1
|
Cuvelier M, Vangheel J, Thiels W, Ramon H, Jelier R, Smeets B. Stability of asymmetric cell division: A deformable cell model of cytokinesis applied to C. elegans. Biophys J 2023; 122:1858-1867. [PMID: 37085996 PMCID: PMC10209142 DOI: 10.1016/j.bpj.2023.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Cell division during early embryogenesis is linked to key morphogenic events such as embryo symmetry breaking and tissue patterning. It is thought that the physical surrounding of cells together with cell intrinsic cues act as a mechanical "mold," guiding cell division to ensure these events are robust. To quantify how cell division is affected by the mechanical and geometrical environment, we present a novel computational mechanical model of cytokinesis, the final phase of cell division. Simulations with the model reproduced experimentally observed furrow dynamics and describe the volume ratio of daughter cells in asymmetric cell divisions, based on the position and orientation of the mitotic spindle. For dividing cells in geometrically confined environments, we show how the orientation of confinement relative to the division axis modulates the volume ratio in asymmetric cell division. Further, we quantified how cortex viscosity and surface tension determine the shape of a dividing cell and govern bubble-instabilities in asymmetric cell division. Finally, we simulated the formation of the three body axes via sequential (a)symmetric divisions up until the six-cell stage of early C. elegans development, which proceeds within the confines of an eggshell. We demonstrate how model input parameters spindle position and orientation provide sufficient information to reliably predict the volume ratio of daughter cells during the cleavage phase of development. However, for egg geometries perturbed by compression, the model predicts that a change in confinement alone is insufficient to explain experimentally observed differences in cell volume. This points to an effect of the compression on the spindle positioning mechanism. Additionally, the model predicts that confinement stabilizes asymmetric cell divisions against bubble-instabilities.
Collapse
Affiliation(s)
- Maxim Cuvelier
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
| | - Jef Vangheel
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Wim Thiels
- CMPG, M2S Department, KU Leuven, Heverlee, Belgium
| | - Herman Ramon
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Rob Jelier
- CMPG, M2S Department, KU Leuven, Heverlee, Belgium
| | - Bart Smeets
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Yang J, Niu H, Pang S, Liu M, Chen F, Li Z, He L, Mo J, Yi H, Xiao J, Huang Y. MARK3 kinase: Regulation and physiologic roles. Cell Signal 2023; 103:110578. [PMID: 36581219 DOI: 10.1016/j.cellsig.2022.110578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Microtubule affinity-regulating kinase 3 (MARK3), a member of the MARK family, regulates several essential pathways, including the cell cycle, ciliated cell differentiation, and osteoclast differentiation. It is important to understand the control of their activities as MARK3 contains an N-terminal serine/threonine kinase domain, ubiquitin-associated domain, and C-terminal kinase-associated domain, which perform multiple regulatory functions. These functions include post-translational modification (e.g., phosphorylation) and interaction with scaffolding and other proteins. Differences in the amino acid sequence and domain position result in different three-dimensional protein structures and affect the function of MARK3, which distinguish it from the other MARK family members. Recent data indicate a potential role of MARK3 in several pathological conditions, including congenital blepharophimosis syndrome, osteoporosis, and tumorigenesis. The present review focuses on the physiological and pathological role of MARK3, its regulation, and recent developments in the small molecule inhibitors of the MARK3 signalling cascade.
Collapse
Affiliation(s)
- Jingyu Yang
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - Heng Niu
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - ShiGui Pang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Mignlong Liu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Feng Chen
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Zhaoxin Li
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Lifei He
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Jianmei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Huijun Yi
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Juanjuan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Yingze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Kapoor S, Kotak S. Centrosome Aurora A regulates RhoGEF ECT-2 localisation and ensures a single PAR-2 polarity axis in C. elegans embryos. Development 2019; 146:dev174565. [PMID: 31636075 PMCID: PMC7115938 DOI: 10.1242/dev.174565] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
Abstract
Proper establishment of cell polarity is essential for development. In the one-cell C. elegans embryo, a centrosome-localised signal provides spatial information for polarity establishment. It is hypothesised that this signal causes local inhibition of the cortical actomyosin network, and breaks symmetry to direct partitioning of the PAR proteins. However, the molecular nature of the centrosomal signal that triggers cortical anisotropy in the actomyosin network to promote polarity establishment remains elusive. Here, we discover that depletion of Aurora A kinase (AIR-1 in C. elegans) causes pronounced cortical contractions on the embryo surface, and this creates more than one PAR-2 polarity axis. This function of AIR-1 appears to be independent of its role in microtubule nucleation. Importantly, upon AIR-1 depletion, centrosome positioning becomes dispensable in dictating the PAR-2 axis. Moreover, we uncovered that a Rho GEF, ECT-2, acts downstream of AIR-1 in regulating contractility and PAR-2 localisation, and, notably, AIR-1 depletion influences ECT-2 cortical localisation. Overall, this study provides a novel insight into how an evolutionarily conserved centrosome Aurora A kinase inhibits promiscuous PAR-2 domain formation to ensure singularity in the polarity establishment axis.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Asymmetric Inheritance of Cell Fate Determinants: Focus on RNA. Noncoding RNA 2019; 5:ncrna5020038. [PMID: 31075989 PMCID: PMC6630313 DOI: 10.3390/ncrna5020038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
During the last decade, and mainly primed by major developments in high-throughput sequencing technologies, the catalogue of RNA molecules harbouring regulatory functions has increased at a steady pace. Current evidence indicates that hundreds of mammalian RNAs have regulatory roles at several levels, including transcription, translation/post-translation, chromatin structure, and nuclear architecture, thus suggesting that RNA molecules are indeed mighty controllers in the flow of biological information. Therefore, it is logical to suggest that there must exist a series of molecular systems that safeguard the faithful inheritance of RNA content throughout cell division and that those mechanisms must be tightly controlled to ensure the successful segregation of key molecules to the progeny. Interestingly, whilst a handful of integral components of mammalian cells seem to follow a general pattern of asymmetric inheritance throughout division, the fate of RNA molecules largely remains a mystery. Herein, we will discuss current concepts of asymmetric inheritance in a wide range of systems, including prions, proteins, and finally RNA molecules, to assess overall the biological impact of RNA inheritance in cellular plasticity and evolutionary fitness.
Collapse
|
5
|
Nganga R, Oleinik N, Kim J, Selvam SP, De Palma R, Johnson KA, Parikh RY, Gangaraju V, Peterson Y, Dany M, Stahelin RV, Voelkel-Johnson C, Szulc ZM, Bieberich E, Ogretmen B. Receptor-interacting Ser/Thr kinase 1 (RIPK1) and myosin IIA-dependent ceramidosomes form membrane pores that mediate blebbing and necroptosis. J Biol Chem 2018; 294:502-519. [PMID: 30420430 DOI: 10.1074/jbc.ra118.005865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/08/2018] [Indexed: 12/29/2022] Open
Abstract
Formation of membrane pores/channels regulates various cellular processes, such as necroptosis or stem cell niche signaling. However, the roles of membrane lipids in the formation of pores and their biological functions are largely unknown. Here, using the cellular stress model evoked by the sphingolipid analog drug FTY720, we show that formation of ceramide-enriched membrane pores, referred to here as ceramidosomes, is initiated by a receptor-interacting Ser/Thr kinase 1 (RIPK1)-ceramide complex transported to the plasma membrane by nonmuscle myosin IIA-dependent trafficking in human lung cancer cells. Molecular modeling/simulation coupled with site-directed mutagenesis revealed that Asp147 or Asn169 of RIPK1 are key for ceramide binding and that Arg258 or Leu293 residues are involved in the myosin IIA interaction, leading to ceramidosome formation and necroptosis. Moreover, generation of ceramidosomes independently of any external drug/stress stimuli was also detected in the plasma membrane of germ line stem cells in ovaries during the early stages of oogenesis in Drosophila melanogaster Inhibition of ceramidosome formation via myosin IIA silencing limited germ line stem cell signaling and abrogated oogenesis. In conclusion, our findings indicate that the RIPK1-ceramide complex forms large membrane pores we named ceramidosomes. They further suggest that, in addition to their roles in stress-mediated necroptosis, these ceramide-enriched pores also regulate membrane integrity and signaling and might also play a role in D. melanogaster ovary development.
