+ T cells to mediate effective and long-lasting antitumor immunity. In addition, TLR7/8 agonist on MCM@UN enhanced lymphocytes infiltration and immunogenic cell death and decreased regulatory T-cells (Tregs). On clinical specimens, we found that mature DCs infiltrating tumor tissues of TNBC patients were negatively correlated with the expression of BRD4, which was consistent with the result in animal model. CONCLUSION MCM@UN specifically targeted to TNBC cells and remodeled tumor immune microenvironment to inhibit malignant behaviors of TNBC.
Collapse
Affiliation(s)
- Zhenzhen Jiang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Guangqing Cai
- Department of Orthopedics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan, 410013, P. R. China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xinmin Nie
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jinqi Ma
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
12
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
13
|
Wan Y, Zhao Y, Cao M, Wang J, Tran SV, Song Z, Hsueh BW, Wang SE. Lung Fibroblasts Take up Breast Cancer Cell-derived Extracellular Vesicles Partially Through MEK2-dependent Macropinocytosis. CANCER RESEARCH COMMUNICATIONS 2024; 4:170-181. [PMID: 38259097 PMCID: PMC10802141 DOI: 10.1158/2767-9764.crc-23-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Extracellular vesicles (EV) have emerged as critical effectors in the cross-talk between cancer and normal cells by transferring intracellular materials between adjacent or distant cells. Previous studies have begun to elucidate how cancer cells, by secreting EVs, adapt normal cells at a metastatic site to facilitate cancer cell metastasis. In this study, we utilized a high-content microscopic screening platform to investigate the mechanisms of EV uptake by primary lung fibroblasts. A selected library containing 90 FDA-approved anticancer drugs was screened for the effect on fibroblast uptake of EVs from MDA-MB-231 breast cancer cells. Among the drugs identified to inhibit EV uptake without exerting significant cytotoxicity, we validated the dose-dependent effect of Trametinib (a MEK1/2 inhibitor) and Copanlisib (a PI3K inhibitor). Trametinib suppressed macropinocytosis in lung fibroblasts and inhibited EV uptake with a higher potency comparing with Copanlisib. Gene knockdown and overexpression studies demonstrated that uptake of MDA-MB-231 EVs by lung fibroblasts required MEK2. These findings provide important insights into the mechanisms underlying lung fibroblast uptake of breast cancer cell-derived EVs, which could play a role in breast cancer metastasis to the lungs and suggest potential therapeutic targets for preventing or treating this deadly disease. SIGNIFICANCE Through a phenotypic screen, we found that MEK inhibitor Trametinib suppressed EV uptake and macropinocytosis in lung fibroblasts, and that EV uptake is mediated by MEK2 in these cells. Our results suggest that MEK2 inhibition could serve as a strategy to block cancer EV uptake by lung fibroblasts.
Collapse
Affiliation(s)
- Yuhao Wan
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Yue Zhao
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Minghui Cao
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Jingyi Wang
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Sheila V. Tran
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Zhixuan Song
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Brent W. Hsueh
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Shizhen Emily Wang
- Department of Pathology, University of California San Diego, La Jolla, California
| |
Collapse
|
14
|
Rioux DJ, Prosser DC. A CIE change in our understanding of endocytic mechanisms. Front Cell Dev Biol 2023; 11:1334798. [PMID: 38192364 PMCID: PMC10773762 DOI: 10.3389/fcell.2023.1334798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The past six decades have seen major advances in our understanding of endocytosis, ranging from descriptive studies based on electron microscopy to biochemical and genetic characterization of factors required for vesicle formation. Most studies focus on clathrin as the major coat protein; indeed, clathrin-mediated endocytosis (CME) is the primary pathway for internalization. Clathrin-independent (CIE) pathways also exist, although mechanistic understanding of these pathways remains comparatively elusive. Here, we discuss how early studies of CME shaped our understanding of endocytosis and describe recent advances in CIE, including pathways in model organisms that are poised to provide key insights into endocytic regulation.
Collapse
Affiliation(s)
- Daniel J. Rioux
- Life Sciences, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
15
|
D’Alessio A. Unraveling the Cave: A Seventy-Year Journey into the Caveolar Network, Cellular Signaling, and Human Disease. Cells 2023; 12:2680. [PMID: 38067108 PMCID: PMC10705299 DOI: 10.3390/cells12232680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In the mid-1950s, a groundbreaking discovery revealed the fascinating presence of caveolae, referred to as flask-shaped invaginations of the plasma membrane, sparking renewed excitement in the field of cell biology. Caveolae are small, flask-shaped invaginations in the cell membrane that play crucial roles in diverse cellular processes, including endocytosis, lipid homeostasis, and signal transduction. The structural stability and functionality of these specialized membrane microdomains are attributed to the coordinated activity of scaffolding proteins, including caveolins and cavins. While caveolae and caveolins have been long appreciated for their integral roles in cellular physiology, the accumulating scientific evidence throughout the years reaffirms their association with a broad spectrum of human disorders. This review article aims to offer a thorough account of the historical advancements in caveolae research, spanning from their initial discovery to the recognition of caveolin family proteins and their intricate contributions to cellular functions. Furthermore, it will examine the consequences of a dysfunctional caveolar network in the development of human diseases.
Collapse
Affiliation(s)
- Alessio D’Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| |
Collapse
|
16
|
Baker A, Syed A, Mohany M, Elgorban AM, Sajid Khan M, Al-Rejaie SS. Survivin-targeted nanomedicine for increased potency of abiraterone and enzalutamide against prostate cancer. Eur J Pharm Biopharm 2023; 192:88-111. [PMID: 37797680 DOI: 10.1016/j.ejpb.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Prostate cancer is the leading and most aggressive cancer around the world, several therapeutic approaches have emerged but none have achieved the satisfactory result. However, these therapeutic approaches face many challenges related to their delivery to target cells, including their in vivo decay, the limited uptake by target cells, the requirements for nuclear penetration (in some cases), and the damage caused to healthy cells. These barriers can be avoided by effective, targeted, combinatorial approaches, with minimal side effects, which are being investigated for the treatment of cancer. Here, we developed a combinatorial nanomedicine comprising abiraterone and enzalutamide bioconjugated survivin-encapsulated gold nanoparticles (AbEzSvGNPs) for targeted therapy of prostate cancer. AbEzSvGNPs were characterized by different biophysical techniques such as UV visible spectroscopy, dynamic light scattering, zeta potential, transmission electron microscope, and Fourier transform infrared spectroscopy. Interestingly, the effect of abiraterone, enzalutamide and surviving encapsulated gold nanoparticles was found to be synergistic in nature in AbEzSvGNPs against DU 145 (IC50 = 4.21 µM) and PC-3 (IC50 = 5.58 µM) cells and their potential was observed to be greatly enhanced as compared with the combined effect of the drugs (abiraterone and enzalutamide) in their free form. Furthermore, AbEzSvGNPs were found to be highly safe and did not exhibit significant cytotoxicity against normal rat kidney cells. The observed effects of AbEzSvGNPs involved the modulation of different signaling pathways in prostate cancer cells. This delivery system employed non-androgen receptor-dependent delivery of abiraterone and enzalutamide. The anionic AbEzSvGNPs delivered abiraterone and enzalutamide unaltered into the nucleus through caveolae mediated internalization to act nonspecifically on DNA; internalization of the anionic nanoparticles into the cytoplasm was also observed via other routes. AbEzSvGNPs synthesized and evaluated in this study are promising candidates for prostate cancer therapy.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026 India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. 55760, Riyadh 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026 India
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. 55760, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
17
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
18
|
Luse MA, Jackson MG, Juśkiewicz ZJ, Isakson BE. Physiological functions of caveolae in endothelium. CURRENT OPINION IN PHYSIOLOGY 2023; 35:100701. [PMID: 37873030 PMCID: PMC10588508 DOI: 10.1016/j.cophys.2023.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endothelial caveolae are essential for a wide range of physiological processes and have emerged as key players in vascular biology. Our understanding of caveolar biology in endothelial cells has expanded dramatically since their discovery revealing critical roles in mechanosensation, signal transduction, eNOS regulation, lymphatic transport, and metabolic disease progression. Furthermore, caveolae are involved in the organization of membrane domains, regulation of membrane fluidity, and endocytosis which contribute to endothelial function and integrity. Additionally, recent advances highlight the impact of caveolae-mediated signaling pathways on vascular homeostasis and pathology. Together, the diverse roles of caveolae discussed here represent a breadth of cellular functions presenting caveolae as a defining feature of endothelial form and function. In light of these new insights, targeting caveolae may hold potential for the development of novel therapeutic strategies to treat a range of vascular diseases.
