1
|
Wan Y, Ye L, Zheng J, Tang Y, Chan EWC, Chen S. Starvation-induced mutagenesis in rhsC and ybfD genes extends bacterial tolerance to various stresses by boosting efflux function. Microbiol Res 2025; 295:128106. [PMID: 39999722 DOI: 10.1016/j.micres.2025.128106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/29/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Recent evidence showed that bacteria actively maintained a range of physiological functions to enhance survival fitness under adverse growth conditions. In this study, we investigated whether bacteria need to undergo active genetic changes for stress-protection purposes if environmental stress persists. Our results revealed that mutations became detectable at specific sites in several genes in E. coli after encountering starvation conditions for six days. This discovery is groundbreaking since bacteria are not known to undergo site-specific mutagenesis during prolonged starvation when most physiological activities are down-regulated. The genes in which mutations were consistently detected in the tolerant population were ybfD and rhsC within the ybf gene cluster, which are predicted to encode components of a transporter. To assess the impact of these mutations on bacterial survival, mutants with single or double mutations in these genes were generated and tested. The results demonstrated that these mutations caused significant increase in tolerance to antibiotics, heat, and oxidative stresses. Functional analysis indicated that the E. coli BW25113::ybfDrhsC double mutant exhibited elevated efflux activity, and that expression of the rhsC gene was suppressed in the E. coli BW25113:: ybfD mutant, suggesting that mutations in these two genes act synergistically to strengthen the stress tolerance phenotype. Consistently, deletion of the ybfD and rhsC genes resulted in significantly reduced tolerance under prolonged starvation conditions. Understanding the mechanisms of bacterial site-specific mutagenesis that enable bacteria to withstand multiple stresses over extended periods could aid development of innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Yingkun Wan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Lianwei Ye
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jiaqi Zheng
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yang Tang
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Shenzhen Key Lab of Food Microbial Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
2
|
Cappello L, Lo WT‘J, Zhang JZ, Xu P, Barrow D, Chopra I, Clark AG, Wells MT, Kim J. Bayesian phylodynamic inference of population dynamics with dormancy. Proc Natl Acad Sci U S A 2025; 122:e2501394122. [PMID: 40314983 PMCID: PMC12067208 DOI: 10.1073/pnas.2501394122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/24/2025] [Indexed: 05/03/2025] Open
Abstract
Many organisms employ reversible dormancy, or seedbank, in response to environmental fluctuations. This life-history strategy alters fundamental ecoevolutionary forces, leading to distinct patterns of genetic diversity. Two models of dormancy have been proposed based on the average duration of dormancy relative to coalescent timescales: weak seedbank, induced by scheduled seasonality (e.g., plants, invertebrates), and strong seedbank, where individuals stochastically switch between active and dormant states (e.g., bacteria, fungi). The weak seedbank coalescent is statistically equivalent to the Kingman coalescent with a scaled mutation rate, allowing the use of existing inference methods. In contrast, the strong seedbank coalescent differs fundamentally, as only active lineages can coalesce, while dormant lineages cannot. Additionally, dormant individuals typically mutate at a slower rate than active ones. Consequently, despite the significant role of dormancy in the ecoevolutionary dynamics of many organisms, no methods currently exist for inferring population dynamics involving dormancy and associated parameters. We present a Bayesian framework for jointly inferring a latent genealogy, seedbank parameters, and evolutionary parameters from molecular sequence data under the strong seedbank coalescent. We derive the exact probability density of genealogies sampled under the strong seedbank coalescent, characterize the corresponding likelihood function, and present efficient computational algorithms for its evaluation based on our theoretical framework. We develop a tailored Markov chain Monte Carlo sampler and implement our inference framework as a package SeedbankTree within BEAST2. Our work provides both a theoretical foundation and practical inference framework for studying the population genetic and genealogical impacts of dormancy.
Collapse
Affiliation(s)
- Lorenzo Cappello
- Departments of Economics and Business, Universitat Pompeu Fabra, Barcelona08005, Spain
- Data Science Center, Barcelona School of Economics, Barcelona08005, Spain
| | - Wai Tung ‘Jack’ Lo
- Department of Computational Biology, Cornell University, Ithaca, NY14850
| | - Joy Z. Zhang
- Center for Applied Mathematics, Cornell University, Ithaca, NY14850
| | - Peiyu Xu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14850
| | - Daniel Barrow
- Department of Computational Biology, Cornell University, Ithaca, NY14850
| | - Ishani Chopra
- Department of Computational Biology, Cornell University, Ithaca, NY14850
| | - Andrew G. Clark
- Department of Computational Biology, Cornell University, Ithaca, NY14850
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14850
| | - Martin T. Wells
- Department of Statistics and Data Science, Cornell University, Ithaca, NY14850
| | - Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, NY14850
| |
Collapse
|
3
|
Avitia Domínguez LA, Yu Z, Chopra V, Viveros R, Tschowri N, Merks R, van Dijk B, Rozen D. Factors that influence the caste ratio in a bacterial division of labour. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230267. [PMID: 40109111 PMCID: PMC11923614 DOI: 10.1098/rstb.2023.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 03/22/2025] Open
Abstract
Colonies of the bacterim Streptomyces coelicolor divide labour between cells that specialize in growth and sporulation and cells that specialize in antibiotic production. This division of labour arises owing to costly chromosome deletions in the antibiotic overproducers. However, the spatial distribution and temporal emergence of these mutations in S. coelicolor colonies remain unknown, or whether mutation frequency-which we liken to the caste ratio in social insects-is phenotypically plastic. To elucidate changes in the proportions of specialized cells (measured as the mutation frequency), we sampled S. coelicolor colonies grown under different conditions. Temporally, mutation frequency increased linearly with colony age and size. Spatially, mutations accumulated disproportionately in the colony centre, despite greater growth and sporulation at the periphery. Exposing colonies to sub-inhibitory concentrations of some antibiotics, a competitive cue in Streptomyces, increased mutation frequencies. Finally, direct competition with other Streptomyces that naturally produce antibiotics increased mutation frequencies, while also increasing spore production. Our findings provide insights into the intrinsic and environmental factors driving division of labour in Streptomyces colonies by showing that mutation frequencies are dynamic and responsive to the competitive environment. These results show that chromosome deletions are phenotypically plastic and suggest that Streptomyces can flexibly adjust their caste ratio.This article is part of the theme issue 'Division of labour as key driver of social evolution'.
Collapse
Affiliation(s)
| | - Zhengzhou Yu
- Institute of Biology, Leiden University, Leiden2333 BE, The Netherlands
| | - Varun Chopra
- Institute of Biology, Leiden University, Leiden2333 BE, The Netherlands
| | | | | | - Roeland Merks
- Institute of Biology, Leiden University, Leiden2333 BE, The Netherlands
- Mathematical Institute, Leiden University, Leiden2333 CC, The Netherlands
| | - Bram van Dijk
- Department of Biology, Utrecht University, Utrecht3584 CH, The Netherlands
| | - Daniel Rozen
- Institute of Biology, Leiden University, Leiden2333 BE, The Netherlands
| |
Collapse
|
4
|
Hasenauer F, Barreto H, Lotton C, Matic I. Genome-wide mapping of spontaneous DNA replication error-hotspots using mismatch repair proteins in rapidly proliferating Escherichia coli. Nucleic Acids Res 2025; 53:gkae1196. [PMID: 39660654 PMCID: PMC11754648 DOI: 10.1093/nar/gkae1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Fidelity of DNA replication is crucial for the accurate transmission of genetic information across generations, yet errors still occur despite multiple control mechanisms. This study investigated the factors influencing spontaneous replication errors across the Escherichia coli genome. We detected errors using the MutS and MutL mismatch repair proteins in rapidly proliferating mutH-deficient cells, where errors can be detected but not corrected. Our findings reveal that replication error hotspots are non-randomly distributed along the chromosome and are enriched in sequences with distinct features: lower thermal stability facilitating DNA strand separation, mononucleotide repeats prone to DNA polymerase slippage and sequences prone to forming secondary structures like cruciforms and G4 structures, which increase likelihood of DNA polymerase stalling. These hotspots showed enrichment for binding sites of nucleoid-associated proteins, RpoB and GyrA, as well as highly expressed genes, and depletion of GATC sequence. Finally, the enrichment of single-stranded DNA stretches in the hotspot regions establishes a nexus between the formation of secondary structures, transcriptional activity and replication stress. In conclusion, this study provides a comprehensive genome-wide map of replication error hotspots, offering a holistic perspective on the intricate interplay between various mechanisms that can compromise the faithful transmission of genetic information.
Collapse
Affiliation(s)
- Flavia C Hasenauer
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Hugo C Barreto
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Chantal Lotton
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Ivan Matic
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| |
Collapse
|
5
|
Hashimoto A, Shibata S, Hirooka Y, Ohkuma M. Phylogenetic and morphological re-evaluation of Camptophora. Antonie Van Leeuwenhoek 2024; 117:109. [PMID: 39083124 DOI: 10.1007/s10482-024-01990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/17/2024] [Indexed: 10/16/2024]
Abstract
The genetic variety and habitats of Camptophora species, generally known as black yeast, have not been clarified. In this study, we re-evaluated Camptophora based on morphological observations and phylogenetic analyses. Because prior investigations on Camptophora only included a few strains/specimens, 24 Camptophora-related strains were newly obtained from 13 leaf samples of various plant species to redefine the genetic and species concepts of Camptophora. Their molecular phylogenetic relationships were examined using small subunit nuclear ribosomal DNA (nSSU, 18S rDNA), the internal transcribed spacer (ITS) rDNA operon, the large subunit nuclear ribosomal DNA (LSU, 28S rDNA), β-tubulin, the second largest subunit of RNA polymerase II (rpb2), and mitochondrial small subunit DNA (mtSSU). Single- and multi-locus analyses using nSSU-ITS-LSU-rpb2-mtSSU revealed a robust phylogenetic relationship among Camptophora species within Chaetothyriaceae. Camptophora species could be distinguished from other chaetothyriaceous genera by their snake-shaped conidia with microcyclic conidiation and loosely interwoven mycelial masses. Based on the results of phylogenetic analyses, two undescribed lineages were recognized, and Ca. schimae was excluded from the genus. ITS sequence comparison with environmental DNA sequences revealed that the distribution of the genus is restricted to the Asia-Pacific region. Camptophora has been isolated or detected from abrupt sources, and this was attributed to its microcycle. The mechanisms driving genetic diversity within species are discussed with respect to their phyllosphere habitats.