Collapse
Affiliation(s)
- Rose Nganga
- From the Department of Biochemistry and Molecular Biology and.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Natalia Oleinik
- From the Department of Biochemistry and Molecular Biology and.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jisun Kim
- From the Department of Biochemistry and Molecular Biology and.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Shanmugam Panneer Selvam
- From the Department of Biochemistry and Molecular Biology and.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ryan De Palma
- From the Department of Biochemistry and Molecular Biology and.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kristen A Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana, 46617
| | - Rasesh Y Parikh
- From the Department of Biochemistry and Molecular Biology and
| | - Vamsi Gangaraju
- From the Department of Biochemistry and Molecular Biology and
| | - Yuri Peterson
- the College of Pharmacy/Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Mohammed Dany
- From the Department of Biochemistry and Molecular Biology and.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Robert V Stahelin
- the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | | | | | - Erhard Bieberich
- the Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912, and.,the Department of Physiology, University of Kentucky, Lexington, Kentucky 40506
| | - Besim Ogretmen
- From the Department of Biochemistry and Molecular Biology and .,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
6
|
Müller A, Winkler J, Fiedler F, Sastradihardja T, Binder C, Schnabel R, Kungel J, Rothemund S, Hennig C, Schöneberg T, Prömel S. Oriented Cell Division in the C. elegans Embryo Is Coordinated by G-Protein Signaling Dependent on the Adhesion GPCR LAT-1. PLoS Genet 2015; 11:e1005624. [PMID: 26505631 PMCID: PMC4624771 DOI: 10.1371/journal.pgen.1005624] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/01/2015] [Indexed: 12/20/2022] Open
Abstract
Orientation of spindles and cell division planes during development of many species ensures that correct cell-cell contacts are established, which is vital for proper tissue formation. This is a tightly regulated process involving a complex interplay of various signals. The molecular mechanisms underlying several of these pathways are still incompletely understood. Here, we identify the signaling cascade of the C. elegans latrophilin homolog LAT-1, an essential player in the coordination of anterior-posterior spindle orientation during the fourth round of embryonic cell division. We show that the receptor mediates a G protein-signaling pathway revealing that G-protein signaling in oriented cell division is not solely GPCR-independent. Genetic analyses showed that through the interaction with a Gs protein LAT-1 elevates intracellular cyclic AMP (cAMP) levels in the C. elegans embryo. Stimulation of this G-protein cascade in lat-1 null mutant nematodes is sufficient to orient spindles and cell division planes in the embryo in the correct direction. Finally, we demonstrate that LAT-1 is activated by an intramolecular agonist to trigger this cascade. Our data support a model in which a novel, GPCR-dependent G protein-signaling cascade mediated by LAT-1 controls alignment of cell division planes in an anterior-posterior direction via a metabotropic Gs-protein/adenylyl cyclase pathway by regulating intracellular cAMP levels. During embryogenesis an entire organism develops from a single cell. This process is vital for the formation of life, thus cell division occurs with a very distinct orientation and pattern that is tightly controlled by several signaling pathways. The mechanisms underlying these pathways are complex and not yet fully understood. In the roundworm Caenorhabditis elegans, a common genetic model, the patterns and orientations in which cells divide in the embryo have been well characterized offering an ideal model to study the molecular mechanisms involved. Here, we show that the signal mediated by the adhesion G protein-coupled receptor LAT-1 is based on cAMP. This second messenger is essential for the orientation of distinct cell division planes in the early embryo. Studies based on a lat-1 knockout mutant reveal that LAT-1 signaling affects the levels of the second messenger cAMP in the cells via a specific G protein. Thereby the receptor is activated by an intrinsic sequence. This pathway is the first one clearly shown to involve a G protein-coupled receptor-dependent G-protein signal in orientation of embryonic cell division, offering a novel level of regulation of this process among other described pathways.
Collapse
Affiliation(s)
- Antje Müller
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Jana Winkler
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Franziska Fiedler
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | - Claudia Binder
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ralf Schnabel
- Institute of Genetics, TU Braunschweig, Braunschweig, Germany
| | - Jana Kungel
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Sven Rothemund
- Core Unit Peptide Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | - Torsten Schöneberg
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Simone Prömel
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
7
|
Naz F, Islam A, Ahmad F, Hassan MI. Atypical PKC phosphorylates microtubule affinity-regulating kinase 4 in vitro. Mol Cell Biochem 2015; 410:223-8. [PMID: 26346160 DOI: 10.1007/s11010-015-2555-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/03/2015] [Indexed: 01/28/2023]
Abstract
MAP/Microtubule affinity-regulating kinase 4 (MARK4), a Ser/Thr protein kinases, is related to the Par-1 (partitioning-defective) gene products, and is the human ortholog of Par-1. MARK4 shows its role in the cell polarity at the time of embryonic development. It is mostly located at the basal region of cells, providing apico-basal polarity. Here, we made two variants of human Par-1d (MARK4), kinase domain (MARK4-F2), and kinase domain along with 59 N-terminal residues (MARK4-F1) and saw their ATPase hydrolysis in the presence of each other. We observed that the activity of one variant was increased in the presence of other. We also demonstrated that both variants were phosphorylated by atypical PKC and their activities were increased in the presence of increasing concentration of atypical protein kinase c (aPKC). The phosphorylation was observed at the serine and threonine residues of MARK4. The interaction of MARK2 and MARK3 with aPKC and their negative regulation by aPKC is already known. This study confirms a functional link between aPKC and MARK4, two central determinants of cell polarity, and it suggests that aPKC may regulate all four members of Par-1 through phosphorylating them in polarized cells.
Collapse
Affiliation(s)
- Farha Naz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
8
|
Luo A, Shi C, Zhang L, Sun MX. The expression and roles of parent-of-origin genes in early embryogenesis of angiosperms. FRONTIERS IN PLANT SCIENCE 2014; 5:729. [PMID: 25566300 PMCID: PMC4267172 DOI: 10.3389/fpls.2014.00729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/01/2014] [Indexed: 05/03/2023]
Abstract
Uniparental transcripts during embryogenesis may arise due to gamete delivery during fertilization or genomic imprinting. Such transcripts have been found in a number of plant species and appear critical for the early development of embryo or endosperm in seeds. Although the regulatory expression mechanism and function of these genes in embryogenesis require further elucidation, recent studies suggest stage-specific and highly dynamic features that might be essential for critical developmental events such as zygotic division and cell fate determination during embryogenesis. Here, we summarize the current work in this field and discuss future research directions.
Collapse
Affiliation(s)
- An Luo
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- College of Life Sciences, Yangtze UniversityJingzhou, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Liyao Zhang
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- *Correspondence: Meng-Xiang Sun, State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China e-mail:
| |
Collapse
|
9
|
Chang CC, Hsiao YM, Huang TY, Cook CE, Shigenobu S, Chang TH. Noncanonical expression of caudal during early embryogenesis in the pea aphid Acyrthosiphon pisum: maternal cad-driven posterior development is not conserved. INSECT MOLECULAR BIOLOGY 2013; 22:442-455. [PMID: 23683148 DOI: 10.1111/imb.12035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Previously we identified anterior localization of hunchback (Aphb) mRNA in oocytes and early embryos of the parthenogenetic and viviparous pea aphid Acyrthosiphon pisum, suggesting that the breaking of anterior asymmetry in the oocytes leads to the formation of the anterior axis in embryos. In order to study posterior development in the asexual pea aphid, we cloned and analysed the developmental expression of caudal (Apcad), a posterior gene highly conserved in many animal phyla. We found that transcripts of Apcad were not detected in germaria, oocytes and embryos prior to the formation of the blastoderm in the asexual (viviparous) pea aphid. This unusual expression pattern differs from that of the existing insect models, including long- and short-germ insects, where maternal cad mRNA is passed to the early embryos and forms a posterior-anterior gradient. The first detectable Apcad expression occurred in the newly formed primordial germ cells and their adjacent blastodermal cells during late blastulation. From gastrulation onward, and as in other insects, Apcad mRNA is restricted to the posteriormost region of the germ band. Similarly, in the sexual (oviparous) oocytes we were able to identify anterior localization of Aphb mRNA but posterior localization of Apcad was not detected. This suggests that cad-driven posterior development is not conserved during early embryogenesis in asexual and sexual pea aphids.
Collapse
Affiliation(s)
- C-C Chang
- Laboratory for Genetics and Development, Department of Entomology/Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
10
|
Lu MS, Johnston CA. Molecular pathways regulating mitotic spindle orientation in animal cells. Development 2013; 140:1843-56. [PMID: 23571210 DOI: 10.1242/dev.087627] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orientation of the cell division axis is essential for the correct development and maintenance of tissue morphology, both for symmetric cell divisions and for the asymmetric distribution of fate determinants during, for example, stem cell divisions. Oriented cell division depends on the positioning of the mitotic spindle relative to an axis of polarity. Recent studies have illuminated an expanding list of spindle orientation regulators, and a molecular model for how cells couple cortical polarity with spindle positioning has begun to emerge. Here, we review both the well-established spindle orientation pathways and recently identified regulators, focusing on how communication between the cell cortex and the spindle is achieved, to provide a contemporary view of how positioning of the mitotic spindle occurs.
