1
|
Yuan C, Tsang A, Berumen M, Rodriguez A, Yun F, Mesic A, Olivares A, Dubon L, Nguyen A, Pavana L, Mercado M, Gorostiza G, Morisseau C, Hammock BD, Kandasamy R, Pecic S. Structure-activity relationship studies and pharmacological evaluation of 4-phenylthiazoles as dual soluble epoxide hydrolase/fatty acid amide hydrolase inhibitors. Bioorg Med Chem 2025; 121:118112. [PMID: 39983408 PMCID: PMC11910963 DOI: 10.1016/j.bmc.2025.118112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
Forty-two 4-phenylthiazole analogs, organized in two libraries 4a-u and 6a-u, were prepared and biologically evaluated in human fatty acid amide hydrolase (FAAH), and human, rat and mouse soluble epoxide hydrolase (sEH) inhibition assays. This structure-activity relationship (SAR) study explores the impact of electronic and steric changes on the molecule's potency and binding affinity to better understand the structural features important for dual sEH/FAAH inhibition which will guide the development of novel treatments for pain and inflammation. Our SAR revealed that electron-donating groups on the aromatic ring of the 4-phenylthiazole moiety are particularly well tolerated by both enzymes when placed at the ortho, meta and para positions; however, the overall 3D shape of the molecule is very important for the potent FAAH inhibition, suggesting more restricted size of the FAAH binding pocket compared to sEH binding pocket. Two selected dual inhibitors, 4p and 4s, were tested in the rat liver microsomes stability assays and evaluated in vivo in the formalin test. Systemic administration of 4p and 4s via intraperitoneal injection decreased nociceptive behavior (i.e., licking of the injected paw) in male rats, and this effect was dose-dependent for both compounds. Two doses, 1 and 3 mg/kg of 4p, decreased nociceptive behavior to a similar extent to that of 30 mg/kg ketoprofen, a traditional nonsteroidal anti-inflammatory drug. However, only 3 mg/kg of 4s decreased nociceptive behavior compared to vehicle-treated animals, and this effect was comparable to ketoprofen-treated animals. Taken together, these findings reveal the antinociceptive potential of 4-phenylthiazole-based dual FAAH and sEH inhibitors and suggest pharmacodynamic differences within this class of inhibitors despite similar potencies in vitro.
Collapse
Affiliation(s)
- Cassandra Yuan
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Amanda Tsang
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Manuel Berumen
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Adriana Rodriguez
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Faye Yun
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Anesa Mesic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Annie Olivares
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Lissette Dubon
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Allen Nguyen
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Lucy Pavana
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Madison Mercado
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Gabrielle Gorostiza
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Ram Kandasamy
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States.
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States.
| |
Collapse
|
2
|
Chiarugi S, Margheriti F, De Lorenzi V, Martino E, Margheritis EG, Moscardini A, Marotta R, Chaves-Sanjuan A, Del Seppia C, Federighi G, Lapi D, Bandiera T, Rapposelli S, Scuri R, Bolognesi M, Garau G. NAPE-PLD is target of thiazide diuretics. Cell Chem Biol 2025; 32:449-462.e5. [PMID: 39999832 DOI: 10.1016/j.chembiol.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/01/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Thiazide and thiazide-like diuretics are among the most efficacious and used drugs for the treatment of hypertension, edema, and major cardiovascular outcomes. Despite more then than six decades of clinical use, the molecular target and mechanism of action by which these drugs cure hypertension after long-term use have remained mysterious. Here we report the discovery and validation of a previously unknown renal and extrarenal target of these antihypertensives, the membrane-associated phospholipase N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) of the endocannabinoid system. Structural and functional insights, together with preclinical studies in hypertensive rats, disclose the molecular and physiological basis by which thiazides cause acute diuresis and, at the same time, the distinctive chronic reduction of vascular resistance. Our results shed light on the mechanism of treatment of hypertension and will be useful for developing more efficacious medications for the management of vascular risk factors, as well as associated leukoencephalopathies and myelin disorders.
Collapse
Affiliation(s)
- Sara Chiarugi
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Francesco Margheriti
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Valentina De Lorenzi
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Martino
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | | | - Aldo Moscardini
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Istituto Italiano di Tecnologia (IIT) Via Morego 30, 16163 Genova, Italy
| | - Antonio Chaves-Sanjuan
- Department of BioSciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | | | - Giuseppe Federighi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 31, 56126 Pisa, Italy
| | - Dominga Lapi
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56127 Pisa, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Rossana Scuri
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 31, 56126 Pisa, Italy
| | - Martino Bolognesi
- Department of BioSciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | - Gianpiero Garau
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratori Aliveda, Viale Karol Wojtyla 19, 56042 Crespina Lorenzana, Pisa, Italy.
| |
Collapse
|
3
|
Ferger MD, Sigrist C, Brodesser S, Kaess M, Koenig J. Alterations of the endocannabinoid system in adolescents with non-suicidal self-injury as a function of childhood maltreatment. Transl Psychiatry 2024; 14:491. [PMID: 39695136 DOI: 10.1038/s41398-024-03205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Non-suicidal self-injury (NSSI) is a highly prevalent phenomenon in adolescence, often associated with prior traumatic experiences. The development and maintenance of NSSI is associated with dysregulation of the stress response, and evidence suggests that the hypothalamic-pituitary-adrenal (HPA) axis plays an important role. The endocannabinoid system is a neuromodulatory system in close functional interaction with the HPA axis. Several studies have reported alterations of the endocannabinoid system in adult patients with post-traumatic stress disorder. However, the role of the endocannabinoid system in children and adolescents with NSSI is less clear, and previously no study examined endocannabinoids in youth with experiences of maltreatment. N-arachidonyl ethanolamide (AEA) and 2-arachidonyl glycerol (2-AG) were quantified alongside sociodemographic and clinical characteristics in n = 148 adolescents (12-17 years of age). Analyses addressed group differences comparing healthy controls (HC, n = 38), patients with NSSI without (NSSI - CMT, n = 42) and with a history of childhood maltreatment (NSSI + CMT, n = 68). We show that AEA is reduced in adolescents with NSSI independent of childhood maltreatment. Further, we present first evidence for a negative association between AEA and NSSI frequency as well as AEA and the severity of childhood maltreatment. This is the first study providing evidence for alterations in the endocannabinoid system in children and adolescents engaging in repetitive NSSI. Findings from the study support current endocannabinoid-hypotheses on the neurobiology of trauma and adversity, extending existing findings of altered endocannabinoid signaling following exposure to traumatic events to a well-powered sample of children and adolescents.
Collapse
Affiliation(s)
- Marc D Ferger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
- Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Christine Sigrist
- Department of General Psychiatry, Centre for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Michael Kaess
- Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany.
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
de Sena Murteira Pinheiro P, Franco LS, Montagnoli TL, Fraga CAM. Molecular hybridization: a powerful tool for multitarget drug discovery. Expert Opin Drug Discov 2024; 19:451-470. [PMID: 38456452 DOI: 10.1080/17460441.2024.2322990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION The current drug discovery paradigm of 'one drug, multiple targets' has gained attention from both the academic medicinal chemistry community and the pharmaceutical industry. This is in response to the urgent need for effective agents to treat multifactorial chronic diseases. The molecular hybridization strategy is a useful tool that has been widely explored, particularly in the last two decades, for the design of multi-target drugs. AREAS COVERED This review examines the current state of molecular hybridization in guiding the discovery of multitarget small molecules. The article discusses the design strategies and target selection for a multitarget polypharmacology approach to treat various diseases, including cancer, Alzheimer's disease, cardiac arrhythmia, endometriosis, and inflammatory diseases. EXPERT OPINION Although the examples discussed highlight the importance of molecular hybridization for the discovery of multitarget bioactive compounds, it is notorious that the literature has focused on specific classes of targets. This may be due to a deep understanding of the pharmacophore features required for target binding, making targets such as histone deacetylases and cholinesterases frequent starting points. However, it is important to encourage the scientific community to explore diverse combinations of targets using the molecular hybridization strategy.
Collapse
Affiliation(s)
- Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu Lima Montagnoli
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Jaiswal S, Ayyannan SR. Lead optimization study on indoline-2,3-dione derivatives as potential fatty acid amide hydrolase inhibitors. J Biomol Struct Dyn 2023; 41:9632-9650. [PMID: 36379672 DOI: 10.1080/07391102.2022.2145372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Based on the known isatin-based fatty acid amide hydrolase (FAAH) inhibitor BSS-7, we designed and synthesized two small sets (6-13 and 17-20) of N-1 and C-3 substituted isatin derivatives and evaluated them for their in vitro FAAH inhibition properties. The lead simplification by modification of bulky aryl moiety at N-1 with a flexible allyl group produced a nanomolar (IC50 = 6.7 nM, Ki = 5 nM) inhibitor 11 (Z)-3-((1H-benzo[d]imidazol-2-yl)imino)-1-allylindolin-2-one which exhibited a reversible and competitive FAAH inhibition with 1500 times more potency to BSS-7 (1.49 ± 0.03 µM). The lead compound 11 also showed a high blood-brain permeability and a significant antioxidant profile with no neurotoxicity. Docking results suggested that the inhibitor molecules occupied the active site of FAAH and offered optimal binding interactions. A molecular dynamics simulation study ascertained the stability of the lead inhibitor 11-FAAH complex. In silico ADMET profiling studies unveiled that compound 11 possesses good drug-like properties and merits further evaluation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Tripathi P, Mousa JJ, Guntaka NS, Bruner SD. Structural basis of the amidase ClbL central to the biosynthesis of the genotoxin colibactin. Acta Crystallogr D Struct Biol 2023; 79:830-836. [PMID: 37561403 PMCID: PMC10478638 DOI: 10.1107/s2059798323005703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Colibactin is a genotoxic natural product produced by select commensal bacteria in the human gut microbiota. The compound is a bis-electrophile that is predicted to form interstrand DNA cross-links in target cells, leading to double-strand DNA breaks. The biosynthesis of colibactin is carried out by a mixed NRPS-PKS assembly line with several noncanonical features. An amidase, ClbL, plays a key role in the pathway, catalyzing the final step in the formation of the pseudodimeric scaffold. ClbL couples α-aminoketone and β-ketothioester intermediates attached to separate carrier domains on the NRPS-PKS assembly. Here, the 1.9 Å resolution structure of ClbL is reported, providing a structural basis for this key step in the colibactin biosynthetic pathway. The structure reveals an open hydrophobic active site surrounded by flexible loops, and comparison with homologous amidases supports its unusual function and predicts macromolecular interactions with pathway carrier-protein substrates. Modeling protein-protein interactions supports a predicted molecular basis for enzyme-carrier domain interactions. Overall, the work provides structural insight into this unique enzyme that is central to the biosynthesis of colibactin.