Collapse
Affiliation(s)
- Akira Hashimoto
- Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Saho Shibata
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, Koganei, Tokyo, 184-8584, Japan
- Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Yuuri Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, Koganei, Tokyo, 184-8584, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| |
Collapse
|
6
|
Winter M, Vos M, Buckling A, Johnsen PJ, Harms K. Effect of chemotherapeutic agents on natural transformation frequency in Acinetobacter baylyi. Access Microbiol 2024; 6:000733.v4. [PMID: 39135654 PMCID: PMC11318045 DOI: 10.1099/acmi.0.000733.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/21/2024] [Indexed: 08/15/2024] Open
Abstract
Natural transformation is the ability of a bacterial cell to take up extracellular DNA which is subsequently available for recombination into the chromosome (or maintenance as an extrachromosomal element). Like other mechanisms of horizontal gene transfer, natural transformation is a significant driver for the dissemination of antimicrobial resistance. Recent studies have shown that many pharmaceutical compounds such as antidepressants and anti-inflammatory drugs can upregulate transformation frequency in the model species Acinetobacter baylyi. Chemotherapeutic compounds have been shown to increase the abundance of antimicrobial resistance genes and increase colonization rates of potentially pathogenic bacteria in patient gastrointestinal tracts, indicating an increased risk of infection and providing a pool of pathogenicity or resistance genes for transformable commensal bacteria. We here test for the effect of six cancer chemotherapeutic compounds on A. baylyi natural transformation frequency, finding two compounds, docetaxel and daunorubicin, to significantly decrease transformation frequency, and daunorubicin to also decrease growth rate significantly. Enhancing our understanding of the effect of chemotherapeutic compounds on the frequency of natural transformation could aid in preventing the horizontal spread of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Macaulay Winter
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Exeter TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Exeter TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
- Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Exeter TR10 9FE, UK
| | - Pål Jarle Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Tawfeeq MT, Voordeckers K, van den Berg P, Govers SK, Michiels J, Verstrepen KJ. Mutational robustness and the role of buffer genes in evolvability. EMBO J 2024; 43:2294-2307. [PMID: 38719995 PMCID: PMC11183146 DOI: 10.1038/s44318-024-00109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 06/19/2024] Open
Abstract
Organisms rely on mutations to fuel adaptive evolution. However, many mutations impose a negative effect on fitness. Cells may have therefore evolved mechanisms that affect the phenotypic effects of mutations, thus conferring mutational robustness. Specifically, so-called buffer genes are hypothesized to interact directly or indirectly with genetic variation and reduce its effect on fitness. Environmental or genetic perturbations can change the interaction between buffer genes and genetic variation, thereby unmasking the genetic variation's phenotypic effects and thus providing a source of variation for natural selection to act on. This review provides an overview of our understanding of mutational robustness and buffer genes, with the chaperone gene HSP90 as a key example. It discusses whether buffer genes merely affect standing variation or also interact with de novo mutations, how mutational robustness could influence evolution, and whether mutational robustness might be an evolved trait or rather a mere side-effect of complex genetic interactions.
Collapse
Affiliation(s)
- Mohammed T Tawfeeq
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Karin Voordeckers
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Pieter van den Berg
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Jan Michiels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Lansch-Justen L, El Karoui M, Alexander HK. Estimating mutation rates under heterogeneous stress responses. PLoS Comput Biol 2024; 20:e1012146. [PMID: 38805543 PMCID: PMC11161091 DOI: 10.1371/journal.pcbi.1012146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/07/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Exposure to environmental stressors, including certain antibiotics, induces stress responses in bacteria. Some of these responses increase mutagenesis and thus potentially accelerate resistance evolution. Many studies report increased mutation rates under stress, often using the standard experimental approach of fluctuation assays. However, single-cell studies have revealed that many stress responses are heterogeneously expressed in bacterial populations, which existing estimation methods have not yet addressed. We develop a population dynamic model that considers heterogeneous stress responses (subpopulations of cells with the response off or on) that impact both mutation rate and cell division rate, inspired by the DNA-damage response in Escherichia coli (SOS response). We derive the mutant count distribution arising in fluctuation assays under this model and then implement maximum likelihood estimation of the mutation-rate increase specifically associated with the expression of the stress response. Using simulated mutant count data, we show that our inference method allows for accurate and precise estimation of the mutation-rate increase, provided that this increase is sufficiently large and the induction of the response also reduces the division rate. Moreover, we find that in many cases, either heterogeneity in stress responses or mutant fitness costs could explain similar patterns in fluctuation assay data, suggesting that separate experiments would be required to identify the true underlying process. In cases where stress responses and mutation rates are heterogeneous, current methods still correctly infer the effective increase in population mean mutation rate, but we provide a novel method to infer distinct stress-induced mutation rates, which could be important for parameterising evolutionary models.
Collapse
Affiliation(s)
- Lucy Lansch-Justen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Meriem El Karoui
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Bacterial Systems Biology and Anti Microbial Resistance, Laboratoire de Biologie et Pharmacologie Appliquée, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Helen K. Alexander
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
9
|
Qi W, Jonker MJ, de Leeuw W, Brul S, ter Kuile BH. Role of RelA-synthesized (p)ppGpp and ROS-induced mutagenesis in de novo acquisition of antibiotic resistance in E. coli. iScience 2024; 27:109579. [PMID: 38617560 PMCID: PMC11015494 DOI: 10.1016/j.isci.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
The stringent response of bacteria to starvation and stress also fulfills a role in addressing the threat of antibiotics. Within this stringent response, (p)ppGpp, synthesized by RelA or SpoT, functions as a global alarmone. However, the effect of this (p)ppGpp on resistance development is poorly understood. Here, we show that knockout of relA or rpoS curtails resistance development against bactericidal antibiotics. The emergence of mutated genes associated with starvation and (p)ppGpp, among others, indicates the activation of stringent responses. The growth rate is decreased in ΔrelA-resistant strains due to the reduced ability to synthesize (p)ppGpp and the persistence of deacylated tRNA impeding protein synthesis. Sluggish cellular activity causes decreased production of reactive oxygen species (ROS), thereby reducing oxidative damage, leading to weakened DNA mismatch repair, potentially reducing the generation of mutations. These findings offer new targets for mitigating antibiotic resistance development, potentially achieved through inhibiting (p)ppGpp or ROS synthesis.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijs J. Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Benno H. ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Höhmann S, Briol TA, Ihle N, Frick O, Schmid A, Bühler B. Glycolate as alternative carbon source for Escherichia coli. J Biotechnol 2024; 381:76-85. [PMID: 38190849 DOI: 10.1016/j.jbiotec.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
The physiology of different Escherichia coli stains was analyzed for growth with glycolate as a potentially promising sustainable sole source of carbon and energy. Different E. coli strains showed large differences regarding lag phases after provision of glycolate. Whereas E. coli W showed fast adaptation, E. coli BW25113, JM101, and BL21 (DE3) needed extensive time for adaption (up to 30 generations) until the attainable µmax was reached, which, at 30 °C, amounted to 0.20-0.25 h-1 for all strains. The overexpression of genes encoding glycolate degradation did neither overcome the need for adaptation of E. coli BL21 (DE3) nor improve growth of E. coli W. Rather, high level expression of proteins involved in uptake and initial degradation steps had an adverse effect on growth. Overall, the results show a promising capacity of E. coli strains for growth on glycolate.
Collapse
Affiliation(s)
- Sonja Höhmann
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Tim Arik Briol
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nadine Ihle
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Oliver Frick
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany.