Collapse
Affiliation(s)
- Michelle S Lu
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
11
|
Zhang Y, Wang W, Chen J, Zhang K, Gao F, Gao B, Zhang S, Dong M, Besenbacher F, Gong W, Zhang M, Sun F, Feng W. Structural insights into the intrinsic self-assembly of Par-3 N-terminal domain. Structure 2013; 21:997-1006. [PMID: 23643951 DOI: 10.1016/j.str.2013.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/27/2013] [Accepted: 04/01/2013] [Indexed: 12/17/2022]
Abstract
Par-3, the central organizer of the Par-3/Par-6/atypical protein kinase C complex, is a multimodular scaffold protein that is essential for cell polarity establishment and maintenance. The N-terminal domain (NTD) of Par-3 is capable of self-association to form filament-like structures, although the underlying mechanism is poorly understood. Here, we determined the crystal structure of Par-3 NTD and solved the filament structure by cryoelectron microscopy. We found that an intrinsic "front-to-back" interaction mode is important for Par-3 NTD self-association and that both the lateral and longitudinal packing within the filament are mediated by electrostatic interactions. Disruptions of the lateral or longitudinal packing significantly impaired Par-3 NTD self-association and thereby impacted the Par-3-mediated epithelial polarization. We finally demonstrated that a Par-3 NTD-like domain from histidine ammonia-lyase also harbors a similar self-association capacity. This work unequivocally provides the structural basis for Par-3 NTD self-association and characterizes one type of protein domain that can self-assemble via electrostatic interactions.
Collapse
Affiliation(s)
- Yan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Naz F, Anjum F, Islam A, Ahmad F, Hassan MI. Microtubule Affinity-Regulating Kinase 4: Structure, Function, and Regulation. Cell Biochem Biophys 2013; 67:485-99. [DOI: 10.1007/s12013-013-9550-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Nakano A, Takashima S. LKB1 and AMP-activated protein kinase: regulators of cell polarity. Genes Cells 2012; 17:737-47. [PMID: 22892070 PMCID: PMC3533759 DOI: 10.1111/j.1365-2443.2012.01629.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/25/2012] [Indexed: 12/25/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK), a metabolic protein kinase, and its upstream kinase LKB1 play crucial roles in the establishment and maintenance of cell polarity. Although the shapes of polarized cells display extraordinary diversity, the key molecules involved in cell polarity are relatively well conserved. Here, we review the mechanisms and factors responsible for organizing cell polarity and the role of LKB1 and AMPK in cell polarity.
Collapse
Affiliation(s)
- Atsushi Nakano
- Department of Molecular Cardiology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | | |
Collapse
|
14
|
Pittman KJ, Skop AR. Anterior PAR proteins function during cytokinesis and maintain DYN-1 at the cleavage furrow in Caenorhabditis elegans. Cytoskeleton (Hoboken) 2012; 69:826-39. [PMID: 22887994 DOI: 10.1002/cm.21053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022]
Abstract
PAR proteins are key regulators of cellular polarity and have links to the endocytic machinery and the actin cytoskeleton. Our data suggest a unique role for PAR proteins in cytokinesis. We have found that at the onset of cytokinesis, anterior PAR-6 and posterior PAR-2 proteins are redistributed to the furrow membrane in a temporal and spatial manner. PAR-6 and PAR-2 localize to the furrow membrane during ingression but PAR-2-GFP is distinct in that it is excluded from the extreme tip of the furrow. Once the midbody has formed, PAR-2-GFP becomes restricted to the midbody region (the midbody plus the membrane flanking it). Depletion of both anterior PAR proteins, PAR-3 and PAR-6, led to an increase in multinucleate embryos, suggesting that the anterior PAR proteins are necessary during cytokinesis and that PAR-3 and PAR-6 function in cytokinesis may be partially redundant. Lastly, anterior PAR proteins play a role in the maintenance of DYN-1 in the cleavage furrow. Our data indicate that the PAR proteins are involved in the events that occur during cytokinesis and may play a role in promoting the membrane trafficking and remodeling events that occur during this time.
Collapse
Affiliation(s)
- Kelly J Pittman
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
15
|
Dhonukshe P. Mechanistic framework for establishment, maintenance, and alteration of cell polarity in plants. ScientificWorldJournal 2012; 2012:981658. [PMID: 22645499 PMCID: PMC3354747 DOI: 10.1100/2012/981658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/14/2011] [Indexed: 01/07/2023] Open
Abstract
Cell polarity establishment, maintenance, and alteration are central to the developmental and response programs of nearly all organisms and are often implicated in abnormalities ranging from patterning defects to cancer. By residing at the distinct plasma membrane domains polar cargoes mark the identities of those domains, and execute localized functions. Polar cargoes are recruited to the specialized membrane domains by directional secretion and/or directional endocytic recycling. In plants, auxin efflux carrier PIN proteins display polar localizations in various cell types and play major roles in directional cell-to-cell transport of signaling molecule auxin that is vital for plant patterning and response programs. Recent advanced microscopy studies applied to single cells in intact plants reveal subcellular PIN dynamics. They uncover the PIN polarity generation mechanism and identified important roles of AGC kinases for polar PIN localization. AGC kinase family members PINOID, WAG1, and WAG2, belonging to the AGC-3 subclass predominantly influence the polar localization of PINs. The emerging mechanism for AGC-3 kinases action suggests that kinases phosphorylate PINs mainly at the plasma membrane after initial symmetric PIN secretion for eventual PIN internalization and PIN sorting into distinct ARF-GEF-regulated polar recycling pathways. Thus phosphorylation status directs PIN translocation to different cell sides. Based on these findings a mechanistic framework evolves that suggests existence of cell side-specific recycling pathways in plants and implicates AGC3 kinases for differential PIN recruitment among them for eventual PIN polarity establishment, maintenance, and alteration.
Collapse
Affiliation(s)
- Pankaj Dhonukshe
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
16
|
|
17
|
Franz A, Orth M, Pirson PA, Sonneville R, Blow JJ, Gartner A, Stemmann O, Hoppe T. CDC-48/p97 coordinates CDT-1 degradation with GINS chromatin dissociation to ensure faithful DNA replication. Mol Cell 2011; 44:85-96. [PMID: 21981920 PMCID: PMC3428722 DOI: 10.1016/j.molcel.2011.08.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/22/2011] [Accepted: 08/03/2011] [Indexed: 01/28/2023]
Abstract
Faithful transmission of genomic information requires tight spatiotemporal regulation of DNA replication factors. In the licensing step of DNA replication, CDT-1 is loaded onto chromatin to subsequently promote the recruitment of additional replication factors, including CDC-45 and GINS. During the elongation step, the CDC-45/GINS complex moves with the replication fork; however, it is largely unknown how its chromatin association is regulated. Here, we show that the chaperone-like ATPase CDC-48/p97 coordinates degradation of CDT-1 with release of the CDC-45/GINS complex. C. elegans embryos lacking CDC-48 or its cofactors UFD-1/NPL-4 accumulate CDT-1 on mitotic chromatin, indicating a critical role of CDC-48 in CDT-1 turnover. Strikingly, CDC-48(UFD-1/NPL-4)-deficient embryos show persistent chromatin association of CDC-45/GINS, which is a consequence of CDT-1 stabilization. Moreover, our data confirmed a similar regulation in Xenopus egg extracts, emphasizing a conserved coordination of licensing and elongation events during eukaryotic DNA replication by CDC-48/p97.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne Zülpicher Str. 47a 50674 Cologne, Germany
| | - Michael Orth
- Department of Genetics, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Paul A. Pirson
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne Zülpicher Str. 47a 50674 Cologne, Germany
| | - Remi Sonneville
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Scotland
| | - J. Julian Blow
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Scotland
| | - Anton Gartner
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Scotland
| | - Olaf Stemmann
- Department of Genetics, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne Zülpicher Str. 47a 50674 Cologne, Germany
| |
Collapse
|
18
|
Parton RM, Hamilton RS, Ball G, Yang L, Cullen CF, Lu W, Ohkura H, Davis I. A PAR-1-dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte. J Cell Biol 2011; 194:121-35. [PMID: 21746854 PMCID: PMC3135408 DOI: 10.1083/jcb.201103160] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/07/2011] [Indexed: 12/31/2022] Open
Abstract
Cytoskeletal organization is central to establishing cell polarity in various cellular contexts, including during messenger ribonucleic acid sorting in Drosophila melanogaster oocytes by microtubule (MT)-dependent molecular motors. However, MT organization and dynamics remain controversial in the oocyte. In this paper, we use rapid multichannel live-cell imaging with novel image analysis, tracking, and visualization tools to characterize MT polarity and dynamics while imaging posterior cargo transport. We found that all MTs in the oocyte were highly dynamic and were organized with a biased random polarity that increased toward the posterior. This organization originated through MT nucleation at the oocyte nucleus and cortex, except at the posterior end of the oocyte, where PAR-1 suppressed nucleation. Our findings explain the biased random posterior cargo movements in the oocyte that establish the germline and posterior.