Collapse
Affiliation(s)
| | - Jarrod J. Mousa
- Department of Chemistry, University of Florida, Gainesville, FL 32601, USA
| | | | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
7
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
8
|
Arias-Gaguancela O, Herrell E, Aziz M, Chapman KD. Two legume fatty acid amide hydrolase isoforms with distinct preferences for microbial- and plant-derived acylamides. Sci Rep 2023; 13:7486. [PMID: 37161076 PMCID: PMC10169808 DOI: 10.1038/s41598-023-34754-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/06/2023] [Indexed: 05/11/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a widely conserved amidase in eukaryotes, perhaps best known for inactivating N-acylethanolamine lipid mediators. However, FAAH enzymes hydrolyze a wide range of acylamide substrates. Analysis of FAAHs from multiple angiosperm species revealed two conserved phylogenetic groups that differed in key conserved residues in the substrate binding pocket. While the foundation group of plant FAAHs, designated FAAH1, has been studied at the structural and functional level in Arabidopsis thaliana, nothing is known about FAAH2 members. Here, we combined computational and biochemical approaches to compare the structural and enzymatic properties of two FAAH isoforms in the legume Medicago truncatula designated MtFAAH1 and MtFAAH2a. Differences in structural and physicochemical properties of the substrate binding pockets, predicted from homology modeling, molecular docking, and molecular dynamic simulation experiments, suggested that these two FAAH isoforms would exhibit differences in their amidohydrolase activity profiles. Indeed, kinetic studies of purified, recombinant MtFAAHs indicated a reciprocal preference for acylamide substrates with MtFAAH1 more efficiently utilizing long-chain acylamides, and MtFAAH2a more efficiently hydrolyzing short-chain and aromatic acylamides. This first report of the enzymatic behavior of two phylogenetically distinct plant FAAHs will provide a foundation for further investigations regarding FAAH isoforms in legumes and other plant species.
Collapse
Affiliation(s)
- Omar Arias-Gaguancela
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Emily Herrell
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Mina Aziz
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Kent D Chapman
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
9
|
Arias-Gaguancela O, Aziz M, Chapman KD. Fatty acid amide hydrolase and 9-lipoxygenase modulate cotton seedling growth by ethanolamide oxylipin levels. PLANT PHYSIOLOGY 2023; 191:1234-1253. [PMID: 36472510 PMCID: PMC9922431 DOI: 10.1093/plphys/kiac556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Polyunsaturated N-acylethanolamines (NAEs) can be hydrolyzed by fatty acid amide hydrolase (FAAH) or oxidized by lipoxygenase (LOX). In Arabidopsis (Arabidopsis thaliana), the 9-LOX product of linoleoylethanolamide, namely, 9-hydroxy linoleoylethanolamide (9-NAE-HOD), is reported to negatively regulate seedling development during secondary dormancy. In upland cotton (Gossypium hirsutum L.), six putative FAAH genes (from two diverged groups) and six potential 9-LOX genes are present; however, their involvement in 9-NAE-HOD metabolism and its regulation of seedling development remain unexplored. Here, we report that in cotton plants, two specific FAAH isoforms (GhFAAH Ib and GhFAAH IIb) are needed for hydrolysis of certain endogenous NAEs. Virus-induced gene silencing (VIGS) of either or both FAAHs led to reduced seedling growth and this coincided with reduced amidohydrolase activities and elevated quantities of endogenous 9-NAE-HOD. Transcripts of GhLOX21 were consistently elevated in FAAH-silenced tissues, and co-silencing of GhLOX21 and GhFAAH (Ib and/or IIb) led to reversal of seedling growth to normal levels (comparable with no silencing). This was concomitant with reductions in the levels of 9-NAE-HOD, but not of 13-NAE-HOD. Pharmacological experiments corroborated the genetic and biochemical evidence, demonstrating that direct application of 9-NAE-HOD, but not 13-NAE-HOD or their corresponding free fatty acid oxylipins, inhibited the growth of cotton seedlings. Additionally, VIGS of GhLOX21 in cotton lines overexpressing AtFAAH exhibited enhanced growth and no detectable 9-NAE-HOD. Altogether, we conclude that the growth of cotton seedlings involves fine-tuning of 9-NAE-HOD levels via FAAH-mediated hydrolysis and LOX-mediated production, expanding the mechanistic understanding of plant growth modulation by NAE oxylipins to a perennial crop species.
Collapse
|
10
|
Santoso AD, De Ridder D. Fatty Acid Amide Hydrolase: An Integrative Clinical Perspective. Cannabis Cannabinoid Res 2023; 8:56-76. [PMID: 35900294 DOI: 10.1089/can.2021.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fatty acid amide hydrolase (FAAH) is one of the main terminating enzymes of the endocannabinoid system (ECS). Since being discovered in 1996, the modulation of FAAH has been viewed as a compelling alternative strategy to obtain the beneficial effect of the ECS. With a considerable amount of FAAH-related publication over time, the next step would be to comprehend the proximity of this evidence for clinical application. Objective: This review intends to highlight the rationale of FAAH modulation and provide the latest evidence from clinical studies. Methods: Publication searches were conducted to gather information focused on FAAH-related clinical evidence with an extension to the experimental research to understand the biological plausibility. The subtopics were selected to be multidisciplinary to offer more perspective on the current state of the arts. Discussion: Experimental and clinical studies have demonstrated that FAAH was highly expressed not only in the central nervous system but also in the peripheral tissues. As the key regulator of endocannabinoid signaling, it would appear that FAAH plays a role in the modulation of mood and emotional response, reward system, pain perception, energy metabolism and appetite regulation, inflammation, and other biological processes. Genetic variants may be associated with some conditions such as substance/alcohol use disorders, obesity, and eating disorder. The advancement of functional neuroimaging has enabled the evaluation of the neurochemistry of FAAH in brain tissues and this can be incorporated into clinical trials. Intriguingly, the application of FAAH inhibitors in clinical trials seems to provide less striking results in comparison with the animal models, although some potential still can be seen. Conclusion: Modulation of FAAH has an immense potential to be a new therapeutic candidate for several disorders. Further exploration, however, is still needed to ensure who is the best candidate for the treatment strategy.
Collapse
Affiliation(s)
- Anugrah D Santoso
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Urology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Molecular Basis for Non-Covalent, Non-Competitive FAAH Inhibition. Int J Mol Sci 2022; 23:ijms232415502. [PMID: 36555144 PMCID: PMC9779292 DOI: 10.3390/ijms232415502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) plays a key role in the control of cannabinoid signaling and it represents a promising therapeutic strategy for the treatment of a wide range of diseases, including neuropathic pain and chronic inflammation. Starting from kinetics experiments carried out in our previous work for the most potent inhibitor 2-amino-3-chloropyridine amide (TPA14), we have investigated its non-competitive mechanism of action using molecular dynamics, thermodynamic integration and QM-MM/GBSA calculations. The computational studies highlighted the impact of mutations on the receptor binding pockets and elucidated the molecular basis of the non-competitive inhibition mechanism of TPA14, which prevents the endocannabinoid anandamide (AEA) from reaching its pro-active conformation. Our study provides a rationale for the design of non-competitive potent FAAH inhibitors for the treatment of neuropathic pain and chronic inflammation.