| |
Collapse
|
11
|
Bukkuri A. Modeling stress-induced responses: plasticity in continuous state space and gradual clonal evolution. Theory Biosci 2024; 143:63-77. [PMID: 38289469 DOI: 10.1007/s12064-023-00410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/13/2023] [Indexed: 03/01/2024]
Abstract
Mathematical models of cancer and bacterial evolution have generally stemmed from a gene-centric framework, assuming clonal evolution via acquisition of resistance-conferring mutations and selection of their corresponding subpopulations. More recently, the role of phenotypic plasticity has been recognized and models accounting for phenotypic switching between discrete cell states (e.g., epithelial and mesenchymal) have been developed. However, seldom do models incorporate both plasticity and mutationally driven resistance, particularly when the state space is continuous and resistance evolves in a continuous fashion. In this paper, we develop a framework to model plastic and mutational mechanisms of acquiring resistance in a continuous gradual fashion. We use this framework to examine ways in which cancer and bacterial populations can respond to stress and consider implications for therapeutic strategies. Although we primarily discuss our framework in the context of cancer and bacteria, it applies broadly to any system capable of evolving via plasticity and genetic evolution.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Ruffini G, Lopez-Sola E, Vohryzek J, Sanchez-Todo R. Neural Geometrodynamics, Complexity, and Plasticity: A Psychedelics Perspective. ENTROPY (BASEL, SWITZERLAND) 2024; 26:90. [PMID: 38275498 PMCID: PMC11154528 DOI: 10.3390/e26010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
We explore the intersection of neural dynamics and the effects of psychedelics in light of distinct timescales in a framework integrating concepts from dynamics, complexity, and plasticity. We call this framework neural geometrodynamics for its parallels with general relativity's description of the interplay of spacetime and matter. The geometry of trajectories within the dynamical landscape of "fast time" dynamics are shaped by the structure of a differential equation and its connectivity parameters, which themselves evolve over "slow time" driven by state-dependent and state-independent plasticity mechanisms. Finally, the adjustment of plasticity processes (metaplasticity) takes place in an "ultraslow" time scale. Psychedelics flatten the neural landscape, leading to heightened entropy and complexity of neural dynamics, as observed in neuroimaging and modeling studies linking increases in complexity with a disruption of functional integration. We highlight the relationship between criticality, the complexity of fast neural dynamics, and synaptic plasticity. Pathological, rigid, or "canalized" neural dynamics result in an ultrastable confined repertoire, allowing slower plastic changes to consolidate them further. However, under the influence of psychedelics, the destabilizing emergence of complex dynamics leads to a more fluid and adaptable neural state in a process that is amplified by the plasticity-enhancing effects of psychedelics. This shift manifests as an acute systemic increase of disorder and a possibly longer-lasting increase in complexity affecting both short-term dynamics and long-term plastic processes. Our framework offers a holistic perspective on the acute effects of these substances and their potential long-term impacts on neural structure and function.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| |
Collapse
|
13
|
Castro-Alonso JC, Hidalgo AA, Sweller J. Biological evolution and human cognition are analogous information processing systems. Front Psychol 2024; 14:1330345. [PMID: 38250110 PMCID: PMC10796771 DOI: 10.3389/fpsyg.2023.1330345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
The mechanisms that govern biological evolution and human cognition are analogous, as both follow the same principles of natural information processing systems. In this article, we describe the following five principles that provide an analogy between biological evolution and human cognition: (a) Randomness as Genesis Principle and (b) Borrowing and Reorganizing Principle, which indicate how natural information processing systems obtain information; (c) Narrow Limits of Change Principle and (d) Information Store Principle, which indicate how information is processed and stored; and (e) Environmental Organizing and Linking Principle, which indicate how stored information is used to generate actions appropriate to an environment. In human cognition, these analogs only apply to cognitive processes associated with biologically secondary knowledge, the knowledge typically taught in educational institutions. Based on these five principles, cognitive load theory researchers have provided diverse prescriptions to optimize instructional activities and materials. We conclude by discussing general instructional implications and future research directions based on this analogy.
Collapse
Affiliation(s)
| | | | - John Sweller
- School of Education, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Lin T, Pan J, Gregory C, Wang Y, Tincher C, Rivera C, Lynch M, Long H, Zhang Y. Contribution of the SOS response and the DNA repair systems to norfloxacin induced mutations in E. coli. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:538-550. [PMID: 38045542 PMCID: PMC10689325 DOI: 10.1007/s42995-023-00185-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/27/2023] [Indexed: 12/05/2023]
Abstract
Antibiotic-resistant bacteria severely threaten human health. Besides spontaneous mutations generated by endogenous factors, the resistance might also originate from mutations induced by certain antibiotics, such as the fluoroquinolones. Such antibiotics increase the genome-wide mutation rate by introducing replication errors from the SOS response pathway or decreasing the efficiency of the DNA repair systems. However, the relative contributions of these molecular mechanisms remain unclear, hindering understanding of the generation of resistant pathogens. Here, using newly-accumulated mutations of wild-type and SOS-uninducible Escherichia coli strains, as well as those of the strains deficient for the mismatch repair (MMR) and the oxidative damage repair pathways, we find that the SOS response is the major mutagenesis contributor in mutation elevation, responsible for ~ 30-50% of the total base-pair substitution (BPS) mutation-rate elevation upon treatment with sublethal levels of norfloxacin (0 ~ 50 ng/mL). We further estimate the significance of the effects on other mutational features of these mechanisms (i.e., transversions, structural variations, and mutation spectrum) in E. coli using linear models. The SOS response plays a positive role in all three mutational features (mutation rates of BPSs, transversions, structural variations) and affects the mutational spectrum. The repair systems significantly reduce the BPS mutation rate and the transversion rate, regardless of whether antibiotics are present, while significantly increasing the structural variation rate in E. coli. Our results quantitatively disentangle the contributions of the SOS response and DNA repair systems in antibiotic-induced mutagenesis. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00185-y.
Collapse
Affiliation(s)
- Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Colin Gregory
- Department of Biology, Indiana University, Bloomington, 47405 USA
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Clayton Tincher
- Department of Biology, Indiana University, Bloomington, 47405 USA
| | - Caitlyn Rivera
- Department of Biology, Indiana University, Bloomington, 47405 USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, 85281 USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Yu Zhang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- School of Mathematics Science, Ocean University of China, Qingdao, 266000 China
| |
Collapse
|
15
|
Hamerlinck H, Aerssens A, Boelens J, Dehaene A, McMahon M, Messiaen AS, Vandendriessche S, Velghe A, Leroux-Roels I, Verhasselt B. Sanitary installations and wastewater plumbing as reservoir for the long-term circulation and transmission of carbapenemase producing Citrobacter freundii clones in a hospital setting. Antimicrob Resist Infect Control 2023; 12:58. [PMID: 37337245 DOI: 10.1186/s13756-023-01261-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Accumulating evidence shows a role of the hospital wastewater system in the spread of multidrug-resistant organisms, such as carbapenemase producing Enterobacterales (CPE). Several sequential outbreaks of CPE on the geriatric ward of the Ghent University hospital have led to an outbreak investigation. Focusing on OXA-48 producing Citrobacter freundii, the most prevalent species, we aimed to track clonal relatedness using whole genome sequencing (WGS). By exploring transmission routes we wanted to improve understanding and (re)introduce targeted preventive measures. METHODS Environmental screening (toilet water, sink and shower drains) was performed between 2017 and 2021. A retrospective selection was made of 53 Citrobacter freundii screening isolates (30 patients and 23 environmental samples). DNA from frozen bacterial isolates was extracted and prepped for shotgun WGS. Core genome multilocus sequence typing was performed with an in-house developed scheme using 3,004 loci. RESULTS The CPE positivity rate of environmental screening samples was 19.0% (73/385). Highest percentages were found in the shower drain samples (38.2%) and the toilet water samples (25.0%). Sink drain samples showed least CPE positivity (3.3%). The WGS data revealed long-term co-existence of three patient sample derived C. freundii clusters. The biggest cluster (ST22) connects 12 patients and 8 environmental isolates taken between 2018 and 2021 spread across the ward. In an overlapping period, another cluster (ST170) links eight patients and four toilet water isolates connected to the same room. The third C. freundii cluster (ST421) connects two patients hospitalised in the same room but over a period of one and a half year. Additional sampling in 2022 revealed clonal isolates linked to the two largest clusters (ST22, ST170) in the wastewater collection pipes connecting the rooms. CONCLUSIONS Our findings suggest long-term circulation and transmission of carbapenemase producing C. freundii clones in hospital sanitary installations despite surveillance, daily cleaning and intermittent disinfection protocols. We propose a role for the wastewater drainage system in the spread within and between rooms and for the sanitary installations in the indirect transmission via bioaerosol plumes. To tackle this problem, a multidisciplinary approach is necessary including careful design and maintenance of the plumbing system.
Collapse
Affiliation(s)
- Hannelore Hamerlinck
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.
| | - Annelies Aerssens
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Jerina Boelens
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Andrea Dehaene
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Michael McMahon
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | | | | | - Anja Velghe
- Department of Geriatrics, Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Seng R, Phunpang R, Saiprom N, Dulsuk A, Chewapreecha C, Thaipadungpanit J, Batty EM, Chantratita W, West TE, Chantratita N. Phenotypic and genetic alterations of Burkholderia pseudomallei in patients during relapse and persistent infections. Front Microbiol 2023; 14:1103297. [PMID: 36814569 PMCID: PMC9939903 DOI: 10.3389/fmicb.2023.1103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
The bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a severe tropical disease associated with high mortality and relapse and persistent infections. Treatment of melioidosis requires prolonged antibiotic therapy; however, little is known about relapse and persistent infections, particularly the phenotypic and genetic alterations of B. pseudomallei in patients. In this study, we performed pulsed-field gel electrophoresis (PFGE) to compare the bacterial genotype between the initial isolate and the subsequent isolate from each of 23 suspected recurrent and persistent melioidosis patients in Northeast Thailand. We used whole-genome sequencing (WGS) to investigate multilocus sequence types and genetic alterations of within-host strain pairs. We also investigated the bacterial phenotypes associated with relapse and persistent infections, including multinucleated giant cell (MNGC) formation efficiency and intracellular multiplication. We first identified 13 (1.2%) relapse, 7 (0.7%) persistent, and 3 (0.3%) reinfection patients from 1,046 survivors. Each of the 20 within-host strain pairs from patients with relapse and persistent infections shared the same genotype, suggesting that the subsequent isolates arise from the infecting isolate. Logistic regression analysis of clinical data revealed regimen and duration of oral antibiotic therapies as risk factors associated with relapse and persistent infections. WGS analysis demonstrated 17 within-host genetic alteration events in 6 of 20 paired isolates, including a relatively large deletion and 16 single-nucleotide polymorphism (stocktickerSNP) mutations distributed across 12 genes. In 1 of 20 paired isolates, we observed significantly increased cell-to-cell fusion and intracellular replication in the second isolate compared with the initial isolate from a patient with persistent infection. WGS analysis suggested that a non-synonymous mutation in the tssB-5 gene, which encoded an essential component of the type VI secretion system, may be associated with the increased intracellular replication and MNGC formation efficiency of the second isolate of the patient. This information provides insights into genetic and phenotypic alterations in B. pseudomallei in human melioidosis, which may represent a bacterial strategy for persistent and relapse infections.
