1
|
Wei J, Zhang J, Ding N, Liu Y, Wu Y, Duan R. Anti-Aging Effects and Mechanisms of Cod Collagen Peptides (CCPs) in Caenorhabditis elegans. J Funct Biomater 2025; 16:150. [PMID: 40422815 DOI: 10.3390/jfb16050150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Given the growing interest in natural compounds for promoting healthy aging, this study aimed to investigate the potential of cod collagen peptides (CCPs), a readily available marine resource, to extend lifespan and improve health. Lifespan assays were performed on C. elegans treated with different concentrations of CCPs. Furthermore, various stress resistance assays, including those evaluating oxidative and thermal stress, were conducted. To elucidate the underlying mechanisms, gene expression analysis of key aging-related genes was performed. The results demonstrated that treatment with 25 mg/mL of CCPs extended the lifespan of C. elegans by 13.2%, increased body length and width by 14.8% and 20.6%, respectively, and enhanced head-swing and body-bending frequencies by 66.9% and 80.4%. Lipofuscin content and apoptosis were reduced by 45.9% and 34.1%, respectively. C. elegans treated with 25 mg/mL of CCPs also showed improved stress resistance, a 90.7% increase in glutathione peroxidase (GPX) activity, and a 147.4% increase in glutathione (GSH) content. Transcriptomic analysis showed that CCPs enhanced anti-aging activity by activating the MAPK pathway and inhibiting the IIS pathway, which was associated with protein aggregation. It also reduced lipid synthesis and regulated lipid metabolism through the fat-6 pathway. The results indicated that CCPs could be employed as a valuable ingredient in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Jiale Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Junjie Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Nan Ding
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Yu Liu
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Yuzhen Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Rui Duan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
- School of Marine Science and Fisheries, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| |
Collapse
|
2
|
Cano-Besquet S, Park M, Berkley N, Wong M, Ashiqueali S, Noureddine S, Gesing A, Schneider A, Mason J, Masternak MM, Dhahbi JM. Gene and transcript expression patterns, coupled with isoform switching and long non-coding RNA dynamics in adipose tissue, underlie the longevity of Ames dwarf mice. GeroScience 2025; 47:1923-1943. [PMID: 39405012 PMCID: PMC11978586 DOI: 10.1007/s11357-024-01383-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/06/2024] [Indexed: 04/09/2025] Open
Abstract
Our study investigates gene expression in adipose tissue of Ames dwarf (df/df) mice, whose deficiency in growth hormone is linked to health and extended lifespan. Recognizing adipose tissue influence on metabolism, aging, and related diseases, we aim to understand its contribution to the health and longevity of df/df mice. We have identified gene and transcript expression patterns associated with critical biological functions, including metabolism, stress response, and resistance to cancer. Intriguingly, we identified genes that, despite maintaining unchanged expression levels, switch between different isoforms, impacting essential cellular functions such as tumor suppression, oncogenic activity, ATP transport, and lipid biosynthesis and storage. The isoform switching is associated with changes in protein domains, retention of introns, initiation of nonsense-mediated decay, and emergence of intrinsically disordered regions. Moreover, we detected various alternative splicing events that may drive these structural alterations. We also found changes in the expression of long non-coding RNAs (lncRNAs) that may be involved in the aging process and disease resistance by regulating crucial genes in survival and metabolism. Through weighted gene co-expression network analysis, we have linked four lncRNAs with 29 genes, which contribute to protein complexes such as the Mili-Tdrd1-Tdrd12 complex. Beyond safeguarding DNA integrity, this complex also has a wider impact on gene regulation, chromatin structure, and metabolic control. Our detailed investigation provides insight into the molecular foundations of the remarkable health and longevity of df/df mice, emphasizing the significance of adipose tissue in aging and identifying new avenues for health-promoting therapeutic strategies.
Collapse
Affiliation(s)
- Sebastian Cano-Besquet
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA, USA
| | - Maiyon Park
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA, USA
| | | | - Michelle Wong
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA, USA
| | - Sarah Ashiqueali
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Sarah Noureddine
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Adam Gesing
- Department of Endocrinology of Ageing, Medical University of Lodz, Lodz, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Jeffrey Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Joseph M Dhahbi
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA, USA.
| |
Collapse
|
3
|
Komleva Y, Shpiliukova K, Bondar N, Salmina A, Khilazheva E, Illarioshkin S, Piradov M. Decoding brain aging trajectory: predictive discrepancies, genetic susceptibilities, and emerging therapeutic strategies. Front Aging Neurosci 2025; 17:1562453. [PMID: 40177249 PMCID: PMC11962000 DOI: 10.3389/fnagi.2025.1562453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The global extension of human lifespan has intensified the focus on aging, yet its underlying mechanisms remain inadequately understood. The article highlights aspects of genetic susceptibility to impaired brain bioenergetics, trends in age-related gene expression related to neuroinflammation and brain senescence, and the impact of stem cell exhaustion and quiescence on accelerated brain aging. We also review the accumulation of senescent cells, mitochondrial dysfunction, and metabolic disturbances as central pathological processes in aging, emphasizing how these factors contribute to inflammation and disrupt cellular competition defining the aging trajectory. Furthermore, we discuss emerging therapeutic strategies and the future potential of integrating advanced technologies to refine aging assessments. The combination of several methods including genetic analysis, neuroimaging techniques, cognitive tests and digital twins, offer a novel approach by simulating and monitoring individual health and aging trajectories, thereby providing more accurate and personalized insights. Conclusively, the accurate estimation of brain aging trajectories is crucial for understanding and managing aging processes, potentially transforming preventive and therapeutic strategies to improve health outcomes in aging populations.
Collapse
Affiliation(s)
| | | | - Nikolai Bondar
- Research Center of Neurology, Moscow, Russia
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Elena Khilazheva
- Department of Biological Chemistry with Courses in Medical, Research Institute of Molecular Medicine and Pathobiochemistry, Pharmaceutical and Toxicological Chemistry Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russia
| | | | | |
Collapse
|
4
|
Hu IM, Serna A, Everts S, Güngördü L, Schomakers BV, Nollen EAA, Gao AW, Houtkooper RH, Janssens GE. Topoisomerase inhibitor amonafide enhances defense responses to promote longevity in C. elegans. GeroScience 2025:10.1007/s11357-025-01599-5. [PMID: 40085390 DOI: 10.1007/s11357-025-01599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Aging is a major risk factor for disease, and developing effective pharmaceutical interventions to improve healthspan and promote longevity has become a high priority for society. One of the molecular pathways related to longevity in various model organisms revolves around lowering AKT1 levels. This prompted our in silico drug screen for small molecules capable of mimicking the transcriptional effects of AKT1 knockdown. We found topoisomerase inhibitors as a top candidate longevity-drug class. Evaluating multiple compounds from this class in C. elegans revealed that the topoisomerase inhibitor amonafide has the greatest benefit on healthspan and lifespan. Intriguingly, the longevity effect of amonafide was not solely dependent on DAF-16/FOXO, the canonical pathway for lifespan extension via AKT1 inhibition. We performed RNA-seq on amonafide-treated worms and revealed a more youthful transcriptional signature, including the activation of diverse molecular and cellular defense pathways. We found the mitochondrial unfolded protein response (UPRmt) regulator afts-1 to be crucial for both improved healthspan and extended lifespan upon amonafide treatment. Moreover, healthspan was partially dependent on the immune response transcription factor zip-2 and the integrated stress response transcription factor atf-4. We further examined the potential of amonafide in age-related disease. Treating a C. elegans model for Parkinson's disease with amonafide improved mobility. In conclusion, we identified amonafide as a novel geroprotector, which activates mitochondrial-, pathogen-, and xenobiotic-associated defense responses that-though more studies are needed-may serve as a candidate for Parkinson's disease therapy.
Collapse
Affiliation(s)
- Iman Man Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - Ana Serna
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Stacia Everts
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Lale Güngördü
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bauke V Schomakers
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ellen A A Nollen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arwen W Gao
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Held M, Bisen RS, Zandawala M, Chockley AS, Balles IS, Hilpert S, Liessem S, Cascino-Milani F, Ache JM. Aminergic and peptidergic modulation of insulin-producing cells in Drosophila. eLife 2025; 13:RP99548. [PMID: 40063677 PMCID: PMC11893105 DOI: 10.7554/elife.99548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Insulin plays a critical role in maintaining metabolic homeostasis. Since metabolic demands are highly dynamic, insulin release needs to be constantly adjusted. These adjustments are mediated by different pathways, most prominently the blood glucose level, but also by feedforward signals from motor circuits and different neuromodulatory systems. Here, we analyze how neuromodulatory inputs control the activity of the main source of insulin in Drosophila - a population of insulin-producing cells (IPCs) located in the brain. IPCs are functionally analogous to mammalian pancreatic beta cells, but their location makes them accessible for in vivo recordings in intact animals. We characterized functional inputs to IPCs using single-nucleus RNA sequencing analysis, anatomical receptor expression mapping, connectomics, and an optogenetics-based 'intrinsic pharmacology' approach. Our results show that the IPC population expresses a variety of receptors for neuromodulators and classical neurotransmitters. Interestingly, IPCs exhibit heterogeneous receptor profiles, suggesting that the IPC population can be modulated differentially. This is supported by electrophysiological recordings from IPCs, which we performed while activating different populations of modulatory neurons. Our analysis revealed that some modulatory inputs have heterogeneous effects on the IPC activity, such that they inhibit one subset of IPCs, while exciting another. Monitoring calcium activity across the IPC population uncovered that these heterogeneous responses occur simultaneously. Certain neuromodulatory populations shifted the IPC population activity towards an excited state, while others shifted it towards inhibition. Taken together, we provide a comprehensive, multi-level analysis of neuromodulation in the insulinergic system of Drosophila.
Collapse
Affiliation(s)
- Martina Held
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Rituja S Bisen
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Meet Zandawala
- Zandawala Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
- Department of Biochemistry and Molecular Biology, University of Nevada RenoRenoUnited States
| | - Alexander S Chockley
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Isabella S Balles
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Selina Hilpert
- Zandawala Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Sander Liessem
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Federico Cascino-Milani
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Jan M Ache
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| |
Collapse
|
6
|
Guo X, Lu J, Miao L, Shen E. Mitochondrial Proteome Reveals Metabolic Tuning by Restricted Insulin Signaling to Promote Longevity in Caenorhabditis elegans. BIOLOGY 2025; 14:279. [PMID: 40136535 PMCID: PMC11940386 DOI: 10.3390/biology14030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
Aging is a time-dependent process of functional decline influenced by genetic and environmental factors. Age-related mitochondrial changes remain incompletely understood. Here, we found that compared to the wild type, the mitochondria of long-lived daf-2 C. elegans maintain youthful morphology and function. Through quantitative proteomic analysis on isolated mitochondria, we identified 257 differentially expressed candidates. Analysis of these changed mitochondrial proteins reveals a significant upregulation of five key mitochondrial metabolic pathways in daf-2 mutants, including branched-chain amino acids (BCAA), reactive oxygen species (ROS), propionate, β-alanine, and fatty acids (FA), all of which are related to daf-2-mediated longevity. In addition, mitochondrial ribosome protein abundance slightly decreased in daf-2 mutants. A mild reduction in mitochondrial elongation factor G (gfm-1) by RNAi extends the lifespan of wild type while decreasing lipid metabolic process and cytoplasmic fatty acid metabolism, suggesting that proper inhibition of mitochondrial translation activity might be important for lifespan extension. Overall, our findings indicate that mitochondrial metabolic modulation contributes to the longevity of daf-2 mutants and further highlights the crucial role of mitochondria in aging.