Collapse
Affiliation(s)
- Richard M. Parton
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Russell S. Hamilton
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Graeme Ball
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Lei Yang
- Department of Physics, Heriot-Watt
University, Edinburgh EH14 4AS, Scotland, UK
| | - C. Fiona Cullen
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Weiping Lu
- Department of Physics, Heriot-Watt
University, Edinburgh EH14 4AS, Scotland, UK
| | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Ilan Davis
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| |
Collapse
|
19
|
Stricker SA. Potential upstream regulators and downstream targets of AMP-activated kinase signaling during oocyte maturation in a marine worm. Reproduction 2011; 142:29-39. [DOI: 10.1530/rep-10-0509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Unlike in mice, where the onset of oocyte maturation (germinal vesicle breakdown, GVBD) is blocked by cAMP and triggered by AMP-activated kinase (AMPK), oocytes of the marine nemertean wormCerebratulusundergo GVBD in response to cAMP elevations and AMPK deactivation. Since the pathways underlying AMPK's effects on mammalian or nemertean GVBD have not been fully defined, follicle-free nemertean oocytes were treated with pharmacological modulators and subsequently analyzed via immunoblotting methods using phospho-specific antibodies to potential regulators and targets of AMPK. Based on such phosphorylation patterns, immature oocytes possessed an active LKB1-like kinase that phosphorylated AMPK's T172 site to activate AMPK, whereas during oocyte maturation, AMPK and LKB1-like activities declined. In addition, given that MAPK can deactivate AMPK in somatic cells, oocytes were treated with inhibitors of ERK1/2 MAPK activation. However, these assays indicated that T172 dephosphorylation during maturation-associated AMPK deactivation did not require MAPK and that an observed inhibition of GVBD elicited by the MAPK kinase blocker U0126 was actually due to ectopic AMPK activation rather than MAPK inactivation. Similarly, based on tests using an inhibitor of maturation-promoting factor (MPF), T172 dephosphorylation occurred upstream to, and independently of, MPF activation. Alternatively, active MPF and MAPK were necessary for fully phosphorylating a presumably inhibitory S485/491 site on AMPK. Furthermore, in assessing signals possibly linking AMPK deactivation to MPF activation, evidence was obtained for maturing oocytes upregulating target-of-rapamycin activity and downregulating the cyclin-dependent kinase inhibitor Kip1. Collectively, these findings are discussed relative to multiple pathways potentially mediating AMPK signaling during GVBD.
Collapse
|
20
|
Making heads from tails: Development of a reversed anterior–posterior axis during budding in an acoel. Dev Biol 2010; 338:86-97. [DOI: 10.1016/j.ydbio.2009.10.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/21/2009] [Accepted: 10/21/2009] [Indexed: 11/23/2022]
|
21
|
Wen J, Zhang H, Li G, Mao G, Chen X, Wang J, Guo M, Mu X, Ouyang H, Zhang M, Xia G. PAR6, a potential marker for the germ cells selected to form primordial follicles in mouse ovary. PLoS One 2009; 4:e7372. [PMID: 19809506 PMCID: PMC2753645 DOI: 10.1371/journal.pone.0007372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 09/15/2009] [Indexed: 11/18/2022] Open
Abstract
Partitioning-defective proteins (PAR) are detected to express mainly in the cytoplast, and play an important role in cell polarity. However, we showed here that PAR6, one kind of PAR protein, was localized in the nuclei of mouse oocytes that formed primordial follicles during the perinatal period, suggesting a new role of PAR protein. It is the first time we found that, in mouse fetal ovaries, PAR6 appeared in somatic cell cytoplasm and fell weak when somatic cells invaded germ cell cysts at 17.5 days post coitus (dpc). Meanwhile, the expression of PAR6 was observed in cysts, and became strong in the nuclei of some germ cells at 19.5 dpc and all primordial follicular oocytes at 3 day post parturition (dpp), and then obviously declined when the primordial follicles entered the folliculogenic growth phase. During the primordial follicle pool foundation, the number of PAR6 positive germ cells remained steady and was consistent with that of formed follicles at 3 dpp. There were no TUNEL (apoptosis examination) positive germ cells stained with PAR6 at any time studied. The number of follicles significantly declined when 15.5 dpc ovaries were treated with the anti-PAR6 antibody and PAR6 RNA interference. Carbenoxolone (CBX, a known blocker of gap junctions) inhibited the expression of PAR6 in germ cells and the formation of follicles. Our results suggest that PAR6 could be used as a potential marker of germ cells for the primordial follicle formation, and the expression of PAR6 by a gap junction-dependent process may contribute to the formation of primordial follicles and the maintenance of oocytes at the diplotene stage.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Hua Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Ge Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Guanping Mao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Xiufen Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Jianwei Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Meng Guo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Xinyi Mu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Hong Ouyang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
- * E-mail: (MZ); (GX)
| | - Guoliang Xia
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
- * E-mail: (MZ); (GX)
| |
Collapse
|
22
|
Ossipova O, Ezan J, Sokol SY. PAR-1 phosphorylates Mind bomb to promote vertebrate neurogenesis. Dev Cell 2009; 17:222-33. [PMID: 19686683 PMCID: PMC2849776 DOI: 10.1016/j.devcel.2009.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 04/04/2009] [Accepted: 06/17/2009] [Indexed: 12/25/2022]
Abstract
Generation of neurons in the vertebrate central nervous system requires a complex transcriptional regulatory network and signaling processes in polarized neuroepithelial progenitor cells. Here we demonstrate that neurogenesis in the Xenopus neural plate in vivo and mammalian neural progenitors in vitro involves intrinsic antagonistic activities of the polarity proteins PAR-1 and aPKC. Furthermore, we show that Mind bomb (Mib), a ubiquitin ligase that promotes Notch ligand trafficking and activity, is a crucial molecular substrate for PAR-1. The phosphorylation of Mib by PAR-1 results in Mib degradation, repression of Notch signaling, and stimulation of neuronal differentiation. These observations suggest a conserved mechanism for neuronal fate determination that might operate during asymmetric divisions of polarized neural progenitor cells.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
23
|
Daniels BR, Perkins EM, Dobrowsky TM, Sun SX, Wirtz D. Asymmetric enrichment of PIE-1 in the Caenorhabditis elegans zygote mediated by binary counterdiffusion. ACTA ACUST UNITED AC 2009; 184:473-9. [PMID: 19221192 PMCID: PMC2654130 DOI: 10.1083/jcb.200809077] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To generate cellular diversity in developing organisms while simultaneously maintaining the developmental potential of the germline, germ cells must be able to preferentially endow germline daughter cells with a cytoplasmic portion containing specialized cell fate determinants not inherited by somatic cells. In Caenorhabditis elegans, germline inheritance of the protein PIE-1 is accomplished by first asymmetrically localizing the protein to the germplasm before cleavage and subsequently degrading residual levels of the protein in the somatic cytoplasm after cleavage. Despite its critical involvement in cell fate determination, the enrichment of germline determinants remains poorly understood. Here, combining live-cell fluorescence methods and kinetic modeling, we demonstrate that the enrichment process does not involve protein immobilization, intracellular compartmentalization, or localized protein degradation. Instead, our results support a heterogeneous reaction/diffusion model for PIE-1 enrichment in which the diffusion coefficient of PIE-1 is reversibly reduced in the posterior, resulting in a stable protein gradient across the zygote at steady state.
Collapse
Affiliation(s)
- Brian R Daniels
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
24
|
Onsum MD, Rao CV. Calling heads from tails: the role of mathematical modeling in understanding cell polarization. Curr Opin Cell Biol 2009; 21:74-81. [PMID: 19167872 PMCID: PMC2692189 DOI: 10.1016/j.ceb.2009.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/31/2008] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
Abstract
Theorists have long speculated on the mechanisms driving directed and spontaneous cell polarization. Recently, experimentalists have uncovered many of the mechanisms underlying polarization, enabling these models to be directly tested. In the process, they have demonstrated the explanatory and predictive value of these models and, at the same time, uncovered additional complexities not currently explained by them. In this review, we discuss some of main theories regarding cell polarization and highlight how the intersection of mathematical and experimental biology has yielded new insights into these mechanisms in the case of budding yeast and eukaryotic chemotaxis.
Collapse
|
25
|
Abstract
Abnormal neuronal migration is manifested in brain malformations such as lissencephaly. The impairment in coordinated cell motility likely reflects a faulty mechanism of cell polarization or coupling between polarization and movement. Here we report on the relationship between the polarity kinase MARK2/Par-1 and its substrate, the well-known lissencephaly-associated gene doublecortin (DCX), during cortical radial migration. We have previously shown using in utero electroporation that reduced MARK2 levels resulted in multipolar neurons stalled at the intermediate zone border, similar to the phenotype observed in the case of DCX silencing. However, whereas reduced MARK2 stabilized microtubules, we show here that knock-down of DCX increased microtubule dynamics. This led to the hypothesis that simultaneous reduction may alleviate the phenotype. Coreduction of MARK2 and DCX resulted in a partial restoration of the normal neuronal migration phenotype in vivo. The kinetic behavior of the centrosomes reflected the different molecular mechanisms activated when either protein was reduced. In the case of reducing MARK2 processive motility of the centrosome was hindered, whereas when DCX was reduced, centrosomes moved quickly but bidirectionally. Our results stress the necessity for successful coupling between the polarity pathway and cytoplasmic dynein-dependent activities for proper neuronal migration.