Collapse
Affiliation(s)
- Rathanin Seng
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth M. Batty
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Maritan E, Gallo M, Srutkova D, Jelinkova A, Benada O, Kofronova O, Silva-Soares NF, Hudcovic T, Gifford I, Barrick JE, Schwarzer M, Martino ME. Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between insects and mammals. BMC Biol 2022; 20:290. [PMID: 36575413 PMCID: PMC9795633 DOI: 10.1186/s12915-022-01477-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Animals form complex symbiotic associations with their gut microbes, whose evolution is determined by an intricate network of host and environmental factors. In many insects, such as Drosophila melanogaster, the microbiome is flexible, environmentally determined, and less diverse than in mammals. In contrast, mammals maintain complex multispecies consortia that are able to colonize and persist in the gastrointestinal tract. Understanding the evolutionary and ecological dynamics of gut microbes in different hosts is challenging. This requires disentangling the ecological factors of selection, determining the timescales over which evolution occurs, and elucidating the architecture of such evolutionary patterns. RESULTS We employ experimental evolution to track the pace of the evolution of a common gut commensal, Lactiplantibacillus plantarum, within invertebrate (Drosophila melanogaster) and vertebrate (Mus musculus) hosts and their respective diets. We show that in Drosophila, the nutritional environment dictates microbial evolution, while the host benefits L. plantarum growth only over short ecological timescales. By contrast, in a mammalian animal model, L. plantarum evolution results to be divergent between the host intestine and its diet, both phenotypically (i.e., host-evolved populations show higher adaptation to the host intestinal environment) and genomically. Here, both the emergence of hypermutators and the high persistence of mutated genes within the host's environment strongly differed from the low variation observed in the host's nutritional environment alone. CONCLUSIONS Our results demonstrate that L. plantarum evolution diverges between insects and mammals. While the symbiosis between Drosophila and L. plantarum is mainly determined by the host diet, in mammals, the host and its intrinsic factors play a critical role in selection and influence both the phenotypic and genomic evolution of its gut microbes, as well as the outcome of their symbiosis.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marialaura Gallo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nuno F Silva-Soares
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy.
| |
Collapse
|
19
|
Abstract
Escherichia coli arbitrarily encompasses facultative anaerobic, rod-shaped bacteria with defined respiratory and fermentative types of metabolism. The species diversification has been further advanced by atypical strains whose features deviate from the essential species-specific morphological and metabolic cutoff. The morphological cutoff is exemplified by bacterial filamentation. E. coli filamentation has been studied from two different perspectives: the first considers filamentation as a result of adaptive strategies and response to stress, while the second is based on findings from the cell division of E. coli's conditional mutants. Another cutoff is represented by E. coli's inability to use citrate as a sole carbon and energy source. In this study, we compared two atypical E. coli strains that belong to the same neuroinvasive ecovar but exhibit either of the two phenotypes that deviate from the species' features. While E. coli RS218 exists in the form of filaments incapable of growth on citrate, strain IHE3034 is represented as normal-sized bacteria able to ferment citrate under oxic conditions in the presence of glucose; in this paper, we show that these two phenotypes result from a bona fide trade-off. With the help of comparative proteomics and metabolomics, we discovered the proteome required for the upkeep of these phenotypes. The metabolic profiles of both strains reveal that under aerobic conditions, RS218 undergoes oxidative metabolism, while IHE3034 undergoes anaerobic respiration. Finally, we show that the use of citrate and filament formation are both linked in a trade-off occurring via a c-di-GMP-dependent phase variation event. IMPORTANCE Aerobic use of citrate and filamentous growth are arbitrary cutoffs for the Escherichia coli species. The strains that exhibit them as stable phenotypes are called atypical. In this study, we compare two atypical neuroinvasive E. coli strains, which alternatively display either of these phenotypes. We present the proteome and metabolome required for the maintenance of filamentous growth and show that anaerobic nitrate respiration is the main requirement for the use of citrate. The fact that the two phenotypes are differentially expressed by each strain prompted us to check if they are part of a trade-off. Indeed, these atypical characters are reversible and result from a c-di-GMP phase variation event. Thus, we revealed hidden links between stable morphological and metabolic phenotypes and provided information about alternative evolutionary pathways for the survival of E. coli strains in various host niches.
Collapse
|
20
|
Mashruwala AA, Qin B, Bassler BL. Quorum-sensing- and type VI secretion-mediated spatiotemporal cell death drives genetic diversity in Vibrio cholerae. Cell 2022; 185:3966-3979.e13. [PMID: 36167071 PMCID: PMC9623500 DOI: 10.1016/j.cell.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/03/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
Bacterial colonies composed of genetically identical individuals can diversify to yield variant cells with distinct genotypes. Variant outgrowth manifests as sectors. Here, we show that Type VI secretion system (T6SS)-driven cell death in Vibrio cholerae colonies imposes a selective pressure for the emergence of variant strains that can evade T6SS-mediated killing. T6SS-mediated cell death occurs in two distinct spatiotemporal phases, and each phase is driven by a particular T6SS toxin. The first phase is regulated by quorum sensing and drives sectoring. The second phase does not require the T6SS-injection machinery. Variant V. cholerae strains isolated from colony sectors encode mutated quorum-sensing components that confer growth advantages by suppressing T6SS-killing activity while simultaneously boosting T6SS-killing defenses. Our findings show that the T6SS can eliminate sibling cells, suggesting a role in intra-specific antagonism. We propose that quorum-sensing-controlled T6SS-driven killing promotes V. cholerae genetic diversity, including in natural habitats and during disease.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Boyang Qin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Lead Contact,Correspondence:
| |
Collapse
|
21
|
Ba Q, Zhou J, Li J, Cheng S, Zhang X, Wang H. Mutagenic Characteristics of Six Heavy Metals in Escherichia coli: The Commonality and Specificity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13867-13877. [PMID: 36121417 PMCID: PMC9536316 DOI: 10.1021/acs.est.2c04785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The history of long-term environmental exposure to heavy metals can be recorded in the genome as sporadic and specific mutations. Variable environments introduce diverse and adaptive mutations to organisms. To reveal the information hidden in genomes about environmental exposure to heavy metals, we performed long-term mutation accumulation (MA) experiments with Escherichia coli, analyzed genomes from 36 populations across 1650 generations with 6 heavy metal exposure regimes (arsenic, cadmium, chromium, copper, nickel, and lead), and inferred metal-specific evolution modes at the genomic level. All heavy metals induced genetic mutations with a mean rate of 3.459 × 10-9 per nucleotide per generation. The mutational spectrum exhibited distinct signatures; however, heavy metals also shared common mutation signatures prominently associated with all cancer types. The mutated genes showed an average similarity of 54.4% within the same exposure regime, whereas only 38.8% between exposure regimes. In terms of biological insights, mutated genes were enriched to fundamental cellular processes such as metabolism, motility, and transport. Our study elucidates the mutagenic commonality and specificity of environmental heavy metals, which are highly specific at mutational features and locus, but conserved at gene and functional levels, and may play crucial roles in the convergence of adaptation to heavy metals.
Collapse
Affiliation(s)
- Qian Ba
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingqi Zhou
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingquan Li
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Cheng
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaokang Zhang
- School
of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Hui Wang
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
22
|
Revitt‐Mills SA, Wright EK, Vereker M, O'Flaherty C, McPherson F, Dawson C, van Oijen AM, Robinson A. Defects in DNA double-strand break repair resensitize antibiotic-resistant Escherichia coli to multiple bactericidal antibiotics. Microbiologyopen 2022; 11:e1316. [PMID: 36314749 PMCID: PMC9500592 DOI: 10.1002/mbo3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is becoming increasingly prevalent amongst bacterial pathogens and there is an urgent need to develop new types of antibiotics with novel modes of action. One promising strategy is to develop resistance-breaker compounds, which inhibit resistance mechanisms and thus resensitize bacteria to existing antibiotics. In the current study, we identify bacterial DNA double-strand break repair as a promising target for the development of resistance-breaking co-therapies. We examined genetic variants of Escherichia coli that combined antibiotic-resistance determinants with DNA repair defects. We observed that defects in the double-strand break repair pathway led to significant resensitization toward five bactericidal antibiotics representing different functional classes. Effects ranged from partial to full resensitization. For ciprofloxacin and nitrofurantoin, sensitization manifested as a reduction in the minimum inhibitory concentration. For kanamycin and trimethoprim, sensitivity manifested through increased rates of killing at high antibiotic concentrations. For ampicillin, repair defects dramatically reduced antibiotic tolerance. Ciprofloxacin, nitrofurantoin, and trimethoprim induce the promutagenic SOS response. Disruption of double-strand break repair strongly dampened the induction of SOS by these antibiotics. Our findings suggest that if break-repair inhibitors can be developed they could resensitize antibiotic-resistant bacteria to multiple classes of existing antibiotics and may suppress the development of de novo antibiotic-resistance mutations.
Collapse
Affiliation(s)
- Sarah A. Revitt‐Mills
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Elizabeth K. Wright
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Madaline Vereker
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Callum O'Flaherty
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Fairley McPherson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Catherine Dawson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Antoine M. van Oijen
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Andrew Robinson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| |
Collapse
|
23
|
Ciofu O, Moser C, Jensen PØ, Høiby N. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol 2022; 20:621-635. [PMID: 35115704 DOI: 10.1038/s41579-022-00682-4] [Citation(s) in RCA: 485] [Impact Index Per Article: 161.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chronic infections caused by microbial biofilms represent an important clinical challenge. The recalcitrance of microbial biofilms to antimicrobials and to the immune system is a major cause of persistence and clinical recurrence of these infections. In this Review, we present the extent of the clinical problem, and the mechanisms underlying the tolerance of biofilms to antibiotics and to host responses. We also explore the role of biofilms in the development of antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Claus Moser
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
24
|
Cohen O, Ram Y, Hadany L, Geffen E, Gafny S. The effect of habitat and climatic on microsatellite diversity and allele length variation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microsatellite loci have been shown to vary according to environment. We studied allelic length variation and diversity in eight microsatellite loci along a sharp climatic and habitat gradient in Israel, using the eastern spadefoot toad (Pelobates syriacus) as our model system. We found a gradual increase in allele lengths from north to south. We used a distance-based redundancy analysis (dbRDA) to associate between allele length and habitat and climatic measures and found that geography and annual climate explained the significant variation in allele length. We also used additional measurements pertaining to demography, heterozygosity and allelic diversity to explore four different hypotheses that might explain the variations in allele length. Our results suggest that the changes we observed in allele lengths may not be purely random but could be influenced by the differential mutation rate and/or local environmental conditions operating at the different locations.