Collapse
Affiliation(s)
- Xuanxuan Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Jiuwei Lu
- Department of Biochemistry, University of California Riverside, Riverside, CA 92521, USA;
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- MOE Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Enzhi Shen
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
7
|
Zhou Y, Wang Y, Li F, Shi Y, Wu T, Li Y. The relationship of serum klotho levels and triglyceride glucose index-related indicators. Lipids Health Dis 2024; 23:399. [PMID: 39639327 PMCID: PMC11619470 DOI: 10.1186/s12944-024-02379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Klotho, an anti-aging protein, is linked to energy metabolism. There is limited research on the association of serum klotho and triglyceride glucose (TyG) index-related indicators. Our research aims to investigate the relationship of serum klotho with TyG-BMI (body mass index), TyG-WC (waist circumference), and TyG-WHtR (waist-to-height ratio). METHODS From 2007 to 2016, we examined 6,370 participants in the National Health and Nutrition Examination Survey (NHANES). The enzyme-linked immunosorbent assay (ELISA) was utilized to measure serum klotho. We calculated the TyG-BMI, TyG-WC, and TyG-WHtR based on fasting triglycerides, fasting glucose, BMI, WC, and WHtR. Multiple linear regression analysis was used to evaluate the association of serum klotho with TyG-BMI, TyG-WC, and TyG-WHtR. Additionally, generalized additive model (GAM) and smoothing curves were used to evaluate the linear and nonlinear relationships. A piecewise regression model was also utilized to test for threshold effects and determine the breakpoints. Finally, the potential independent associations of serum klotho with TyG-BMI, TyG-WC, and TyG-WHtR were further explored using subgroup analysis. RESULTS We observed a statistically significant difference in serum klotho levels across different quartiles of the population. Based on the multiple linear regression analysis, serum klotho levels were negatively associated with TyG-related indicators. There was a nonlinear relationship between the serum klotho and TyG-BMI, TyG-WC, and TyG-WHtR. The segmented regression analysis revealed that the breakpoints of TyG-BMI, TyG-WC, and TyG-WHtR were 5.42, 6.67, and 1.89, respectively. Subgroup analysis showed that TyG-related indicators interacted with gender and diabetes. CONCLUSIONS In this study, a negative and nonlinear relationship was identified between serum klotho and TyG-related indicators. Further research is needed to clarify the potential mechanisms that may link serum klotho to TyG-BMI, TyG-WC, and TyG-WHtR.
Collapse
Affiliation(s)
- Yaoyao Zhou
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang, 310053, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yaqi Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang, 310053, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fangli Li
- Department of Non-Disease treatment, Shenzhen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, Guangdong, 518172, China
| | - Yiming Shi
- School of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Henan, 450046, China
| | - Taotao Wu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang, 310053, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yingshuai Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
van der Spoel E, Cornet S, Zutinic A, Ballieux B, Slagboom PE, Pijl H, van Heemst D. Effect of Thyroid Status Modulation on Pituitary and Peripheral Hormone Concentrations in Healthy Older Subjects. Neuroendocrinology 2024; 115:1-12. [PMID: 39626644 PMCID: PMC11854971 DOI: 10.1159/000542832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/23/2024] [Indexed: 02/26/2025]
Abstract
INTRODUCTION Depending on age, sex, and familial longevity, alterations in thyroid status occur frequently and often co-occur with differences in other hormonal axes. However, studies that explore the effects of thyroid status modulation on other hormonal axes remain scarce. We aimed to determine the effects of thyroid status modulation on prolactin, IGF-1, cortisol, LH, testosterone, and SHBG levels. We also explored whether effects differed depending on type of challenge, sex, and familial longevity. METHODS Data were gathered from two single-arm challenge studies comprising an intramuscular injection of 0.1 mg recombinant human TSH (rhTSH, N = 29) or 100 µg T3 orally (N = 27) in healthy older individuals. Changes in hormone concentration profiles relative to baseline were determined for 4 and 5 days, respectively. RESULTS IGF-1 increased with a maximum of 6.3% (SEM = 1.6%, p = 0.002) in the rhTSH challenge and 8.8% (SEM = 1.6%, p < 0.001) in the T3 challenge, while LH (19.3% [SEM = 6.6%, p = 0.048]), testosterone (13.8% [SEM = 4.7%, p = 0.048]), and SHBG (11.8% [SEM = 3.5%, p = 0.02]) increased significantly in the T3 challenge only. Moreover, prolactin significantly decreased in both rhTSH and T3 challenges (-8.8% [SEM = 3.4%, p = 0.048] and -12.0% [3.3%, p = 0.004], respectively) as did cortisol (-14.8% [SEM = 3.6%, p < 0.001] and -15.6% [SEM = 3.5%, p < 0.001]). There was no significant interaction with type of challenge, sex, or familial longevity, except for prolactin in the rhTSH challenge (p = 0.004) which decreased significantly in men only. CONCLUSIONS Upon modulation of thyroid status, changes were observed in IGF-1, prolactin, and cortisol. In the T3 challenge, LH, testosterone, and SHBG increased in men. Observed changes are hypothesized to be driven by (f)T3. INTRODUCTION Depending on age, sex, and familial longevity, alterations in thyroid status occur frequently and often co-occur with differences in other hormonal axes. However, studies that explore the effects of thyroid status modulation on other hormonal axes remain scarce. We aimed to determine the effects of thyroid status modulation on prolactin, IGF-1, cortisol, LH, testosterone, and SHBG levels. We also explored whether effects differed depending on type of challenge, sex, and familial longevity. METHODS Data were gathered from two single-arm challenge studies comprising an intramuscular injection of 0.1 mg recombinant human TSH (rhTSH, N = 29) or 100 µg T3 orally (N = 27) in healthy older individuals. Changes in hormone concentration profiles relative to baseline were determined for 4 and 5 days, respectively. RESULTS IGF-1 increased with a maximum of 6.3% (SEM = 1.6%, p = 0.002) in the rhTSH challenge and 8.8% (SEM = 1.6%, p < 0.001) in the T3 challenge, while LH (19.3% [SEM = 6.6%, p = 0.048]), testosterone (13.8% [SEM = 4.7%, p = 0.048]), and SHBG (11.8% [SEM = 3.5%, p = 0.02]) increased significantly in the T3 challenge only. Moreover, prolactin significantly decreased in both rhTSH and T3 challenges (-8.8% [SEM = 3.4%, p = 0.048] and -12.0% [3.3%, p = 0.004], respectively) as did cortisol (-14.8% [SEM = 3.6%, p < 0.001] and -15.6% [SEM = 3.5%, p < 0.001]). There was no significant interaction with type of challenge, sex, or familial longevity, except for prolactin in the rhTSH challenge (p = 0.004) which decreased significantly in men only. CONCLUSIONS Upon modulation of thyroid status, changes were observed in IGF-1, prolactin, and cortisol. In the T3 challenge, LH, testosterone, and SHBG increased in men. Observed changes are hypothesized to be driven by (f)T3.
Collapse
Affiliation(s)
- Evie van der Spoel
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia Cornet
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ana Zutinic
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart Ballieux
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - P. Eline Slagboom
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanno Pijl
- Section Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana van Heemst
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Krishnan H, Ahmed S, Hubbard SR, Miller WT. Catalytic activities of wild-type C. elegans DAF-2 kinase and dauer-associated mutants. FEBS J 2024; 291:5435-5454. [PMID: 39428852 DOI: 10.1111/febs.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
DAF-2, the Caenorhabditis elegans insulin-like receptor homolog, regulates larval development, metabolism, stress response, and lifespan. The availability of numerous daf-2 mutant alleles has made it possible to elucidate the genetic mechanisms underlying these physiological processes. The DAF-2 pathway is significantly conserved with the human insulin/IGF-1 signaling pathway; it includes proteins homologous to human IRS, GRB-2, and PI3K, making it an important model to investigate human pathological conditions. We expressed and purified the kinase domain of wild-type DAF-2 to examine the catalytic activity and substrate specificity of the enzyme. Like the human insulin receptor kinase, DAF-2 kinase phosphorylates tyrosines within specific YxN or YxxM motifs, which are important for recruiting downstream effectors. DAF-2 kinase phosphorylated peptides derived from the YxxM and YxN motifs located in the C-terminal extension of the receptor tyrosine kinase, consistent with the idea that the DAF-2 receptor may possess independent signaling capacity. Unlike the human insulin or IGF-1 receptor kinases, DAF-2 kinase was poorly inhibited by the small-molecule inhibitor linsitinib. We also expressed and purified mutant kinases corresponding to daf-2 alleles that result in partial loss-of-function phenotypes in C. elegans. These mutations caused a complete loss of kinase function in vitro. Our biochemical investigations provide new insights into DAF-2 kinase function, and the approach should be useful for studying other mutations to shed light on DAF-2 signaling in C. elegans physiology.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
- Department of Veterans Affairs Medical Center, Northport, NY, USA
| |
Collapse
|
10
|
Karpova EK, Bobrovskikh MA, Burdina EV, Adonyeva NV, Deryuzhenko MA, Zakharenko LP, Petrovskii DV, Gruntenko NE. Larval stress affects adult Drosophila behavior and metabolism. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104709. [PMID: 39299381 DOI: 10.1016/j.jinsphys.2024.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In this study, we raised the following question: "Does metamorphosis, being a "reboot" of all systems of the organism, erase the changes that occurred at earlier stages of insect development?" To answer this question, we investigated several behavioral, metabolic and neuroendocrine parameters in Drosophila melanogaster imago that had undergone heat stress at the 3rd larval instar (32 °C, 48 h). We discovered that larval stress negatively affected feeding and locomotor behavior, as well as total lipid content in adult flies. At the same time, these flies demonstrated a considerable increase in carbohydrate content and expression level of insulin/insulin-like growth factor signaling (IIS) pathway genes, dfoxo, dilp6 and dInR. The data obtained allow us to conclude that metamorphosis does not erase the effect of stress exposure at early developmental stages and causes dramatic changes in carbohydrate and lipid metabolism as well as locomotor activity of adult insects, which is at least in part due to changes in IIS activity.