Collapse
|
26
|
Sung HH, Telley IA, Papadaki P, Ephrussi A, Surrey T, Rørth P. Drosophila ensconsin promotes productive recruitment of Kinesin-1 to microtubules. Dev Cell 2009; 15:866-76. [PMID: 19081075 DOI: 10.1016/j.devcel.2008.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 08/28/2008] [Accepted: 10/09/2008] [Indexed: 11/25/2022]
Abstract
Ensconsin is a conserved microtubule-associated protein (MAP) that interacts dynamically with microtubules, but its cellular function has remained elusive. We show that Drosophila ensconsin is required for all known kinesin-1-dependent processes in the polarized oocyte without detectable effects on microtubules. ensconsin is also required in neurons. Using a single molecule assay for kinesin-1 motility in Drosophila ovary extract, we show that recruitment to microtubules and subsequent motility is severely impaired without ensconsin. Ensconsin protein is enriched at the oocyte anterior and apically in polarized epithelial cells, although required for localization of posterior determinants. Par-1 is required for ensconsin localization and directly phosphorylates it at conserved sites. Our results reveal an unexpected function of a MAP, promoting productive recruitment of a specific motor to microtubules, and an additional level of kinesin regulation. Furthermore, spatial control of motor recruitment can provide additional regulatory control in Par-1 and microtubule-dependent cell polarity.
Collapse
Affiliation(s)
- Hsin-Ho Sung
- Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
27
|
Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication. Proc Natl Acad Sci U S A 2008; 105:12879-84. [PMID: 18728180 DOI: 10.1073/pnas.0805944105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since cdc48 mutants were isolated by the first genetic screens for cell division cycle (cdc) mutants in yeast, the requirement of the chaperone-like ATPase Cdc48/p97 during cell division has remained unclear. Here, we discover an unanticipated function for Caenorhabditis elegans CDC-48 in DNA replication linked to cell cycle control. Our analysis of the CDC-48(UFD-1/NPL-4) complex identified a general role in S phase progression of mitotic cells essential for embryonic cell division and germline development of adult worms. These developmental defects result from activation of the DNA replication checkpoint caused by replication stress. Similar to loss of replication licensing factors, DNA content is strongly reduced in worms depleted for CDC-48, UFD-1, and NPL-4. In addition, these worms show decreased DNA synthesis and hypersensitivity toward replication blocking agents. Our findings identified a role for CDC-48(UFD-1/NPL-4) in DNA replication, which is important for cell cycle progression and genome stability.
Collapse
|
28
|
Accurate balance of the polarity kinase MARK2/Par-1 is required for proper cortical neuronal migration. J Neurosci 2008; 28:5710-20. [PMID: 18509032 DOI: 10.1523/jneurosci.0911-08.2008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Radial neuronal migration is key in structuring the layered cortex. Here we studied the role of MARK2/Par-1 in this process. The dual name stands for the MAP/microtubule affinity-regulating kinase 2 (MARK2) and the known polarity kinase 1 (Par-1). Reduced MARK2 levels using in utero electroporation resulted in multipolar neurons stalled at the intermediate zone border. Reintroduction of the wild-type kinase postmitotically improved neuronal migration. Our results indicated that reduction in MARK2 affected centrosomal dynamics in migrating neurons of the cerebral cortex. Increased MARK2 has been shown to destabilize microtubules, and here we show for the first time that reduced MARK2 stabilized microtubules in primary cultured neurons. Kinase-independent activity permitted multipolar-to-bipolar transition but did not restore proper migration. Increased MARK2 levels resulted in a different phenotype, which is loss of neuronal polarity. MARK2 kinase activity reduction hindered migration in the developing brain, which was rescued by increasing kinase activity. Our results stress the necessity of maintaining dynamic microtubules for proper neuronal migration. Furthermore, the exact requirements for MARK2 and its kinase activity vary during the course of neuronal migration. Collectively, our results stress the requirements for the different roles of MARK2 during neuronal migration.
Collapse
|
29
|
Signaling networks during development: the case of asymmetric cell division in the Drosophila nervous system. Dev Biol 2008; 321:1-17. [PMID: 18586022 DOI: 10.1016/j.ydbio.2008.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 11/22/2022]
Abstract
Remarkable progress in genetics and molecular biology has made possible the sequencing of the genomes from numerous species. In the post-genomic era, technical developments in the fields of proteomics and bioinformatics are poised to further catapult our understanding of protein structure, function and organization into complex signaling networks. One of the greatest challenges in the field now is to unravel the functional signaling networks and their spatio-temporal regulation in living cells. Here, the need for such in vivo system-wide level approach is illustrated in relation to the mechanisms that underlie the biological process of asymmetric cell division. Genomic, post-genomic and live imaging techniques are reviewed in light of the huge impact they are having on this field for the discovering of new proteins and for the in vivo analysis of asymmetric cell division. The proteins, signals and the emerging networking of functional connections that is arising between them during this process in the Drosophila nervous system will be also discussed.
Collapse
|
30
|
Feng W, Wu H, Chan LN, Zhang M. Par-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J Biol Chem 2008; 283:23440-9. [PMID: 18550519 DOI: 10.1074/jbc.m802482200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PDZ domain-containing scaffold protein Par-3 is the central organizer of the evolutionarily conserved cell polarity-regulatory Par-3.Par-6.atypical protein kinase C complex. The PDZ domains of Par-3 have also been implicated as potential phosphoinositide signaling integrators, since its second PDZ domain binds to phosphoinositides, and the third PDZ interacts with phosphoinositide phosphatase PTEN. However, the molecular basis of Par-3/PTEN interaction is still poorly understood. Additionally, it is not known whether the regulatory function of PTEN in cell polarity is specifically mediated by its interaction with Par-3. The structures of Par-3 PDZ3 in both its free and PTEN tail peptide-bound forms determined in this work reveal that Par-3 PDZ3 binds to PTEN with two discrete binding sites: a canonical PDZ-ligand interaction site and a distal, opposite charge-charge interaction site. This distinct target recognition mechanism confers the interaction specificity of the Par-3.PTEN complex. We show that the Par-3 PDZ3-PTEN binding is required for the enrichment of PTEN at the junctional membranes of Madin-Darby canine kidney cells. Finally, we demonstrate that the junctional membrane-localized PTEN is specifically required for the polarization of Madin-Darby canine kidney cells. These results, together with earlier data, firmly establish that Par-3 functions as a scaffold in integrating phosphoinositide signaling events during cellular polarization.
Collapse
Affiliation(s)
- Wei Feng
- Department of Biochemistry, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
31
|
Ossipova O, Tabler J, Green JBA, Sokol SY. PAR1 specifies ciliated cells in vertebrate ectoderm downstream of aPKC. Development 2007; 134:4297-306. [PMID: 17993468 PMCID: PMC2170474 DOI: 10.1242/dev.009282] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Partitioning-defective 1 (PAR1) and atypical protein kinase C (aPKC) are conserved serine/threonine protein kinases implicated in the establishment of cell polarity in many species from yeast to humans. Here we investigate the roles of these protein kinases in cell fate determination in Xenopus epidermis. Early asymmetric cell divisions at blastula and gastrula stages give rise to the superficial (apical) and the deep (basal) cell layers of epidermal ectoderm. These two layers consist of cells with different intrinsic developmental potential, including superficial epidermal cells and deep ciliated cells. Our gain- and loss-of-function studies demonstrate that aPKC inhibits ciliated cell differentiation in Xenopus ectoderm and promotes superficial cell fates. We find that the crucial molecular substrate for aPKC is PAR1, which is localized in a complementary domain in superficial ectoderm cells. We show that PAR1 acts downstream of aPKC and is sufficient to stimulate ciliated cell differentiation and inhibit superficial epidermal cell fates. Our results suggest that aPKC and PAR1 function sequentially in a conserved molecular pathway that links apical-basal cell polarity to Notch signaling and cell fate determination. The observed patterning mechanism may operate in a wide range of epithelial tissues in many species.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, Box 1020, New York, NY 10029, USA
| | - Jacqui Tabler
- Department of Craniofacial Development, Kings College, London SE1 9RT, UK
| | - Jeremy B. A. Green
- Department of Craniofacial Development, Kings College, London SE1 9RT, UK
| | - Sergei Y. Sokol
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, Box 1020, New York, NY 10029, USA
| |
Collapse
|
32
|
Abstract
The body axes of the fruit fly are established in mid-oogenesis by the localization of three mRNA determinants, bicoid, oskar, and gurken, within the oocyte. General mechanisms of RNA localization and cell polarization, applicable to many cell types, have emerged from investigation of these determinants in Drosophila oogenesis. Localization of these RNAs is dependent on the germline microtubules, which reorganize to form a polarized array at mid-oogenesis in response to a signaling relay between the oocyte and the surrounding somatic follicle cells. Here we describe what is known about this microtubule reorganization and the signaling relay that triggers it. Recent studies have identified a number of ubiquitous RNA binding proteins essential for this process. So far, no targets for any of these proteins have been identified, and future work will be needed to illuminate how they function to reorganize microtubes and whether similar mechanisms also exist in other cell types.