Collapse
|
25
|
Davies CP, Jurkiw T, Haendiges J, Reed E, Anderson N, Grasso-Kelley E, Hoffmann M, Zheng J. Changes in the genomes and methylomes of three Salmonella enterica serovars after long-term storage in ground black pepper. Front Microbiol 2022; 13:970135. [PMID: 36160197 PMCID: PMC9507087 DOI: 10.3389/fmicb.2022.970135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Low moisture foods (LMFs) have traditionally been recognized as safe for consumption, as most bacteria require higher water content to grow. However, outbreaks due to LMF foods are increasing, and the microbial pathogen Salmonella enterica is frequently implicated. S. enterica can survive in LMFs for years, but few serovars have been studied, and the mechanisms which underlie this longevity are not well understood. Here, we determine that S. enterica serovars S. Tennessee, S. Anatum, and S. Reading but not S. Oranienburg can survive in the ground black pepper for 6 years. S. Reading was not previously associated with any LMF. Using both Illumina and Pacific Biosciences sequencing technologies, we also document changes in the genomes and methylomes of the surviving serovars over this 6-year period. The three serovars acquired a small number of single nucleotide polymorphisms (SNPs) including seven substitutions (four synonymous, two non-synonymous, and one substitution in a non-coding region), and two insertion-deletions. Nine distinct N6-methyladenine (m6A) methylated motifs across the three serovars were identified including five which were previously known, Gm6ATC, CAGm6AG, BATGCm6AT, CRTm6AYN6CTC, and CCm6AN7TGAG, and four novel serovar-specific motifs, GRTm6AN8TTYG, GAm6ACN7GTA, GAA m6ACY, and CAAm6ANCC. Interestingly, the BATGCAT motif was incompletely methylated (35–64% sites across the genome methylated), suggesting a possible role in gene regulation. Furthermore, the number of methylated BATGCm6AT motifs increased after storage in ground black pepper for 6 years from 475 to 657 (S. Tennessee), 366 to 608 (S. Anatum), and 525 to 570 (S. Reading), thus warranting further study as an adaptive mechanism. This is the first long-term assessment of genomic changes in S. enterica in a low moisture environment, and the first study to examine the methylome of any bacteria over a period of years, to our knowledge. These data contribute to our understanding of S. enterica survival in LMFs, and coupled with further studies, will provide the information necessary to design effective interventions which reduce S. enterica in LMFs and maintain a healthy, safe food supply.
Collapse
Affiliation(s)
- Cary P. Davies
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, NEA, U.S. Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Cary P. Davies,
| | - Thomas Jurkiw
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Julie Haendiges
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Nathan Anderson
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, IL, United States
| | - Elizabeth Grasso-Kelley
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, IL, United States
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
26
|
Vasse M, Bonhoeffer S, Frenoy A. Ecological effects of stress drive bacterial evolvability under sub-inhibitory antibiotic treatments. ISME COMMUNICATIONS 2022; 2:80. [PMID: 37938266 PMCID: PMC9723650 DOI: 10.1038/s43705-022-00157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/09/2023]
Abstract
Stress is thought to increase mutation rate and thus to accelerate evolution. In the context of antibiotic resistance, sub-inhibitory treatments could then lead to enhanced evolvability, thereby fuelling the adaptation of pathogens. Combining wet-lab experiments, stochastic simulations and a meta-analysis of the literature, we found that the increase in mutation rates triggered by antibiotic treatments is often cancelled out by reduced population size, resulting in no overall increase in genetic diversity. A careful analysis of the effect of ecological factors on genetic diversity showed that the potential for regrowth during recovery phase after treatment plays a crucial role in evolvability, being the main factor associated with increased genetic diversity in experimental data.
Collapse
Affiliation(s)
- Marie Vasse
- Institute for Integrative Biology, ETH Zürich, Zurich, Switzerland
| | | | - Antoine Frenoy
- Institute for Integrative Biology, ETH Zürich, Zurich, Switzerland.
- Université Grenoble Alpes, CNRS UMR 5525, Grenoble, France.
| |
Collapse
|
27
|
Wang D, Ning Q, Deng Z, Zhang M, You J. Role of environmental stresses in elevating resistance mutations in bacteria: Phenomena and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119603. [PMID: 35691443 DOI: 10.1016/j.envpol.2022.119603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Mutations are an important origin of antibiotic resistance in bacteria. While there is increasing evidence showing promoted resistance mutations by environmental stresses, no retrospective research has yet been conducted on this phenomenon and its mechanisms. Herein, we summarized the phenomena of stress-elevated resistance mutations in bacteria, generalized the regulatory mechanisms and discussed the environmental and human health implications. It is shown that both chemical pollutants, such as antibiotics and other pharmaceuticals, biocides, metals, nanoparticles and disinfection byproducts, and non-chemical stressors, such as ultraviolet radiation, electrical stimulation and starvation, are capable of elevating resistance mutations in bacteria. Notably, resistance mutations are more likely to occur under sublethal or subinhibitory levels of these stresses, suggesting a considerable environmental concern. Further, mechanisms for stress-induced mutations are summarized in several points, namely oxidative stress, SOS response, DNA replication and repair systems, RpoS regulon and biofilm formation, all of which are readily provoked by common environmental stresses. Given bacteria in the environment are confronted with a variety of unfavorable conditions, we propose that the stress-elevated resistance mutations are a universal phenomenon in the environment and represent a nonnegligible risk factor for ecosystems and human health. The present review identifies a need for taking into account the pollutants' ability to elevate resistance mutations when assessing their environmental and human health risks and highlights the necessity of including resistance mutations as a target to prevent antibiotic resistance evolution.
Collapse
Affiliation(s)
- Dali Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Qing Ning
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | | | - Meng Zhang
- Shenzhen Dapeng New District Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Jing You
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
28
|
Hobson CA, Vigue L, Naimi S, Chassaing B, Magnan M, Bonacorsi S, Gachet B, El Meouche I, Birgy A, Tenaillon O. MiniBioReactor Array (MBRA) in vitro gut model: a reliable system to study microbiota-dependent response to antibiotic treatment. JAC Antimicrob Resist 2022; 4:dlac077. [PMID: 35795241 PMCID: PMC9252984 DOI: 10.1093/jacamr/dlac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Antimicrobial drugs are mostly studied for their impact on emergence of bacterial antibiotic resistance, but their impact on the gut microbiota is also of tremendous interest. In vitro gut models are important tools to study such complex drug–microbiota interactions in humans. Methods The MiniBioReactor Array (MBRA) in vitro microbiota system; a single-stage continuous flow culture model, hosted in an anaerobic chamber; was used to evaluate the impact of three concentrations of a third-generation cephalosporin (ceftriaxone) on faecal microbiota from two healthy donors (treatment versus control: three replicates per condition). We conducted 16S microbiome profiling and analysed microbial richness, diversity and taxonomic changes. β-Lactamase activities were evaluated and correlated with the effects observed in the MBRA in vitro system. Results The MBRA preserved each donor’s specificities, and differences between the donors were maintained through time. Before treatment, all faecal cultures belonging to the same donor were comparable in composition, richness, and diversity. Treatment with ceftriaxone was associated with a decrease in α-diversity, and an increase in β-diversity index, in a concentration-dependent manner. The maximum effect on diversity was observed after 72 h of treatment. Importantly, one donor had a stronger microbiota β-lactamase activity that was associated with a reduced impact of ceftriaxone on microbiota composition. Conclusions MBRA can reliably mimic the intestinal microbiota and its modifications under antibiotic selective pressure. The impact of the treatment was donor- and concentration-dependent. We hypothesize these results could be explained, at least in part, by the differences in β-lactamase activity of the microbiota itself. Our results support the relevance and promise of the MBRA system to study drug–microbiota interactions.
Collapse
Affiliation(s)
- C A Hobson
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - L Vigue
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - S Naimi
- INSERM U1016, Team ‘Mucosal Microbiota in Chronic Inflammatory diseases’, CNRS UMR 8104, Université de Paris , Paris , France
| | - B Chassaing
- INSERM U1016, Team ‘Mucosal Microbiota in Chronic Inflammatory diseases’, CNRS UMR 8104, Université de Paris , Paris , France
| | - M Magnan
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - S Bonacorsi
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP , 75019 Paris , France
| | - B Gachet
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - I El Meouche
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - A Birgy
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP , 75019 Paris , France
| | - O Tenaillon
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| |
Collapse
|
29
|
Abstract
Mechanisms of evolution and evolution of antibiotic resistance are both fundamental and world health problems. Stress-induced mutagenesis defines mechanisms of mutagenesis upregulated by stress responses, which drive adaptation when cells are maladapted to their environments—when stressed. Work in mutagenesis induced by antibiotics had produced tantalizing clues but not coherent mechanisms. We review recent advances in antibiotic-induced mutagenesis that integrate how reactive oxygen species (ROS), the SOS and general stress responses, and multichromosome cells orchestrate a stress response-induced switch from high-fidelity to mutagenic repair of DNA breaks. Moreover, while sibling cells stay stable, a mutable “gambler” cell subpopulation is induced by differentially generated ROS, which signal the general stress response. We discuss other evolvable subpopulations and consider diverse evolution-promoting molecules as potential targets for drugs to slow evolution of antibiotic resistance, cross-resistance, and immune evasion. An FDA-approved drug exemplifies “stealth” evolution-slowing drugs that avoid selecting resistance to themselves or antibiotics.
