1
|
Li AH, Tsai WS, Tsai WH, Yang SB. Systemic Glucose Homeostasis Requires Pancreatic but Not Neuronal ATP-sensitive Potassium Channels. FUNCTION 2025; 6:zqaf002. [PMID: 39809576 PMCID: PMC11815579 DOI: 10.1093/function/zqaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
The adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, composed of Kir6.2 and sulfonylurea receptor 1 (SUR1) subunits, are essential for glucose homeostasis. While the role of pancreatic KATP channels in regulating insulin secretion is well-documented, the specific contributions of neuronal KATP channels remain unclear due to challenges in precisely targeting neuronal subpopulations. In this study, we utilized a Kir6.2 conditional knockout mouse model to distinguish the roles of KATP channels in different cell types. Our findings demonstrate that deletion of neuronal KATP channels does not impair glucose homeostasis, as glucose-sensing neurons retained their responsiveness despite the absence of functional KATP channels. In contrast, the deletion of KATP channels in pancreatic β cells led to significant hyperglycemia and glucose intolerance, indicating unstable blood glucose levels under varying physiological conditions. Importantly, we showed that restoring KATP channel function exclusively in pancreatic β cells within a global Kir6.2 knockout background effectively reversed glucose regulation defects. This underscores the critical role of pancreatic KATP channels in maintaining systemic glucose homeostasis. Our results challenge the previous hypothesis that neuronal KATP channels are essential for glucose regulation, suggesting that their primary function may be neuroprotective rather than homeostatic. These findings highlight pancreatic KATP channels as key regulators of glucose balance and potential therapeutic targets for correcting glucose dysregulation.
Collapse
Affiliation(s)
- Athena H Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
| | - Wen-Sheng Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Hao Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
2
|
Wolff C, John D, Winkler U, Hochmuth L, Hirrlinger J, Köhler S. Insulin and leptin acutely modulate the energy metabolism of primary hypothalamic and cortical astrocytes. J Neurochem 2025; 169:e16211. [PMID: 39175305 PMCID: PMC11657920 DOI: 10.1111/jnc.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Astrocytes constitute a heterogeneous cell population within the brain, contributing crucially to brain homeostasis and playing an important role in overall brain function. Their function and metabolism are not only regulated by local signals, for example, from nearby neurons, but also by long-range signals such as hormones. Thus, two prominent hormones primarily known for regulating the energy balance of the whole organism, insulin, and leptin, have been reported to also impact astrocytes within the brain. In this study, we investigated the acute regulation of astrocytic metabolism by these hormones in cultured astrocytes prepared from the mouse cortex and hypothalamus, a pivotal region in the context of nutritional regulation. Utilizing genetically encoded, fluorescent nanosensors, the cytosolic concentrations of glucose, lactate, and ATP, along with glycolytic rate and the NADH/NAD+ redox state were measured. Under basal conditions, differences between the two populations of astrocytes were observed for glucose and lactate concentrations as well as the glycolytic rate. Additionally, astrocytic metabolism responded to insulin and leptin in both brain regions, with some unique characteristics for each cell population. Finally, both hormones influenced how cells responded to elevated extracellular levels of potassium ions, a common indicator of neuronal activity. In summary, our study provides evidence that insulin and leptin acutely regulate astrocytic metabolism within minutes. Additionally, while astrocytes from the hypothalamus and cortex share similarities in their metabolism, they also exhibit distinct properties, further underscoring the growing recognition of astrocyte heterogeneity.