Collapse
Affiliation(s)
- Josefa Steinhauer
- Skirball Institute for Biomolecular Medicine and Department of Developmental Genetics, New York University School of Medicine, New York, New York 10016,USA.
| | | |
Collapse
|
33
|
Koh H, Chung J. AMPK links energy status to cell structure and mitosis. Biochem Biophys Res Commun 2007; 362:789-92. [PMID: 17709095 DOI: 10.1016/j.bbrc.2007.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Accepted: 08/03/2007] [Indexed: 10/23/2022]
Abstract
AMP-activated protein kinase (AMPK) is known as an important cellular energy sensor, but its in vivo role has not been fully understood. Recent studies provided surprising results that AMPK regulates cell polarity and mitosis under the control of tumour suppressor LKB1. Moreover, these newly found in vivo functions of AMPK are regulated by energy status in a cell autonomous manner. These findings provide novel insights into the physiological function of AMPK and the treatment of AMPK-related diseases such as cancer and diabetes.
Collapse
Affiliation(s)
- Hyongjong Koh
- National Creative Research Initiatives Center for Cell Growth Regulation and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong-Gu, Taejon 305-701, Republic of Korea.
| | | |
Collapse
|
34
|
Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:770-93. [PMID: 18028872 DOI: 10.1016/j.bbamem.2007.09.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/28/2007] [Accepted: 09/03/2007] [Indexed: 12/21/2022]
Abstract
Development of tight junctions and cell polarity in epithelial cells requires a complex cellular machinery to execute an internal program in response to ambient cues. Tight junctions, a product of this machinery, can act as gates of the paracellular pathway, fences that keep the identity of plasma membrane domains, bridges that communicate neighboring cells. The polarization internal program and machinery are conserved in yeast, worms, flies and mammals, and in cell types as different as epithelia, neurons and lymphocytes. Polarization and tight junctions are dynamic features that change during development, in response to physiological and pharmacological challenges and in pathological situations like infection.
Collapse
Affiliation(s)
- Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, AP 14-740, México D.F. 07000, México.
| | | | | | | | | |
Collapse
|
35
|
Weisblat DA. Asymmetric cell divisions in the early embryo of the leech Helobdella robusta. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:79-95. [PMID: 17585497 DOI: 10.1007/978-3-540-69161-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The small glossiphoniid leech Helobdella robusta is among the best-studied representatives of the super-phylum Lophotrochozoa in terms of early development. The Helobdella embryo undergoes a modified version of spiral cleavage, characterized by stereotyped cell lineages comprising multiple examples of equal and unequal divisions, many of which are well-conserved with respect to those of other clitellate annelids, such as the oligochaete Tubifex. Here, we review the early development of Helobdella, focusing on the variety of unequal cell divisions. We then summarize an experimental analysis of the mechanisms underlying the unequal first cleavage in Helobdella, concluding that the unequal first cleavages in Helobdella and Tubifex proceed by different mechanisms. This result demonstrates the evolvability of the basic cell biological mechanisms underlying well-conserved developmental processes. Finally, we propose a model in which the unequal second cleavage in Helobdella may be regulated by the polarized distribution of PAR protein homologs, convergent with the unequal first cleavage of the nematode Caenorhabditis elegans (super-phylum Ecdysozoa).
Collapse
Affiliation(s)
- David A Weisblat
- University of California, Dept. of Molecular and Cell Biology, 385 LSA, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
36
|
Pagano JM, Farley BM, McCoig LM, Ryder SP. Molecular basis of RNA recognition by the embryonic polarity determinant MEX-5. J Biol Chem 2007; 282:8883-94. [PMID: 17264081 DOI: 10.1074/jbc.m700079200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Embryonic development requires maternal proteins and RNA. In Caenorhabditis elegans, a gradient of CCCH tandem zinc finger (TZF) proteins coordinates axis polarization and germline differentiation. These proteins govern expression from maternal mRNAs by an unknown mechanism. Here we show that the TZF protein MEX-5, a primary anterior determinant, is an RNA-binding protein that recognizes linear RNA sequences with high affinity but low specificity. The minimal binding site is a tract of six or more uridines within a 9-13-nucleotide window. This sequence is remarkably abundant in the 3'-untranslated region of C. elegans transcripts, demonstrating that MEX-5 alone cannot specify mRNA target selection. In contrast, human TZF homologs tristetraprolin and ERF-2 bind with high specificity to UUAUUUAUU elements. We show that mutation of a single amino acid in each MEX-5 zinc finger confers tristetraprolin-like specificity to this protein. We propose that divergence of this discriminator residue modulates the RNA-binding specificity in this protein class. This residue is variable in nematode TZF proteins, but is invariant in other metazoans. Therefore, the divergence of TZF proteins and their critical role in early development is likely a nematode-specific adaptation.
Collapse
Affiliation(s)
- John M Pagano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
37
|
Sardet C, Paix A, Prodon F, Dru P, Chenevert J. From oocyte to 16-cell stage: Cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev Dyn 2007; 236:1716-31. [PMID: 17420986 DOI: 10.1002/dvdy.21136] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The dorsoventral and anteroposterior axes of the ascidian embryo are defined before first cleavage by means of a series of reorganizations that reposition cytoplasmic and cortical domains established during oogenesis. These domains situated in the periphery of the oocyte contain developmental determinants and a population of maternal postplasmic/PEM RNAs. One of these RNAs (macho-1) is a determinant for the muscle cells of the tadpole embryo. Oocytes acquire a primary animal-vegetal (a-v) axis during meiotic maturation, when a subcortical mitochondria-rich domain (myoplasm) and a domain rich in cortical endoplasmic reticulum (cER) and maternal postplasmic/PEM RNAs (cER-mRNA domain) become polarized and asymmetrically enriched in the vegetal hemisphere. Fertilization at metaphase of meiosis I initiates a series of dramatic cytoplasmic and cortical reorganizations of the zygote, which occur in two major phases. The first major phase depends on sperm entry which triggers a calcium wave leading in turn to an actomyosin-driven contraction wave. The contraction concentrates the cER-mRNA domain and myoplasm in and around a vegetal/contraction pole. The precise localization of the vegetal/contraction pole depends on both the a-v axis and the location of sperm entry and prefigures the future site of gastrulation and dorsal side of the embryo. The second major phase of reorganization occurs between meiosis completion and first cleavage. Sperm aster microtubules and then cortical microfilaments cause the cER-mRNA domain and myoplasm to reposition toward the posterior of the zygote. The location of the posterior pole depends on the localization of the sperm centrosome/aster attained during the first major phase of reorganization. Both cER-mRNA and myoplasm domains localized in the posterior region are partitioned equally between the first two blastomeres and then asymmetrically over the next two cleavages. At the eight-cell stage the cER-mRNA domain compacts and gives rise to a macroscopic cortical structure called the Centrosome Attracting Body (CAB). The CAB is responsible for a series of unequal divisions in posterior-vegetal blastomeres, and the postplasmic/PEM RNAs it contains are involved in patterning the posterior region of the embryo. In this review, we discuss these multiple events and phases of reorganizations in detail and their relationship to physiological, cell cycle, and cytoskeletal events. We also examine the role of the reorganizations in localizing determinants, postplasmic/PEM RNAs, and PAR polarity proteins in the cortex. Finally, we summarize some of the remaining questions concerning polarization of the ascidian embryo and provide comparisons to a few other species. A large collection of films illustrating the reorganizations can be consulted by clicking on "Film archive: ascidian eggs and embryos" at http://biodev.obs-vlfr.fr/recherche/biomarcell/.
Collapse
Affiliation(s)
- Christian Sardet
- BioMarCell group, UMR 7009 Biodev CNRS/ Université Pierre et Marie Curie (Paris VI), Observatoire Océanologique, Villefranche-sur-Mer, France.
| | | | | | | | | |
Collapse
|
38
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
39
|
Wu M, Herman MA. Asymmetric localizations of LIN-17/Fz and MIG-5/Dsh are involved in the asymmetric B cell division in C. elegans. Dev Biol 2006; 303:650-62. [PMID: 17196955 PMCID: PMC1858672 DOI: 10.1016/j.ydbio.2006.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/21/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
LIN-44/Wnt and LIN-17/Frizzled (Fz) function in a planar cell polarity (PCP)-like pathway to regulate the asymmetric B cell division in Caenorhabditis elegans. We observed asymmetric localization of LIN-17/Frizzled (Fz) and MIG-5/Dishevelled (Dsh) during the B cell division. LIN-17::GFP was asymmetrically localized within the B cell prior to and after the B cell division and correlated with B cell polarity. Asymmetric localization of LIN-17::GFP was dependent upon LIN-44/Wnt and MIG-5/Dsh function. The LIN-17 transmembrane domain and a portion of the cysteine-rich domain (CRD) were required for LIN-17 function and asymmetric distribution to the B cell daughters, while the conserved KTXXXW motif was only required for function. MIG-5::GFP was also asymmetrically localized within the B cell prior to and after the B cell division in a LIN-17- and LIN-44-dependent manner. Functions of the MIG-5 DEP, PDZ and DIX domains were also conserved. Thus, a novel PCP-like pathway, in which LIN-17 and MIG-5 are asymmetrically localized, is involved in the regulation of B cell polarity.