Collapse
|
30
|
Visnapuu A, Van der Gucht M, Wagemans J, Lavigne R. Deconstructing the Phage-Bacterial Biofilm Interaction as a Basis to Establish New Antibiofilm Strategies. Viruses 2022; 14:v14051057. [PMID: 35632801 PMCID: PMC9145820 DOI: 10.3390/v14051057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022] Open
Abstract
The bacterial biofilm constitutes a complex environment that endows the bacterial community within with an ability to cope with biotic and abiotic stresses. Considering the interaction with bacterial viruses, these biofilms contain intrinsic defense mechanisms that protect against phage predation; these mechanisms are driven by physical, structural, and metabolic properties or governed by environment-induced mutations and bacterial diversity. In this regard, horizontal gene transfer can also be a driver of biofilm diversity and some (pro)phages can function as temporary allies in biofilm development. Conversely, as bacterial predators, phages have developed counter mechanisms to overcome the biofilm barrier. We highlight how these natural systems have previously inspired new antibiofilm design strategies, e.g., by utilizing exopolysaccharide degrading enzymes and peptidoglycan hydrolases. Next, we propose new potential approaches including phage-encoded DNases to target extracellular DNA, as well as phage-mediated inhibitors of cellular communication; these examples illustrate the relevance and importance of research aiming to elucidate novel antibiofilm mechanisms contained within the vast set of unknown ORFs from phages.
Collapse
|
31
|
Hamad C, Chowdhry M, Sindeldecker D, Bernthal NM, Stoodley P, McPherson EJ. Adaptive antimicrobial resistance, a description of microbial variants, and their relevance to periprosthetic joint infection. Bone Joint J 2022; 104-B:575-580. [PMID: 35491584 PMCID: PMC9948434 DOI: 10.1302/0301-620x.104b5.bjj-2021-1759.r1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI. Cite this article: Bone Joint J 2022;104-B(5):575-580.
Collapse
Affiliation(s)
- Christopher Hamad
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Madhav Chowdhry
- Nuffield Department of Primary Care Health Sciences, Kellogg College, University of Oxford, Oxford, UK
| | - Devin Sindeldecker
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Nicholas M. Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA,Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA,National Centre for Advanced Tribology at Southampton, Department of Mechanical Engineering, University of Southampton, Southampton, UK
| | - Edward J. McPherson
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA,Correspondence should be sent to Edward J. McPherson. E-mail:
| |
Collapse
|
32
|
The interplay between anticancer challenges and the microbial communities from the gut. Eur J Clin Microbiol Infect Dis 2022; 41:691-711. [PMID: 35353280 DOI: 10.1007/s10096-022-04435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022]
Abstract
Cancer being an increasing burden on human health, the use of anticancer drugs has risen over the last decades. The physiological effects of these drugs are not only perceived by the host's cells but also by the microbial cells it harbors as commensals, notably the gut microbiota. Since the early '50 s, the cytotoxicity of anticancer chemotherapy was evaluated on bacteria revealing some antimicrobial activities that result in an established perturbation of the gut microbiota. This perturbation can affect the host's health through dysbiosis, which can lead to multiple complications, but has also been shown to have a direct effect on the treatment efficiency.We, therefore, conducted a review of literature focusing on this triangular relationship involving the microbial communities from the gut, the host's disease, and the anticancer treatment. We focused specifically on the antimicrobial effects of anticancer chemotherapy, their impact on mutagenesis in bacteria, and the perspectives of using bacteria-based tools to help in the diagnostic and treatment of cancer.
Collapse
|
33
|
Kollars NM, Stachowicz JJ. Disturbance decreases genotypic diversity by reducing colonization: Implications for disturbance-diversity feedbacks. Ecology 2022; 103:e3710. [PMID: 35362174 DOI: 10.1002/ecy.3710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022]
Abstract
One objective of eco-evolutionary dynamics is to understand how the interplay between ecology and evolution on contemporary timescales contributes to the maintenance of biodiversity. Disturbance is an ecological process that can alter species diversity through both ecological and evolutionary effects on colonization and extinction dynamics. While analogous mechanisms likely operate among genotypes within a population, empirical evidence demonstrating the relationship between disturbance and genotypic diversity remains limited. We experimentally tested how disturbance altered the colonization (gain) and extinction (loss) of genets within a population of the marine angiosperm Zostera marina (eelgrass). In a 2-year field experiment conducted in northern California, we mimicked grazing disturbance by migratory geese by clipping leaves at varying frequencies during the winter months. Surprisingly, we found the greatest rates of new colonization in the absence of disturbance and that clipping had negligible effects on extinction. We hypothesize that genet extinction was not driven by selective mortality from clipping or from any stochastic loss resulting from the reduced shoot densities in clipped plots. We also hypothesize that increased flowering effort and facilitation within and among clones drove the increased colonization of new genets in the undisturbed treatment. This balance between colonization and extinction resulted in a negative relationship between clipping frequency and net changes in genotypic richness. We interpret our results in light of prior work showing that genotypic diversity increased resistance to grazing disturbance. We suggest that both directions of a feedback between disturbance and diversity occur in this system with consequences for the maintenance of eelgrass genotypic diversity.
Collapse
Affiliation(s)
- Nicole M Kollars
- Center for Population Biology and the Department of Evolution and Ecology, University of California Davis, One Shields Ave, Davis, CA, USA
| | - John J Stachowicz
- Center for Population Biology and the Department of Evolution and Ecology, University of California Davis, One Shields Ave, Davis, CA, USA
| |
Collapse
|
34
|
Abstract
Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
35
|
Development of Monascus purpureus monacolin K-hyperproducing mutant strains by synchrotron light irradiation and their comparative genome analysis. J Biosci Bioeng 2022; 133:362-368. [DOI: 10.1016/j.jbiosc.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022]
|
36
|
Catania F, Rothering R, Vitali V. One Cell, Two Gears: Extensive Somatic Genome Plasticity Accompanies High Germline Genome Stability in Paramecium. Genome Biol Evol 2021; 13:6443145. [PMID: 34849843 PMCID: PMC8670300 DOI: 10.1093/gbe/evab263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mutation accumulation (MA) experiments are conventionally employed to study spontaneous germline mutations. However, MA experiments can also shed light on somatic genome plasticity in a habitual and genetic drift-maximizing environment. Here, we revisit an MA experiment that uncovered extraordinary germline genome stability in Paramecium tetraurelia, a single-celled eukaryote with nuclear dimorphism. Our re-examination of isogenic P. tetraurelia MA lines propagated in nutrient-rich medium for >40 sexual cycles reveals that their polyploid somatic genome accrued hundreds of intervening DNA segments (IESs), which are normally eliminated during germline-soma differentiation. These IESs frequently occupy a fraction of the somatic DNA copies of a given locus, producing IES excision/retention polymorphisms, and preferentially fall into a class of epigenetically controlled sequences. Relative to control lines, retained IESs are flanked by stronger cis-acting signals and interrupt an excess of highly expressed coding exons. These findings suggest that P. tetraurelia’s elevated germline DNA replication fidelity is associated with pervasive somatic genome plasticity. They show that MA regimes are powerful tools for investigating the role that developmental plasticity, somatic mutations, and epimutations have in ecology and evolution.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Germany.,Institute of Environmental Radioactivity, Fukushima University, Japan
| | - Rebecca Rothering
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Valerio Vitali
- Institute for Evolution and Biodiversity, University of Münster, Germany
| |
Collapse
|
37
|
Interplay between Bacterial Clones and Plasmids in the Spread of Antibiotic Resistance Genes in the Gut: Lessons from a Temporal Study in Veal Calves. Appl Environ Microbiol 2021; 87:e0135821. [PMID: 34613750 DOI: 10.1128/aem.01358-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intestinal carriage of extended spectrum β-lactamase (ESBL)-producing Escherichia coli is a frequent, increasing, and worrying phenomenon, but little is known about the molecular scenario and the evolutionary forces at play. We screened 45 veal calves, known to have high prevalence of carriage, for ESBL-producing E. coli on 514 rectal swabs (one randomly selected colony per sample) collected over 6 months. We characterized the bacterial clones and plasmids carrying blaESBL genes with a combination of genotyping methods, whole genome sequencing, and conjugation assays. One hundred and seventy-three ESBL-producing E. coli isolates [blaCTX-M-1 (64.7%), blaCTX-M-14 (33.5%), or blaCTX-M-15 (1.8%)] were detected, belonging to 32 bacterial clones, mostly of phylogroup A. Calves were colonized successively by different clones with a trend in decreasing carriage. The persistence of a clone in a farm was significantly associated with the number of calves colonized. Despite a high diversity of E. coli clones and blaCTX-M-carrying plasmids, few blaCTX-M gene/plasmid/chromosomal background combinations dominated, due to (i) efficient colonization of bacterial clones and/or (ii) successful plasmid spread in various bacterial clones. The scenario "clone versus plasmid spread" depended on the farm. Thus, epistatic interactions between resistance genes, plasmids, and bacterial clones contribute to optimize fitness in specific environments. IMPORTANCE The gut microbiota is the epicenter of the emergence of resistance. Considerable amount of knowledge on the molecular mechanisms of resistance has been accumulated, but the ecological and evolutionary forces at play in nature are less studied. In this context, we performed a field work on temporal intestinal carriage of extended spectrum β-lactamase (ESBL)-producing Escherichia coli in veal farms. Veal calves are animals with one of the highest levels of ESBL producing E. coli fecal carriage, due to early high antibiotic exposure. We were able to show that calves were colonized successively by different ESBL-producing E. coli clones, and that two main scenarios were at play in the spread of blaCTX-M genes among calves: efficient colonization of several calves by a few bacterial clones and successful plasmid spread in various bacterial clones. Such knowledge should help develop new strategies to fight the emergence of antibiotic-resistance.