Collapse
Affiliation(s)
- Melissa A. Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| | - Madeline G. Jackson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Zuzanna J. Juśkiewicz
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| |
Collapse
|
19
|
Liu Q, Liu M, Yang T, Wang X, Cheng P, Zhou H. What can we do to optimize mitochondrial transplantation therapy for myocardial ischemia-reperfusion injury? Mitochondrion 2023; 72:72-83. [PMID: 37549815 DOI: 10.1016/j.mito.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Mitochondrial transplantation is a promising solution for the heart following ischemia-reperfusion injury due to its capacity to replace damaged mitochondria and restore cardiac function. However, many barriers (such as inadequate mitochondrial internalization, poor survival of transplanted mitochondria, few mitochondria colocalized with cardiac cells) compromise the replacement of injured mitochondria with transplanted mitochondria. Therefore, it is necessary to optimize mitochondrial transplantation therapy to improve clinical effectiveness. By analogy, myocardial ischemia-reperfusion injury is like a withered flower, it needs to absorb enough nutrients to recover and bloom. In this review, we present a comprehensive overview of "nutrients" (source of exogenous mitochondria and different techniques for mitochondrial isolation), "absorption" (mitochondrial transplantation approaches, mitochondrial transplantation dose and internalization mechanism), and "flowering" (the mechanism of mitochondrial transplantation in cardioprotection) for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Liu
- Comprehensive treatment area of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
20
|
Tang X, Xie Y, Li G, Niyazbekova Z, Li S, Chang J, Chen D, Ma W. ORFV entry into host cells via clathrin-mediated endocytosis and macropinocytosis. Vet Microbiol 2023; 284:109831. [PMID: 37480660 DOI: 10.1016/j.vetmic.2023.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Orf virus (ORFV), also known as infectious pustular virus, leads to an acute contagious zoonotic infectious disease. ORFV can directly contact and infect epithelial cells of skin and mucosa, causing damage to tissue cells. So far, the pathway of ORFV entry into cells is unclear. Therefore, finding the internalization pathway of ORFV will help to elucidate the cellular and molecular mechanisms of ORFV infection and invasion, which in turn will provide a certain reference for the prevention and treatment of ORFV. In the present study, chemical inhibitors were used to analyze the mechanism of ORFV entry into target cells. The results showed that the inhibitor of clathrin-mediated endocytosis could inhibit ORFV entry into cells. However, the inhibitor of caveolae-mediated endocytosis cannot inhibit ORFV entry into cells. In addition, inhibition of macropinocytosis pathway also significantly reduced ORFV internalization. Furthermore, the inhibitors of acidification and dynamin also prevented ORFV entry. However, results demonstrated that inhibitors inhibited ORFV entry but did not inhibit ORFV binding. Notably, extracellular trypsin promoted ORFV entry into cells directly, even when the endocytic pathway was inhibited. In conclusion, ORFV enters into its target cells by clathrin-mediated endocytosis and macropinocytosis, while caveolae-dependent endocytosis has little effects on this process. In addition, the entry into target cells by ORFV required an acid environment and the effect of dynamin. Meanwhile, we emphasize that broad-spectrum antiviral inhibitors and extracellular enzyme inhibitors are likely to be effective strategies for the prevention and treatment of ORFV infection.
Collapse
Affiliation(s)
- Xidian Tang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Yanfei Xie
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Guanhua Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Zhannur Niyazbekova
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Shaofei Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Jianjun Chang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai Province, China; College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai Province, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China.
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
21
|
Suter C, Colakovic M, Bieri J, Gultom M, Dijkman R, Ros C. Globoside and the mucosal pH mediate parvovirus B19 entry through the epithelial barrier. PLoS Pathog 2023; 19:e1011402. [PMID: 37220143 DOI: 10.1371/journal.ppat.1011402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Parvovirus B19 (B19V) is transmitted primarily via the respiratory route, however, the mechanism involved remains unknown. B19V targets a restricted receptor expressed in erythroid progenitor cells in the bone marrow. However, B19V shifts the receptor under acidic conditions and targets the widely expressed globoside. The pH-dependent interaction with globoside may allow virus entry through the naturally acidic nasal mucosa. To test this hypothesis, MDCK II cells and well-differentiated human airway epithelial cell (hAEC) cultures were grown on porous membranes and used as models to study the interaction of B19V with the epithelial barrier. Globoside expression was detected in polarized MDCK II cells and the ciliated cell population of well-differentiated hAEC cultures. Under the acidic conditions of the nasal mucosa, virus attachment and transcytosis occurred without productive infection. Neither virus attachment nor transcytosis was observed under neutral pH conditions or in globoside knockout cells, demonstrating the concerted role of globoside and acidic pH in the transcellular transport of B19V. Globoside-dependent virus uptake involved VP2 and occurred by a clathrin-independent pathway that is cholesterol and dynamin-dependent. This study provides mechanistic insight into the transmission of B19V through the respiratory route and reveals novel vulnerability factors of the epithelial barrier to viruses.
Collapse
Affiliation(s)
- Corinne Suter
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Minela Colakovic
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Jan Bieri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Mitra Gultom
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Carlos Ros
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Majood M, Selvam A, Agrawal O, Chaurasia R, Rawat S, Mohanty S, Mukherjee M. Biogenic Carbon Quantum Dots as a Neoteric Inducer in the Game of Directing Chondrogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19997-20011. [PMID: 37042793 DOI: 10.1021/acsami.3c02007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The journey into the field of stem cell biology has been an endeavor of paramount advancement in biomedicine, establishing new horizons in the avenue of materiobiology. The creative drive of the scientific community focuses on ameliorating the utilization of stem cells, which is currently untapped on a large scale. With similar motivation, we present a nascent strategy of maneuvering biogenic carbon quantum dots (CQDs) to eclipse the toxic hurdles of chemical synthesis of carbon allotropes to serve as a biocompatible trident in stem cell biology employing a three-prong action of stem cell differentiation, imaging, and migration. The derivation of CQDs from garlic peels as a biogenic precursor abets in realizing the optophysical features of CQDs to image mesenchymal stem cells without hampering the biological systems with cytotoxicity. We report the versatility of biogenic CQDs to generate reactive oxygen species (ROS) to robustly influence stem cell migration and concomitantly chondrocyte differentiation from human Wharton's jelly mesenchymal stem cells (hWJ-MSCs). This was orchestrated without the use of chondrogenic induction factors, which was confirmed from the expression of chondrogenic markers (Col II, Col X, ACAN). Even the collagen content of cells incubated with CQDs was quite comparable with that of chondrocyte-induced cells. Thus, we empirically propose garlic peel-derived CQDs as a tangible advancement in stem cell biology from a materiobiological frame of reference to hone significant development in this arena.