Collapse
Affiliation(s)
- Christopher Wolff
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Dorit John
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Medical Department II—Division of Oncology, Gastroenterology, Hepatology and PneumologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Ulrike Winkler
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Luise Hochmuth
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Johannes Hirrlinger
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Department of NeurogeneticsMax‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| | - Susanne Köhler
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Sächsisches Krankenhaus AltscherbitzClinic for NeurologySchkeuditzGermany
| |
Collapse
|
3
|
Boda VK, Yasmen N, Jiang J, Li W. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev 2024; 44:2510-2544. [PMID: 38715347 PMCID: PMC11452291 DOI: 10.1002/med.22048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Transient receptor potential canonical 3 (TRPC3) protein belongs to the TRP family of nonselective cation channels. Its activation occurs by signaling through a G protein-coupled receptor (GPCR) and a phospholipase C-dependent (PLC) pathway. Perturbations in the expression of TRPC3 are associated with a plethora of pathophysiological conditions responsible for disorders of the cardiovascular, immune, and central nervous systems. The recently solved cryo-EM structure of TRPC3 provides detailed inputs about the underlying mechanistic aspects of the channel, which in turn enables more efficient ways of designing small-molecule modulators. Pharmacologically targeting TRPC3 in animal models has demonstrated great efficacy in treating diseases including cancers, neurological disorders, and cardiovascular diseases. Despite extensive scientific evidence supporting some strong correlations between the expression and activity of TRPC3 and various pathophysiological conditions, therapeutic strategies based on its pharmacological modulations have not led to clinical trials. The development of small-molecule TRPC3 modulators with high safety, sufficient brain penetration, and acceptable drug-like profiles remains in progress. Determining the pathological mechanisms for TRPC3 involvement in human diseases and understanding the requirements for a drug-like TRPC3 modulator will be valuable in advancing small-molecule therapeutics to future clinical trials. In this review, we provide an overview of the origin and activation mechanism of TRPC3 channels, diseases associated with irregularities in their expression, and new development in small-molecule modulators as potential therapeutic interventions for treating TRPC3 channelopathies.
Collapse
Affiliation(s)
- Vijay K. Boda
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
4
|
Pan Y, Hatano A, Ohno S, Morita K, Kokaji T, Bai Y, Sugimoto H, Egami R, Terakawa A, Li D, Uematsu S, Maehara H, Fujita S, Inoue H, Inaba Y, Nagano AJ, Hirayama A, Soga T, Kuroda S. Time and dose selective glucose metabolism for glucose homeostasis and energy conversion in the liver. NPJ Syst Biol Appl 2024; 10:107. [PMID: 39349490 PMCID: PMC11443093 DOI: 10.1038/s41540-024-00437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Hepatic glucose metabolism serves dual purposes: maintaining glucose homeostasis and converting glucose into energy sources; however, the underlying mechanisms are unclear. We quantitatively measured liver metabolites, gene expression, and phosphorylated insulin signaling molecules in mice orally administered varying doses of glucose, and constructed a transomic network. Rapid phosphorylation of insulin signaling molecules in response to glucose intake was observed, in contrast to the more gradual changes in gene expression. Glycolytic and gluconeogenic metabolites and expression of genes involved in glucose metabolism including glucose-6-phosphate, G6pc, and Pck1, demonstrated high glucose dose sensitivity. Whereas, glucokinase expression and glycogen accumulation showed low glucose dose sensitivity. During the early phase after glucose intake, metabolic flux was geared towards glucose homeostasis regardless of the glucose dose but shifted towards energy conversion during the late phase at higher glucose doses. Our research provides a comprehensive view of time- and dose-dependent selective glucose metabolism.
Collapse
Affiliation(s)
- Yifei Pan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yunfan Bai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hikaru Sugimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Riku Egami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Akira Terakawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Saori Uematsu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hideki Maehara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Suguru Fujita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Tomoyoshi Soga
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, 108-8345, Tokyo, Japan
| | - Shinya Kuroda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Pereira S, Hahn MK, Humber B, Chaudhry T, Wu S, Agarwal SM, Dimitrova N, Giacca A. Protocol for the hyperinsulinemic euglycemic clamp to measure glucose kinetics in rats. STAR Protoc 2024; 5:103143. [PMID: 38900633 PMCID: PMC11245906 DOI: 10.1016/j.xpro.2024.103143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/27/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
In rats, cannulation of the jugular vein and the carotid artery precedes the use of the hyperinsulinemic euglycemic clamp to determine insulin sensitivity in vivo. Here, we present a vascular surgery protocol to allow the infusion of substances via the vein and the collection of blood samples from the artery on the day of the hyperinsulinemic euglycemic clamp. We describe steps for preparing for and performing catheterization surgery. We then detail procedures for clamp preparation and its use. For complete details on the use and execution of this protocol, please refer to Pereira et al.1,2,3.