Collapse
Affiliation(s)
- Evgenia K Karpova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | - Elena V Burdina
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | | | | | | | | |
Collapse
|
11
|
Zaczek A, Lewiński A, Karbownik-Lewińska M, Lehoczki A, Gesing A. Impact of visceral adipose tissue on longevity and metabolic health: a comparative study of gene expression in perirenal and epididymal fat of Ames dwarf mice. GeroScience 2024; 46:5925-5938. [PMID: 38517641 PMCID: PMC11493907 DOI: 10.1007/s11357-024-01131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024] Open
Abstract
Emerging research underscores the pivotal role of adipose tissue in regulating systemic aging processes, particularly when viewed through the lens of the endocrine hypotheses of aging. This study delves into the unique adipose characteristics in an important animal model of aging - the long-lived Ames dwarf (df/df) mice. Characterized by a Prop1df gene mutation, these mice exhibit a deficiency in growth hormone (GH), prolactin, and TSH, alongside extremely low circulating IGF-1 levels. Intriguingly, while surgical removal of visceral fat (VFR) enhances insulin sensitivity in normal mice, it paradoxically increases insulin resistance in Ames dwarfs. This suggests an altered profile of factors produced in visceral fat in the absence of GH, indicating a unique interplay between adipose tissue function and hormonal influences in these models. Our aim was to analyze the gene expression related to lipid and glucose metabolism, insulin pathways, inflammation, thermoregulation, mitochondrial biogenesis, and epigenetic regulation in the visceral (perirenal and epididymal) adipose tissue of Ames dwarf and normal mice. Our findings reveal an upregulation in the expression of key genes such as Lpl, Adrβ3, Rstn, Foxo1, Foxo3a, Irs1, Cfd, Aldh2, Il6, Tnfα, Pgc1α, Ucp2, and Ezh2 in perirenal and Akt1, Foxo3a, PI3k, Ir, Acly, Il6, Ring1a, and Ring 1b in epididymal fat in df/df mice. These results suggest that the longevity phenotype in Ames dwarfs, which is determined by peripubertal GH/IGF-1 levels, may also involve epigenetic reprogramming of adipose tissue influenced by hormonal changes. The increased expression of genes involved in metabolic regulation, tumor suppression, mitochondrial biogenesis, and insulin pathways in Ames dwarf mice highlights potentially beneficial aspects of this model, opening new avenues for understanding the molecular underpinnings of longevity and aging.
Collapse
Affiliation(s)
- Agnieszka Zaczek
- Department of Endocrinology of Ageing, Medical University of Lodz, Lodz, Poland
| | - Andrzej Lewiński
- Department of Paediatric Endocrinology, Medical University of Lodz, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - Małgorzata Karbownik-Lewińska
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Doctoral School, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
| | - Adam Gesing
- Department of Endocrinology of Ageing, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
12
|
Rautela U, Sarkar GC, Chaudhary A, Chatterjee D, Rosh M, Arimbasseri AG, Mukhopadhyay A. A non-canonical role of somatic Cyclin D/CYD-1 in oogenesis and in maintenance of reproductive fidelity, dependent on the FOXO/DAF-16 activation state. PLoS Genet 2024; 20:e1011453. [PMID: 39546504 PMCID: PMC11602045 DOI: 10.1371/journal.pgen.1011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/27/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
For the optimal survival of a species, an organism coordinates its reproductive decisions with the nutrient availability of its niche. Thus, nutrient-sensing pathways like insulin-IGF-1 signaling (IIS) play an important role in modulating cell division, oogenesis, and reproductive aging. Lowering of the IIS leads to the activation of the downstream FOXO transcription factor (TF) DAF-16 in Caenorhabditis elegans which promotes oocyte quality and delays reproductive aging. However, less is known about how the IIS axis responds to changes in cell cycle proteins, particularly in the somatic tissues. Here, we show a new aspect of the regulation of the germline by this nutrient-sensing axis. First, we show that the canonical G1-S cyclin, Cyclin D/CYD-1, regulates reproductive fidelity from the uterine tissue of wild-type worms. Then, we show that knocking down cyd-1 in the uterine tissue of an IIS receptor mutant arrests oogenesis at the pachytene stage of meiosis-1 in a DAF-16-dependent manner. We observe activated DAF-16-dependent deterioration of the somatic gonadal tissues like the sheath cells, and transcriptional de-regulation of the sperm-to-oocyte switch genes which may be the underlying reason for the absence of oogenesis. Deleting DAF-16 releases the arrest and leads to restoration of the somatic gonad but poor-quality oocytes are produced. Together, our study reveals the unrecognized cell non-autonomous interaction of Cyclin D/CYD-1 and FOXO/DAF-16 in the regulation of oogenesis and reproductive fidelity.
Collapse
Affiliation(s)
- Umanshi Rautela
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Gautam Chandra Sarkar
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ayushi Chaudhary
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Debalina Chatterjee
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mohtashim Rosh
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
13
|
Šardzíková S, Gajewska M, Gałka N, Štefánek M, Baláž A, Garaiová M, Holič R, Świderek W, Šoltys K. Can longer lifespan be associated with gut microbiota involvement in lipid metabolism? FEMS Microbiol Ecol 2024; 100:fiae135. [PMID: 39354675 PMCID: PMC11503954 DOI: 10.1093/femsec/fiae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024] Open
Abstract
Biological aging is linked to altered body composition and reduced neuroactive steroid hormones like dehydroepiandrosterone sulfate (DHEAS), which can stimulate the GABA signaling pathway via gut microbiota. Our study examined the association of gut microbiota with lifespan in mice through comprehensive analysis of its composition and functional involvement in cholesterol sulfate, a precursor of DHEAS, metabolism. We used 16S rRNA and metagenomic sequencing, followed by metabolic pathway prediction and thin layer chromatography and MALDI-TOF cholesterol sulfate identification. Significant increases in bacteria such as Bacteroides, typical for long-lived and Odoribacter and Colidextribacter, specific for short-lived mice were detected. Furthermore, for males (Rikenella and Alloprevotella) and females (Lactobacillus and Bacteroides), specific bacterial groups emerged as predictors (AUC = 1), highlighting sex-specific patterns. Long-lived mice showed a strong correlation of Bacteroides (0.918) with lipid and steroid hormone metabolism, while a negative correlation of GABAergic synapse with body weight (-0.589). We found that several Bacteroides species harboring the sulfotransferase gene and gene cluster for sulfonate donor synthesis are involved in converting cholesterol to cholesterol sulfate, significantly higher in the feces of long-lived individuals. Overall, we suggest that increased involvement of gut bacteria, mainly Bacteroides spp., in cholesterol sulfate synthesis could ameliorate aging through lipid metabolism.
Collapse
Affiliation(s)
- Sára Šardzíková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Marta Gajewska
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Norbert Gałka
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Matúš Štefánek
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Andrej Baláž
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia
| | - Martina Garaiová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia
| | - Roman Holič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia
| | - Wiesław Świderek
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Katarína Šoltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
14
|
Satué K, Fazio E, Velasco-Martinez MG, La Fauci D, Barbiera G, Medica P, Cravana C. Can the reduced GH, IGF-1, and ovarian steroids concentrations be considered as suspected biomarkers of age-associated functional deficit in mares? Theriogenology 2024; 228:75-80. [PMID: 39098123 DOI: 10.1016/j.theriogenology.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
In humans' and experimental animals' components of the somatotropic axis, such as growth hormone (GH) and insulin-like growth factor 1 (IGF-1) concentrations, decrease with advancing age. Although there is evidence regarding IGF-1, the effect of age on GH in mares, as well as the relationships between both parameters, have not yet been elucidated. On the other hand, although GH and IGF-1 are related to follicular development, it is unknown if they could be correlated with the circulating concentrations of ovarian steroids in mares, as occurs in other species. The hypothesis of this study was that both GH and IGF-1 could experience physiological changes with advancing age also in mares, and that both GH/IGF-1 could be correlated with oestradiol-17β (E2) and progesterone (P4), as recorded for other species. Hence, the objective of this study was to evaluate the concentrations of GH, IGF-1, E2, and P4 in mares, according to the different ages. Blood samples were drawn from 56 healthy cyclic Spanish Purebred mares belonging to four different age groups: 6-9 years, 10-13 years, 14-16 years and >16 years. Mares aged 6-9 years and 10-13 years showed higher GH concentrations (P < 0.05) than mares of 14-16 and >16 years; and mares aged 14-16 showed higher GH concentrations (P < 0.05) than >16 years (P < 0.05). Mares aged >16 years showed lower IGF-1 concentrations (P < 0.05) than mares of 6-9, 10-13 and 14-16 years (P < 0.05). The concentrations of E2 and P4 showed no significant differences among different age groups. Both GH and IGF-1 were not correlated with each other or with E2 and P4. The concentrations of E2 and P4 did not change with age. Advancing age leads to a decrease in the activity of the somatotropic axis in physiological cyclic mares, represented by a significant GH reduction, which, however, was ascribed for IGF-1 exclusively to mares over 16 years of age, without alterations in steroid hormone patterns.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115, Valencia, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Maria Gemma Velasco-Martinez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Deborah La Fauci
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Giuliana Barbiera
- Pharmaceutical and Chemical Technician, 98168, Messina, Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Cristina Cravana
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| |
Collapse
|
15
|
Wang K, Liu J. Positive association of the anti-aging protein α-Klotho with insulin resistance and its inverse L-shaped relationship with glycaemic control in the middle-aged and elderly population. Endocrine 2024; 86:143-155. [PMID: 38761344 DOI: 10.1007/s12020-024-03874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE α-Klotho has been linked to insulin resistance (IR) in basic research. However, experimental evidence is inconsistent, and there is a lack of data from human research. This study seeks to elucidate the association of α-Klotho with IR in a nationwide, multiracial population. METHODS A total of 5289 participants aged 40-79 years were included in the National Health and Nutrition Examination Survey (NHANES) spanning 2007-2016. Serum α-Klotho was measured using enzyme-linked immunosorbent assays (ELISA), and IR was evaluated by the homeostatic model assessment of insulin resistance (HOMA-IR). Weighted multivariate logistic and linear regression analysis, subgroup analysis stratified by demographic characteristics, medical condition or obesity status, and sensitivity analysis using propensity score matching (PSM) were performed. Restricted cubic splines (RCS) were performed to explore the nonlinear relationship. RESULTS In the fully adjusted logistic regression model, a significant positive association was observed between log-transformed α-Klotho and IR (OR = 3.63, 95% CI: 1.56, 8.45), particularly in males or nonobese individuals (Pinteraction < 0.05). In the linear regression model, log10(α-Klotho) was associated with fasting blood glucose (FBG, β = 1.25, 95% CI: 0.74, 1.76) and glycosylated hemoglobin (HbA1c, β = 0.49, 95% CI: 0.20, 0.77). RCS revealed an inverse L-shaped dose-response relationship of α-Klotho with FBG and HbA1c (Pnonlinear <0.05). Beyond the inflection point of log10(α-Klotho) at 2.79, β coefficients sharply rose for these glycaemic control indicators. CONCLUSION The study provides clinical evidence supporting a positive association between α-Klotho and IR. Moreover, the inverse L-shaped relationship suggests that α-Klotho should reach a certain level to predict glycaemic changes effectively.