Collapse
Affiliation(s)
- Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh 201303, India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India
| | - Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India
| | - Sonali Rawat
- Stem Cells Facility, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Mohanty
- Stem Cells Facility, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India
| |
Collapse
|
23
|
Gong W, Jiao Q, Yuan J, Luo H, Liu Y, Zhang Y, Chen Z, Xu X, Bai L, Zhang X. Cardioprotective and anti-inflammatory effects of Caveolin 1 in experimental diabetic cardiomyopathy. Clin Sci (Lond) 2023; 137:511-525. [PMID: 36929208 DOI: 10.1042/cs20220874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023]
Abstract
Previous studies of the Caveolin 1 (Cav1) protein and caveolae, which are lipid raft structures found on the plasma membranes of certain cells, are associated with fat metabolism disorders, inflammation, diabetes, and cardiovascular disease. However, there have been no reports linking Cav1 to diabetic cardiomyopathy (DCM). In the present study, we established a relationship between Cav1 and the development of DCM. We found that compared with Cav1+/+ mice, Cav1-/- diabetic mice exhibited more severe cardiac injury, increased activation of NF-κB signaling, and up-regulation of downstream genes, including hypertrophic factors and inflammatory fibrosis factors in heart tissues. Additionally, in vitro results showed that knocking down Cav1 further activated HG-induced NF-κB signaling, increased the expression of downstream target genes, and decreased the expression of inhibitor α of NF-κB (iκBα), all of which have been linked to DCM pathogenesis. In contrast, Cav1 overexpression resulted in the opposite effects. Our study suggests that Cav1 knockdown promotes cardiac injury in DCM by activating the NF-κB signaling pathway, and targeting Cav1 may lead to the development of novel treatments for DCM.
Collapse
Affiliation(s)
- Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310000, China
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310000, China
| | - Jinghua Yuan
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310000, China
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Hui Luo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310000, China
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Yingying Liu
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310000, China
| | - Yuanyuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Chen
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310000, China
| | - Xiaoling Xu
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Bai
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310000, China
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310000, China
| |
Collapse
|
24
|
Friebel J, Schinnerling K, Weigt K, Heldt C, Fromm A, Bojarski C, Siegmund B, Epple HJ, Kikhney J, Moter A, Schneider T, Schulzke JD, Moos V, Schumann M. Uptake of Tropheryma whipplei by Intestinal Epithelia. Int J Mol Sci 2023; 24:ijms24076197. [PMID: 37047170 PMCID: PMC10094206 DOI: 10.3390/ijms24076197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Tropheryma whipplei (TW) can cause different pathologies, e.g., Whipple’s disease and transient gastroenteritis. The mechanism by which the bacteria pass the intestinal epithelial barrier, and the mechanism of TW-induced gastroenteritis are currently unknown. Methods: Using ex vivo disease models comprising human duodenal mucosa exposed to TW in Ussing chambers, various intestinal epithelial cell (IEC) cultures exposed to TW and a macrophage/IEC coculture model served to characterize endocytic uptake mechanisms and barrier function. Results: TW exposed ex vivo to human small intestinal mucosae is capable of autonomously entering IECs, thereby invading the mucosa. Using dominant-negative mutants, TW uptake was shown to be dynamin- and caveolin-dependent but independent of clathrin-mediated endocytosis. Complementary inhibitor experiments suggested a role for the activation of the Ras/Rac1 pathway and actin polymerization. TW-invaded IECs underwent apoptosis, thereby causing an epithelial barrier defect, and were subsequently subject to phagocytosis by macrophages. Conclusions: TW enters epithelia via an actin-, dynamin-, caveolin-, and Ras-Rac1-dependent endocytosis mechanism and consecutively causes IEC apoptosis primarily in IECs invaded by multiple TW bacteria. This results in a barrier leak. Moreover, we propose that TW-packed IECs can be subject to phagocytic uptake by macrophages, thereby opening a potential entry point of TW into intestinal macrophages.
Collapse
Affiliation(s)
- Julian Friebel
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Katina Schinnerling
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Kathleen Weigt
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Claudia Heldt
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Anja Fromm
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Christian Bojarski
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Hans-Jörg Epple
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Judith Kikhney
- Institute for Microbiology, Infectious Diseases, and Immunology, Biofilmcenter, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- MoKi Analytics GmbH, 12207 Berlin, Germany
| | - Annette Moter
- Institute for Microbiology, Infectious Diseases, and Immunology, Biofilmcenter, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- German Konsiliarlabor for Tropheryma whipplei, 10117 Berlin, Germany
- Moter Diagnostics, 12207 Berlin, Germany
| | - Thomas Schneider
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Jörg D. Schulzke
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Verena Moos
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Michael Schumann
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513536
| |
Collapse
|
25
|
Correa F, Enríquez-Cortina C, Silva-Palacios A, Román-Anguiano N, Gil-Hernández A, Ostolga-Chavarría M, Soria-Castro E, Hernández-Rizo S, Heros PDL, Chávez-Canales M, Zazueta C. Actin-Cytoskeleton Drives Caveolae Signaling to Mitochondria during Postconditioning. Cells 2023; 12:492. [PMID: 36766835 PMCID: PMC9914812 DOI: 10.3390/cells12030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Caveolae-associated signaling toward mitochondria contributes to the cardioprotective mechanisms against ischemia-reperfusion (I/R) injury induced by ischemic postconditioning. In this work, we evaluated the role that the actin-cytoskeleton network exerts on caveolae-mitochondria communication during postconditioning. Isolated rat hearts subjected to I/R and to postconditioning were treated with latrunculin A, a cytoskeleton disruptor. Cardiac function was compared between these hearts and those exposed only to I/R and to the cardioprotective maneuver. Caveolae and mitochondria structures were determined by electron microscopy and maintenance of the actin-cytoskeleton was evaluated by phalloidin staining. Caveolin-3 and other putative caveolae-conforming proteins were detected by immunoblot analysis. Co-expression of caveolin-3 and actin was evaluated both in lipid raft fractions and in heart tissue from the different groups. Mitochondrial function was assessed by respirometry and correlated with cholesterol levels. Treatment with latrunculin A abolishes the cardioprotective postconditioning effect, inducing morphological and structural changes in cardiac tissue, reducing F-actin staining and diminishing caveolae formation. Latrunculin A administration to post-conditioned hearts decreases the interaction between caveolae-forming proteins, the co-localization of caveolin with actin and inhibits oxygen consumption rates in both subsarcolemmal and interfibrillar mitochondria. We conclude that actin-cytoskeleton drives caveolae signaling to mitochondria during postconditioning, supporting their functional integrity and contributing to cardiac adaption against reperfusion injury.