Collapse
Affiliation(s)
- Sandra Pereira
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| | - Margaret K Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Bailey Humber
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Talha Chaudhry
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Sally Wu
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, Toronto, ON, Canada
| | - Nanka Dimitrova
- Department of Comparative Medicine, University of Toronto, Toronto, ON, Canada
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, Toronto, ON, Canada.
| |
Collapse
|
6
|
Bruce K, Garrido AN, Zhang SY, Lam TKT. Regulation of Energy and Glucose Homeostasis by the Nucleus of the Solitary Tract and the Area Postrema. Endocrinol Metab (Seoul) 2024; 39:559-568. [PMID: 39086274 PMCID: PMC11377841 DOI: 10.3803/enm.2024.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/07/2024] [Indexed: 08/02/2024] Open
Abstract
The central nervous system regulates feeding, weight and glucose homeostasis in rodents and humans, but the site-specific mechanisms remain unclear. The dorsal vagal complex in the brainstem that contains the nucleus of the solitary tract (NTS) and area postrema (AP) emerges as a regulatory center that impacts energy and glucose balance by monitoring hormonal and nutrient changes. However, the specific mechanistic metabolic roles of the NTS and AP remain elusive. This mini-review highlights methods to study their distinct roles and recent findings on their metabolic differences and similarities of growth differentiation factor 15 (GDF15) action and glucose sensing in the NTS and AP. In summary, future research aims to characterize hormonal and glucose sensing mechanisms in the AP and/or NTS carries potential to unveil novel targets that lower weight and glucose levels in obesity and diabetes.
Collapse
Affiliation(s)
- Kyla Bruce
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Ameth N Garrido
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Tony K T Lam
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Medicine, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Center, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Lee J, Xue X, Au E, McIntyre WB, Asgariroozbehani R, Panganiban K, Tseng GC, Papoulias M, Smith E, Monteiro J, Shah D, Maksyutynska K, Cavalier S, Radoncic E, Prasad F, Agarwal SM, Mccullumsmith R, Freyberg Z, Logan RW, Hahn MK. Glucose dysregulation in antipsychotic-naive first-episode psychosis: in silico exploration of gene expression signatures. Transl Psychiatry 2024; 14:19. [PMID: 38199991 PMCID: PMC10781725 DOI: 10.1038/s41398-023-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Antipsychotic (AP)-naive first-episode psychosis (FEP) patients display early dysglycemia, including insulin resistance and prediabetes. Metabolic dysregulation may therefore be intrinsic to psychosis spectrum disorders (PSDs), independent of the metabolic effects of APs. However, the potential biological pathways that overlap between PSDs and dysglycemic states remain to be identified. Using meta-analytic approaches of transcriptomic datasets, we investigated whether AP-naive FEP patients share overlapping gene expression signatures with non-psychiatrically ill early dysglycemia individuals. We meta-analyzed peripheral transcriptomic datasets of AP-naive FEP patients and non-psychiatrically ill early dysglycemia subjects to identify common gene expression signatures. Common signatures underwent pathway enrichment analysis and were then used to identify potential new pharmacological compounds via Integrative Library of Integrated Network-Based Cellular Signatures (iLINCS). Our search results yielded 5 AP-naive FEP studies and 4 early dysglycemia studies which met inclusion criteria. We discovered that AP-naive FEP and non-psychiatrically ill subjects exhibiting early dysglycemia shared 221 common signatures, which were enriched for pathways related to endoplasmic reticulum stress and abnormal brain energetics. Nine FDA-approved drugs were identified as potential drug treatments, of which the antidiabetic metformin, the first-line treatment for type 2 diabetes, has evidence to attenuate metabolic dysfunction in PSDs. Taken together, our findings support shared gene expression changes and biological pathways associating PSDs with dysglycemic disorders. These data suggest that the pathobiology of PSDs overlaps and potentially contributes to dysglycemia. Finally, we find that metformin may be a potential treatment for early metabolic dysfunction intrinsic to PSDs.