Collapse
Affiliation(s)
- Kai Wang
- Medical School, Southeast University, Nanjing, China
| | - Jianing Liu
- Medical Faculty, Ulm University, Ulm, Germany.
| |
Collapse
|
16
|
Amone F, Spina A, Perri A, Lofaro D, Zaccaria V, Insolia V, Lirangi C, Puoci F, Nobile V. Standardized Grape ( Vitis vinifera L.) Extract Improves Short- and Long-Term Cognitive Performances in Healthy Older Adults: A Randomized, Double-Blind, and Placebo-Controlled Trial. Foods 2024; 13:2999. [PMID: 39335927 PMCID: PMC11431441 DOI: 10.3390/foods13182999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Cognitive decline, a common consequence of aging, detrimentally affects independence, physical activity, and social interactions. This decline encompasses various cognitive functions, including processing speed, memory, language, and executive functioning. This trial aimed to investigate, with a double-blind, placebo-controlled clinical trial on 96 healthy older adults, the efficacy of once-daily 250 mg of a standardized grape (Vitis vinifera L.) juice extract (Cognigrape®) in improving short- and long-term cognitive functions. The results revealed significant improvements across multiple cognitive domains, notably immediate and delayed memory, visuospatial abilities, language, and attention, with improvements occurring within just 14 days, which continued to improve after 84 days of supplementation. The extract exhibited statistically significant enhancements in the Mini-Mental State Evaluation (MMSE), assessment of neuropsychological status (RBANS), "Esame Neuropsicologico Breve 2 (ENB-2), and Modified Bells Test (MBT) scores, with the latter test revealing a significant improvement in selective attention within just 90 min of the first dose. These positive results highlight the potential this natural grape extract has on improving cognitive function both acutely and chronically in a healthy aging population, which in turn supports a longer health span, at least cognitively.
Collapse
Affiliation(s)
- Fabio Amone
- R&D Department, Nutratech S.r.l., 87036 Rende, CS, Italy
| | - Amelia Spina
- R&D Department, Nutratech S.r.l., 87036 Rende, CS, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", 88100 Catanzaro, CZ, Italy
| | - Danilo Lofaro
- de-Health Lab, Department of Mechanical, Energy, Management Engineering, University of Calabria, 87036 Rende, CS, Italy
| | | | | | | | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87100 Cosenza, CS, Italy
| | - Vincenzo Nobile
- R&D Department, Complife Italia S.r.l., 27028 San Martino Siccomario, PV, Italy
| |
Collapse
|
17
|
Han B, Hu J, Yang C, Tang J, Du Y, Guo L, Wu Y, Zhang X, Zhou X. Lactobacillus Firm-5-derived succinate prevents honeybees from having diabetes-like symptoms. Proc Natl Acad Sci U S A 2024; 121:e2405410121. [PMID: 39186650 PMCID: PMC11388347 DOI: 10.1073/pnas.2405410121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
The gut microbiome plays an important role in honeybee hormonal regulation and growth, but the underlying mechanisms are poorly understood. Here, we showed that the depletion of gut bacteria resulted in reduced expression of insulin-like peptide gene (ilp) in the head, accompanied by metabolic syndromes resembling those of Type 1 diabetes in humans: hyperglycemia, impaired lipid storage, and decreased metabolism. These symptoms were alleviated by gut bacterial inoculation. Gut metabolite profiling revealed that succinate, produced by Lactobacillus Firm-5, played deterministic roles in activating ilp gene expression and in regulating metabolism in honeybees. Notably, we demonstrated that succinate modulates host ilp gene expression through stimulating gut gluconeogenesis, a mechanism resembling that of humans. This study presents evidence for the role of gut metabolite in modulating host metabolism and contributes to the understanding of the interactions between gut microbiome and bee hosts.
Collapse
Affiliation(s)
- Benfeng Han
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing100193, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Jiawei Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
- Sanya Institute of China Agricultural University, Hainan572024, China
| | - Junbo Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Yating Du
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Yashuai Wu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
- Sanya Institute of China Agricultural University, Hainan572024, China
| |
Collapse
|
18
|
Goldsmith TC. Mammal Aging as a Programmed Life Cycle Function - Resolving the Cause and Effect Conundrum. Adv Biol (Weinh) 2024; 8:e2300658. [PMID: 38880843 DOI: 10.1002/adbi.202300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/20/2024] [Indexed: 06/18/2024]
Abstract
Because aging and internally determined lifespan vary greatly between similar species it is now widely accepted that aging is an evolved trait, resulting in two classes of evolutionary aging theories: aging is programmed by complex biological mechanisms, and aging is not programmed. As recently as 2002 programmed aging is thought to be theoretically impossible. However, genetics discoveries, results of selective breeding, and other direct evidence strongly support the idea that aging creates an evolutionary advantage and that therefore complex biological mechanisms evolved that control aging in mammals and other multiparous organisms. Like life-cycle programs that control reproduction, growth, and menopause the aging program can adjust the aging trait during an individual's life to compensate for temporary or local changes in external conditions that alter the optimum lifespan for a particular species population. Genetics discoveries also strongly support the evolvability concept to the effect that sexually reproducing species can evolve design features that increase their ability to evolve, and that aging is one such feature. Genetics discoveries also prove that biological inheritance involves transmission of organism design information in digital form between parent and descendant of any organism. This has major implications for the evolution process.
Collapse
|
19
|
Lee WS, Abel ED, Kim J. New Insights into IGF-1 Signaling in the Heart. Physiology (Bethesda) 2024; 39:0. [PMID: 38713091 DOI: 10.1152/physiol.00003.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Insulin-like growth factor-1 (IGF-1) signaling has multiple physiological roles in cellular growth, metabolism, and aging. Myocardial hypertrophy, cell death, senescence, fibrosis, and electrical remodeling are hallmarks of various heart diseases and contribute to the progression of heart failure. This review highlights the critical role of IGF-1 and its cognate receptor in cardiac hypertrophy, aging, and remodeling.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Ru K, Cui L, Wu C, Tan XX, An WT, Wu Q, Ma YT, Hao Y, Xiao X, Bai J, Liu X, Xia XF, Zhao MQ. Exploring the molecular and immune landscape of cellular senescence in lung adenocarcinoma. Front Immunol 2024; 15:1347770. [PMID: 39267750 PMCID: PMC11390420 DOI: 10.3389/fimmu.2024.1347770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction The connection between aging and cancer is complex. Previous research has highlighted the association between the aging process of lung adenocarcinoma (LUAD) cells and the immune response, yet there remains a gap in confirming this through single-cell data validation. Here, we aim to develop a novel aging-related prognostic model for LUAD, and verify the alterations in the genome and immune microenvironment linked to cellular senescence. Methods We integrated a comprehensive collection of senescence genes from the GenAge and CellAge databases and employed the least absolute shrinkage and selection operator (LASSO) Cox analysis to construct and validate a novel prognostic model for LUAD. This model was then utilized to examine the relationship between aging, tumor somatic mutations, and immune cell infiltration. Additionally, we explored the heterogeneity of senescence and intercellular communication within the LUAD tumor microenvironment (TME) through single-cell transcriptomic data analysis. Results By exploring the expression profiles of 586 cellular senescence-related genes in 428 LUAD patients, we constructed an aging-related genes (ARGs) risk model included 10 ARGs and validated it as an independent prognostic predictor for LUAD patients. Notably, patients with low aging scores (LAS group) exhibited better survival, lower tumor mutation burden (TMB), lower somatic mutation frequency, lower tumor proliferation rate, and an immune activated phenotype compared to patients with high aging scores (HAS group). While the HAS group was enriched in tumor cells and showed a lower infiltration of CD8-CCR7, CD8- CXCL13, CD8-GNLY, FCGR3A NK cells, XCL1 NK cells, plasma cell (PC) and other immune subsets. Furthermore, the SPP1 and TENASCIN pathways, associated with tumor immune escape and tumor progression, were also enriched in the HAS group. Additionally, our study also indicated that senescence levels were heterogeneous in the LUAD tumor microenvironment (TME), especially with tumor cells in the LAS group showing higher age scores compared to those in the HAS group. Conclusions Collectively, our findings underscore that ARRS through ARGs serves as a robust biomarker for the prognosis in LUAD.
Collapse
Affiliation(s)
- Kun Ru
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liang Cui
- Geneplus-Beijing Institute, Beijing, China
| | - Cong Wu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin X Tan
- Geneplus-Shenzhen Clinical Laboratory, Shenzhen, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Wen T An
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Wu
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Yu T Ma
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Hao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao Xiao
- Geneplus-Shenzhen Institute, Shenzhen, China
| | - Jing Bai
- Geneplus-Beijing Institute, Beijing, China
| | - Xiang Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xue F Xia
- Geneplus-Beijing Institute, Beijing, China
| | - Miao Q Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
21
|
Lendvai ÁZ, Tóth Z, Mahr K, Pénzes J, Vogel-Kindgen S, Gander BA, Vágási CI. IGF-1 induces sex-specific oxidative damage and mortality in a songbird. Oecologia 2024; 205:561-570. [PMID: 39014256 PMCID: PMC11358184 DOI: 10.1007/s00442-024-05587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
The insulin-like growth factor 1 (IGF-1) is a pleiotropic hormone that regulates essential life-history traits and is known for its major contribution to determining individual ageing processes. High levels of IGF-1 have been linked to increased mortality and are hypothesised to cause oxidative stress. This effect has been observed in laboratory animals, but whether it pertains to wild vertebrates has not been tested. This is surprising because studying the mechanisms that shape individual differences in lifespan is important to understanding mortality patterns in populations of free-living animals. We tested this hypothesis under semi-natural conditions by simulating elevated IGF-1 levels in captive bearded reedlings, a songbird species with an exceptionally fast pace of life. We subcutaneously injected slow-release biodegradable microspheres loaded with IGF-1 and achieved a systemic 3.7-fold increase of the hormone within the natural range for at least 24 h. Oxidative damage to lipids showed marked sexual differences: it significantly increased the day after the manipulation in treated males and returned to baseline levels four days post-treatment, while no treatment effect was apparent in females. Although there was no overall difference in survival between the treatment groups, high initial (pre-treatment) IGF-1 and low post-treatment plasma malondialdehyde levels were associated with enhanced survival prospects in males. These results suggest that males may be more susceptible to IGF-1-induced oxidative stress than females and quickly restoring oxidative balance may be related to fitness. IGF-1 levels evolve under opposing selection forces, and natural variation in this hormone's level may reflect the outcome of individual optimization.