Collapse
|
12
|
Molecular study of endo and phytocannabinoids on lipid membranes of different composition. Colloids Surf B Biointerfaces 2022; 221:113020. [DOI: 10.1016/j.colsurfb.2022.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022]
|
13
|
Li W, Lu J, Yang C, Arildsen K, Li X, Xia S. An Amidase Contributes to Full Virulence of Sclerotinia sclerotiorum. Int J Mol Sci 2022; 23:11207. [PMID: 36232508 PMCID: PMC9570306 DOI: 10.3390/ijms231911207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Sclerotinia sclerotiorum is one of the most notorious and ubiquitous soilborne plant pathogens, causing serious economic losses to a large number of hosts worldwide. Although virulence factors have been identified in this filamentous fungus, including various cell-wall-degrading enzymes, toxins, oxalic acids and effectors, our understanding of its virulence strategies is far from complete. To explore novel factors contributing to disease, a new pipeline combining forward genetic screening and next-generation sequencing was utilized in this study. Analysis of a hypovirulent mutant revealed that a mutation in an amidase-encoding gene, Sscle_10g079050, resulted in reduced virulence. This is a first report on the contribution of an amidase to fungal virulence, likely through affecting oxalic acid homeostasis.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Kate Arildsen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
14
|
Gasparyan A, Navarro D, Navarrete F, Manzanares J. Pharmacological strategies for post-traumatic stress disorder (PTSD): From animal to clinical studies. Neuropharmacology 2022; 218:109211. [PMID: 35973598 DOI: 10.1016/j.neuropharm.2022.109211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a disabling psychiatric condition with a critical familiar, personal, and social impact. Patients diagnosed with PTSD show various symptoms, including anxiety, depression, psychotic episodes, and sleep disturbances, complicating their therapeutic management. Only sertraline and paroxetine, two selective serotonin reuptake inhibitors, are approved by different international agencies to treat PTSD. In addition, these drugs are generally combined with psychotherapy to achieve positive results. However, these pharmacological strategies present limited efficacy. Nearly half of the PTSD patients do not experience remission of symptoms, possibly due to the high prevalence of psychiatric comorbidities. Therefore, in clinical practice, other off-label medications are common, even though the effectiveness of these drugs needs to be further investigated. In this line, antipsychotics, antiepileptics, adrenergic blockers, benzodiazepines, and other emerging pharmacological agents have aroused interest as potential therapeutic tools to improve some specific symptoms of PTSD. Thus, this review is focused on the most widely used drugs for the pharmacological treatment of PTSD with a translational approach, including clinical and preclinical studies, to emphasize the need to develop safer and more effective medications.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
15
|
Cerqueira NMFSA, Neves M, Rocha J, Soares-da Silva P, Palma PN. Inactivation Mechanism of the Fatty Acid Amide Hydrolase Inhibitor BIA 10-2474. Chembiochem 2022; 23:e202200166. [PMID: 35843872 DOI: 10.1002/cbic.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/11/2022] [Indexed: 11/07/2022]
Abstract
BIA 10-2474 is a time-dependent inhibitor of fatty acid amide hydrolase(FAAH) that was under clinical development for the treatment of neurological conditions when the program was terminated after one subject died and four were hospitalized with neurological symptoms during a first-in-human clinical study. The present manuscript describes the mechanism of FAAH inhibition by BIA 10-2474 as a target-specific covalent inhibition, supported by quantum mechanics and molecular modelling studies. The inhibitor incorporates a weakly reactive electrophile which, upon specific binding to the enzyme's active site, is positioned to react readily with the catalytic residues. The reactivity is enhanced on-site by the increased molarity at the reaction site and by specific inductive interactions with FAAH. In the second stage, the inhibitor reacts with the enzyme's catalytic nucleophile to form a covalent enzyme-inhibitor adduct. The hydrolysis of this adduct is shown to be unlikely under physiological conditions, therefore leading to irreversible inactivation of FAAH. The results also reveal the important role played by FAAH Thr236 in the reaction with BIA 10-2474, which is specific to FAAH and is not present in other serine hydrolases.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- Department of Research & Development BIAL, Portela & Cª. S.A., S. Mamede do Coronado, Portugal
| | - Marco Neves
- Department of Research & Development BIAL, Portela & Cª. S.A., S. Mamede do Coronado, Portugal
| | - Juliana Rocha
- BioSIM, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrício Soares-da Silva
- Department of Research & Development BIAL, Portela & Cª. S.A., S. Mamede do Coronado, Portugal
- Department of Biomedicine, Unit of Pharmacology & Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - P Nuno Palma
- Department of Research & Development BIAL, Portela & Cª. S.A., S. Mamede do Coronado, Portugal
| |
Collapse
|
16
|
Berger N, Allerkamp H, Wadsack C. Serine Hydrolases in Lipid Homeostasis of the Placenta-Targets for Placental Function? Int J Mol Sci 2022; 23:6851. [PMID: 35743292 PMCID: PMC9223866 DOI: 10.3390/ijms23126851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
The metabolic state of pregnant women and their unborn children changes throughout pregnancy and adapts to the specific needs of each gestational week. These adaptions are accomplished by the actions of enzymes, which regulate the occurrence of their endogenous substrates and products in all three compartments: mother, placenta and the unborn. These enzymes determine bioactive lipid signaling, supply, and storage through the generation or degradation of lipids and fatty acids, respectively. This review focuses on the role of lipid-metabolizing serine hydrolases during normal pregnancy and in pregnancy-associated pathologies, such as preeclampsia, gestational diabetes mellitus, or preterm birth. The biochemical properties of each class of lipid hydrolases are presented, with special emphasis on their role in placental function or dysfunction. While, during a normal pregnancy, an appropriate tonus of bioactive lipids prevails, dysregulation and aberrant signaling occur in diseased states. A better understanding of the dynamics of serine hydrolases across gestation and their involvement in placental lipid homeostasis under physiological and pathophysiological conditions will help to identify new targets for placental function in the future.
Collapse
Affiliation(s)
- Natascha Berger
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
| | - Hanna Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
- BioTechMed-Graz, 8036 Graz, Austria
| |
Collapse
|
17
|
Cifelli P, Ruffolo G, Ceccanti M, Cambieri C, Libonati L, Palma E, Inghilleri M. Classical and Unexpected Effects of Ultra-Micronized PEA in Neuromuscular Function. Biomolecules 2022; 12:biom12060758. [PMID: 35740883 PMCID: PMC9221058 DOI: 10.3390/biom12060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, the endocannabinoid system has attracted growing attention from the scientific community for its involvement in homeostatic and pathological processes as they pertains to human physiology. Among the constituents of the endocannabinoid system, the molecule palmitoyl ethanolamide has particularly been studied for its ability to reduce several inflammatory processes involving the central nervous system. Here, we reviewed published literature and summarized the main targets of the palmitoyl ethanolamide, along with its unique possible mechanisms for restoring correct functioning of the central nervous system. Moreover, we have highlighted a less-known characteristic of palmitoyl ethanolamide, namely its ability to modulate the function of the neuromuscular junction by binding to acetylcholine receptors in different experimental conditions. Indeed, there are several studies that have highlighted how ultra-micronized palmitoyl ethanolamide is an interesting nutraceutical support for the treatment of pathological neuromuscular conditions, specifically when the normal activity of the acetylcholine receptor is altered. Although further multicentric clinical trials are needed to confirm the efficacy of ultra-micronized palmitoyl ethanolamide in improving symptoms of neuromuscular diseases, all the literature reviewed here strongly supports the ability of this endocannabinoid-like molecule to modulate the acetylcholine receptors thus resulting as a valid support for the treatment of human neuromuscular diseases.
Collapse
Affiliation(s)
- Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (P.C.); (M.I.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Marco Ceccanti
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Chiara Cambieri
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Laura Libonati
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Maurizio Inghilleri
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
- Correspondence: (P.C.); (M.I.)
| |
Collapse
|
18
|
Jain S, Bisht A, Verma K, Negi S, Paliwal S, Sharma S. The role of fatty acid amide hydrolase enzyme inhibitors in Alzheimer's disease. Cell Biochem Funct 2021; 40:106-117. [PMID: 34931308 DOI: 10.1002/cbf.3680] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is a prominent enzyme of the endocannabinoid system that degrades endogenous cannabinoid anandamide and oleamide. These lipid amides are involved in reducing neuroinflammation, pain and regulation of other neurological-related activities including feeding behaviours, sleep patterns, body temperature, memory processes and locomotory activity. Many of these activities are affected in most neurological disorders. Increased levels of brain FAAH expressions are speculated to correlate with decreased levels of lipid amides and increased AD-related symptoms. Thus, inhibition of FAAH shows promising potential in amelioration of symptoms associated with Alzheimer's disease (AD). The review aims at establishing the detrimental role of increased FAAH expression in AD and highlights the translational potential and therapeutic application of FAAH inhibitors in AD.
Collapse
Affiliation(s)
- Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Swarnima Negi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
19
|
Jaiswal S, Ayyannan SR. Discovery of Isatin-Based Carbohydrazones as Potential Dual Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase. ChemMedChem 2021; 17:e202100559. [PMID: 34637598 DOI: 10.1002/cmdc.202100559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/10/2021] [Indexed: 01/02/2023]
Abstract
Using ligand-based design strategy, a set of isatin-3-carbohydrazones was designed, synthesized and evaluated for dual fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) inhibition properties. Compound 5-chloro-N'-(5-chloro-2-oxoindolin-3-ylidene)-2-hydroxybenzohydrazide (13 b) emerged as a potent MAGL inhibitor with nanomolar activity (IC50 =3.33 nM), while compound 5-chloro-N'-(1-(4-fluorobenzyl)-2-oxoindolin-3-ylidene)-2-hydroxybenzohydrazide (13 j) was the most potent selective FAAH inhibitor (IC50 =37 nM). Compound 5-chloro-N'-(6-chloro-2-oxoindolin-3-ylidene)-2-hydroxybenzohydrazide (13 c) showed dual FAAH-MAGL inhibitory activity with an IC50 of 31 and 29 nM respectively. Enzyme kinetics studies revealed that the isatin-based carbohydrazones are reversible inhibitors for both FAAH and MAGL. Further, blood-brain permeability assay confirmed that the lead compounds (13 b, 13 c, 13 g, 13 m and 13 q) are suitable as CNS candidates. Molecular dynamics simulation studies revealed the putative binding modes and key interactions of lead inhibitors within the enzyme active sites. The lead dual FAAH-MAGL inhibitor 13 c showed significant antioxidant activity and neuroprotection in the cell-based cytotoxicity assay. In summary, the study yielded three potent FAAH/MAGL inhibitor compounds (13 b, 13 c and 13 j) with acceptable pharmacokinetic profile and thus can be considered as promising candidates for treating neurological and mood disorders.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
20
|
Bajaj S, Jain S, Vyas P, Bawa S, Vohora D. The role of endocannabinoid pathway in the neuropathology of Alzheimer's disease: Can the inhibitors of MAGL and FAAH prove to be potential therapeutic targets against the cognitive impairment associated with Alzheimer's disease? Brain Res Bull 2021; 174:305-322. [PMID: 34217798 DOI: 10.1016/j.brainresbull.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by progressive decline of cognitive function in combination with neuronal death. Current approved treatment target single dysregulated pathway instead of multiple mechanism, resulting in lack of efficacy in slowing down disease progression. The proclivity of endocannabinoid system to exert neuroprotective action and mitigate symptoms of neurodegeneration condition has received substantial interest. Growing evidence suggest the endocannabinoids (eCB) system, viz. anadamide (AEA) and arachidonoyl glycerol (2-AG), as potential therapeutic targets with the ability to modify Alzheimer's pathology by targeting the inflammatory, neurodegenerative and cognitive aspects of the disease. In order to modulate endocannabinoid system, number of agents have been reported amongst which are inhibitors of the monoacylglycerol (MAGL) and fatty acid amide hydrolase (FAAH), the enzymes that hydrolyses 2-AG and AEA respectively. However, little is known regarding the exact mechanistic signalling and their effects on pathophysiology and cognitive decline associated with Alzheimer's disease. Both MAGL and FAAH inhibitors possess fascinating properties that may offer a multi-faceted approach for the treatment of Alzheimer's disease such as potential to protect neurons from deleterious effect of amyloid-β, reducing phosphorylation of tau, reducing amyloid-β induced oxidative stress, stimulating neurotrophin to support brain intrinsic repair mechanism etc. Based on empirical evidence, MAGL and FAAH inhibitors might have potential for therapeutic efficacy against cognitive impairment associated with Alzheimer's disease. The aim of this review is to summarize the experimental studies demonstrating the polyvalent properties of MAGL or FAAH inhibitor compounds for the treatment of Alzheimer's disease, and also effect of these on learning and types of memories, which together encourage to study these compounds over other therapeutics targets. Further research in this direction would enhance the molecular mechanisms and development of applicable interventions for the treatment of Alzheimer's disease, which nevertheless stay as the primary unmet need.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
21
|
Beyond the Usual Suspects: Physiological Roles of the Arabidopsis Amidase Signature (AS) Superfamily Members in Plant Growth Processes and Stress Responses. Biomolecules 2021; 11:biom11081207. [PMID: 34439873 PMCID: PMC8393822 DOI: 10.3390/biom11081207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
The diversification of land plants largely relies on their ability to cope with constant environmental fluctuations, which negatively impact their reproductive fitness and trigger adaptive responses to biotic and abiotic stresses. In this limiting landscape, cumulative research attention has centred on deepening the roles of major phytohormones, mostly auxins, together with brassinosteroids, jasmonates, and abscisic acid, despite the signaling networks orchestrating the crosstalk among them are so far only poorly understood. Accordingly, this review focuses on the Arabidopsis Amidase Signature (AS) superfamily members, with the aim of highlighting the hitherto relatively underappreciated functions of AMIDASE1 (AMI1) and FATTY ACID AMIDE HYDROLASE (FAAH), as comparable coordinators of the growth-defense trade-off, by balancing auxin and ABA homeostasis through the conversion of their likely bioactive substrates, indole-3-acetamide and N-acylethanolamine.