Collapse
Grants
- R01 DK124219 NIDDK NIH HHS
- R01 HL150432 NHLBI NIH HHS
- R01 MH107487 NIMH NIH HHS
- R01 MH121102 NIMH NIH HHS
- Holds the Meighen Family Chair in Psychosis Prevention, the Cardy Schizophrenia Research Chair, a Danish Diabetes Academy Professorship, a Steno Diabetes Center Fellowship, and a U of T Academic Scholar Award, and is funded by operating grants from the Canadian Institutes of Health Research (CIHR), the Banting and Best Diabetes Center, the Miners Lamp U of T award, CIHR and Canadian Psychiatric Association Glenda MacQueen Memorial Award, and the PSI Foundation.
- Hilda and William Courtney Clayton Paediatric Research Fund and Dr. LG Rao/Industrial Partners Graduate Student Award from the University of Toronto, and Meighen Family Chair in Psychosis Prevention
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UofT | Banting and Best Diabetes Centre, University of Toronto (BBDC)
- Canadian Institutes of Health Research (CIHR) Canada Graduate Scholarship-Master’s program
- Cleghorn Award
- University of Toronto (UofT)
- Centre for Addiction and Mental Health (Centre de Toxicomanie et de Santé Mentale)
- U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U.S. Department of Defense (United States Department of Defense)
- Commonwealth of Pennsylvania Formula Fund, The Pittsburgh Foundation
Collapse
Affiliation(s)
- Jiwon Lee
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Xiangning Xue
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Au
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - William B McIntyre
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Roshanak Asgariroozbehani
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kristoffer Panganiban
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George C Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Emily Smith
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Divia Shah
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kateryna Maksyutynska
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Samantha Cavalier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emril Radoncic
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Femin Prasad
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert Mccullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- ProMedica, Toledo, OH, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W Logan
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Margaret K Hahn
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
González-Vila A, Luengo-Mateos M, Silveira-Loureiro M, Garrido-Gil P, Ohinska N, González-Domínguez M, Labandeira-García JL, García-Cáceres C, López M, Barca-Mayo O. Astrocytic insulin receptor controls circadian behavior via dopamine signaling in a sexually dimorphic manner. Nat Commun 2023; 14:8175. [PMID: 38071352 PMCID: PMC10710518 DOI: 10.1038/s41467-023-44039-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Mammalian circadian clocks respond to feeding and light cues, adjusting internal rhythms with day/night cycles. Astrocytes serve as circadian timekeepers, driving daily physiological rhythms; however, it's unknown how they ensure precise cycle-to-cycle rhythmicity. This is critical for understanding why mistimed or erratic feeding, as in shift work, disrupts circadian physiology- a condition linked to type 2 diabetes and obesity. Here, we show that astrocytic insulin signaling sets the free-running period of locomotor activity in female mice and food entrainment in male mice. Additionally, ablating the insulin receptor in hypothalamic astrocytes alters cyclic energy homeostasis differently in male and female mice. Remarkably, the mutants exhibit altered dopamine metabolism, and the pharmacological modulation of dopaminergic signaling partially restores distinct circadian traits in both male and female mutant mice. Our findings highlight the role of astrocytic insulin-dopaminergic signaling in conveying time-of-feeding or lighting cues to the astrocyte clock, thus governing circadian behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Antía González-Vila
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Luengo-Mateos
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Silveira-Loureiro
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nataliia Ohinska
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Marco González-Domínguez
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Luis Labandeira-García
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich & German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Sun M, Wan Y, Shi M, Meng ZX, Zeng W. Neural innervation in adipose tissue, gut, pancreas, and liver. LIFE METABOLISM 2023; 2:load022. [PMID: 39872245 PMCID: PMC11749697 DOI: 10.1093/lifemeta/load022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 01/30/2025]