Collapse
Affiliation(s)
- Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| | - Zsófia Tóth
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Pál Juhász-Nagy Doctoral School of Biology Environmental Sciences, University of Debrecen, Debrecen, Hungary
- Department of Biology, Lund University, Lund, Sweden
| | - Katharina Mahr
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Konrad Lorenz Institute of Ethology, Vienna, Austria
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Bruno A Gander
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Csongor I Vágási
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
22
|
Qiu S, Li C, Zhu J, Guo Z. Associations between the TyG index and the ɑ-Klotho protein in middle-aged and older population relevant to diabetes mellitus in NHANES 2007-2016. Lipids Health Dis 2024; 23:188. [PMID: 38907289 PMCID: PMC11191244 DOI: 10.1186/s12944-024-02172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The anti-aging protein Klotho has diverse functions in antioxidative stress and energy metabolism through several pathways. While it has been reported that α-Klotho is downregulated in patients with insulin resistance (IR), the association between Klotho and IR is complex and controversial. The triglyceride-glucose (TyG) index has provided a practical method for assessing IR. With this in mind, our study aimed to investigate the relationship between the TyG index and soluble α-Klotho protein levels in US populations, both with and without diabetes mellitus. METHODS This cross-sectional study analyzed data from middle-aged and older participants in the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2016. The participants were divided into two groups based on their diabetes mellitus status: those with diabetes and those without diabetes. To evaluate the relationship between the TyG index and the concentration of the α-Klotho protein in each group, a series of survey-weighted multivariable linear regression models were employed. Furthermore, to examine the association between these two variables, multivariable-adjusted restricted cubic spline curves and subgroup analysis were generated. RESULTS The study involved 6,439 adults aged 40 years or older, with a mean age of 57.8 ± 10.9 years. Among them, 1577 (24.5%) had diabetes mellitus. A subgroup analysis indicated that the presence of diabetes significantly affected the relationship between the TyG index and the α-Klotho level. After considering all covariables, regression analysis of the participants without diabetes revealed that the α-Klotho concentration decreased by 32.35 pg/ml (95% CI: -50.07, -14.64) with each one unit increase in TyG (p < 0.001). The decline in α-Klotho levels with elevated TyG was more pronounced in the female population. In patients with diabetes mellitus, a non-linear association between the TyG index and α-Klotho was observed. There was no significant correlation observed between the two when TyG index were below 9.7. However, there was an increase in klotho levels of 106.44 pg/ml for each unit increase in TyG index above 9.7 (95% CI: 28.13, 184.74) (p = 0.008). CONCLUSION Our findings suggested that the presence of diabetes may influence the relationship between the TyG index and soluble α-Klotho. Furthermore, there seem to be sex differences in individuals without diabetes. Further studies are necessary to validate these findings.
Collapse
Affiliation(s)
- Shujuan Qiu
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Quiwen District, Weifang, 261041, Shandong, China.
| | - Chunlei Li
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Quiwen District, Weifang, 261041, Shandong, China
| | - Jinhua Zhu
- Zhucheng Nanhu Community Health Service Center, No. 2000, Tourism Road, South Lake Ecological Economic Development District, Zhucheng, 262200, Shandong, China
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Quiwen District, Weifang, 261041, Shandong, China
| |
Collapse
|
23
|
Zhang Z, Li J, Li F, Wang T, Luo X, Li B, You Y, Wu C, Liu X. Jujubae Fructus extract prolongs lifespan and improves stress tolerance in Caenorhabditis elegans dependent on DAF-16/SOD-3. Sci Rep 2024; 14:13713. [PMID: 38877105 PMCID: PMC11178930 DOI: 10.1038/s41598-024-64045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Jujubae Fructus, the fruit of Ziziphus jujuba Mill has been used as one of the medicine food homology species for thousands of years in China. Studies have shown that the active ingredients of Jujubae Fructus have a variety of biological effects, but its role in the aging process still lacks knowledge. Here, we investigated the effect of Jujubae Fructus extract (JE) on Caenorhabditis elegans lifespan and its potential mechanism. The lifespan of C. elegans treated with JE was signifificantly increased in a dose-dependent manner. In addition, JE treatment prolonged the reproductive period and increased normal activity during aging in C. elegans. Similarly, JE supplementation also enhanced the resistance to heat and oxidative stress in C. elegans. Furthermore, the mutant worms' lifespan assays demonstrated that JE requires daf-16 to prolong lifespan. DAF-16::GFP analysis of TJ356 showed that JE treatment translocates DAF-16::GFP to nucleus in transgenic worms. By analyzing the downstream of daf-16, we identify that JE may regulate sod3 downstream of daf-16. Mutant worms' lifespan and transgenic reporter gene expression assays revealed that increasing SOD-3 expression was critical for extending longevity in C. elegans with JE therapy. Collectively, these data indicate that JE may have an important role in C. elegans longevity that is dependent on DAF-16 and SOD-3.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang City, Henan Province, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiajia Li
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China
| | - Feng Li
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang City, Henan Province, China
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China
| | - Tao Wang
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China
| | - Xiaoyan Luo
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang City, Henan Province, China
| | - Bing Li
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Changjing Wu
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China.
| | - Xiaomeng Liu
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang City, Henan Province, China.
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China.
| |
Collapse
|
24
|
Wang M, Wang X, Huang K, Han B, Li R, Shen Y, Zhuang Z, Wang Z, Wang L, Zhou Y, Jing T. Human Biomonitoring of Environmental Chemicals among Elderly in Wuhan, China: Prioritizing Risks Using EPA's ToxCast Database. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10001-10014. [PMID: 38788169 DOI: 10.1021/acs.est.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In line with the "healthy aging" principle, we aim to assess the exposure map and health risks of environmental chemicals in the elderly. Blood samples from 918 elderly individuals in Wuhan, China, were analyzed using the combined gas/liquid-mass spectrometry technology to detect levels of 118 environmental chemicals. Cluster analysis identified exposure profiles, while risk indexes and bioanalytical equivalence percentages were calculated using EPA's ToxCast database. The detection rates for 87 compounds exceeded 70%. DEHP, DiBP, naphthalene, phenanthrene, DnBP, pyrene, anthracene, permethrin, fluoranthene, and PFOS showed the highest concentrations. Fat-soluble pollutants varied across lifestyles. In cluster 2, which was characterized by higher concentrations of fat-soluble substances, the proportion of smokers or drinkers was higher than that of nonsmokers or nondrinkers. Pesticides emerged as the most active environmental chemicals in peroxisome proliferator-activated receptor gamma antagonist, thyroid hormone receptor (TR) antagonist, TR agonist, and androgen receptor (AR) agonist activity assays. Additionally, PAEs and polycyclic aromatic hydrocarbons played significant roles as active contaminants for the corresponding targets of AR antagonists and estrogen receptor alpha. We proposed a list of priority pollutants linked to endocrine-disrupting toxic effects in the elderly, which may provide the groundwork for further research into environmental etiology.
Collapse
Affiliation(s)
- Mengyi Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Kai Huang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Lulu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| |
Collapse
|
25
|
Wang H, Chen W, Lei L, Zhang W, Liu Z, Wang Y, Xu B. Queen bee gut microbiota extends honeybee lifespan by inhibiting insulin signaling. Appl Environ Microbiol 2024; 90:e0179923. [PMID: 38470148 PMCID: PMC11022582 DOI: 10.1128/aem.01799-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/22/2023] [Indexed: 03/13/2024] Open
Abstract
Queen and worker bees are natural models for aging research, as their lifespans vary considerably independent of genetic variation. Investigating the reasons why queens live longer than workers is of great significance for research on the universal processes of aging in animals. The gut microbiome has received attention as a vital regulator of host health, while its precise role in honeybee aging needs further investigation. The effects and mechanisms behind the relationship between gut microbiota and worker lifespan were measured by transplanting queen bee gut bacteria (QG) and worker bee gut bacteria (WG) into microbiota-free (MF) workers. The transplantation of QG to MF bees significantly extended the workers' lifespans compared with MF and WG bees. Untargeted metabolomics identified 49 lifespan-related differential metabolites, and Kyoto Encyclopedia of Genes and Genomes analysis of these revealed three lifespan-related metabolic pathways: insulin/insulin-like growth factor signaling, immune, and ketone body metabolism pathways. Further verification showed that QG inhibited the expression of insulin-like peptides (ILPs), and the expression of ILPs was lower in natural queens than in natural workers. QG transplantation also stimulated the expression of antioxidant genes and lowered oxidative damage products in natural queen bees. However, gut microbiota transplantation failed to mimic the immune properties and ketone body metabolism profiles of natural queens and workers. Concisely, QG could increase the antioxidant capacity to extend lifespan by inhibiting insulin signaling. These findings may help determine the mechanisms behind queen longevity and provide further insights into the role of gut symbionts. IMPORTANCE Queen and worker bees share the same genetic background but have vastly different lifespans. The gut microbiome regulates host health, suggesting that differences in lifespan between queen and worker bees could be related to gut bacteria. Herein, we used an innovative method to transplant gut microbiota from adult queen or worker bees to microbiota-free bees. The transplantation of queen gut microbiota to microbiota-free bees extended their lifespan. Insulin/insulin-like growth factor signaling, a highly conserved metabolic pathway related to lifespan, displayed identical expression profiles in natural queen bees and microbiota-free bees transplanted with queen microbiota. This finding significantly expands our understanding of the relationships between intestinal bacteria, host health, and the biology of aging.