Collapse
Affiliation(s)
- Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Cristina Enríquez-Cortina
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Nadia Román-Anguiano
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Aurora Gil-Hernández
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Marcos Ostolga-Chavarría
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Elizabeth Soria-Castro
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Sharik Hernández-Rizo
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 14080, Mexico
| | - Paola de los Heros
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
26
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
27
|
Zhang X, Li W, Cui Z. Single-Particle Tracking of Virus Entry in Live Cells. Subcell Biochem 2023; 106:153-168. [PMID: 38159226 DOI: 10.1007/978-3-031-40086-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Novel imaging technologies such as single-particle tracking provide tools to study the intricate process of virus infection in host cells. In this chapter, we provide an overview of studies in which single-particle tracking technologies were applied for the analysis of the viral entry pathways in the context of the live host cell. Single-particle tracking techniques have been dependent on advances in the fluorescent labeling microscopy method and image analysis. The mechanistic and kinetic insights offered by this technique will provide a better understanding of virus entry and may lead to a rational design of antiviral interventions.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Guo Y, Gao Y, Hu Y, Zhao Y, Jiang D, Wang Y, Zhang Y, Gan H, Xie C, Liu Z, Zhong B, Zhang Z, Yao J. The Transient Receptor Potential Vanilloid 2 (TRPV2) Channel Facilitates Virus Infection Through the Ca 2+ -LRMDA Axis in Myeloid Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202857. [PMID: 36261399 PMCID: PMC9731701 DOI: 10.1002/advs.202202857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The transient receptor potential vanilloid 2 (TRPV2) channel is a nonselective cation channel that has been implicated in multiple sensory processes in the nervous system. Here, it is shown that TRPV2 in myeloid cells facilitates virus penetration by promoting the tension and mobility of cell membrane through the Ca2+ -LRMDA axis. Knockout of TRPV2 in myeloid cells or inhibition of TRPV2 channel activity suppresses viral infection and protects mice from herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) infection. Reconstitution of TRPV2 but not the Ca2+ -impermeable mutant TRPV2E572Q into LyZ2-Cre;Trpv2fl/fl bone marrow-derived dendritic cells (BMDCs) restores viral infection. Mechanistically, knockout of TRPV2 in myeloid cells inhibits the tension and mobility of cell membrane and the penetration of viruses, which is restored by reconstitution of TRPV2 but not TRPV2E572Q . In addition, knockout of TRPV2 leads to downregulation of Lrmda in BMDCs and BMDMs, and knockdown of Lrmda significantly downregulates the mobility and tension of cell membrane and inhibits viral infections in Trpv2fl/fl but not LyZ2-Cre;Trpv2fl/fl BMDCs. Consistently, complement of LRMDA into LyZ2-Cre;Trpv2fl/fl BMDCs partially restores the tension and mobility of cell membrane and promotes viral penetration and infection. These findings characterize a previously unknown function of myeloid TRPV2 in facilitating viral infection though the Ca2+ -LRMDA axis.
Collapse
Affiliation(s)
- Yu‐Yao Guo
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Yue Gao
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Yu‐Ru Hu
- The Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Yuhan Zhao
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Dexiang Jiang
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Yulin Wang
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Youjing Zhang
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Hu Gan
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Chang Xie
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Zheng Liu
- The Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Bo Zhong
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Zhi‐Dong Zhang
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Jing Yao
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
29
|
Meecham A, Cutmore LC, Protopapa P, Rigby LG, Marshall JF. Ligand-bound integrin αvβ6 internalisation and trafficking. Front Cell Dev Biol 2022; 10:920303. [PMID: 36092709 PMCID: PMC9448872 DOI: 10.3389/fcell.2022.920303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The integrin αvβ6 is expressed at low levels in most normal healthy tissue but is very often upregulated in a disease context including cancer and fibrosis. Integrins use endocytosis and trafficking as a means of regulating their surface expression and thus their functions, however little is known of how this process is regulated in the context of αvβ6. As αvβ6 is a major target for the development of therapeutics in cancer and fibrosis, understanding these dynamics is critical in the development of αvβ6-targeted therapies. Following development of a flow cytometry-based assay to measure ligand (A20FMDV2 or LAP)-bound αvβ6 endocytosis, an siRNA screen was performed to identify which genes were responsible for internalising αvβ6. These data identified 15 genes (DNM2, CBLB, DNM3, CBL, EEA1, CLTC, ARFGAP3, CAV1, CYTH2, CAV3, CAV2, IQSEC1, AP2M1, TSG101) which significantly decreased endocytosis, predominantly within dynamin-dependent pathways. Inhibition of these dynamin-dependent pathways significantly reduced αvβ6-dependent migration (αvβ6-specific migration was 547 ± 128 under control conditions, reduced to 225 ± 73 with clathrin inhibition, and 280 ± 51 with caveolin inhibition). Colocalization studies of αvβ6 with endosome markers revealed that up to 6 h post-internalisation of ligand, αvβ6 remains in Rab11-positive endosomes in a perinuclear location, with no evidence of αvβ6 degradation up to 48 h post exposure to A20FMDV2. Additionally, 60% of ligand-bound αvβ6 was recycled back to the surface by 6 h. With studies ongoing using conjugated A20FMDV2 to therapeutically target αvβ6 in cancer and fibrosis, these data have important implications. Binding of A20FMDV2 seemingly removes much of the αvβ6 from the cell membrane, and upon its recycling, a large fraction appears to still be in the ligand-bound state. While these results are observed with A20FMDV2, these data will be of value in the design of αvβ6-specific therapeutics and potentially the types of therapeutic load.
Collapse
Affiliation(s)
- Amelia Meecham
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- University of California, San Diego, San Diego, CA, United States
| | - Lauren C. Cutmore
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pantelitsa Protopapa
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Lauren G. Rigby
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - John F. Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
30
|
Kokhanyuk B, Vántus VB, Radnai B, Vámos E, Kajner G, Galbács G, Telek E, Mészáros M, Deli MA, Németh P, Engelmann P. Distinct Uptake Routes Participate in Silver Nanoparticle Engulfment by Earthworm and Human Immune Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2818. [PMID: 36014683 PMCID: PMC9413649 DOI: 10.3390/nano12162818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The consequences of engineered silver nanoparticle (AgNP) exposure and cellular interaction with the immune system are poorly understood. The immunocytes of the Eisenia andrei earthworm are frequently applied in ecotoxicological studies and possess functional similarity to vertebrate macrophages. Hence, we characterized and compared the endocytosis mechanisms for the uptake of 75 nm AgNPs by earthworm coelomocytes, human THP-1 monocytes, and differentiated THP-1 (macrophage-like) cells. Our results indicate that microtubule-dependent, scavenger-receptor, and PI3K signaling-mediated macropinocytosis are utilized during AgNP engulfment by human THP-1 and differentiated THP-1 cells. However, earthworm coelomocytes employ actin-dependent phagocytosis during AgNPs uptake. In both human and earthworm immunocytes, AgNPs were located in the cytoplasm, within the endo-/lysosomes. We detected that the internalization of AgNPs is TLR/MyD88-dependent, also involving the bactericidal/permeability-increasing protein (BPI) in the case of human immunocytes. The exposure led to decreased mitochondrial respiration in human immunocytes; however, in coelomocytes, it enhanced respiratory parameters. Our findings provide more data about NP trafficking as nano-carriers in the nanomedicine field, as well as contribute to an understanding of the ecotoxicological consequences of nanoparticle exposure.