Collapse
Affiliation(s)
| | - Michael A. Herman
- *Author for correspondence: , Phone number: 785-532-6773, Fax: 785-532-6653
| |
Collapse
|
40
|
Nikolaou S, Gasser RB. Extending from PARs in Caenorhabditis elegans to homologues in Haemonchus contortus and other parasitic nematodes. Parasitology 2006; 134:461-82. [PMID: 17107637 DOI: 10.1017/s0031182006001727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/23/2006] [Accepted: 10/02/2006] [Indexed: 11/05/2022]
Abstract
Signal transduction molecules play key roles in the regulation of developmental processes, such as morphogenesis, organogenesis and cell differentiation in all organisms. They are organized into 'pathways' that represent a coordinated network of cell-surface receptors and intracellular molecules, being involved in sensing environmental stimuli and transducing signals to regulate or modulate cellular processes, such as gene expression and cytoskeletal dynamics. A particularly important group of molecules implicated in the regulation of the cytoskeleton for the establishment and maintenance of cell polarity is the PAR proteins (derived from partition defective in asymmetric cell division). The present article reviews salient aspects of PAR proteins involved in the early embryonic development and morphogenesis of the free-living nematode Caenorhabditis elegans and some other organisms, with an emphasis on the molecule PAR-1. Recent advances in the knowledge and understanding of PAR-1 homologues from the economically important parasitic nematode, Haemonchus contortus, of small ruminants is summarized and discussed in the context of exploring avenues for future research in this area for parasitic nematodes.
Collapse
Affiliation(s)
- S Nikolaou
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | |
Collapse
|
41
|
Aceto D, Beers M, Kemphues KJ. Interaction of PAR-6 with CDC-42 is required for maintenance but not establishment of PAR asymmetry in C. elegans. Dev Biol 2006; 299:386-97. [PMID: 16996049 PMCID: PMC3148815 DOI: 10.1016/j.ydbio.2006.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 07/21/2006] [Accepted: 08/01/2006] [Indexed: 02/05/2023]
Abstract
Caenorhabditis elegans embryonic polarity requires the asymmetrically distributed proteins PAR-3, PAR-6 and PKC-3. The rho family GTPase CDC-42 regulates the activities of these proteins in mammals, flies and worms. To clarify its mode of action in C. elegans we disrupted the interaction between PAR-6 and CDC-42 in vivo, and also determined the distribution of GFP-tagged CDC-42 in the early embryo. Mutant PAR-6 proteins unable to interact with CDC-42 accumulated asymmetrically, at a reduced level, but this asymmetry was not maintained during the first division. We also determined that constitutively active GFP::CDC-42 becomes enriched in the anterior during the first cell cycle in a domain that overlaps with PAR-6. The asymmetry is dependent on PAR-2, PAR-5 and PAR-6. Furthermore, we found that overexpression of constitutively active GFP::CDC-42 increased the size of the anterior domain. We conclude that the CDC-42 interaction with PAR-6 is not required for the initial establishment of asymmetry but is required for maximal cortical accumulation of PAR-6 and to maintain its asymmetry.
Collapse
Affiliation(s)
- Donato Aceto
- Department of Molecular Biology and Genetics, Cornell University, 435 Biotechnology Building, Ithaca, NY 14853, USA
| | - Melissa Beers
- Department of Molecular Biology and Genetics, Cornell University, 435 Biotechnology Building, Ithaca, NY 14853, USA
| | - Kenneth J. Kemphues
- Department of Molecular Biology and Genetics, Cornell University, 435 Biotechnology Building, Ithaca, NY 14853, USA
| |
Collapse
|
42
|
Moroni RF, De Biasi S, Colapietro P, Larizza L, Beghini A. Distinct expression pattern of microtubule-associated protein/microtubule affinity-regulating kinase 4 in differentiated neurons. Neuroscience 2006; 143:83-94. [PMID: 16973293 DOI: 10.1016/j.neuroscience.2006.07.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
Protein kinases of the microtubule affinity-regulating kinase (MARK) family were originally discovered because of their ability to phosphorylate tau protein and related microtubule-associated proteins (MAPs), and their role in the establishment of cell polarity in different contexts. Recent papers have indicated that microtubule affinity-regulating kinase 4 (MARK4) is a gene that is finely regulated at transcriptional level and expressed in two spliced isoforms called MARK4L and MARK4S. We here describe the characterization of the mouse orthologue of the human MARK4 gene. Interestingly, MARK4S is predominantly expressed in the brain, whereas MARK4L shows lower transcript levels in this organ. Using MARK4 antibodies specific for each isoform, we found that both isoforms have an identical expression pattern in the mouse CNS, and are present in a number of neuronal populations. We also found that human microtubule affinity-regulating kinase 4S (hMARK4S), whose expression is not detectable in human neural progenitor cells (HNPCs) and NTera2 (NT2) cells, is up-regulated in both cell systems from the very early stages of neuronal differentiation. This indicates that neuronal commitment is marked by MARK4S up-regulation. In conclusion, this study provides the first direct evidence suggesting that MARK4 is a neuron-specific marker in the CNS, and the up-regulation of MARK4S during neuronal differentiation suggests that it plays a specialized role in neurons.
Collapse
Affiliation(s)
- R F Moroni
- Department of Biology and Genetics for Medical Sciences, Medical Faculty, University of Milan, Via Viotti 3/5, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
43
|
Zeng G, Taylor SM, McColm JR, Kappas NC, Kearney JB, Williams LH, Hartnett ME, Bautch VL. Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 2006; 109:1345-52. [PMID: 17068148 PMCID: PMC1794069 DOI: 10.1182/blood-2006-07-037952] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
New blood vessel formation requires the coordination of endothelial cell division and the morphogenetic movements of vessel expansion, but it is not known how this integration occurs. Here, we show that endothelial cells regulate division orientation during the earliest stages of blood vessel formation, in response to morphogenetic cues. In embryonic stem (ES) cell-derived vessels that do not experience flow, the plane of endothelial cytokinesis was oriented perpendicular to the vessel long axis. We also demonstrated regulated cleavage orientation in vivo, in flow-exposed forming retinal vessels. Daughter nuclei moved away from the cleavage plane after division, suggesting that regulation of endothelial division orientation effectively extends vessel length in these developing vascular beds. A gain-of-function mutation in VEGF signaling increased randomization of endothelial division orientation, and this effect was rescued by a transgene, indicating that regulation of division orientation is a novel mechanism whereby VEGF signaling affects vessel morphogenesis. Thus, our findings show that endothelial cell division and morphogenesis are integrated in developing vessels by flow-independent mechanisms that involve VEGF signaling, and this cross talk is likely to be critical to proper vessel morphogenesis.
Collapse
Affiliation(s)
- Gefei Zeng
- Department of Biology, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Timm T, Matenia D, Li XY, Griesshaber B, Mandelkow EM. Signaling from MARK to Tau: Regulation, Cytoskeletal Crosstalk, and Pathological Phosphorylation. NEURODEGENER DIS 2006; 3:207-17. [PMID: 17047359 DOI: 10.1159/000095258] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The hyperphosphorylation of tau is an early step in the degeneration of neurons in Alzheimer's disease and other tauopathies. Of particular importance is the phosphorylation of tau in the repeat domain which detaches tau from microtubules. This makes microtubules dynamic for their role in differentiation and neurite outgrowth, and it controls the level of tau on the microtubule surface which keeps the tracks clear for axonal transport. However, the detachment of tau from microtubules can also initiate the reactions that lead to pathological aggregation into neurofibrillary tangles. Phosphorylation of tau in the repeat domain is achieved by the kinase MARK/Par-1, a member of the calcium/calmodulin-dependent protein kinase group of kinases. In this report, we focus on the modes of MARK regulation. MARK contains several domains which offer multiple ways of regulation by posttranslational modification (e.g. phosphorylation), interactions with scaffolding proteins and subcellular targeting (e.g. 14-3-3), and interactions with other proteins. We consider in particular the interactions between MARK and other kinases, notably MARKK/TAO-1 and PAK5. MARKK (a member of the Ste20 family of kinases) activates MARK by phosphorylating it at a critical threonine residue within the activation loop. Activated MARK in turn phosphorylates tau, causes its detachment from microtubules and renders them labile. PAK5 inactivates MARK, not by phosphorylation, but by binding to the catalytic domain. PAK5 contributes to microtubule stability by preventing the MARK-induced phosphorylation of tau; conversely, PAK5 contributes to actin dynamics, presumably through the activation of cofilin, an F-actin severing protein. Thus, MARK and its regulators MARKK and PAK5 appear to mediate the crosstalk between the actin and microtubule cytoskeleton in an antagonistic fashion.