Collapse
|
38
|
Woroszyło M, Ciecholewska-Juśko D, Junka A, Drozd R, Wardach M, Migdał P, Szymczyk-Ziółkowska P, Styburski D, Fijałkowski K. Rotating Magnetic Field Increases β-Lactam Antibiotic Susceptibility of Methicillin-Resistant Staphylococcus aureus Strains. Int J Mol Sci 2021; 22:ijms222212397. [PMID: 34830278 PMCID: PMC8618647 DOI: 10.3390/ijms222212397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have developed resistance to most β-lactam antibiotics and have become a global health issue. In this work, we analyzed the impact of a rotating magnetic field (RMF) of well-defined and strictly controlled characteristics coupled with β-lactam antibiotics against a total of 28 methicillin-resistant and sensitive S. aureus strains. The results indicate that the application of RMF combined with β-lactam antibiotics correlated with favorable changes in growth inhibition zones or in minimal inhibitory concentrations of the antibiotics compared to controls unexposed to RMF. Fluorescence microscopy indicated a drop in the relative number of cells with intact cell walls after exposure to RMF. These findings were additionally supported by the use of SEM and TEM microscopy, which revealed morphological alterations of RMF-exposed cells manifested by change of shape, drop in cell wall density and cytoplasm condensation. The obtained results indicate that the originally limited impact of β-lactam antibiotics in MRSA is boosted by the disturbances caused by RMF in the bacterial cell walls. Taking into account the high clinical need for new therapeutic options, effective against MRSA, the data presented in this study have high developmental potential and could serve as a basis for new treatment options for MRSA infections.
Collapse
Affiliation(s)
- Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-93-41 (A.J.); +48-91-449-6714 (K.F.)
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland;
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland;
| | - Daniel Styburski
- Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-93-41 (A.J.); +48-91-449-6714 (K.F.)
| |
Collapse
|
39
|
Zhu X, Xie S, Tang K, Kalia RK, Liu N, Ma J, Bressan RA, Zhu JK. Non-CG DNA methylation-deficiency mutations enhance mutagenesis rates during salt adaptation in cultured Arabidopsis cells. STRESS BIOLOGY 2021; 1:12. [PMID: 37676538 PMCID: PMC10441993 DOI: 10.1007/s44154-021-00013-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/20/2021] [Indexed: 09/08/2023]
Abstract
Much has been learned about how plants acclimate to stressful environments, but the molecular basis of stress adaptation and the potential involvement of epigenetic regulation remain poorly understood. Here, we examined if salt stress induces mutagenesis in suspension cultured plant cells and if DNA methylation affects the mutagenesis using whole genome resequencing analysis. We generated suspension cell cultures from two Arabidopsis DNA methylation-deficient mutants and wild-type plants, and subjected the cultured cells to stepwise increases in salt stress intensity over 40 culture cycles. We show that ddc (drm1 drm2 cmt3) mutant cells can adapt to grow in 175 mM NaCl-containing growth medium and exhibit higher adaptability compared to wild type Col-0 and nrpe1 cells, which can adapt to grow in only 125 mM NaCl-containing growth medium. Salt treated nrpe1 and ddc cells but not wild type cells accumulate more mutations compared with their respective untreated cells. There is no enrichment of stress responsive genes in the list of mutated genes in salt treated cells compared to the list of mutated genes in untreated cells. Our results suggest that DNA methylation prevents the induction of mutagenesis by salt stress in plant cells during stress adaptation.
Collapse
Affiliation(s)
- Xiaohong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China.
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, 47907, USA
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajwant K Kalia
- Central Arid Zone Research Institute, Jodhpur, 342003, India
| | - Na Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences 830011, Urumqi, China
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
40
|
Verstraete L, Van den Bergh B, Verstraeten N, Michiels J. Ecology and evolution of antibiotic persistence. Trends Microbiol 2021; 30:466-479. [PMID: 34753652 DOI: 10.1016/j.tim.2021.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Bacteria have at their disposal a battery of strategies to withstand antibiotic stress. Among these, resistance is a well-known mechanism, yet bacteria can also survive antibiotic attack by adopting a tolerant phenotype. In the case of persistence, only a small fraction within an isogenic population switches to this antibiotic-tolerant state. Persistence depends on the ecological niche and the genetic background of the strains involved. Furthermore, it has been shown to be under direct and indirect evolutionary pressure. Persister cells play a role in chronic infections and the development of resistance, and therefore a better understanding of this phenotype could contribute to the development of effective antibacterial therapies. In the current review, we discuss how ecological and evolutionary forces shape persistence.
Collapse
Affiliation(s)
- L Verstraete
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - B Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - N Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - J Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.
| |
Collapse
|
41
|
Zhou W, Li Y, Li Z, Ma B, Jiang X, Hu C, Ai Y, Luo P. Genomic Changes and Genetic Divergence of Vibrio alginolyticus Under Phage Infection Stress Revealed by Whole-Genome Sequencing and Resequencing. Front Microbiol 2021; 12:710262. [PMID: 34671325 PMCID: PMC8521149 DOI: 10.3389/fmicb.2021.710262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteriophages (phages) and their bacterial hosts were the most abundant and genetically highly diverse organisms on the earth. In this study, a series of phage-resistant mutant (PRM) strains derived from Vibrio alginolyticus were isolated and Infrequent-restriction-site PCR (IRS-PCR) was used to investigate the genetic diversity of the PRM strains. Phenotypic variations of eight PRM strains were analyzed using profiles of utilizing carbon sources and chemical sensitivity. Genetic variations of eight PRM strains and coevolved V. alginolyticus populations with phages were analyzed by whole-genome sequencing and resequencing, respectively. The results indicated that eight genetically discrepant PRM stains exhibited abundant and abundant phenotypic variations. Eight PRM strains and coevolved V. alginolyticus populations (VE1, VE2, and VE3) contained numerous single nucleotide variations (SNVs) and insertions/indels (InDels) and exhibited obvious genetic divergence. Most of the SNVs and InDels in coding genes were related to the synthesis of flagellar, extracellular polysaccharide (EPS), which often served as the receptors of phage invasion. The PRM strains and the coevolved cell populations also contained frequent mutations in tRNA and rRNA genes. Two out of three coevolved populations (VE1 and VE2) contained a large mutation segment severely deconstructing gene nrdA, which was predictably responsible for the booming of mutation rate in the genome. In summary, numerous mutations and genetic divergence were detected in the genomes of V. alginolyticus PRM strains and in coevolved cell populations of V. alginolyticus under phage infection stress. The phage infection stress may provide an important force driving genomic evolution of V. alginolyticus.
Collapse
Affiliation(s)
- Wenjie Zhou
- College of Animal Science, Jilin University, Changchun, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yingying Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Geological Survey Institute of Guangzhou, Guangzhou, China
| | - Zhuobo Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yongxing Ai
- College of Animal Science, Jilin University, Changchun, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
42
|
López-Cortegano E, Craig RJ, Chebib J, Samuels T, Morgan AD, Kraemer SA, Böndel KB, Ness RW, Colegrave N, Keightley PD. De Novo Mutation Rate Variation and Its Determinants in Chlamydomonas. Mol Biol Evol 2021; 38:3709-3723. [PMID: 33950243 PMCID: PMC8383909 DOI: 10.1093/molbev/msab140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
De novo mutations are central for evolution, since they provide the raw material for natural selection by regenerating genetic variation. However, studying de novo mutations is challenging and is generally restricted to model species, so we have a limited understanding of the evolution of the mutation rate and spectrum between closely related species. Here, we present a mutation accumulation (MA) experiment to study de novo mutation in the unicellular green alga Chlamydomonas incerta and perform comparative analyses with its closest known relative, Chlamydomonas reinhardtii. Using whole-genome sequencing data, we estimate that the median single nucleotide mutation (SNM) rate in C. incerta is μ = 7.6 × 10-10, and is highly variable between MA lines, ranging from μ = 0.35 × 10-10 to μ = 131.7 × 10-10. The SNM rate is strongly positively correlated with the mutation rate for insertions and deletions between lines (r > 0.97). We infer that the genomic factors associated with variation in the mutation rate are similar to those in C. reinhardtii, allowing for cross-prediction between species. Among these genomic factors, sequence context and complexity are more important than GC content. With the exception of a remarkably high C→T bias, the SNM spectrum differs markedly between the two Chlamydomonas species. Our results suggest that similar genomic and biological characteristics may result in a similar mutation rate in the two species, whereas the SNM spectrum has more freedom to diverge.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rory J Craig
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jobran Chebib
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Toby Samuels
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew D Morgan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Katharina B Böndel
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
43
|
Dechêne-Tempier M, Marois-Créhan C, Libante V, Jouy E, Leblond-Bourget N, Payot S. Update on the Mechanisms of Antibiotic Resistance and the Mobile Resistome in the Emerging Zoonotic Pathogen Streptococcus suis. Microorganisms 2021; 9:microorganisms9081765. [PMID: 34442843 PMCID: PMC8401462 DOI: 10.3390/microorganisms9081765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen causing important economic losses in swine production. The most commonly used antibiotics in swine industry are tetracyclines, beta-lactams, and macrolides. Resistance to these antibiotics has already been observed worldwide (reaching high rates for macrolides and tetracyclines) as well as resistance to aminoglycosides, fluoroquinolones, amphenicols, and glycopeptides. Most of the resistance mechanisms are encoded by antibiotic resistance genes, and a large part are carried by mobile genetic elements (MGEs) that can be transferred through horizontal gene transfer. This review provides an update of the resistance genes, their combination in multidrug isolates, and their localization on MGEs in S. suis. It also includes an overview of the contribution of biofilm to antimicrobial resistance in this bacterial species. The identification of resistance genes and study of their localization in S. suis as well as the environmental factors that can modulate their dissemination appear essential in order to decipher the role of this bacterium as a reservoir of antibiotic genes for other species.