Collapse
|
22
|
Deplano A, Karlsson J, Moraca F, Svensson M, Cristiano C, Morgillo CM, Fowler CJ, Russo R, Catalanotti B, Onnis V. Design, synthesis and in vitro and in vivo biological evaluation of flurbiprofen amides as new fatty acid amide hydrolase/cyclooxygenase-2 dual inhibitory potential analgesic agents. J Enzyme Inhib Med Chem 2021; 36:940-953. [PMID: 33896320 PMCID: PMC8079065 DOI: 10.1080/14756366.2021.1875459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Compounds combining dual inhibitory action against FAAH and cyclooxygenase (COX) may be potentially useful analgesics. Here, we describe a novel flurbiprofen analogue, N-(3-bromopyridin-2-yl)-2-(2-fluoro-(1,1'-biphenyl)-4-yl)propanamide (Flu-AM4). The compound is a competitive, reversible inhibitor of FAAH with a Ki value of 13 nM and which inhibits COX activity in a substrate-selective manner. Molecular modelling suggested that Flu-AM4 optimally fits a hydrophobic pocket in the ACB region of FAAH, and binds to COX-2 similarly to flurbiprofen. In vivo studies indicated that at a dose of 10 mg/kg, Flu-AM4 was active in models of prolonged (formalin) and neuropathic (chronic constriction injury) pain and reduced the spinal expression of iNOS, COX-2, and NFκB in the neuropathic model. Thus, the present study identifies Flu-AM4 as a dual-action FAAH/substrate-selective COX inhibitor with anti-inflammatory and analgesic activity in animal pain models. These findings underscore the potential usefulness of such dual-action compounds.
Collapse
Affiliation(s)
- Alessandro Deplano
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Jessica Karlsson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Federica Moraca
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Net4Science srl, University "Magna Graecia", Catanzaro, Italy
| | - Mona Svensson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Carmine Marco Morgillo
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Valentina Onnis
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
23
|
Montanari S, Allarà M, Scalvini L, Kostrzewa M, Belluti F, Gobbi S, Naldi M, Rivara S, Bartolini M, Ligresti A, Bisi A, Rampa A. New Coumarin Derivatives as Cholinergic and Cannabinoid System Modulators. Molecules 2021; 26:molecules26113254. [PMID: 34071439 PMCID: PMC8198714 DOI: 10.3390/molecules26113254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/12/2023] Open
Abstract
In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer’s disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aβ42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aβ42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation.
Collapse
Affiliation(s)
- Serena Montanari
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Marco Allarà
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Laura Scalvini
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.S.); (S.R.)
| | - Magdalena Kostrzewa
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Silvia Rivara
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.S.); (S.R.)
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
- Correspondence: (A.B.); (A.R.)
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
- Correspondence: (A.B.); (A.R.)
| |
Collapse
|
24
|
Jaiswal S, Ayyannan SR. Anticancer Potential of Small-Molecule Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase. ChemMedChem 2021; 16:2172-2187. [PMID: 33834617 DOI: 10.1002/cmdc.202100120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/08/2021] [Indexed: 12/18/2022]
Abstract
Recently fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) inhibitors have been in the limelight due to their anticancer potential. Both FAAH and MAGL are the endocannabinoid degrading enzymes that hydrolyze several endogenous ligands, mainly anandamide (AEA) and 2-arachidonic glycerol (2-AG), which regulate various pathophysiological conditions in the body such as emotion, cognition, energy balance, pain sensation, neuroinflammation, and cancer cell proliferation. FAAH and MAGL inhibitors block the metabolism of AEA and 2-AG, increase endogenous levels of fatty acid amides, and exert various therapeutic effects including chronic pain, metabolic disorders, psychoses, nausea and vomiting, depression, and anxiety disorders. FAAH and MAGL are primarily neurotherapeutic targets, but their contribution to various types of carcinomas are significant. Inhibitors of these enzymes either alone or as multitarget agents, or with supra-additive effects show the potential effect in ovarian, breast, prostate, and colorectal cancers. Besides highlighting the role of FAAH and MAGL in cancer progression, this review provides an update on the anticancer capabilities of known and newly discovered FAAH and MAGL inhibitors and also provides further directions to develop FAAH and MAGL inhibitors as new candidates for cancer therapy.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
25
|
Allosteric Modulation of the CB1 Cannabinoid Receptor by Cannabidiol-A Molecular Modeling Study of the N-Terminal Domain and the Allosteric-Orthosteric Coupling. Molecules 2021; 26:molecules26092456. [PMID: 33922473 PMCID: PMC8122825 DOI: 10.3390/molecules26092456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
The CB1 cannabinoid receptor (CB1R) contains one of the longest N termini among class A G protein-coupled receptors. Mutagenesis studies suggest that the allosteric binding site of cannabidiol (CBD) involves residues from the N terminal domain. In order to study the allosteric binding of CBD to CB1R we modeled the whole N-terminus of this receptor using the replica exchange molecular dynamics with solute tempering (REST2) approach. Then, the obtained structures of CB1R with the N terminus were used for ligand docking. A natural cannabinoid receptor agonist, Δ9-THC, was docked to the orthosteric site and a negative allosteric modulator, CBD, to the allosteric site positioned between extracellular ends of helices TM1 and TM2. The molecular dynamics simulations were then performed for CB1R with ligands: (i) CBD together with THC, and (ii) THC-only. Analyses of the differences in the residue-residue interaction patterns between those two cases allowed us to elucidate the allosteric network responsible for the modulation of the CB1R by CBD. In addition, we identified the changes in the orthosteric binding mode of Δ9-THC, as well as the changes in its binding energy, caused by the CBD allosteric binding. We have also found that the presence of a complete N-terminal domain is essential for a stable binding of CBD in the allosteric site of CB1R as well as for the allosteric-orthosteric coupling mechanism.
Collapse
|
26
|
Å Nilsson JL, Mallet C, Shionoya K, Blomgren A, Sundin AP, Grundemar L, Boudieu L, Blomqvist A, Eschalier A, Nilsson UJ, Zygmunt PM. Paracetamol analogues conjugated by FAAH induce TRPV1-mediated antinociception without causing acute liver toxicity. Eur J Med Chem 2021; 213:113042. [PMID: 33257173 DOI: 10.1016/j.ejmech.2020.113042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Paracetamol, one of the most widely used pain-relieving drugs, is deacetylated to 4-aminophenol (4-AP) that undergoes fatty acid amide hydrolase (FAAH)-dependent biotransformation into N-arachidonoylphenolamine (AM404), which mediates TRPV1-dependent antinociception in the brain of rodents. However, paracetamol is also converted to the liver-toxic metabolite N-acetyl-p-benzoquinone imine already at therapeutic doses, urging for safer paracetamol analogues. Primary amine analogues with chemical structures similar to paracetamol were evaluated for their propensity to undergo FAAH-dependent N-arachidonoyl conjugation into TRPV1 activators both in vitro and in vivo in rodents. The antinociceptive and antipyretic activity of paracetamol and primary amine analogues was examined with regard to FAAH and TRPV1 as well as if these analogues produced acute liver toxicity. 5-Amino-2-methoxyphenol (2) and 5-aminoindazole (3) displayed efficient target protein interactions with a dose-dependent antinociceptive effect in the mice formalin test, which in the second phase was dependent on FAAH and TRPV1. No hepatotoxicity of the FAAH substrates transformed into TRPV1 activators was observed. While paracetamol attenuates pyrexia via inhibition of brain cyclooxygenase, its antinociceptive FAAH substrate 4-AP was not antipyretic, suggesting separate mechanisms for the antipyretic and antinociceptive effect of paracetamol. Furthermore, compound 3 reduced fever without a brain cyclooxygenase inhibitory action. The data support our view that analgesics and antipyretics without liver toxicity can be derived from paracetamol. Thus, research into the molecular actions of paracetamol could pave the way for the discovery of analgesics and antipyretics with a better benefit-to-risk ratio.