Collapse
Affiliation(s)
- T Timm
- Max Planck Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
45
|
Tenlen JR, Schisa JA, Diede SJ, Page BD. Reduced dosage of pos-1 suppresses Mex mutants and reveals complex interactions among CCCH zinc-finger proteins during Caenorhabditis elegans embryogenesis. Genetics 2006; 174:1933-45. [PMID: 17028349 PMCID: PMC1698638 DOI: 10.1534/genetics.105.052621] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell fate specification in the early C. elegans embryo requires the activity of a family of proteins with CCCH zinc-finger motifs. Two members of the family, MEX-5 and MEX-6, are enriched in the anterior of the early embryo where they inhibit the accumulation of posterior proteins. Embryos from mex-5 single-mutant mothers are inviable due to the misexpression of SKN-1, a transcription factor that can specify mesoderm and endoderm. The aberrant expression of SKN-1 causes a loss of hypodermal and neuronal tissue and an excess of pharyngeal muscle, a Mex phenotype (muscle excess). POS-1, a third protein with CCCH motifs, is concentrated in the posterior of the embryo where it restricts the expression of at least one protein to the anterior. We discovered that reducing the dosage of pos-1(+) can suppress the Mex phenotype of mex-5(-) embryos and that POS-1 binds the 3'-UTR of mex-6. We propose that the suppression of the Mex phenotype by reducing pos-1(+) is due to decreased repression of mex-6 translation. Our detailed analyses of these protein functions reveal complex interactions among the CCCH finger proteins and suggest that their complementary expression patterns might be refined by antagonistic interactions among them.
Collapse
Affiliation(s)
- Jennifer R Tenlen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The diversity of neuronal morphologies and the complexity of synaptic connections in the mammalian brain provide striking examples of cell polarity. Over the past decade, the identification of the PAR (for partitioning-defective) proteins, their function in polarity in the Caenorhabditis elegans zygote, and the conservation of polarity proteins related to the PAR polarity complex in Drosophila and vertebrates, kindled intense interest in polarity pathways. Although the existence of a conserved polarity protein complex does not prove that these proteins function the same way in different systems, the emergence of an evolutionarily conserved mechanism that regulates cell polarity provides an exciting opportunity to define the role of polarity proteins in the generation of the diverse array of cell types and patterns of connections in the developing mammalian brain. This review addresses emerging genetic, molecular genetic, biochemical, and cell biological approaches and mechanisms that control neuronal polarity, focusing on recent studies using the neonatal cerebellum and hippocampus as model systems.
Collapse
Affiliation(s)
- David J Solecki
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
47
|
Marx A, Nugoor C, Müller J, Panneerselvam S, Timm T, Bilang M, Mylonas E, Svergun DI, Mandelkow EM, Mandelkow E. Structural Variations in the Catalytic and Ubiquitin-associated Domains of Microtubule-associated Protein/Microtubule Affinity Regulating Kinase (MARK) 1 and MARK2. J Biol Chem 2006; 281:27586-99. [PMID: 16803889 DOI: 10.1074/jbc.m604865200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microtubule-associated protein (MAP)/microtubule affinity regulating kinase (MARK)/Par-1 phosphorylates microtubule-associated proteins tau, MAP2, and MAP4 and is involved in the regulation of microtubule-based transport. Par-1, a homologue of MARK in Drosophila and Caenorhabditis elegans, is essential for the development of embryonic polarity. Four isoforms of MARK are found in humans. Recently, we reported the crystal structure of the catalytic and ubiquitin-associated domains of MARK2, an isoform enriched in brain (Panneerselvam, S., Marx, A., Mandelkow, E.-M., and Mandelkow, E. (2006) Structure 14, 173-183). It showed that the ubiquitin-associated domain (UBA) domain has an unusual fold and binds to the N-terminal lobe of the catalytic domain. This is at variance with a previous low resolution structure derived from small angle solution scattering (Jaleel, M., Villa, F., Deak, M., Toth, R., Prescott, A. R., Van Aalten, D. M., and Alessi, D. R. (2006) Biochem. J. 394, 545-555), which predicts binding of the UBA domain to the larger, C-terminal lobe. Here we report the crystal structure of the catalytic and UBA domain of another isoform, MARK1. Although the crystal packing of the two isoforms are unrelated, the overall conformations of the molecules are similar. Notably, the UBA domain has the same unusual conformation as in MARK2, and it binds at the same site. Remarkable differences occur in the catalytic domain at helix C, the catalytic loop, and the activation segment.
Collapse
Affiliation(s)
- Alexander Marx
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hyodo-Miura J, Yamamoto TS, Hyodo AC, Iemura SI, Kusakabe M, Nishida E, Natsume T, Ueno N. XGAP, an ArfGAP, is required for polarized localization of PAR proteins and cell polarity in Xenopus gastrulation. Dev Cell 2006; 11:69-79. [PMID: 16824954 DOI: 10.1016/j.devcel.2006.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 02/24/2006] [Accepted: 04/17/2006] [Indexed: 12/19/2022]
Abstract
To dissect the molecular mechanisms underlying convergent extension (CE), a prominent set of cell movements during Xenopus gastrulation, we performed a functional expression screen and identified a GTPase-activating protein for ADP ribosylation factors (ArfGAP), which we termed XGAP. We demonstrated that XGAP is required to confine or restrict the cellular protrusive activity to the mediolateral ends of cells, where XGAP is normally localized, and therefore for the proper intercalation of cells participating in CE. We also demonstrated that a C-terminal conserved domain of XGAP, but not its GAP activity, is required and sufficient for this intracellular localization and function. We further showed that XGAP physically interacts with the known polarity proteins 14-3-3epsilon, aPKC, and PAR-6 and directs them to the mediolateral ends of dorsal mesoderm cells during gastrulation. We propose that XGAP controls CE through the restriction and maintenance of partitioning-defective (PAR) proteins in the regions that harbor protrusive activity.
Collapse
Affiliation(s)
- Junko Hyodo-Miura
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kibardin A, Ossipova O, Sokol SY. Metastasis-associated kinase modulates Wnt signaling to regulate brain patterning and morphogenesis. Development 2006; 133:2845-54. [PMID: 16790480 PMCID: PMC4428341 DOI: 10.1242/dev.02445] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt signaling is a major pathway regulating cell fate determination, cell proliferation and cell movements in vertebrate embryos. Distinct branches of this pathway activate beta-catenin/TCF target genes and modulate morphogenetic movements in embryonic tissues by reorganizing the cytoskeleton. The selection of different molecular targets in the pathway is driven by multiple phosphorylation events. Here, we report that metastasis-associated kinase (MAK) is a novel regulator of Wnt signaling during morphogenetic movements, and eye and brain development in Xenopus embryos. Injected MAK RNA suppressed Wnt transcriptional reporters and activated Jun N-terminal kinase. Furthermore, MAK was recruited to the cell membrane by Frizzled 3, formed a complex with Dishevelled and phosphorylated Dsh in vitro. The regional brain markers Otx2, En2 and Gbx2 were affected in embryos with modulated MAK activity in a manner consistent with a role for MAK in midbrain-hindbrain boundary formation. Confirming the inhibitory role for this kinase in Wnt/beta-catenin signaling, the midbrain patterning defects in embryos depleted of MAK were rescued by the simultaneous depletion of beta-catenin. These findings indicate that MAK may function in different developmental processes as a switch between the canonical and non-canonical branches of Wnt signaling.
Collapse
Affiliation(s)
- Alexey Kibardin
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Ossipova
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sergei Y. Sokol
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
50
|
Popovici C, Berda Y, Conchonaud F, Harbis A, Birnbaum D, Roubin R. Direct and heterologous approaches to identify the LET-756/FGF interactome. BMC Genomics 2006; 7:105. [PMID: 16672054 PMCID: PMC1513213 DOI: 10.1186/1471-2164-7-105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 05/03/2006] [Indexed: 11/16/2022] Open
Abstract
Background Fibroblast growth factors (FGFs) are multifunctional proteins that play important roles in cell communication, proliferation and differentiation. However, many aspects of their activities are not well defined. LET-756, one of the two C. elegans FGFs, is expressed throughout development and is essential for worm development. It is both expressed in the nucleus and secreted. Results To identify nuclear factors associated with LET-756, we used three approaches. First, we screened a two-hybrid cDNA library derived from mixed stages worms and from a normalized library, using LET-756 as bait. This direct approach allowed the identification of several binding partners that play various roles in the nucleus/nucleolus, such as PAL-1, a transcription regulator, or RPS-16, a component of the small ribosomal subunit. The interactions were validated by co-immunoprecipitation and determination of their site of occurrence in mammalian cells. Second, because patterns of protein interactions may be conserved throughout species, we searched for orthologs of known mammalian interactors and measured binary interaction with these predicted candidates. We found KIN-3 and KIN-10, the orthologs of CK2α and CK2β, as new partners of LET-756. Third, following the assumption that recognition motifs mediating protein interaction may be conserved between species, we screened a two-hybrid cDNA human library using LET-756 as bait. Among the few FGF partners detected was 14-3-3β. In support of this interaction we showed that the two 14-3-3β orthologous proteins, FTT-1 and FTT-2/PAR-5, interacted with LET-756. Conclusion We have conducted the first extensive search for LET-756 interactors using a multi-directional approach and established the first interaction map of LET-756/FGF with other FGF binding proteins from other species. The interactors identified play various roles in developmental process or basic biochemical events such as ribosome biogenesis.
Collapse
Affiliation(s)
- Cornel Popovici
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Yael Berda
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Fabien Conchonaud
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Aurélie Harbis
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Daniel Birnbaum
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Régine Roubin
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| |
Collapse
|