Collapse
Affiliation(s)
- Manon Dechêne-Tempier
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
| | - Corinne Marois-Créhan
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
| | - Virginie Libante
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
| | - Eric Jouy
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
| | | | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
- Correspondence:
| |
Collapse
|
44
|
Stead ER, Bjedov I. Balancing DNA repair to prevent ageing and cancer. Exp Cell Res 2021; 405:112679. [PMID: 34102225 PMCID: PMC8361780 DOI: 10.1016/j.yexcr.2021.112679] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
DNA damage is a constant stressor to the cell. Persistent damage to the DNA over time results in an increased risk of mutation and an accumulation of mutations with age. Loss of efficient DNA damage repair can lead to accelerated ageing phenotypes or an increased cancer risk, and the trade-off between cancer susceptibility and longevity is often driven by the cell's response to DNA damage. High levels of mutations in DNA repair mutants often leads to excessive cell death and stem cell exhaustion which may promote premature ageing. Stem cells themselves have distinct characteristics that enable them to retain low mutation rates. However, when mutations do arise, stem cell clonal expansion can also contribute to age-related tissue dysfunction as well as heightened cancer risk. In this review, we will highlight increasing DNA damage and mutation accumulation as hallmarks common to both ageing and cancer. We will propose that anti-ageing interventions might be cancer preventative and discuss the mechanisms through which they may act.
Collapse
Affiliation(s)
- Eleanor Rachel Stead
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London WC1E 6DD, UK
| | - Ivana Bjedov
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London WC1E 6DD, UK; University College London, Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
45
|
Gutiérrez R, Ram Y, Berman J, Carstens Marques de Sousa K, Nachum-Biala Y, Britzi M, Elad D, Glaser G, Covo S, Harrus S. Adaptive resistance mutations at supra-inhibitory concentrations independent of SOS mutagenesis. Mol Biol Evol 2021; 38:4095-4115. [PMID: 34175952 PMCID: PMC8476149 DOI: 10.1093/molbev/msab196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.,The Center for Research in Tropical Diseases, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.,School of Computer Science, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Judith Berman
- Shmunis School of Biomedicine and Cancer, Faculty of Life Sciences, Tel Aviv University, Tel Aviv University, Ramat Aviv, Israel
| | | | - Yaarit Nachum-Biala
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Malka Britzi
- The National Residue Control Laboratory, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Gad Glaser
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Harrus
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
46
|
Shen S, Vagner S, Robert C. Persistent Cancer Cells: The Deadly Survivors. Cell 2021; 183:860-874. [PMID: 33186528 DOI: 10.1016/j.cell.2020.10.027] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 02/09/2023]
Abstract
Persistent cancer cells are the discrete and usually undetected cells that survive cancer drug treatment and constitute a major cause of treatment failure. These cells are characterized by their slow proliferation, highly flexible energy consumption, adaptation to their microenvironment, and phenotypic plasticity. Mechanisms that underlie their persistence offer highly coveted and sought-after therapeutic targets, and include diverse epigenetic, transcriptional, and translational regulatory processes, as well as complex cell-cell interactions. Although the successful clinical targeting of persistent cancer cells remains to be realized, immense progress has been made in understanding their persistence, yielding promising preclinical results.
Collapse
Affiliation(s)
- Shensi Shen
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France.
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France; Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
47
|
Learning Yeast Genetics from Miro Radman. Cells 2021; 10:cells10040945. [PMID: 33923882 PMCID: PMC8072546 DOI: 10.3390/cells10040945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Miroslav Radman's far-sighted ideas have penetrated many aspects of our study of the repair of broken eukaryotic chromosomes. For over 35 years my lab has studied different aspects of the repair of chromosomal breaks in the budding yeast, Saccharomyces cerevisiae. From the start, we have made what we thought were novel observations that turned out to have been predicted by Miro's extraordinary work in the bacterium Escherichia coli and then later in the radiation-resistant Dienococcus radiodurans. In some cases, we have been able to extend some of his ideas a bit further.
Collapse
|
48
|
Cendra MDM, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv 2021; 49:107734. [PMID: 33785375 DOI: 10.1016/j.biotechadv.2021.107734] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa biofilms and the capacity of the bacterium to coexist and interact with a broad range of microorganisms have a substantial clinical impact. This review focuses on the main traits of P. aeruginosa biofilms, such as the structural composition and regulatory networks involved, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, the ability of P. aeruginosa to grow together with other microorganisms is a significant pathogenic attribute with clinical relevance; hence, the main microbial interactions of Pseudomonas are especially highlighted and detailed throughout this review. This article also explores the infections caused by single and polymicrobial biofilms of P. aeruginosa and the current models used to recreate them under laboratory conditions. Finally, the antimicrobial and antibiofilm strategies developed against P. aeruginosa mono and multispecies biofilms are detailed at the end of this review.
Collapse
Affiliation(s)
- Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
49
|
Vegvari C, Grad YH, White PJ, Didelot X, Whittles LK, Scangarella-Oman NE, Mitrani-Gold FS, Dumont E, Perry CR, Gilchrist K, Hossain M, Mortimer TD, Anderson RM, Gardiner D. Using rapid point-of-care tests to inform antibiotic choice to mitigate drug resistance in gonorrhoea. ACTA ACUST UNITED AC 2021; 25. [PMID: 33124551 PMCID: PMC7596916 DOI: 10.2807/1560-7917.es.2020.25.43.1900210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background The first cases of extensively drug resistant gonorrhoea were recorded in the United Kingdom in 2018. There is a public health need for strategies on how to deploy existing and novel antibiotics to minimise the risk of resistance development. As rapid point-of-care tests (POCTs) to predict susceptibility are coming to clinical use, coupling the introduction of an antibiotic with diagnostics that can slow resistance emergence may offer a novel paradigm for maximising antibiotic benefits. Gepotidacin is a novel antibiotic with known resistance and resistance-predisposing mutations. In particular, a mutation that confers resistance to ciprofloxacin acts as the ‘stepping-stone’ mutation to gepotidacin resistance. Aim To investigate how POCTs detecting Neisseria gonorrhoeae resistance mutations for ciprofloxacin and gepotidacin can be used to minimise the risk of resistance development to gepotidacin. Methods We use individual-based stochastic simulations to formally investigate the aim. Results The level of testing needed to reduce the risk of resistance development depends on the mutation rate under treatment and the prevalence of stepping-stone mutations. A POCT is most effective if the mutation rate under antibiotic treatment is no more than two orders of magnitude above the mutation rate without treatment and the prevalence of stepping-stone mutations is 1–13%. Conclusion Mutation frequencies and rates should be considered when estimating the POCT usage required to reduce the risk of resistance development in a given population. Molecular POCTs for resistance mutations and stepping-stone mutations to resistance are likely to become important tools in antibiotic stewardship.
Collapse
Affiliation(s)
- Carolin Vegvari
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Yonatan H Grad
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Peter J White
- Modelling and Economics Unit, National Infection Service, Public Health England, London, United Kingdom.,MRC Centre for Global Infectious Disease Analysis and NIHR Health Protection Research Unit in Modelling and Health Economics, School of Public Health, Imperial College London, London, United Kingdom.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Xavier Didelot
- Current affiliation: School of Life Sciences and Department of Statistics, University of Warwick, United Kingdom.,MRC Centre for Global Infectious Disease Analysis and NIHR Health Protection Research Unit in Modelling and Health Economics, School of Public Health, Imperial College London, London, United Kingdom.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Lilith K Whittles
- MRC Centre for Global Infectious Disease Analysis and NIHR Health Protection Research Unit in Modelling and Health Economics, School of Public Health, Imperial College London, London, United Kingdom.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | | | | | - Etienne Dumont
- GlaxoSmithKline, Collegeville, Pennsylvania, United States
| | | | - Kim Gilchrist
- Current affiliation: Pfizer, Inc, Pennsylvania, United States.,GlaxoSmithKline, Collegeville, Pennsylvania, United States
| | | | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Roy M Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - David Gardiner
- GlaxoSmithKline, Collegeville, Pennsylvania, United States
| |
Collapse
|
50
|
Ferrando ML, Gussak A, Mentink S, Gutierrez MF, van Baarlen P, Wells JM. Active Human and Porcine Serum Induce Competence for Genetic Transformation in the Emerging Zoonotic Pathogen Streptococcus suis. Pathogens 2021; 10:pathogens10020156. [PMID: 33546136 PMCID: PMC7913127 DOI: 10.3390/pathogens10020156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
The acquisition of novel genetic traits through natural competence is a strategy used by bacteria in microbe-rich environments where microbial competition, antibiotics, and host immune defenses threaten their survival. Here, we show that virulent strains of Streptococcus suis, an important zoonotic agent and porcine pathogen, become competent for genetic transformation with plasmid or linear DNA when cultured in active porcine and human serum. Competence was not induced in active fetal bovine serum, which contains less complement factors and immunoglobulins than adult serum and was strongly reduced in heat-treated or low-molecular weight fractions of active porcine serum. Late competence genes, encoding the uptake machinery for environmental DNA, were upregulated in the active serum. Competence development was independent of the early competence regulatory switch involving XIP and ComR, as well as sigma factor ComX, suggesting the presence of an alternative stress-induced pathway for regulation of the late competence genes required for DNA uptake.
Collapse
|