Abstract
Efficient communication between the brain and peripheral organs is indispensable for regulating physiological function and maintaining energy homeostasis. The peripheral nervous system (PNS) in vertebrates, consisting of the autonomic and somatic nervous systems, bridges the peripheral organs and the central nervous system (CNS). Metabolic signals are processed by both vagal sensory nerves and somatosensory nerves. The CNS receives sensory inputs via ascending nerves, serves as the coordination and integration center, and subsequently controls internal organs and glands via descending nerves. The autonomic nervous system consists of sympathetic and parasympathetic branches that project peripheral nerves into various anatomical locations to regulate the energy balance. Sympathetic and parasympathetic nerves typically control the reflexive and involuntary functions in organs. In this review article, we outline the innervation of adipose tissue, gut, pancreas, and liver, to illustrate the neurobiological basis of central-peripheral interactions. We emphasize the importance of understanding the functional atlas of neural control of energy metabolism, and more importantly, provide potential avenues for further research in this area.
Collapse
Affiliation(s)
- Mengxue Sun
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yongwen Wan
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Mengjie Shi
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
10
|
Cauli B, Dusart I, Li D. Lactate as a determinant of neuronal excitability, neuroenergetics and beyond. Neurobiol Dis 2023:106207. [PMID: 37331530 DOI: 10.1016/j.nbd.2023.106207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023] Open
Abstract
Over the last decades, lactate has emerged as important energy substrate for the brain fueling of neurons. A growing body of evidence now indicates that it is also a signaling molecule modulating neuronal excitability and activity as well as brain functions. In this review, we will briefly summarize how different cell types produce and release lactate. We will further describe different signaling mechanisms allowing lactate to fine-tune neuronal excitability and activity, and will finally discuss how these mechanisms could cooperate to modulate neuroenergetics and higher order brain functions both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France.
| | - Isabelle Dusart
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
11
|
Li RJW, Chiu JFM, Bruce K, Zhang SY, Barros DR, Yue JTY, Lam TKT. A glucose-sensing mechanism with glucose transporter-1 and pyruvate kinase in the area postrema regulates hepatic glucose production in rats. J Biol Chem 2023; 299:104633. [PMID: 36963496 PMCID: PMC10149203 DOI: 10.1016/j.jbc.2023.104633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
The area postrema (AP) of the brain is exposed to circulating metabolites and hormones. However, whether AP detects glucose changes to exert biological responses remains unknown. Its neighboring nuclei, the nucleus tractus solitarius (NTS), responds to acute glucose infusion by inhibiting hepatic glucose production, but the mechanism also remains elusive. Herein, we characterized AP and NTS glucose-sensing mechanisms. Infusion of glucose into the AP, like the NTS, of chow rats suppressed glucose production during the pancreatic (basal insulin)-euglycemic clamps. Glucose transporter-1 or pyruvate kinase lentiviral-mediated knockdown in the AP negated AP glucose infusion to lower glucose production, while the glucoregulatory effect of NTS glucose infusion was also negated by knocking down glucose transporter-1 or pyruvate kinase in the NTS. Furthermore, we determined that high-fat (HF) feeding disrupts glucose infusion to lower glucose production in association with a modest reduction in expression of glucose transporter-1, but not pyruvate kinase, in the AP and NTS. However, pyruvate dehydrogenase activator dichloroacetate infusion into the AP or NTS that enhanced downstream pyruvate metabolism and recapitulated the glucoregulatory effect of glucose in chow rats still failed to lower glucose production in HF rats. We discovered that a glucose transporter-1 and pyruvate kinase-dependent glucose-sensing mechanism in the AP (as well as the NTS) lowers glucose production in chow rats, and that HF disrupts the glucose-sensing mechanism that is downstream of pyruvate metabolism in the AP and NTS. These findings highlight the role of AP and NTS in mediating glucose to regulate hepatic glucose production.