Collapse
Affiliation(s)
- Johan L Å Nilsson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Box 117, SE-221 00, Lund, Sweden
| | - Christophe Mallet
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, F-63000, Clermont-Ferrand, France
| | - Kiseko Shionoya
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Anders Blomgren
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Box 117, SE-221 00, Lund, Sweden
| | - Anders P Sundin
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, 221 00, Lund, Sweden
| | - Lars Grundemar
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Box 117, SE-221 00, Lund, Sweden
| | - Ludivine Boudieu
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, F-63000, Clermont-Ferrand, France
| | - Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, F-63000, Clermont-Ferrand, France
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, 221 00, Lund, Sweden
| | - Peter M Zygmunt
- Department of Clinical Sciences Malmö, Lund University, SE-214 28, Malmö, Sweden.
| |
Collapse
|
27
|
Maleki MF, Nadri H, Kianfar M, Edraki N, Eisvand F, Ghodsi R, Mohajeri SA, Hadizadeh F. Design and synthesis of new carbamates as inhibitors for fatty acid amide hydrolase and cholinesterases: Molecular dynamic, in vitro and in vivo studies. Bioorg Chem 2021; 109:104684. [PMID: 33607363 DOI: 10.1016/j.bioorg.2021.104684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
As anandamide (N-arachidonoylethanolamine, AEA) shows neuroprotective effects, the inhibition of its degradative enzyme, fatty acid amide hydrolase (FAAH) has been considered as a hopeful avenue for the treatment of neurodegenerative diseases, like Alzheimer's disease (AD). Memory loss, cognitive impairment and diminution of the cholinergic tone, due to the dying cholinergic neurons in the basal forebrain, are common hallmarks in patients with AD. By taking advantage of cholinesterase inhibitors (ChEIs), the degradation of acetylcholine (ACh) is decreased leading to enhanced cholinergic neurotransmission in the aforementioned region and ultimately improves the clinical condition of AD patients. In this work, new carbamates were designed as inhibitors of FAAH and cholinestrases (ChEs) (acetylcholinestrase (AChE), butyrylcholinestrase (BuChE)) inspired by the structure of the native substrates, structure of active sites and the SARs of the well-known inhibitors of these enzymes. All the designed compounds were synthesized using different reactions. All the target compounds were tested for their inhibitory activity against FAAH and ChEs by employing the Cayman assay kit and Elman method respectively. Generally, compounds possessing aminomethyl phenyl linker was more potent compared to their corresponding compounds possessing piperazinyl ethyl linker. The inhibitory potential of the compounds 3a-q extended from 0.83 ± 0.03 μM (3i) to ˃100 μM (3a) for FAAH, 0.39 ± 0.02 μM (3i) to 24% inhibition in 113 ± 4.8 μM (3b) for AChE, and 1.8 ± 3.2 μM (3i) to 23.2 ± 0.2 μM (3b) for BuChE. Compound 3i a heptyl carbamate analog possessing 2-oxo-1,2-dihydroquinolin ring and aminomethyl phenyl linker showed the most inhibitory activity against three enzymes. Also, compound 3i was investigated for memory improvement using the Morris water maze test in which the compound showed better memory improvement at 10 mg/kg compared to reference drug rivastigmine at 2.5 mg/kg. Molecular docking and molecular dynamic studies of compound 3i into the enzymes displayed the possible interactions of key residues of the active sites with compound 3i. Finally, kinetic study indicated that 3i inhibits AChE through the mixed- mode mechanism and non-competitive inhibition mechanism was revealed for BuChE.
Collapse
Affiliation(s)
- Mahdi Faal Maleki
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mostafa Kianfar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Criscuolo E, De Sciscio ML, Fezza F, Maccarrone M. In Silico and In Vitro Analysis of Major Cannabis-Derived Compounds as Fatty Acid Amide Hydrolase Inhibitors. Molecules 2020; 26:molecules26010048. [PMID: 33374180 PMCID: PMC7795171 DOI: 10.3390/molecules26010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulated evidence suggests that enhancing the endocannabinoid (eCB) tone, in particular of anandamide (N-arachidonoylethanolamine, AEA), has therapeutic potential in many human diseases. Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme principally responsible for the degradation of AEA, and thus it represents a relevant target to increase signaling thereof. In recent years, different synthetic and natural compounds have been developed and tested on rat FAAH, but little is known of their effect on the human enzyme. Here, we sought to investigate six major cannabis-derived compounds to compare their action on rat and human FAAHs. To this aim, we combined an in silico analysis of their binding mode and affinity, with in vitro assays of their effect on enzyme activity. This integrated approach allowed to disclose differences in efficacy towards rat and human FAAHs, and to highlight the role of key residues involved in the inhibition of both enzymes. This study suggests that the therapeutic efficacy of compounds targeted towards FAAH should be always tested in vitro on both rat and human enzymes.
Collapse
Affiliation(s)
- Emanuele Criscuolo
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy;
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Maria Laura De Sciscio
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy;
- Correspondence: (F.F.); (M.M.)
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio snc, 67100 L’Aquila, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 54, 00143 Rome, Italy
- Correspondence: (F.F.); (M.M.)
| |
Collapse
|
29
|
Synthesis, Molecular Modeling and Biological Evaluation of Metabolically Stable Analogues of the Endogenous Fatty Acid Amide Palmitoylethanolamide. Int J Mol Sci 2020; 21:ijms21239074. [PMID: 33260658 PMCID: PMC7730713 DOI: 10.3390/ijms21239074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Palmitoylethanolamide (PEA) belongs to the class of N-acylethanolamine and is an endogenous lipid potentially useful in a wide range of therapeutic areas; products containing PEA are licensed for use in humans as a nutraceutical, a food supplement, or food for medical purposes for its analgesic and anti-inflammatory properties demonstrating efficacy and tolerability. However, the exogenously administered PEA is rapidly inactivated; in this process, fatty acid amide hydrolase (FAAH) plays a key role both in hepatic metabolism and in intracellular degradation. So, the aim of the present study was the design and synthesis of PEA analogues that are more resistant to FAAH-mediated hydrolysis. A small library of PEA analogues was designed and tested by molecular docking and density functional theory calculations to find the more stable analogue. The computational investigation identified RePEA as the best candidate in terms of both synthetic accessibility and metabolic stability to FAAH-mediated hydrolysis. The selected compound was synthesized and assayed ex vivo to monitor FAAH-mediated hydrolysis and to confirm its anti-inflammatory properties. 1H-NMR spectroscopy performed on membrane samples containing FAAH in integral membrane protein demonstrated that RePEA is not processed by FAAH, in contrast with PEA. Moreover, RePEA retains PEA’s ability to inhibit LPS-induced cytokine release in both murine N9 microglial cells and human PMA-THP-1 cells.
Collapse
|
30
|
Deplano A, Karlsson J, Svensson M, Moraca F, Catalanotti B, Fowler CJ, Onnis V. Exploring the fatty acid amide hydrolase and cyclooxygenase inhibitory properties of novel amide derivatives of ibuprofen. J Enzyme Inhib Med Chem 2020; 35:815-823. [PMID: 32200655 PMCID: PMC7144264 DOI: 10.1080/14756366.2020.1743283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inhibition of fatty acid amide hydrolase (FAAH) reduces the gastrointestinal damage produced by non-steroidal anti-inflammatory agents such as sulindac and indomethacin in experimental animals, suggesting that a dual-action FAAH-cyclooxygenase (COX) inhibitor could have useful therapeutic properties. Here, we have investigated 12 novel amide analogues of ibuprofen as potential dual-action FAAH/COX inhibitors. N-(3-Bromopyridin-2-yl)−2-(4-isobutylphenyl)propanamide (Ibu-AM68) was found to inhibit the hydrolysis of [3H]anandamide by rat brain homogenates by a reversible, mixed-type mechanism of inhibition with a Ki value of 0.26 µM and an α value of 4.9. At a concentration of 10 µM, the compound did not inhibit the cyclooxygenation of arachidonic acid by either ovine COX-1 or human recombinant COX-2. However, this concentration of Ibu-AM68 greatly reduced the ability of the COX-2 to catalyse the cyclooxygenation of the endocannabinoid 2-arachidonoylglycerol. It is concluded that Ibu-AM68 is a dual-acting FAAH/substrate-selective COX inhibitor.
Collapse
Affiliation(s)
- Alessandro Deplano
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jessica Karlsson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Mona Svensson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Federica Moraca
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | | | - Valentina Onnis
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
31
|
The Basal Pharmacology of Palmitoylethanolamide. Int J Mol Sci 2020; 21:ijms21217942. [PMID: 33114698 PMCID: PMC7662788 DOI: 10.3390/ijms21217942] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Palmitoylethanolamide (PEA, N-hexadecanoylethanolamide) is an endogenous compound belonging to the family of N-acylethanolamines. PEA has anti-inflammatory and analgesic properties and is very well tolerated in humans. In the present article, the basal pharmacology of PEA is reviewed. In terms of its pharmacokinetic properties, most work has been undertaken upon designing formulations for its absorption and upon characterising the enzymes involved in its metabolism, but little is known about its bioavailability, tissue distribution, and excretion pathways. PEA exerts most of its biological effects in the body secondary to the activation of peroxisome proliferator-activated receptor-α (PPAR-α), but PPAR-α-independent pathways involving other receptors (Transient Receptor Potential Vanilloid 1 (TRPV1), GPR55) have also been identified. Given the potential clinical utility of PEA, not least for the treatment of pain where there is a clear need for new well-tolerated drugs, we conclude that the gaps in our knowledge, in particular those relating to the pharmacokinetic properties of the compound, need to be filled.