Collapse
Affiliation(s)
- Bohdana Kokhanyuk
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Viola Bagóné Vántus
- Department of Biochemistry and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Balázs Radnai
- Department of Biochemistry and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Eszter Vámos
- Department of Biochemistry and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Gyula Kajner
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Elek Telek
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Péter Engelmann
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
31
|
Bayati A, Banks E, Han C, Luo W, Reintsch WE, Zorca CE, Shlaifer I, Del Cid Pellitero E, Vanderperre B, McBride HM, Fon EA, Durcan TM, McPherson PS. Rapid macropinocytic transfer of α-synuclein to lysosomes. Cell Rep 2022; 40:111102. [PMID: 35858558 DOI: 10.1016/j.celrep.2022.111102] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/10/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
The nervous system spread of alpha-synuclein fibrils is thought to cause Parkinson's disease (PD) and other synucleinopathies; however, the mechanisms underlying internalization and cellular spread are enigmatic. Here, we use confocal and superresolution microscopy, subcellular fractionation, and electron microscopy (EM) of immunogold-labeled α-synuclein preformed fibrils (PFFs) to demonstrate that this form of the protein undergoes rapid internalization and is targeted directly to lysosomes in as little as 2 min. Uptake of PFFs is disrupted by macropinocytic inhibitors and circumvents classical endosomal pathways. Immunogold-labeled PFFs are seen at the highly curved inward edge of membrane ruffles, in newly formed macropinosomes, in multivesicular bodies and in lysosomes. While most fibrils remain in lysosomes, a portion is transferred to neighboring naive cells along with markers of exosomes. These data indicate that PFFs use a unique internalization mechanism as a component of cell-to-cell propagation.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Chanshuai Han
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Wen Luo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Wolfgang E Reintsch
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Cornelia E Zorca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Irina Shlaifer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Esther Del Cid Pellitero
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Benoit Vanderperre
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
32
|
Sun P, Wu Z, Xiao Y, Wu H, Di Q, Zhao X, Quan J, Tang H, Wang Q, Chen W. TfR-T12 short peptide and pH sensitive cell transmembrane peptide modified nano-composite micelles for glioma treatment via remodeling tumor microenvironment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102516. [PMID: 35131469 DOI: 10.1016/j.nano.2022.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Two kinds of amphiphilic block copolymers of TfR-T12-PEG-PLGA and TATH7-PEG-PLGA were synthesized to self-assembly nano-composite micelles for encapsulating paclitaxel and imiquimod synchronously. TfR-T12 peptide modified nano-composite micelles can pass through BBB in a TfR-mediated way to achieve targeted delivery of chemotherapeutic drugs, and pH sensitive TATH7 peptide modified nano-composite micelles enhanced uptake efficiency more significantly under pH 5.5 medium than pH 7.4 medium. The results of pharmacodynamic evaluation in vivo showed that the nano-composite micelles had achieved good anti-tumor effect in subcutaneous and normotopia glioma models, and effectively prolonged the life cycle of tumor-bearing mice. The nano-composite micelles regulated the immunosuppression phenomenon of tumor microenvironment significantly, and promoted the M1 polarization of TAMs, then enhanced the proliferation and activation of CD8+ T cells in tumor microenvironment. It comes to conclusion that the nano-composite micelle achieves the purpose of effective treatment of glioma by chemotherapy combined with immunotherapy.
Collapse
Affiliation(s)
- Ping Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China; Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zherui Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Han Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jiazheng Quan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
33
|
Okuda A, Futaki S. Protein Delivery to Cytosol by Cell-Penetrating Peptide Bearing Tandem Repeat Penetration-Accelerating Sequence. Methods Mol Biol 2022; 2383:265-273. [PMID: 34766296 DOI: 10.1007/978-1-0716-1752-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pas2r12 is comprised of a repeat of the penetration-accelerating sequence (Pas) (Pas2: FFLIG-FFLIG) and D-form dodeca-arginine (r12), a cell-penetrating peptide. Pas2r12 significantly enhances cytosolic delivery of cargo proteins, including enhanced green fluorescent protein and immunoglobulin G. Simply incubating Pas2r12 with cargo leads to their cytosolic tranlsocation. Cytosolic delivery of cargo by Pas2r12 involves caveolae-mediated endocytosis. In this chapter, we describe methods of cytosolic delivery of cargo using Pas2r12 and provide methods for investigating the cellular uptake pathway of cargo by Pas2r12.
Collapse
Affiliation(s)
- Akiko Okuda
- Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Niigata, Japan.
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
34
|
Alamudi SH, Kimoto M, Hirao I. Uptake mechanisms of cell-internalizing nucleic acid aptamers for applications as pharmacological agents. RSC Med Chem 2021; 12:1640-1649. [PMID: 34778766 PMCID: PMC8528270 DOI: 10.1039/d1md00199j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid aptamers, also regarded as chemical antibodies, show potential as targeted therapeutic and delivery agents since they possess unique advantages over antibodies. Generated by an iterative selection and amplification process from oligonucleotide libraries using cultured cells, the aptamers bind to their target molecules expressed on the cell surface. Excitingly, most aptamers also demonstrate a cell-internalizing property in native living cells, allowing them to directly enter the cells via endocytosis depending on the target. In this review, we discuss selection methods in generating cell-internalizing aptamers via a cell-based selection process, along with their challenges and optimization strategies. We highlight the cellular uptake routes adopted by the aptamers and also their intracellular fate after the uptake, to give an overview of their mechanism of action for applications as promising pharmacological agents.
Collapse
Affiliation(s)
- Samira Husen Alamudi
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (ASTAR) 31 Biopolis Way, Nanos #07-01 Singapore 138669 Singapore
| | - Michiko Kimoto
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (ASTAR) 31 Biopolis Way, Nanos #07-01 Singapore 138669 Singapore
| | - Ichiro Hirao
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (ASTAR) 31 Biopolis Way, Nanos #07-01 Singapore 138669 Singapore
| |
Collapse
|
35
|
Aliyu IA, Kumurya AS, Bala JA, Yahaya H, Saidu H. Proteomes, kinases and signalling pathways in virus-induced filopodia, as potential antiviral therapeutics targets. Rev Med Virol 2021; 31:1-9. [PMID: 33314425 PMCID: PMC7883202 DOI: 10.1002/rmv.2202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
Filopodia are thin finger-like protrusions at the surface of cells that are internally occupied with bundles of tightly parallel actin filaments. They play significant roles in cellular physiological processes, such as adhesion to extracellular matrix, guidance towards chemo-attractants and in wound healing. Filopodia were recently reported to play important roles in viral infection including initial viral attachment to host cells, cell surfing, viral trafficking, internalization, budding, virus release and spread to other cells in a form that would avoid the host immune system. The detailed virus-host protein interactions underlying most of these processes remain to be elucidated. This review will describe some reported virus-host protein interactions on filopodia with the aim of identifying potential new anti-virus therapeutic targets. Exploring this research area may lead to the development of novel classes of anti-viral therapeutics that can block signalling pathways used by the virus to trigger filopodia formation. Successful compounds would inhibit initial virus attachment, formation of filopodia, expression of putative virus binding protein, extracellular virus trafficking, and budding.
Collapse
Affiliation(s)
- Isah Abubakar Aliyu
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| | - Abdulhadi Sale Kumurya
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| | - Jamilu Abubakar Bala
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
- Virology UnitDepartment of Pathology and MicrobiologyFaculty of Veterinary MedicineUniversity Putra MalaysiaSelangorMalaysia
| | - Hassan Yahaya
- Department of Medical Microbiology and ParasitologyFaculty of Medicine and Health ScienceUniversity Putra MalaysiaSelangorMalaysia
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| | - Hayatu Saidu
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| |
Collapse
|
36
|
Yadegari-Dehkordi S, Firoozabadi SM, Forouzandeh Moghadam M, Shankayi Z. Role of Endocytosis Pathways in Electropermeablization of MCF7 Cells Using Low Voltage and High Frequency Electrochemotherapy. CELL JOURNAL 2021; 23:445-450. [PMID: 34455720 PMCID: PMC8405087 DOI: 10.22074/cellj.2021.7203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
Objective The cell membrane is a major barrier for delivery of hydrophilic drugs and molecules into the cells. Although
low voltage and high frequency electric fields (LVHF) are proposed to overcome the cell membrane barrier, the
mechanism of membrane permeabilization is unclear. The aim of study is to investigate endocytosis pathways as a
possible mechanism for enhancing uptake of bleomycin by LVHF. Materials and Methods In this experimental study, MCF-7 cells were exposed to bleomycin or to electric fields with
various strengths (10-80 V/cm), frequency of 5 kHz, 4000 electric pulse and 100 µs duration in the presence and
absence of three endocytosis inhibitors-chlorpromazine (Cpz), amiloride (Amilo) and genistein (Geni). We determined
the efficiency of these chemotherapeutic agents in each group.