Collapse
Affiliation(s)
- Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wenfeng Chen
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Li Lei
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wei Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
26
|
Moriya A, Otsuka K, Naoi R, Terahata M, Takeda K, Kondo S, Adachi-Yamada T. Creation of Knock-In Alleles of Insulin Receptor Tagged by Fluorescent Proteins mCherry or EYFP in Fruit Fly Drosophila melanogaster. Zoolog Sci 2024; 41:230-243. [PMID: 38587918 DOI: 10.2108/zs230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/19/2023] [Indexed: 04/10/2024]
Abstract
The insulin/insulin-like growth factor-like signaling (IIS) pathway is highly conserved across metazoans and regulates numerous physiological functions, including development, metabolism, fecundity, and lifespan. The insulin receptor (InR), a crucial membrane receptor in the IIS pathway, is known to be ubiquitously expressed in various tissues, albeit at generally low levels, and its subcellular localization remains incompletely characterized. In this study, we employed CRISPR-mediated mutagenesis in the fruit fly Drosophila to create knock-in alleles of InR tagged with fluorescent proteins (InR::mCherry or InR::EYFP). By inserting the coding sequence of the fluorescent proteins mCherry or EYFP near the end of the coding sequence of the endogenous InR gene, we could trace the natural InR protein through their fluorescence. As an example, we investigated epithelial cells of the male accessory gland (AG), an internal reproductive organ, and identified two distinct patterns of InR::mCherry localization. In young AG, InR::mCherry accumulated on the basal plasma membrane between cells, whereas in mature AG, it exhibited intracellular localization as multiple puncta, indicating endocytic recycling of InR during cell growth. In the AG senescence accelerated by the mutation of Diuretic hormone 31 (Dh31), the presence of InR::mCherry puncta was more pronounced compared to the wild type. These findings raise expectations for the utility of the newly created InR::mCherry/EYFP alleles for studying the precise expression levels and subcellular localization of InR. Furthermore, this fluorescently tagged allele approach can be extended to investigate other membrane receptors with low abundance, facilitating the direct examination of their true expression and localization.
Collapse
Affiliation(s)
- Ayano Moriya
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Kei Otsuka
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Riku Naoi
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Mayu Terahata
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Koji Takeda
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan
| | - Takashi Adachi-Yamada
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan,
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
27
|
Matsuka M, Otsune S, Sugimori S, Tsugita Y, Ueda H, Nakagoshi H. Fecundity is optimized by levels of nutrient signal-dependent expression of Dve and EcR in Drosophila male accessory gland. Dev Biol 2024; 508:8-23. [PMID: 38199580 DOI: 10.1016/j.ydbio.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Steroid hormones play various physiological roles including metabolism and reproduction. Steroid hormones in insects are ecdysteroids, and the major form in Drosophila melanogaster is ecdysone. In Drosophila males, the accessory gland is responsive to nutrient-dependent regulation of fertility/fecundity. The accessory gland is composed of two types of binucleated epithelial cells: a main cell and a secondary cell (SC). The transcription factors Defective proventriculus (Dve), Abdominal-B, and Ecdysone receptors (EcRs) are strongly expressed in adult SCs. We show that this EcR expression is regulated by parallel pathways of nutrient signaling and the Dve activity. Induction of Dve expression is also dependent on nutrient signaling, and it becomes nutrient signal-independent during a restricted period of development. Forced dve expression during the restricted period significantly increased the number of SCs. Here, we provide evidence that the level of nutrient signal-dependent Dve expression during the restricted period determines the number of SCs, and that ecdysone signaling is also crucial to optimize male fecundity through nutrient signal-dependent survival and maturation of SCs.
Collapse
Affiliation(s)
- Mirai Matsuka
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shinichi Otsune
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiko Sugimori
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yasuhiro Tsugita
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hitoshi Ueda
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hideki Nakagoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
28
|
Jans K, Lüersen K, von Frieling J, Roeder T, Rimbach G. Dietary lithium stimulates female fecundity in Drosophila melanogaster. Biofactors 2024; 50:326-346. [PMID: 37706424 DOI: 10.1002/biof.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
The trace element lithium exerts a versatile bioactivity in humans, to some extend overlapping with in vivo findings in the model organism Drosophila melanogaster. A potentially essential function of lithium in reproduction has been suggested since the 1980s and multiple studies have since been published postulating a regulatory role of lithium in female gametogenesis. However, the impact of lithium on fruit fly egg production has not been at the center of attention to date. In the present study, we report that dietary lithium (0.1-5.0 mM LiCl) substantially improved life time egg production in D. melanogaster w1118 females, with a maximum increase of plus 45% when supplementing 1.0 mM LiCl. This phenomenon was not observed in the insulin receptor mutant InRE19, indicating a potential involvement of insulin-like signaling in the lithium-mediated fecundity boost. Analysis of the whole-body and ovarian transcriptome revealed that dietary lithium affects the mRNA levels of genes encoding proteins related to processes of follicular maturation. To the best of our knowledge, this is the first report on dietary lithium acting as an in vivo fecundity stimulant in D. melanogaster, further supporting the suggested benefit of the trace element in female reproduction.
Collapse
Affiliation(s)
- Katharina Jans
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Jakob von Frieling
- Division of Molecular Physiology, Institute of Zoology, University of Kiel, Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
29
|
Qian Q, Niwa R. Endocrine Regulation of Aging in the Fruit Fly Drosophila melanogaster. Zoolog Sci 2024; 41:4-13. [PMID: 38587512 DOI: 10.2108/zs230056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 04/09/2024]
Abstract
The past few decades have witnessed increasing research clarifying the role of endocrine signaling in the regulation of aging in both vertebrates and invertebrates. Studies using the model organism fruit fly Drosophila melanogaster have largely advanced our understanding of evolutionarily conserved mechanisms in the endocrinology of aging and anti-aging. Mutations in single genes involved in endocrine signaling modify lifespan, as do alterations of endocrine signaling in a tissue- or cell-specific manner, highlighting a central role of endocrine signaling in coordinating the crosstalk between tissues and cells to determine the pace of aging. Here, we review the current landscape of research in D. melanogaster that offers valuable insights into the endocrine-governed mechanisms which influence lifespan and age-related physiology.
Collapse
Affiliation(s)
- Qingyin Qian
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,
| |
Collapse
|
30
|
Matsumura K, Onuma T, Kondo S, Noguchi H, Uchiyama H, Yajima S, Sasaki K, Miyatake T. Transcriptomic comparison between populations selected for higher and lower mobility in the red flour beetle Tribolium castaneum. Sci Rep 2024; 14:67. [PMID: 38167631 PMCID: PMC10762016 DOI: 10.1038/s41598-023-50923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Movement is an important behavior observed in a wide range of taxa. Previous studies have examined genes controlling movement using wing polymorphic insects and genes controlling wing size. However, few studies have investigated genes controlling movement activity rather than morphological traits. In the present study, we conducted RNA sequencing using populations with higher (WL) and lower (WS) mobility established by artificial selection in the red flour beetle Tribolium castaneum and compared gene expression levels between selected populations with two replicate lines. As a result, we found significant differences between the selected populations in 677 genes expressed in one replicate line and 1198 genes expressed in another replicate line, of which 311 genes were common to the two replicate lines. Furthermore, quantitative PCR focusing on 6 of these genes revealed that neuropeptide F receptor gene (NpF) was significantly more highly expressed in the WL population than in the WS population, which was common to the two replicate lines. We discuss differences in genes controlling movement between walking activity and wing polymorphism.
Collapse
Affiliation(s)
- Kentarou Matsumura
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Okayama, Japan.
| | - Takafumi Onuma
- Graduate School of Agriculture, Tamagawa University, Tokyo, Japan
| | - Shinji Kondo
- Center for Genome Informatics, Research Organization of Information and Systems, Joint Support-Center for Data Science Research, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Research Organization of Information and Systems, Joint Support-Center for Data Science Research, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Tokyo, Japan
| | - Takahisa Miyatake
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
31
|
Bartke A, Hascup E, Hascup K. Responses to Many Anti-Aging Interventions Are Sexually Dimorphic. World J Mens Health 2024; 42:29-38. [PMID: 37118966 PMCID: PMC10782120 DOI: 10.5534/wjmh.230015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 04/30/2023] Open
Abstract
There is increasing appreciation that sex differences are not limited to reproductive organs or traits related to reproduction and that sex is an important biological variable in most characteristics of a living organism. The biological process of aging and aging-related traits are no exception and exhibit numerous, often major, sex differences. This article explores one aspect of these differences, namely sex differences in the responses to anti-aging interventions. Aging can be slowed down and/or postponed by a variety of environmental ("lifestyle"), genetic or pharmacological interventions. Although many, particularly older studies utilized only one sex of experimental animals, there is considerable evidence that responses to these interventions can be very different in females and males. Calorie restriction (CR), that is reducing food intake without malnutrition can extend longevity in both sexes, but specific metabolic alterations and health benefits induced by CR are not the same in women and men. In laboratory mice, several of the genetic alterations that reduce insulin-like growth factor I (IGF-1) signaling extend longevity more effectively in females or in females only. Beneficial effects of rapamycin, an inhibitor of mTOR signaling, on mouse longevity are greater in females. In contrast, several anti-aging compounds, including a weak estrogen, 17 alpha estradiol, extend longevity of male, but not female, mice. Apparently, fundamental mechanisms of aging are not identical in females and males and it is essential to use both sexes in studies aimed at identifying novel anti-aging interventions. Recommendations for lifestyle modifications, drugs, and dietary supplements to maintain good health and functionality into advanced age and to live longer will likely need to be tailored to the sex of the user.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Erin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
32
|
Ponnusamy B, Rajagopal P, Jayaraman S. Pharmacological and Nutritional Approaches to Modulate Microglial Polarization in Cognitive Senescence. GUT MICROBIOME AND BRAIN AGEING 2024:243-259. [DOI: 10.1007/978-981-99-8803-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Chen Z, Li C, Huang H, Shi YL, Wang X. Research Progress of Aging-related MicroRNAs. Curr Stem Cell Res Ther 2024; 19:334-350. [PMID: 36892029 DOI: 10.2174/1574888x18666230308111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.
Collapse
Affiliation(s)
- Zhongyu Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Chenxu Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Haitao Huang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yi-Ling Shi
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of University Cell Biology, Dali, Yunnan, 671000, China
| |
Collapse
|
34
|
Munkhzul C, Yi SS, Kim J, Lee S, Kim H, Moon JS, Lee M. The microRNA-mediated gene regulatory network in the hippocampus and hypothalamus of the aging mouse. PLoS One 2023; 18:e0291943. [PMID: 37943864 PMCID: PMC10635555 DOI: 10.1371/journal.pone.0291943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023] Open
Abstract
Aging leads to time-dependent functional decline of all major organs. In particular, the aging brain is prone to cognitive decline and several neurodegenerative diseases. Various studies have attempted to understand the aging process and underlying molecular mechanisms by monitoring changes in gene expression in the aging mouse brain using high-throughput sequencing techniques. However, the effect of microRNA (miRNA) on the post-transcriptional regulation of gene expression has not yet been comprehensively investigated. In this study, we performed global analysis of mRNA and miRNA expression simultaneously in the hypothalamus and hippocampus of young and aged mice. We identified aging-dependent differentially expressed genes, most of which were specific either to the hypothalamus or hippocampus. However, genes related to immune response-related pathways were enriched in upregulated differentially expressed genes, whereas genes related to metabolism-related pathways were enriched in downregulated differentially expressed genes in both regions of the aging brain. Furthermore, we identified many differentially expressed miRNAs, including three that were upregulated and three that were downregulated in both the hypothalamus and hippocampus. The two downregulated miRNAs, miR-322-3p, miR-542-3p, and the upregulated protein-encoding coding gene C4b form a regulatory network involved in complement and coagulation cascade pathways in the hypothalamus and hippocampus of the aging brain. These results advance our understanding of the miRNA-mediated gene regulatory network and its influence on signaling pathways in the hypothalamus and hippocampus of the aging mouse brain.