Collapse
|
32
|
Joksimović N, Janković N, Davidović G, Bugarčić Z. 2,4-Diketo esters: Crucial intermediates for drug discovery. Bioorg Chem 2020; 105:104343. [PMID: 33086180 DOI: 10.1016/j.bioorg.2020.104343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Convenient structures such as 2,4-diketo esters have been widely used as an effective pattern in medicinal chemistry and pharmacology for drug discovery. 2,4-Diketonate is a common scaffold that can be found in many biologically active and naturally occurring compounds. Also, many 2,4-diketo ester derivatives have been prepared due to their suitable synthesis. These synthetic drugs and natural products have shown numerous interesting biological properties with clinical potential as a cure for the broad specter of diseases. This review aims to highlight the important evidence of 2,4-diketo esters as a privileged scaffold in medicinal chemistry and pharmacology. Herein, numerous aspects of 2,4-diketo esters will be summarized, including synthesis and isolation of their derivatives, development of novel synthetic methodologies, the evaluation of their biological properties as well as the mechanisms of action of the diketo ester derivates. This paperwork is expected to be a comprehensive, trustworthy, and critical review of the 2,4-diketo ester intermediate to the chemistry community.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Goran Davidović
- University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zorica Bugarčić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
33
|
Scalvini L, Ghidini A, Lodola A, Callegari D, Rivara S, Piomelli D, Mor M. N-Acylethanolamine Acid Amidase (NAAA): Mechanism of Palmitoylethanolamide Hydrolysis Revealed by Mechanistic Simulations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Andrea Ghidini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Donatella Callegari
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
- Department of Biological Chemistry and Molecular Biology, University of California, Irvine, California 92697-4625, United States
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| |
Collapse
|
34
|
Wu Z, Liu C, Zhang Z, Zheng R, Zheng Y. Amidase as a versatile tool in amide-bond cleavage: From molecular features to biotechnological applications. Biotechnol Adv 2020; 43:107574. [PMID: 32512219 DOI: 10.1016/j.biotechadv.2020.107574] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
Amidases (EC 3. 5. 1. X) are versatile biocatalysts for synthesis of chiral carboxylic acids, α-amino acids and amides due to their hydrolytic and acyl transfer activity towards the C-N linkages. They have been extensively exploited and studied during the past years for their high specific activity and excellent enantioselectivity involved in various biotechnological applications in pharmaceutical and agrochemical industries. Additionally, they have attracted considerable attentions in biodegradation and bioremediation owing to environmental pressures. Motivated by industrial demands, crystallographic investigations and catalytic mechanisms of amidases based on structural biology have witnessed a dramatic promotion in the last two decades. The protein structures showed that different types of amidases have their typical stuctural elements, such as the conserved AS domains in signature amidases and the typical architecture of metal-associated active sites in acetamidase/formamidase family amidases. This review provides an overview of recent research advances in various amidases, with a focus on their structural basis of phylogenetics, substrate specificities and catalytic mechanisms as well as their biotechnological applications. As more crystal structures of amidases are determined, the structure/function relationships of these enzymes will also be further elucidated, which will facilitate molecular engineering and design of amidases to meet industrial requirements.
Collapse
Affiliation(s)
- Zheming Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Changfeng Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhaoyu Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Renchao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
35
|
Shang Y, Hao Q, Jiang K, He M, Wang J. Discovery of heterocyclic carbohydrazide derivatives as novel selective fatty acid amide hydrolase inhibitors: design, synthesis and anti-neuroinflammatory evaluation. Bioorg Med Chem Lett 2020; 30:127118. [PMID: 32216992 DOI: 10.1016/j.bmcl.2020.127118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 01/23/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat pain, inflammation, and other central nervous system disorders. Herein, a series of novel heterocyclic carbohydrazide derivatives were firstly designed by the classic scaffold-hopping strategy. Then, multi-steps synthesis and human FAAH enzyme inhibiting activity assays were conducted. Among them, compound 26 showedstrong inhibition against human FAAH with IC50 of 2.8 μM. Corresponding docking studies revealed that the acyl hydrazide group of compound 26 well-occupied the acyl-chain binding pocket. It also exhibited high selectivity towards FAAH when comparing with CES2 and MAGL. Additionally, compound 26 effectively suppressed the LPS-induced neuroinflammation of microglial cells (BV2) via the reduction of interleukin-1β and tumor necrosis factor-α. Our results provided significative lead compounds for the further discovery of novel selective and safe FAAH inhibitors with potent anti-neuroinflammation activity.
Collapse
Affiliation(s)
- Yanguo Shang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaixuan Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengting He
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
36
|
A Rapid Method for the Selection of Amidohydrolases from Metagenomic Libraries by Applying Synthetic Nucleosides and a Uridine Auxotrophic Host. Catalysts 2020. [DOI: 10.3390/catal10040445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the development of a rapid, high-throughput method for the selection of amide-hydrolysing enzymes from the metagenome is described. This method is based on uridine auxotrophic Escherichia coli strain DH10B ∆pyrFEC and the use of N4-benzoyl-2’-deoxycytidine as a sole source of uridine in the minimal microbial M9 medium. The approach described here permits the selection of unique biocatalysts, e.g., a novel amidohydrolase from the activating signal cointegrator homology (ASCH) family and a polyethylene terephthalate hydrolase (PETase)-related enzyme.
Collapse
|
37
|
The Hydrophobic Ligands Entry and Exit from the GPCR Binding Site-SMD and SuMD Simulations. Molecules 2020; 25:molecules25081930. [PMID: 32326322 PMCID: PMC7221835 DOI: 10.3390/molecules25081930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Most G protein-coupled receptors that bind the hydrophobic ligands (lipid receptors and steroid receptors) belong to the most populated class A (rhodopsin-like) of these receptors. Typical examples of lipid receptors are: rhodopsin, cannabinoid (CB), sphingosine-1-phosphate (S1P) and lysophosphatidic (LPA) receptors. The hydrophobic ligands access the receptor binding site from the lipid bilayer not only because of their low solubility in water but also because of a large N-terminal domain plug preventing access to the orthosteric binding site from the extracellular milieu. In order to identify the most probable ligand exit pathway from lipid receptors CB1, S1P1 and LPA1 orthosteric binding sites we performed at least three repeats of steered molecular dynamics simulations in which ligands were pulled in various directions. For specific ligands being agonists, the supervised molecular dynamics approach was used to simulate the ligand entry events to the inactive receptor structures. For all investigated receptors the ligand entry/exit pathway goes through the gate between transmembrane helices TM1 and TM7, however, in some cases it combined with a direction toward water milieu.
Collapse
|
38
|
Fazio D, Criscuolo E, Piccoli A, Barboni B, Fezza F, Maccarrone M. Advances in the discovery of fatty acid amide hydrolase inhibitors: what does the future hold? Expert Opin Drug Discov 2020; 15:765-778. [PMID: 32292082 DOI: 10.1080/17460441.2020.1751118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme, that inactivates endogenous signaling lipids of the fatty acid amide family, including the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA). The latter compound has been shown to regulate a number of important pathophysiological conditions in humans, like feeding, obesity, immune response, reproductive events, motor coordination, and neurological disorders. Hence, direct manipulation of the endocannabinoid tone is thought to have therapeutic potential. A new opportunity to develop effective drugs may arise from multi-target directed ligand (MTDL) strategies, which brings the concept that a single compound can recognize different targets involved in the cascade of pathophysiological events. AREAS COVERED This review reports the latest advances in the development of new single targeted and dual-targeted FAAH inhibitors over the past 5 years. EXPERT OPINION In recent years, several FAAH inhibitors have been synthesized and investigated, yet to date none of them has reached the market as a systemic drug. Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases.
Collapse
Affiliation(s)
- Domenico Fazio
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo , Teramo, Italy.,European Center for Brain Research/IRCCS Santa Lucia Foundation , Rome, Italy
| | - Emanuele Criscuolo
- Department of Experimental Medicine, Tor Vergata University of Rome , Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| | - Alessandra Piccoli
- Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo , Teramo, Italy
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome , Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation , Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| |
Collapse
|
39
|
Piomelli D, Scalvini L, Fotio Y, Lodola A, Spadoni G, Tarzia G, Mor M. N-Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition. J Med Chem 2020; 63:7475-7490. [PMID: 32191459 DOI: 10.1021/acs.jmedchem.0c00191] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase primarily found in the endosomal-lysosomal compartment of innate and adaptive immune cells. NAAA catalyzes the hydrolytic deactivation of palmitoylethanolamide (PEA), a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that exerts profound anti-inflammatory effects in animal models. Emerging evidence points to NAAA-regulated PEA signaling at PPAR-α as a critical control point for the induction and the resolution of inflammation and to NAAA itself as a target for anti-inflammatory medicines. The present Perspective discusses three key aspects of this hypothesis: the role of NAAA in controlling the signaling activity of PEA; the structural bases for NAAA function and inhibition by covalent and noncovalent agents; and finally, the potential value of NAAA-targeting drugs in the treatment of human inflammatory disorders.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States.,Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States.,Department of Biological Chemistry and Molecular Biology, University of California, Irvine, California 92697-4625, United States
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Giorgio Tarzia
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| |
Collapse
|
40
|
Aziz M, Chapman KD. Fatty Acid Amide Hydrolases: An Expanded Capacity for Chemical Communication? TRENDS IN PLANT SCIENCE 2020; 25:236-249. [PMID: 31919033 DOI: 10.1016/j.tplants.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 05/25/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is an enzyme that belongs to the amidase signature (AS) superfamily and is widely distributed in multicellular eukaryotes. FAAH hydrolyzes lipid signaling molecules - namely, N-acylethanolamines (NAEs) - which terminates their actions. Recently, the crystal structure of Arabidopsis thaliana FAAH was solved and key residues were identified for substrate-specific interactions. Here, focusing on residues surrounding the substrate-binding pocket, a comprehensive analysis of FAAH sequences from angiosperms reveals a distinctly different family of FAAH-like enzymes. We hypothesize that FAAH, in addition to its role in seedling development, also acts in an N-acyl amide communication axis to facilitate plant-microbe interactions and that structural diversity provides for the flexible use of a wide range of small lipophilic signaling molecules.