Results LVHF, depending on the intensity, induced different endocytosis pathways. Electric field strengths of 10 and
20 V/cm stimulated the macropinocytosis route. Clathrin-mediated endocytosis was observed at electric field intensities
of 10, 30, 60 and 70 V/cm, whereas induction of caveolae-mediated endocytosis was observed only at the lowest
electric field intensity (10 V/cm).
Conclusion The results of this study imply that LVHF can induce different endocytosis pathways in MCF-7 cells, which
leads to an increase in bleomycin uptake.
Collapse
Affiliation(s)
- Sajedeh Yadegari-Dehkordi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shankayi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
37
|
The Protein Toxins Ricin and Shiga Toxin as Tools to Explore Cellular Mechanisms of Internalization and Intracellular Transport. Toxins (Basel) 2021; 13:toxins13060377. [PMID: 34070659 PMCID: PMC8227415 DOI: 10.3390/toxins13060377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Protein toxins secreted by bacteria and found in plants can be threats to human health. However, their extreme toxicity can also be exploited in different ways, e.g., to produce hybrid toxins directed against cancer cells and to study transport mechanisms in cells. Investigations during the last decades have shown how powerful these molecules are as tools in cell biological research. Here, we first present a partly historical overview, with emphasis on Shiga toxin and ricin, of how such toxins have been used to characterize processes and proteins of importance for their trafficking. In the second half of the article, we describe how one can now use toxins to investigate the role of lipid classes for intracellular transport. In recent years, it has become possible to quantify hundreds of lipid species using mass spectrometry analysis. Thus, it is also now possible to explore the importance of lipid species in intracellular transport. The detailed analyses of changes in lipids seen under conditions of inhibited toxin transport reveal previously unknown connections between syntheses of lipid classes and demonstrate the ability of cells to compensate under given conditions.
Collapse
|
38
|
Song Y, Wu Y, Xu L, Jiang T, Tang C, Yin C. Caveolae-Mediated Endocytosis Drives Robust siRNA Delivery of Polymeric Nanoparticles to Macrophages. ACS NANO 2021; 15:8267-8282. [PMID: 33915044 DOI: 10.1021/acsnano.0c08596] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cytosolic delivery of small interfering RNA (siRNA) remains challenging, and a profound understanding of the cellular uptake and intracellular processing of siRNA delivery systems could greatly improve the development of siRNA-based therapeutics. Here, we show that caveolae-mediated endocytosis (CvME) accounts for the robust siRNA delivery of mannose-modified trimethyl chitosan-cysteine/tripolyphosphate nanoparticles (MTC/TPP NPs) to macrophages by circumventing lysosomes. We show that the Golgi complex and ER are key organelles required for the efficient delivery of siRNA to macrophages in which the siRNA accumulation positively correlates with its silencing efficiency (r = 0.94). We also identify syntaxin6 and Niemann-Pick type C1 (NPC1) as indispensable regulators for MTC/TPP NPs-delivered siRNA into macrophages both in vitro and in vivo. Syntaxin6 and NPC1 knockout substantially decrease the cellular uptake and gene silencing of the siRNA delivered in MTC/TPP NPs in macrophages, which result in poor therapeutic outcomes for mice bearing acute hepatic injury. Our results suggest that highly efficient siRNA delivery can be achieved via CvME, which would give ideas for designing optimal delivery vectors to facilitate the clinical translation of siRNA drugs.
Collapse
Affiliation(s)
- Yudong Song
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Lu Xu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Ting Jiang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| |
Collapse
|
39
|
Yadegari Dehkordi S, Firoozabadi SM, Forouzandeh Moghadam M, Shankayi Z. Endocytosis induction by high-pulsed magnetic fields to overcome cell membrane barrier and improve chemotherapy efficiency. Electromagn Biol Med 2021; 40:438-445. [PMID: 33977836 DOI: 10.1080/15368378.2021.1923026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell membrane acts as a barrier to the entry of impermeable drugs into cells. Recent studies have suggested that using magnetic fields can enable molecules to overcome the cell membrane barrier. However, the mechanism of membrane permeabilization remains unclear. Therefore, we evaluated the increases in bleomycin (CT) uptake, a non-permanent chemotherapy agent, using high-pulsed magnetic fields and investigated whether endocytosis was involved in the process. This study exposed MCF-7 cells to magnetic fields (2.2 T strength, different number of 28 and 56 pulses, and frequency of 1 and 10 Hz) in order to investigate whether this approach could promote the cell-killing efficiency of bleomycin. The involvement of endocytosis as a possible mechanism was tested by exposing cells to three endocytosis inhibitors, namely chlorpromazine, genistein, and amiloride. Our results illustrated that magnetic fields, depending on their conditions, could induce different endocytosis pathways. In such conditions as 10 Hz-28 pulses, 10 Hz-56 pulses, and 1 Hz-56 pulse, clathrin-mediated endocytosis was observed. Moreover, macropinocytosis was induced by the 10 Hz magnetic field and caveolae-mediated endocytosis occurred in all the magnetic field conditions. The findings imply that high-pulsed magnetic fields generate different endocytosis pathways in the MCF-7 cells, thus increasing the efficiency of chemotherapy agents.
Collapse
Affiliation(s)
- Sajedeh Yadegari Dehkordi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shankayi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
40
|
Allard A, Lopes Dos Santos R, Campillo C. Remodelling of membrane tubules by the actin cytoskeleton. Biol Cell 2021; 113:329-343. [PMID: 33826772 DOI: 10.1111/boc.202000148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Inside living cells, the remodelling of membrane tubules by actomyosin networks is crucial for processes such as intracellular trafficking or organelle reshaping. In this review, we first present various in vivo situations in which actin affects membrane tubule remodelling, then we recall some results on force production by actin dynamics and on membrane tubules physics. Finally, we show that our knowledge of the underlying mechanisms by which actomyosin dynamics affect tubule morphology has recently been moved forward. This is thanks to in vitro experiments that mimic cellular membranes and actin dynamics and allow deciphering the physics of tubule remodelling in biochemically controlled conditions, and shed new light on tubule shape regulation.
Collapse
Affiliation(s)
- Antoine Allard
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, Évry-Courcouronnes, 91025, France.,Sorbonne Université, UPMC, Paris 06, Paris, France.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | | - Clément Campillo
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, Évry-Courcouronnes, 91025, France
| |
Collapse
|
41
|
Li X, Zhu W, Fan M, Zhang J, Peng Y, Huang F, Wang N, He L, Zhang L, Holmdahl R, Meng L, Lu S. Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Comput Struct Biotechnol J 2021; 19:1933-1943. [PMID: 33850607 PMCID: PMC8028701 DOI: 10.1016/j.csbj.2021.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 is a kind of viral pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the mechanism whereby SARS-CoV-2 invades host cells remains poorly understood. Here we used SARS-CoV-2 pseudoviruses to infect human angiotensin-converting enzyme 2 (ACE2) expressing HEK293T cells and evaluated virus infection. We confirmed that SARS-CoV-2 entry was dependent on ACE2 and sensitive to pH of endosome/lysosome in HEK293T cells. The infection of SARS-CoV-2 pseudoviruses is independent of dynamin, clathrin, caveolin and endophilin A2, as well as macropinocytosis. Instead, we found that the infection of SARS-CoV-2 pseudoviruses was cholesterol-rich lipid raft dependent. Cholesterol depletion of cell membranes with methyl-β-cyclodextrin resulted in reduction of pseudovirus infection. The infection of SARS-CoV-2 pseudoviruses resumed with cholesterol supplementation. Together, cholesterol-rich lipid rafts, and endosomal acidification, are key steps of SARS-CoV-2 required for infection of host cells. Therefore, our finding expands the understanding of SARS-CoV-2 entry mechanism and provides a new anti-SARS-CoV-2 strategy.