Collapse
Affiliation(s)
- Choijamts Munkhzul
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Hyuntae Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Korea
| | - Jong-Seok Moon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
35
|
Lagger C, Ursu E, Equey A, Avelar RA, Pisco AO, Tacutu R, de Magalhães JP. scDiffCom: a tool for differential analysis of cell-cell interactions provides a mouse atlas of aging changes in intercellular communication. NATURE AGING 2023; 3:1446-1461. [PMID: 37919434 PMCID: PMC10645595 DOI: 10.1038/s43587-023-00514-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
Dysregulation of intercellular communication is a hallmark of aging. To better quantify and explore changes in intercellular communication, we present scDiffCom and scAgeCom. scDiffCom is an R package, relying on approximately 5,000 curated ligand-receptor interactions, that performs differential intercellular communication analysis between two conditions from single-cell transcriptomics data. Built upon scDiffCom, scAgeCom is an atlas of age-related cell-cell communication changes covering 23 mouse tissues from 58 single-cell RNA sequencing datasets from Tabula Muris Senis and the Calico murine aging cell atlas. It offers a comprehensive resource of tissue-specific and sex-specific aging dysregulations and highlights age-related intercellular communication changes widespread across the whole body, such as the upregulation of immune system processes and inflammation, the downregulation of developmental processes, angiogenesis and extracellular matrix organization and the deregulation of lipid metabolism. Our analysis emphasizes the relevance of the specific ligands, receptors and cell types regulating these processes. The atlas is available online ( https://scagecom.org ).
Collapse
Affiliation(s)
- Cyril Lagger
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Altos Labs, San Diego, CA, USA
| | - Eugen Ursu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anaïs Equey
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roberto A Avelar
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Angela Oliveira Pisco
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Insitro, Inc., South San Francisco, USA
| | - Robi Tacutu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
36
|
Hahm JH, Seo HD, Jung CH, Ahn J. Longevity through diet restriction and immunity. BMB Rep 2023; 56:537-544. [PMID: 37482753 PMCID: PMC10618078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
The share of the population that is aging is growing rapidly. In an aging society, technologies and interventions that delay the aging process are of great interest. Dietary restriction (DR) is the most reproducible and effective nutritional intervention tested to date for delaying the aging process and prolonging the health span in animal models. Preventive effects of DR on age-related diseases have also been reported in human. In addition, highly conserved signaling pathways from small animal models to human mediate the effects of DR. Recent evidence has shown that the immune system is closely related to the effects of DR, and functions as a major mechanism of DR in healthy aging. This review discusses the effects of DR in delaying aging and preventing age-related diseases in animal, including human, and introduces the molecular mechanisms that mediate these effects. In addition, it reports scientific findings on the relationship between the immune system and DRinduced longevity. The review highlights the role of immunity as a potential mediator of the effects of DR on longevity, and provides insights into healthy aging in human. [BMB Reports 2023; 56(10): 537-544].
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
37
|
Parkhitko AA, Filine E, Tatar M. Combinatorial interventions in aging. NATURE AGING 2023; 3:1187-1200. [PMID: 37783817 PMCID: PMC11194689 DOI: 10.1038/s43587-023-00489-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/15/2023] [Indexed: 10/04/2023]
Abstract
Insight on the underlying mechanisms of aging will advance our ability to extend healthspan, treat age-related pathology and improve quality of life. Multiple genetic and pharmacological manipulations extend longevity in different species, yet monotherapy may be relatively inefficient, and we have limited data on the effect of combined interventions. Here we summarize interactions between age-related pathways and discuss strategies to simultaneously retard these in different organisms. In some cases, combined manipulations additively increase their impact on common hallmarks of aging and lifespan, suggesting they quantitatively participate within the same pathway. In other cases, interactions affect different hallmarks, suggesting their joint manipulation may independently maximize their effects on lifespan and healthy aging. While most interaction studies have been conducted with invertebrates and show varying levels of translatability, the conservation of pro-longevity pathways offers an opportunity to identify 'druggable' targets relevant to multiple human age-associated pathologies.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA.
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, USA.
| |
Collapse
|
38
|
Li S, Wang J, Tian X, Toufeeq S, Huang W. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects. Front Immunol 2023; 14:905467. [PMID: 37818375 PMCID: PMC10560992 DOI: 10.3389/fimmu.2023.905467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Xing Tian
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
39
|
Brown RL, Epel EE, Lin J, Dubal DB, Prather AA. Associations between klotho and telomere biology in high stress caregivers. Aging (Albany NY) 2023; 15:7381-7396. [PMID: 37580799 PMCID: PMC10457041 DOI: 10.18632/aging.204961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/06/2023] [Indexed: 08/16/2023]
Abstract
Aging biomarkers may be related to each other through direct co-regulation and/or through being regulated by common processes associated with chronological aging or stress. Klotho is an aging regulator that acts as a circulating hormone with critical involvement in regulating insulin signaling, phosphate homeostasis, oxidative stress, and age-related inflammatory functioning. Both klotho and telomere length are biomarkers of biological aging and decrease with age; however, the relationship between them is not well understood. Here we test the association between klotho levels and the telomere length of specific sorted immune cells among a healthy sample of mothers caregiving for a child with autism spectrum disorder (ASD; i.e., experiencing higher caregiving stress) or a child without ASD, covarying age and body mass index, in order to understand if high stress associated with caregiving for a child with an ASD may be involved in any association between these aging biomarkers. In 178 caregiving women (n = 90 high-stress mothers of children with ASD, n = 88 low-stress mothers of neurotypical children), we found that klotho levels were positively associated with telomere length in PBMCs (an effect driven by CD4+ and CD8+CD28- T cells) among high-stress mothers of children with an ASD but not among low-stress mothers of neurotypical children. There were no significant associations between klotho and telomerase activity in either group, across cell types assessed here. Our results suggest that klotho levels and telomere length may be associated through a coordinated downregulation of longevity factors occurring under higher stress caregiving conditions.
Collapse
Affiliation(s)
- Ryan L. Brown
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94107, USA
| | - Elissa E. Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94107, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94107, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute of Neurosciences, University of California, San Francisco, CA 94107, USA
| | - Aric A. Prather
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94107, USA
| |
Collapse
|
40
|
Cavigliasso F, Savary L, Spangenberg JE, Gallart-Ayala H, Ivanisevic J, Kawecki TJ. Experimental evolution of metabolism under nutrient restriction: enhanced amino acid catabolism and a key role of branched-chain amino acids. Evol Lett 2023; 7:273-284. [PMID: 37475747 PMCID: PMC10355184 DOI: 10.1093/evlett/qrad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 07/22/2023] Open
Abstract
Periodic food shortage is a common ecological stressor for animals, likely to drive physiological and metabolic adaptations to alleviate its consequences, particularly for juveniles that have no option but to continue to grow and develop despite undernutrition. Here we study changes in metabolism associated with adaptation to nutrient shortage, evolved by replicate Drosophila melanogaster populations maintained on a nutrient-poor larval diet for over 240 generations. In a factorial metabolomics experiment we showed that both phenotypic plasticity and genetically-based adaptation to the poor diet involved wide-ranging changes in metabolite abundance; however, the plastic response did not predict the evolutionary change. Compared to nonadapted larvae exposed to the poor diet for the first time, the adapted larvae showed lower levels of multiple free amino acids in their tissues-and yet they grew faster. By quantifying accumulation of the nitrogen stable isotope 15N we show that adaptation to the poor diet led to an increased use of amino acids for energy generation. This apparent "waste" of scarce amino acids likely results from the trade-off between acquisition of dietary amino acids and carbohydrates observed in these populations. The three branched-chain amino acids (leucine, isoleucine, and valine) showed a unique pattern of depletion in adapted larvae raised on the poor diet. A diet supplementation experiment demonstrated that these amino acids are limiting for growth on the poor diet, suggesting that their low levels resulted from their expeditious use for protein synthesis. These results demonstrate that selection driven by nutrient shortage not only promotes improved acquisition of limiting nutrients, but also has wide-ranging effects on how the nutrients are used. They also show that the abundance of free amino acids in the tissues does not, in general, reflect the nutritional condition and growth potential of an animal.
Collapse
Affiliation(s)
- Fanny Cavigliasso
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Loriane Savary
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jorge E Spangenberg
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Sala AJ, Grant RA, Imran G, Morton C, Brielmann RM, Bott LC, Watts J, Morimoto RI. Nuclear receptor signaling via NHR-49/MDT-15 regulates stress resilience and proteostasis in response to reproductive and metabolic cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537803. [PMID: 37162952 PMCID: PMC10168274 DOI: 10.1101/2023.04.25.537803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The ability to sense and respond to proteotoxic insults declines with age, leaving cells vulnerable to chronic and acute stressors. Reproductive cues modulate this decline in cellular proteostasis to influence organismal stress resilience in C. elegans. We previously uncovered a pathway that links the integrity of developing embryos to somatic health in reproductive adults. Here, we show that the nuclear receptor NHR-49, a functional homolog of mammalian peroxisome proliferator-activated receptor alpha (PPARα), regulates stress resilience and proteostasis downstream of embryo integrity and other pathways that influence lipid homeostasis, and upstream of HSF-1. Disruption of the vitelline layer of the embryo envelope, which activates a proteostasis-enhancing inter-tissue pathway in somatic tissues, also triggers changes in lipid catabolism gene expression that are accompanied by an increase in fat stores. NHR-49 together with its co-activator MDT-15 contributes to this remodeling of lipid metabolism and is also important for the elevated stress resilience mediated by inhibition of the embryonic vitelline layer as well as by other pathways known to change lipid homeostasis, including reduced insulin-like signaling and fasting. Further, we show that increased NHR-49 activity is sufficient to suppress polyglutamine aggregation and improve stress resilience in an HSF-1-dependent manner. Together, our results establish NHR-49 as a key regulator that links lipid homeostasis and cellular resilience to proteotoxic stress.