Collapse
Affiliation(s)
- Mina Aziz
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
41
|
Haq I, Kilaru A. An endocannabinoid catabolic enzyme FAAH and its paralogs in an early land plant reveal evolutionary and functional relationship with eukaryotic orthologs. Sci Rep 2020; 10:3115. [PMID: 32080293 PMCID: PMC7033180 DOI: 10.1038/s41598-020-59948-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
Endocannabinoids were known to exist only among Animalia but recent report of their occurrence in early land plants prompted us to study its function and metabolism. In mammals, anandamide, as an endocannabinoid ligand, mediates several neurological and physiological processes, which are terminated by fatty acid amide hydrolase (FAAH). We identified nine orthologs of FAAH in the moss Physcomitrella patens (PpFAAH1 to PpFAAH9) with amidase signature and catalytic triad. The optimal amidase activity for PpFAAH1 was at 37 °C and pH 8.0, with higher specificity to anandamide. Further, the phylogeny and predicted structural analyses of the nine paralogs revealed that PpFAAH1 to PpFAAH4 were closely related to plant FAAH while PpFAAH6 to PpFAAH9 were to the rat FAAH, categorized based on the membrane binding cap, membrane access channel and substrate binding pocket. We also identified that a true 'dynamic paddle' that is responsible for tighter regulation of FAAH is recent in vertebrates and absent or not fully emerged in plants and non-vertebrates. These data reveal evolutionary and functional relationship among eukaryotic FAAH orthologs and features that contribute to versatility and tighter regulation of FAAH. Future studies will utilize FAAH mutants of moss to elucidate the role of anandamide in early land plants.
Collapse
Affiliation(s)
- Imdadul Haq
- Department of Biological Sciences and Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Aruna Kilaru
- Department of Biological Sciences and Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
42
|
Dainese E, Oddi S, Simonetti M, Sabatucci A, Angelucci CB, Ballone A, Dufrusine B, Fezza F, De Fabritiis G, Maccarrone M. The endocannabinoid hydrolase FAAH is an allosteric enzyme. Sci Rep 2020; 10:2292. [PMID: 32041998 PMCID: PMC7010751 DOI: 10.1038/s41598-020-59120-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that in vivo controls content and biological activity of N-arachidonoylethanolamine (AEA) and other relevant bioactive lipids termed endocannabinoids. Parallel orientation of FAAH monomers likely allows both subunits to simultaneously recruit and cleave substrates. Here, we show full inhibition of human and rat FAAH by means of enzyme inhibitors used at a homodimer:inhibitor stoichiometric ratio of 1:1, implying that occupation of only one of the two active sites of FAAH is enough to fully block catalysis. Single W445Y substitution in rat FAAH displayed the same activity as the wild-type, but failed to show full inhibition at the homodimer:inhibitor 1:1 ratio. Instead, F432A mutant exhibited reduced specific activity but was fully inhibited at the homodimer:inhibitor 1:1 ratio. Kinetic analysis of AEA hydrolysis by rat FAAH and its F432A mutant demonstrated a Hill coefficient of ~1.6, that instead was ~1.0 in the W445Y mutant. Of note, also human FAAH catalysed an allosteric hydrolysis of AEA, showing a Hill coefficient of ~1.9. Taken together, this study demonstrates an unprecedented allosterism of FAAH, and represents a case of communication between two enzyme subunits seemingly controlled by a single amino acid (W445) at the dimer interface. In the light of extensive attempts and subsequent failures over the last decade to develop effective drugs for human therapy, these findings pave the way to the rationale design of new molecules that, by acting as positive or negative heterotropic effectors of FAAH, may control more efficiently its activity.
Collapse
Affiliation(s)
- Enrico Dainese
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Sergio Oddi
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Monica Simonetti
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalaura Sabatucci
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alice Ballone
- Barcelona Biomedical Research Park (PRBB), University of Pompeu Fabra and Icrea, Barcelona, Spain
| | - Beatrice Dufrusine
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Filomena Fezza
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Gianni De Fabritiis
- Barcelona Biomedical Research Park (PRBB), University of Pompeu Fabra and Icrea, Barcelona, Spain
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy.
- Department of Medicine - Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
43
|
Lodola A, Callegari D, Scalvini L, Rivara S, Mor M. Design and SAR Analysis of Covalent Inhibitors Driven by Hybrid QM/MM Simulations. Methods Mol Biol 2020; 2114:307-337. [PMID: 32016901 DOI: 10.1007/978-1-0716-0282-9_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) hybrid technique is emerging as a reliable computational method to investigate and characterize chemical reactions occurring in enzymes. From a drug discovery perspective, a thorough understanding of enzyme catalysis appears pivotal to assist the design of inhibitors able to covalently bind one of the residues belonging to the enzyme catalytic machinery. Thanks to the current advances in computer power, and the availability of more efficient algorithms for QM-based simulations, the use of QM/MM methodology is becoming a viable option in the field of covalent inhibitor design. In the present review, we summarized our experience in the field of QM/MM simulations applied to drug design problems which involved the optimization of agents working on two well-known drug targets, namely fatty acid amide hydrolase (FAAH) and epidermal growth factor receptor (EGFR). In this context, QM/MM simulations gave valuable information in terms of geometry (i.e., of transition states and metastable intermediates) and reaction energetics that allowed to correctly predict inhibitor binding orientation and substituent effect on enzyme inhibition. What is more, enzyme reaction modelling with QM/MM provided insights that were translated into the synthesis of new covalent inhibitor featured by a unique combination of intrinsic reactivity, on-target activity, and selectivity.
Collapse
Affiliation(s)
- Alessio Lodola
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy.
| | - Donatella Callegari
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Laura Scalvini
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Silvia Rivara
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Mor
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
44
|
Tripathi RKP. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem 2019; 188:111953. [PMID: 31945644 DOI: 10.1016/j.ejmech.2019.111953] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is an important enzyme creditworthy of hydrolyzing endocannabinoids and related-amidated signalling lipids, discovery of which has pioneered novel arena of pharmacological canvasses to unwrap its curative potency in various diseased circumstances. It presents contemporary basis for understanding molecules regulating and mediating inflammatory reactions, pain, anxiety, depression, and neurodegeneration. FAAH inhibitors form vital approach for discovery of therapeutic agents that are concerned with local elevation of endocannabinoids under certain stimuli, debarring adverse/unwanted secondary effects from global activation of cannabinoid receptors by exogenous cannabimimetics. During past decades, several molecules with excellent potency developed through tailor-made approaches entered into clinical trials, but none could reach market. Hence, hunt for novel, non-toxic and selective FAAH inhibitors are on horizon. This review summarizes present perception on FAAH in conjunction with its structure, mechanism of catalysis and biological functions. It also foregrounds recent development of molecules belonging to diverse chemical classes as potential FAAH inhibitors bobbing up from in-depth chemical, mechanistic and computational studies published since 2015-November 2019, focusing on their potency. This review will assist readers to obtain rationale on FAAH as potential target for addressing various disease conditions, acquiring significant knowledge on recently established inhibitor scaffolds and their development potentials. New technologies including MD-MM simulations and 3D-QSAR studies allow mechanistic characterization of enzyme. Assessment of in-vitro and in-vivo efficacy of existing FAAH inhibitors will facilitate researchers to design novel ligands utilizing modern drug design methods. The discussions will also impose precaution in decision making process, quashing possibility of late stage failure.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, 788011, India; Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
45
|
Zhang W, Liu H, Deng XD, Ma Y, Liu Y. FAAH levels and its genetic polymorphism association with susceptibility to methamphetamine dependence. Ann Hum Genet 2019; 84:259-270. [PMID: 31789429 DOI: 10.1111/ahg.12368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022]
Abstract
The fatty acid amide hydrolase (FAAH) gene was involved in the modulation of reward and addiction pathophysiology of illicit drugs abuse, and its polymorphisms might be associated with risk of methamphetamine (METH) dependence. This study aimed to investigate the FAAH mRNA levels in peripheral blood mononuclear cells and plasma protein levels and to analyze the 385C/A polymorphism (rs324420) between METH-dependent patients and controls. The levels of FAAH mRNA in METH dependence were significantly lower than in controls (P < 0.001), however, its plasma protein underwent a significant ∼2-fold increase (P < 0.001). The A allele of the 385C/A polymorphism significantly increased the METH dependence risk (P < 0.001, odds ratio [OR] = 1.646, 95% confidence interval [CI] = 1.332-2.034). The carried A genotypes (AA, AC, and AA/AC) of 385C/A polymorphism also increased METH-dependence risks under a different genetic model (AA vs. CC: P = 0.017, OR = 2.454, 95%CI = 1.171-2.143; AC vs. CC: P < 0.001, OR = 1.818, 95%CI = 1.404-2.353; AC/AA vs. CC: P < 0.001, OR = 1.858, 95%CI = 1.444-2.319). The similar results were obtained after adjusting for age and sex. Unfortunately, we failed to find that any genotype of 385C/A polymorphism affected the mRNA or plasma protein levels in controls, respectively (P > 0.05). These data indicate that the FAAH may play an important role in the pathophysiological process of METH dependence, and the 385C/A polymorphism may be associated with METH dependence susceptibility in a Chinese Han population.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Huan Liu
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.,Department of Preventive Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiao-Dong Deng
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ying Ma
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yun Liu
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
46
|
Vanni S, Riccardi L, Palermo G, De Vivo M. Structure and Dynamics of the Acyl Chains in the Membrane Trafficking and Enzymatic Processing of Lipids. Acc Chem Res 2019; 52:3087-3096. [PMID: 31364837 DOI: 10.1021/acs.accounts.9b00134] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The regulatory chemical mechanisms of lipid trafficking and degradation are involved in many pathophysiological processes, being implicated in severe pain, inflammation, and cancer. In addition, the processing of lipids is also relevant for industrial and environmental applications. However, there is poor understanding of the chemical features that control lipid membrane trafficking and allow lipid-degrading enzymes to efficiently select and hydrolyze specific fatty acids from a complex cellular milieu of bioactive lipids. This is particularly true for lipid acyl chains, which have diverse structures that can critically affect the many complex reactions needed to elongate, desaturate, or transport fatty acids. Building upon our own contributions in this field, we will discuss how molecular simulations, integrated with experimental evidence, have revealed that the structure and dynamics of the lipid tail are actively involved in modulating membrane trafficking at cellular organelles, and enzymatic reactions at cell membranes. Further evidence comes from recent crystal structures of lipid receptors and remodeling enzymes. Taken together, these recent works have identified those structural features of the lipid acyl chain that are crucial for the regioselectivity and stereospecificity of essential desaturation reactions. In this context, we will first illustrate how atomistic and coarse-grained simulations have elucidated the structure-function relationships between the chemical composition of the lipid's acyl chains and the molecular properties of lipid bilayers. Particular emphasis will be given to the prominent chemical role of the number of double carbon-carbon bonds along the lipid acyl chain, that is, discriminating between saturated, monounsaturated, and polyunsaturated lipids. Different levels of saturation in fatty acid molecules dramatically influence the biophysical properties of lipid assemblies and their interaction with proteins. We will then discuss the processing of lipids by membrane-bound enzymes. Our focus will be on lipids such as anandamide and 2-arachidonoylglycerol. These are the main molecules that act as neurotransmitters in the endocannabinoid system. Specifically, recent findings indicate a crucial interplay between the level of saturation of the lipid tail, its energetically and sterically favored conformations, and the hydrophobic accessory cavities in lipid-degrading enzymes, which help form catalytically active conformations of the selected substrate. This Account will emphasize how the specific chemical structure of acyl chains affects the molecular mechanisms for modulating membrane trafficking and selective hydrolysis. The results examined here show that, by using molecular simulations to investigate lipid plasticity and substrate flexibility, researchers can enrich their interpretation of experimental results about the structure-function relationships of lipids. This could positively impact chemical and biological studies in the field and ultimately support protein engineering studies and structure-based drug discovery to target lipid-processing enzymes.