Collapse
Affiliation(s)
- Xiaowei Li
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Jing Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Yizhao Peng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Fumeng Huang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, 710061 Xi'an, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, 710061 Xi'an, China
| | - Lei Zhang
- Shaanxi Provincial Centre for Disease Control and Prevention, 710054 Xi'an, China
| | - Rikard Holmdahl
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China.,Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Liesu Meng
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Shemin Lu
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| |
Collapse
|
42
|
Valsalakumari R, Yadava SK, Szwed M, Pandya AD, Mælandsmo GM, Torgersen ML, Iversen TG, Skotland T, Sandvig K, Giri J. Mechanism of cellular uptake and cytotoxicity of paclitaxel loaded lipid nanocapsules in breast cancer cells. Int J Pharm 2021; 597:120217. [PMID: 33486035 DOI: 10.1016/j.ijpharm.2021.120217] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/06/2020] [Accepted: 12/27/2020] [Indexed: 01/14/2023]
Abstract
Lipid nanocapsules (LNCs) have proven their efficacy in delivering different drugs to various cancers, but no studies have yet described their uptake mechanisms, paclitaxel (PTX) delivery or resulting cytotoxicity towards breast cancer cells. Herein, we report results concerning cellular uptake of LNCs and cytotoxicity studies of PTX-loaded LNCs (LNCs-PTX) on the three breast cancer cell lines MCF-7, MDA-MB-231 and MDA-MB-468. LNCs-PTX of sizes 50 ± 2 nm, 90 ± 3 nm and 120 ± 4 nm were developed by the phase inversion method. Fluorescence microscopy and flow cytometry were used to observe the uptake of fluorescently labeled LNCs and cellular uptake of LNCs-PTX was measured using HPLC analyses of cell samples. These studies revealed a higher uptake of LNCs-PTX in MDA-MB-468 cells than in the other two cell lines. Moreover, free PTX and LNCs-PTX exhibited a similar pattern of toxicity towards each cell line, but MDA-MB-468 cells appeared to be more sensitive than the other two cell lines, as evaluated by the MTT cytotoxicity assay and a cell proliferation assay based upon [3H]thymidine incorporation. Studies with inhibitors of endocytosis indicate that the cellular uptake is mainly via the Cdc42/GRAF-dependent endocytosis as well as by macropinocytosis, whereas dynamin-dependent processes are not required. Furthermore, our results indicate that endocytosis of LNCs-PTX is important for the toxic effect on cells. Western blot analysis revealed that LNCs-PTX induce cytotoxicity by means of apoptosis in all the three cell lines. Altogether, the results demonstrate that LNCs-PTX exploit different mechanisms of endocytosis in a cell-type dependent manner, and subsequently induce apoptotic cell death in the breast cancer cells here studied. The article also describes biodistribution studies following intravenous injection of fluorescently labeled LNCs in mice.
Collapse
Affiliation(s)
- Remya Valsalakumari
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Sunil Kumar Yadava
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Marzena Szwed
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Abhilash D Pandya
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; Institute of Medical Biology, The Arctic University of Norway, University of Tromsø, Tromsø, Norway
| | - Maria Lyngaas Torgersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Tore-Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.
| |
Collapse
|
43
|
Mayberry CL, Bond AC, Wilczek MP, Mehmood K, Maginnis MS. Sending mixed signals: polyomavirus entry and trafficking. Curr Opin Virol 2021; 47:95-105. [PMID: 33690104 DOI: 10.1016/j.coviro.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022]
Abstract
Polyomaviruses are mostly non-pathogenic, yet some can cause human disease especially under conditions of immunosuppression, including JC, BK, and Merkel cell polyomaviruses. Direct interactions between viruses and the host early during infection dictate the outcome of disease, many of which remain enigmatic. However, significant work in recent years has contributed to our understanding of how this virus family establishes an infection, largely due to advances made for animal polyomaviruses murine and SV40. Here we summarize the major findings that have contributed to our understanding of polyomavirus entry, trafficking, disassembly, signaling, and immune evasion during the infectious process and highlight major unknowns in these processes that are open areas of study.
Collapse
Affiliation(s)
- Colleen L Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Avery Cs Bond
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Michael P Wilczek
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Kashif Mehmood
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA; Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME, USA.
| |
Collapse
|
44
|
Shi Y, Wang S, Wu J, Jin X, You J. Pharmaceutical strategies for endoplasmic reticulum-targeting and their prospects of application. J Control Release 2021; 329:337-352. [DOI: 10.1016/j.jconrel.2020.11.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
|
45
|
Tu C, Du Z, Zhang H, Feng Y, Qi Y, Zheng Y, Liu J, Wang J. Endocytic pathway inhibition attenuates extracellular vesicle-induced reduction of chemosensitivity to bortezomib in multiple myeloma cells. Am J Cancer Res 2021; 11:2364-2380. [PMID: 33500730 PMCID: PMC7797667 DOI: 10.7150/thno.47996] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, derived from bone marrow stromal cells (BMSCs) have been demonstrated as key factors in the progression and drug resistance of multiple myeloma (MM). EV uptake involves a variety of mechanisms which largely depend on the vesicle origin and recipient cell type. The aim of the present study was to identify the mechanisms involved in the uptake of BMSC-derived small EVs (sEVs) by MM cells, and to evaluate the anti-MM effect of targeting this process. Methods: Human BMSC-derived sEVs were identified by transmission electron microscopy, nanoparticle tracking analysis, and western blot. The effects of chemical inhibitors and shRNA-mediated knockdown of endocytosis-associated genes on sEV uptake and cell apoptosis were analyzed by flow cytometry. The anti-MM effect of blocking sEV uptake was evaluated in vitro and in a xenograft MM mouse model. Results: sEVs derived from BMSC were taken up by MM cells in a time- and dose-dependent manner, and subsequently promoted MM cell cycling and reduced their chemosensitivity to bortezomib. Chemical endocytosis inhibitors targeting heparin sulphate proteoglycans, actin, tyrosine kinase, dynamin-2, sodium/proton exchangers, or phosphoinositide 3-kinases significantly reduced MM cell internalization of BMSC-derived sEVs. Moreover, shRNA-mediated knockdown of endocytosis-associated proteins, including caveolin-1, flotillin-1, clathrin heavy chain, and dynamin-2 in MM cells suppressed sEV uptake. Furthermore, an endocytosis inhibitor targeting dynamin-2 preferentially suppressed the uptake of sEV by primary MM cells ex vivo and enhanced the anti-MM effects of bortezomib in vitro and in a mouse model. Conclusion: Clathrin- and caveolin-dependent endocytosis and macropinocytosis are the predominant routes of sEV-mediated communication between BMSCs and MM cells, and inhibiting endocytosis attenuates sEV-induced reduction of chemosensitivity to bortezomib, and thus enhances its anti-MM properties.