Collapse
Affiliation(s)
- Ambre J. Sala
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gifsur-Yvette, France
| | - Rogan A. Grant
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ghania Imran
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
| | - Claire Morton
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
| | - Renee M. Brielmann
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
| | - Laura C. Bott
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
| | - Jennifer Watts
- School of Molecular Biosciences, Washington State University, Pullman WA, USA
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
| |
Collapse
|
42
|
Afsar B, Afsar RE. Hypertension and cellular senescence. Biogerontology 2023:10.1007/s10522-023-10031-4. [PMID: 37010665 DOI: 10.1007/s10522-023-10031-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Essential or primary hypertension is a wordwide health problem. Elevated blood pressure (BP) is closely associated not only with increased chronological aging but also with biological aging. There are various common pathways that play a role in cellular aging and BP regulation. These include but not limited to inflammation, oxidative stress, mitochondrial dysfunction, air pollution, decreased klotho activity increased renin angiotensin system activation, gut dysbiosis etc. It has already been shown that some anti-hypertensive drugs have anti-senescent actions and some senolytic drugs have BP lowering effects. In this review, we have summarized the common mechanisms underlying cellular senescence and HT and their relationships. We further reviewed the effect of various antihypertensive medications on cellular senescence and suggest further issues to be studied.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
43
|
Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. Behavioral state-dependent modulation of insulin-producing cells in Drosophila. Curr Biol 2023; 33:449-463.e5. [PMID: 36580915 DOI: 10.1016/j.cub.2022.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.
Collapse
Affiliation(s)
- Sander Liessem
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Held
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rituja S Bisen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hannah Haberkern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Haluk Lacin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Till Bockemühl
- Department of Biology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jan M Ache
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
44
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
45
|
Donate-Correa J, Martín-Carro B, Cannata-Andía JB, Mora-Fernández C, Navarro-González JF. Klotho, Oxidative Stress, and Mitochondrial Damage in Kidney Disease. Antioxidants (Basel) 2023; 12:239. [PMID: 36829798 PMCID: PMC9952437 DOI: 10.3390/antiox12020239] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Reducing oxidative stress stands at the center of a prevention and control strategy for mitigating cellular senescence and aging. Kidney disease is characterized by a premature aging syndrome, and to find a modulator targeting against oxidative stress, mitochondrial dysfunction, and cellular senescence in kidney cells could be of great significance to prevent and control the progression of this disease. This review focuses on the pathogenic mechanisms related to the appearance of oxidative stress damage and mitochondrial dysfunction in kidney disease. In this scenario, the anti-aging Klotho protein plays a crucial role by modulating signaling pathways involving the manganese-containing superoxide dismutase (Mn-SOD) and the transcription factors FoxO and Nrf2, known antioxidant systems, and other known mitochondrial function regulators, such as mitochondrial uncoupling protein 1 (UCP1), B-cell lymphoma-2 (BCL-2), Wnt/β-catenin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha), transcription factor EB, (TFEB), and peroxisome proliferator-activated receptor gamma (PPAR-gamma). Therefore, Klotho is postulated as a very promising new target for future therapeutic strategies against oxidative stress, mitochondria abnormalities, and cellular senescence in kidney disease patients.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Beatriz Martín-Carro
- RICORS2040 (RD21/0005/0019), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge B. Cannata-Andía
- RICORS2040 (RD21/0005/0019), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
46
|
Yang W, Xia W, Zheng B, Li T, Liu RH. DAF-16 is involved in colonic metabolites of ferulic acid-promoted longevity and stress resistance of Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7017-7029. [PMID: 35689482 DOI: 10.1002/jsfa.12063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ferulic acid (FA) is a dietary polyphenol widely found in plant tissues. It has long been considered to have health-promoting qualities. However, the biological properties of dietary polyphenols depend largely on their absorption during digestion, and the effects of their intestinal metabolites on human health have attracted the interest of researchers. This study evaluated the effects of three main colonic metabolites of FA - 3-(3,4-dihydroxyphenyl)propionic acid (3,4diOHPPA), 3-(3-hydroxyphenyl)propionic acid (3OHPPA) and 3-phenylpropionic acid (3PPA) - on longevity and stress resistance in Caenorhabditis elegans. RESULTS Our results showed that 3,4diOHPPA, 3OHPPA and 3PPA extended the lifespan under normal conditions in C. elegans whereas FA did not. High doses of 3,4diOHPPA (0.5 mmol L-1 ), 3OHPPA (2.5 mmol L-1 ) and 3PPA (2.5 mmol L-1 ) prolonged the mean lifespan by 11.2%, 13.0% and 10.6%, respectively. Moreover, 3,4diOHPPA, 3OHPPA and 3PPA treatments promoted stress tolerance against heat, UV irradiation and paraquat. Furthermore, three metabolites ameliorated physical functions, including reactive oxygen species and malondialdehyde levels, motility and pharyngeal pumping rate. The anti-aging activities mediated by 3,4diOHPPA, 3OHPPA and 3PPA depend on the HSF-1 and JNK-1 linked insulin/IGF-1 signaling pathway, which converge onto DAF-16. CONCLUSION The current findings suggest that colonic metabolites of FA have the potential for use as anti-aging bioactivate compounds. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhan Yang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wen Xia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong ERA Food and Life Health Research Institute, Guangzhou, China
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
47
|
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 2022; 16:152-176. [PMID: 35499154 PMCID: PMC9067537 DOI: 10.1080/19336934.2022.2061834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, endocrine factors such as hormones and cytokines regulate development and homoeostasis through communication between different organs. For understanding such interorgan communications through endocrine factors, the fruit fly Drosophila melanogaster serves as an excellent model system due to conservation of essential endocrine systems between flies and mammals and availability of powerful genetic tools. In Drosophila and other insects, functions of neuropeptides or peptide hormones from the central nervous system have been extensively studied. However, a series of recent studies conducted in Drosophila revealed that peptide hormones derived from peripheral tissues also play critical roles in regulating multiple biological processes, including growth, metabolism, reproduction, and behaviour. Here, we summarise recent advances in understanding target organs/tissues and functions of peripherally derived peptide hormones in Drosophila and describe how these hormones contribute to various biological events through interorgan communications.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Watanabe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
48
|
Servello FA, Fernandes R, Eder M, Harris N, Martin OMF, Oswal N, Lindberg A, Derosiers N, Sengupta P, Stroustrup N, Apfeld J. Neuronal temperature perception induces specific defenses that enable C. elegans to cope with the enhanced reactivity of hydrogen peroxide at high temperature. eLife 2022; 11:e78941. [PMID: 36226814 PMCID: PMC9635881 DOI: 10.7554/elife.78941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hydrogen peroxide is the most common reactive chemical that organisms face on the microbial battlefield. The rate with which hydrogen peroxide damages biomolecules required for life increases with temperature, yet little is known about how organisms cope with this temperature-dependent threat. Here, we show that Caenorhabditis elegans nematodes use temperature information perceived by sensory neurons to cope with the temperature-dependent threat of hydrogen peroxide produced by the pathogenic bacterium Enterococcus faecium. These nematodes preemptively induce the expression of specific hydrogen peroxide defenses in response to perception of high temperature by a pair of sensory neurons. These neurons communicate temperature information to target tissues expressing those defenses via an insulin/IGF1 hormone. This is the first example of a multicellular organism inducing their defenses to a chemical when they sense an inherent enhancer of the reactivity of that chemical.
Collapse
Affiliation(s)
| | - Rute Fernandes
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Natasha Oswal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Anders Lindberg
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
- Bioengineering Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
49
|
Zhang W, Liu H, Fu G, Li Y, Ji X, Zhang S, Wei M, Qiao K. Exposure to fluopimomide at sublethal doses causes oxidative stress in Caenorhabditis elegans regulated by insulin/insulin-like growth factor 1-like signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2529-2539. [PMID: 35833599 DOI: 10.1002/tox.23616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Fluopimomide is an innovative pesticide, widely used for agricultural pest management; however, little is known about its effect on non-target organisms. This study was designed to assess the potential risk of fluopimomide and the molecular mechanisms using Caenorhabditis elegans, a common model animal. The oxidative stress-related indicators were analyzed in C. elegans after exposure to fluopimomide for 24 h at three sublethal doses (0.2, 1.0, and 5.0 mg/L). The results demonstrated that sublethal exposure to fluopimomide adversely affected the nematodes growth, locomotive behaviors, reproduction, and lifespan, accompanying with enhanced of reactive oxygen species (ROS) generation, lipid and lipofuscin accumulation, and malondialdehyde content. In addition, exposure to fluopimomide significantly inhibited antioxidant systems including superoxide dismutase, catalase, glutathione S-transferase, and glutathione in the nematodes. Moreover, the expression of oxidative stress-related genes of sod-3, hsp-16.1, gst-4, ctl-2, daf-16, and daf-2 were significantly down-regulated, while the expression of skn-1 was significantly up-regulated. Further evidence revealed that daf-16 and skn-1 mutant strains of C. elegans significantly decreased ROS production upon fluopimomide exposure compared with the wild-type nematodes. Overall, our findings indicated that exposure to fluopimomide at sublethal doses caused oxidative damage, mainly associated with insulin/IGF-1-like signaling pathway in C. elegans. This is the first report of potential toxic effects of fluopimomide even at low concentrations, providing a new insight into the mechanisms of toxicity to C. elegans by fluopimomide.
Collapse
Affiliation(s)
- Weiping Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Huimin Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Guanghan Fu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yujie Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, Florida, USA
| | - Min Wei
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| |
Collapse
|
50
|
Wong HS, Freeman DA, Zhang Y. Not just a cousin of the naked mole-rat: Damaraland mole-rats offer unique insights into biomedicine. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110772. [PMID: 35710053 PMCID: PMC10155858 DOI: 10.1016/j.cbpb.2022.110772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Evolutionary medicine has been a fast-growing field of biological research in the past decade. One of the strengths of evolutionary medicine is to use non-traditional model organisms which often exhibit unusual characteristics shaped by natural selection. Studying these unusual traits could provide valuable insight to understand biomedical questions, since natural selection likely discovers solutions to those complex biological problems. Because of many unusual traits, the naked mole-rat (NMR) has attracted attention from different research areas such as aging, cancer, and hypoxia- and hypercapnia-related disorders. However, such uniqueness of NMR physiology may sometimes make the translational study to human research difficult. Damaraland mole-rat (DMR) shares multiple characteristics in common with NMR, but shows higher degree of similarity with human in some aspects of their physiology. Research on DMR could therefore offer alternative insights and might bridge the gap between experimental findings from NMR to human biomedical research. In this review, we discuss studies of DMR as an extension of the current set of model organisms to help better understand different aspects of human biology and disease. We hope to encourage researchers to consider studying DMR together with NMR. By studying these two similar but evolutionarily distinct species, we can harvest the power of convergent evolution and avoid the potential biased conclusions based on life-history of a single species.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Nine Square Therapeutics, South San Francisco, CA 94080, United States of America.
| | - David A Freeman
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38152, United States of America
| | - Yufeng Zhang
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, United States of America.
| |
Collapse
|