Collapse
Affiliation(s)
- Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Université Côte d’Azur, CNRS, IPMC, 06560 Valbonne, France
| | - Laura Riccardi
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, Riverside, California 92521, United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
47
|
Lamani M, Malamas MS, Farah SI, Shukla VG, Almeida MF, Weerts CM, Anderson J, Wood JT, Farizatto KLG, Bahr BA, Makriyannis A. Piperidine and piperazine inhibitors of fatty acid amide hydrolase targeting excitotoxic pathology. Bioorg Med Chem 2019; 27:115096. [PMID: 31629610 DOI: 10.1016/j.bmc.2019.115096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 11/30/2022]
Abstract
FAAH inhibitors offer safety advantages by augmenting the anandamide levels "on demand" to promote neuroprotective mechanisms without the adverse psychotropic effects usually seen with direct and chronic activation of the CB1 receptor. FAAH is an enzyme implicated in the hydrolysis of the endocannabinoid N-arachidonoylethanolamine (AEA), which is a partial agonist of the CB1 receptor. Herein, we report the discovery of a new series of highly potent and selective carbamate FAAH inhibitors and their evaluation for neuroprotection. The new inhibitors showed potent nanomolar inhibitory activity against human recombinant and purified rat FAAH, were selective (>1000-fold) against serine hydrolases MGL and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Evaluation of FAAH inhibitors 9 and 31 using the in vitro competitive activity-based protein profiling (ABPP) assay confirmed that both inhibitors were highly selective for FAAH in the brain, since none of the other FP-reactive serine hydrolases in this tissue were inhibited by these agents. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on known FAAH cocrystal structures. To rationally design new molecules that are irreversibly bound to FAAH, we have constructed "precovalent" FAAH-ligand complexes to identify good binding geometries of the ligands within the binding pocket of FAAH and then calculated covalent docking poses to select compounds for synthesis. FAAH inhibitors 9 and 31 were evaluated for neuroprotection in rat hippocampal slice cultures. In the brain tissue, both inhibitors displayed protection against synaptic deterioration produced by kainic acid-induced excitotoxicity. Thus, the resultant compounds produced through rational design are providing early leads for developing therapeutics against seizure-related damage associated with a variety of disorders.
Collapse
Affiliation(s)
- Manjunath Lamani
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Michael S Malamas
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA.
| | - Shrouq I Farah
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Vidyanand G Shukla
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Catherine M Weerts
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Joseph Anderson
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - JodiAnne T Wood
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| |
Collapse
|
48
|
Wang ZJ, Hu SSJ, Bradshaw HB, Sun L, Mackie K, Straiker A, Heinbockel T. Cannabinoid receptor-mediated modulation of inhibitory inputs to mitral cells in the main olfactory bulb. J Neurophysiol 2019; 122:749-759. [PMID: 31215302 PMCID: PMC6734407 DOI: 10.1152/jn.00100.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 11/22/2022] Open
Abstract
The endocannabinoid (eCB) signaling system has been functionally implicated in many brain regions. Our understanding of the role of cannabinoid receptor type 1 (CB1) in olfactory processing remains limited. Cannabinoid signaling is involved in regulating glomerular activity in the main olfactory bulb (MOB). However, the cannabinoid-related circuitry of inputs to mitral cells in the MOB has not been fully determined. Using anatomical and functional approaches we have explored this question. CB1 was present in periglomerular processes of a GAD65-positive subpopulation of interneurons but not in mitral cells. We detected eCBs in the mouse MOB as well as the expression of CB1 and other genes associated with cannabinoid signaling in the MOB. Patch-clamp electrophysiology demonstrated that CB1 agonists activated mitral cells and evoked an inward current, while CB1 antagonists reduced firing and evoked an outward current. CB1 effects on mitral cells were absent in subglomerular slices in which the olfactory nerve layer and glomerular layer were removed, suggesting the glomerular layer as the site of CB1 action. We previously observed that GABAergic periglomerular cells show the inverse response pattern to CB1 activation compared with mitral cells, suggesting that CB1 indirectly regulates mitral cell activity as a result of cellular activation of glomerular GABAergic processes . This hypothesis was supported by the finding that cannabinoids modulated synaptic transmission to mitral cells. We conclude that CB1 directly regulates GABAergic processes in the glomerular layer to control GABA release and, in turn, regulates mitral cell activity with potential effects on olfactory threshold and behavior.NEW & NOTEWORTHY Cannabinoid signaling with cannabinoid receptor type 1 (CB1) is involved in the regulation of glomerular activity in the main olfactory bulb (MOB). We detected endocannabinoids in the mouse MOB. CB1 was present in periglomerular processes of a GAD65-positive subpopulation of interneurons. CB1 agonists activated mitral cells. CB1 directly regulates GABAergic processes to control GABA release and, in turn, regulates mitral cell activity with potential effects on olfactory threshold and behavior.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia
| | - Sherry Shu-Jung Hu
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Heather B Bradshaw
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Liqin Sun
- Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia
| | - Ken Mackie
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Alex Straiker
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia
| |
Collapse
|
49
|
Wan Y, Liu C, Ma Q. Structural analysis of a Vibrio phospholipase reveals an unusual Ser-His-chloride catalytic triad. J Biol Chem 2019; 294:11391-11401. [PMID: 31073025 DOI: 10.1074/jbc.ra119.008280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Phospholipases can disrupt host membranes and are important virulence factors in many pathogens. VvPlpA is a phospholipase A2 secreted by Vibrio vulnificus and essential for virulence. Its homologs, termed thermolabile hemolysins (TLHs), are widely distributed in Vibrio bacteria, but no structural information for this virulence factor class is available. Herein, we report the crystal structure of VvPlpA to 1.4-Å resolution, revealing that VvPlpA contains an N-terminal domain of unknown function and a C-terminal phospholipase domain and that these two domains are packed closely together. The phospholipase domain adopts a typical SGNH hydrolase fold, containing the four conserved catalytic residues Ser, Gly, Asn, and His. Interestingly, the structure also disclosed that the phospholipase domain accommodates a chloride ion near the catalytic His residue. The chloride is five-coordinated in a distorted bipyramid geometry, accepting hydrogen bonds from a water molecule and the amino groups of surrounding residues. This chloride substitutes for the most common Asp/Glu residue and forms an unusual Ser-His-chloride catalytic triad in VvPlpA. The chloride may orient the catalytic His and stabilize the charge on its imidazole ring during catalysis. Indeed, VvPlpA activity depended on chloride concentration, confirming the important role of chloride in catalysis. The VvPlpA structure also revealed a large hydrophobic substrate-binding pocket that is capable of accommodating a long-chain acyl group. Our results provide the first structure of the TLH family and uncover an unusual Ser-His-chloride catalytic triad, expanding our knowledge on the biological role of chloride.
Collapse
Affiliation(s)
- Ye Wan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changshui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qingjun Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
50
|
Deplano A, Cipriano M, Moraca F, Novellino E, Catalanotti B, Fowler CJ, Onnis V. Benzylamides and piperazinoarylamides of ibuprofen as fatty acid amide hydrolase inhibitors. J Enzyme Inhib Med Chem 2019; 34:562-576. [PMID: 30688118 PMCID: PMC6352954 DOI: 10.1080/14756366.2018.1532418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fatty Acid Amide Hydrolase (FAAH) is a serine hydrolase that plays a key role in controlling endogenous levels of endocannabinoids. FAAH inhibition is considered a powerful approach to enhance the endocannabinoid signalling, and therefore it has been largely studied as a potential target for the treatment of neurological disorders such as anxiety or depression, or of inflammatory processes. We present two novel series of amide derivatives of ibuprofen designed as analogues of our reference FAAH inhibitor Ibu-AM5 to further explore its structure-activity relationships. In the new amides, the 2-methylpyridine moiety of Ibu-AM5 was substituted by benzylamino and piperazinoaryl moieties. The obtained benzylamides and piperazinoarylamides showed FAAH inhibition ranging from the low to high micromolar potency. The binding of the new amides in the active site of FAAH, estimated using the induced fit protocol, indicated arylpiperazinoamides binding the ACB channel and the cytosolic port, and benzylamides binding the ACB channel.
Collapse
Affiliation(s)
- Alessandro Deplano
- a Department of Life and Environmental Sciences - Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences , University of Cagliari , Cagliari , Italy
| | - Mariateresa Cipriano
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Federica Moraca
- c Department of Chemical Sciences , University of Napoli Federico II , Napoli , Italy
| | - Ettore Novellino
- d Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Bruno Catalanotti
- d Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Christopher J Fowler
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Valentina Onnis
- a Department of Life and Environmental Sciences - Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences , University of Cagliari , Cagliari , Italy
| |
Collapse
|