Collapse
|
46
|
Dupont A, Glück IM, Ponti D, Stirnnagel K, Hütter S, Perrotton F, Stanke N, Richter S, Lindemann D, Lamb DC. Identification of an Intermediate Step in Foamy Virus Fusion. Viruses 2020; 12:v12121472. [PMID: 33371254 PMCID: PMC7766700 DOI: 10.3390/v12121472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Viral glycoprotein-mediated membrane fusion is an essential step for productive infection of host cells by enveloped viruses; however, due to its rarity and challenges in detection, little is known about the details of fusion events at the single particle level. Here, we have developed dual-color foamy viruses (FVs) composed of eGFP-tagged prototype FV (PFV) Gag and mCherry-tagged Env of either PFV or macaque simian FV (SFVmac) origin that have been optimized for detection of the fusion process. Using our recently developed tracking imaging correlation (TrIC) analysis, we were able to detect the fusion process for both PFV and SFVmac Env containing virions. PFV Env-mediated fusion was observed both at the plasma membrane as well as from endosomes, whereas SFVmac Env-mediated fusion was only observed from endosomes. PFV Env-mediated fusion was observed to happen more often and more rapidly than as for SFVmac Env. Strikingly, using the TrIC method, we detected a novel intermediate state where the envelope and capsids are still tethered but separated by up to 400 nm before final separation of Env and Gag occurred.
Collapse
Affiliation(s)
- Aurélie Dupont
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- LIPhy, University Grenoble Alpes, CNRS, F-38000 Grenoble, France
| | - Ivo M. Glück
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Dorothee Ponti
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Kristin Stirnnagel
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Sylvia Hütter
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Florian Perrotton
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
| | - Nicole Stanke
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Stefanie Richter
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Dirk Lindemann
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
- Correspondence: (D.L.); (D.C.L.)
| | - Don C. Lamb
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Nanosystems Initiative München (NIM), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Integrated Protein Science (CIPSM), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Correspondence: (D.L.); (D.C.L.)
| |
Collapse
|
47
|
Barreto J, Karathanasis SK, Remaley A, Sposito AC. Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential Clinical Use. Arterioscler Thromb Vasc Biol 2020; 41:153-166. [PMID: 33176449 DOI: 10.1161/atvbaha.120.315421] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Atherosclerosis, the underlying cause of cardiovascular disease (CVD), is a worldwide cause of morbidity and mortality. Reducing ApoB-containing lipoproteins-chiefly, LDL (low-density lipoprotein)-has been the main strategy for reducing CVD risk. Although supported by large randomized clinical trials, the persistence of residual cardiovascular risk after effective LDL reduction has sparked an intense search for other novel CVD biomarkers and therapeutic targets. Recently, Lox-1 (lectin-type oxidized LDL receptor 1), an innate immune scavenger receptor, has emerged as a promising target for early diagnosis and cardiovascular risk prediction and is also being considered as a treatment target. Lox-1 was first described as a 50 kDa transmembrane protein in endothelial cells responsible for oxLDL (oxidized LDL) recognition, triggering downstream pathways that intensify atherosclerosis via endothelial dysfunction, oxLDL uptake, and apoptosis. Lox-1 is also expressed in platelets, where it enhances platelet activation, adhesion to endothelial cells, and ADP-mediated aggregation, thereby favoring thrombus formation. Lox-1 was also identified in cardiomyocytes, where it was implicated in the development of cardiac fibrosis and myocyte apoptosis, the main determinants of cardiac recovery following an ischemic insult. Together, these findings have revealed that Lox-1 is implicated in all the main steps of atherosclerosis and has encouraged the development of immunoassays for measurement of sLox-1 (serum levels of soluble Lox-1) to be used as a potential CVD biomarker. Finally, the recent development of synthetic Lox-1 inhibitors and neutralizing antibodies with promising results in animal models has made Lox-1 a target for drug development. In this review, we discuss the main findings regarding the role of Lox-1 in the development, diagnosis, and therapeutic strategies for CVD prevention and treatment.
Collapse
Affiliation(s)
- Joaquim Barreto
- Atherosclerosis and Vascular Biology Lab (Atherolab), Clinical Research Center, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Brazil (J.B., A.C.S.)
| | - Sotirios K Karathanasis
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (S.K.K., A.R.)
- NeoProgen, Baltimore, MD (S.K.K.)
| | - Alan Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (S.K.K., A.R.)
| | - Andrei C Sposito
- Atherosclerosis and Vascular Biology Lab (Atherolab), Clinical Research Center, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Brazil (J.B., A.C.S.)
| |
Collapse
|
48
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
49
|
Mayberry CL, Maginnis MS. Taking the Scenic Route: Polyomaviruses Utilize Multiple Pathways to Reach the Same Destination. Viruses 2020; 12:v12101168. [PMID: 33076363 PMCID: PMC7602598 DOI: 10.3390/v12101168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
Members of the Polyomaviridae family differ in their host range, pathogenesis, and disease severity. To date, some of the most studied polyomaviruses include human JC, BK, and Merkel cell polyomavirus and non-human subspecies murine and simian virus 40 (SV40) polyomavirus. Although dichotomies in host range and pathogenesis exist, overlapping features of the infectious cycle illuminate the similarities within this virus family. Of particular interest to human health, JC, BK, and Merkel cell polyomavirus have all been linked to critical, often fatal, illnesses, emphasizing the importance of understanding the underlying viral infections that result in the onset of these diseases. As there are significant overlaps in the capacity of polyomaviruses to cause disease in their respective hosts, recent advancements in characterizing the infectious life cycle of non-human murine and SV40 polyomaviruses are key to understanding diseases caused by their human counterparts. This review focuses on the molecular mechanisms by which different polyomaviruses hijack cellular processes to attach to host cells, internalize, traffic within the cytoplasm, and disassemble within the endoplasmic reticulum (ER), prior to delivery to the nucleus for viral replication. Unraveling the fundamental processes that facilitate polyomavirus infection provides deeper insight into the conserved mechanisms of the infectious process shared within this virus family, while also highlighting critical unique viral features.
Collapse
Affiliation(s)
- Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04469, USA
- Correspondence:
| |
Collapse
|
50
|
Rocha S, Hendrix J, Borrenberghs D, Debyser Z, Hofkens J. Imaging the Replication of Single Viruses: Lessons Learned from HIV and Future Challenges To Overcome. ACS NANO 2020; 14:10775-10783. [PMID: 32820634 DOI: 10.1021/acsnano.0c06369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The molecular composition of viral particles indicates that a single virion is capable of initiating an infection. However, the majority of viruses that come into contact with cells fails to infect them. Understanding what makes one viral particle more successful than others requires visualizing the infection process directly in living cells, one virion at a time. In this Perspective, we explain how single-virus imaging using fluorescence microscopy can provide answers to unsolved questions in virology. We discuss fluorescent labeling of virus particles, resolution at the subviral and molecular levels, tracking in living cells, and imaging of interactions between viral and host proteins. We end this Perspective with a set of remaining questions in understanding the life cycle of retroviruses and how imaging a single virus can help researchers address these questions. Although we use examples from the HIV field, these methods are of value for the study of other viruses as well.
Collapse
Affiliation(s)
- Susana Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, B-3001 Heverlee, Flanders, Belgium
| | - Jelle Hendrix
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, B-3001 Heverlee, Flanders, Belgium
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, B-3590 Diepenbeek, Flanders, Belgium
| | - Doortje Borrenberghs
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, B-3001 Heverlee, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3001 Heverlee, Flanders, Belgium
| | - Johan Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, B-3001 Heverlee, Flanders, Belgium
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|