Collapse
Affiliation(s)
- Rosa J W Li
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Jennifer F M Chiu
- Toronto General Hospital Research Institute, UHN, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kyla Bruce
- Toronto General Hospital Research Institute, UHN, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Daniel R Barros
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Jessica T Y Yue
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Tony K T Lam
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, UHN, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
12
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
13
|
Yoon NA, Jin S, Kim JD, Liu ZW, Sun Q, Cardone R, Kibbey R, Diano S. UCP2-dependent redox sensing in POMC neurons regulates feeding. Cell Rep 2022; 41:111894. [PMID: 36577374 PMCID: PMC9885759 DOI: 10.1016/j.celrep.2022.111894] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Paradoxically, glucose, the primary driver of satiety, activates a small population of anorexigenic pro-opiomelanocortin (POMC) neurons. Here, we show that lactate levels in the circulation and in the cerebrospinal fluid are elevated in the fed state and the addition of lactate to glucose activates the majority of POMC neurons while increasing cytosolic NADH generation, mitochondrial respiration, and extracellular pyruvate levels. Inhibition of lactate dehydrogenases diminishes mitochondrial respiration, NADH production, and POMC neuronal activity. However, inhibition of the mitochondrial pyruvate carrier has no effect. POMC-specific downregulation of Ucp2 (Ucp2PomcKO), a molecule regulated by fatty acid metabolism and shown to play a role as transporter in the malate-aspartate shuttle, abolishes lactate- and glucose-sensing of POMC neurons. Ucp2PomcKO mice have impaired glucose metabolism and are prone to obesity on a high-fat diet. Altogether, our data show that lactate through redox signaling and blocking mitochondrial glucose utilization activates POMC neurons to regulate feeding and glucose metabolism.
Collapse
Affiliation(s)
- Nal Ae Yoon
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sungho Jin
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zhong Wu Liu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qiushi Sun
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rebecca Cardone
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard Kibbey
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Zakharova IO, Bayunova LV, Derkach KV, Ilyasov IO, Morina IY, Shpakov AO, Avrova NF. Effects of Intranasally Administered Insulin and Gangliosides on Hypothalamic Signaling and Expression of Hepatic Gluconeogenesis Genes in Rats with Type 2 Diabetes Mellitus. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Antipsychotics impair regulation of glucose metabolism by central glucose. Mol Psychiatry 2022; 27:4741-4753. [PMID: 36241692 DOI: 10.1038/s41380-022-01798-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Hypothalamic detection of elevated circulating glucose triggers suppression of endogenous glucose production (EGP) to maintain glucose homeostasis. Antipsychotics alleviate symptoms associated with schizophrenia but also increase the risk for impaired glucose metabolism. In the current study, we examined whether two acutely administered antipsychotics from different drug classes, haloperidol (first generation antipsychotic) and olanzapine (second generation antipsychotic), affect the ability of intracerebroventricular (ICV) glucose infusion approximating postprandial levels to suppress EGP. The experimental protocol consisted of a pancreatic euglycemic clamp, followed by kinomic and RNA-seq analyses of hypothalamic samples to determine changes in serine/threonine kinase activity and gene expression, respectively. Both antipsychotics inhibited ICV glucose-mediated increases in glucose infusion rate during the clamp, a measure of whole-body glucose metabolism. Similarly, olanzapine and haloperidol blocked central glucose-induced suppression of EGP. ICV glucose stimulated the vascular endothelial growth factor (VEGF) pathway, phosphatidylinositol 3-kinase (PI3K) pathway, and kinases capable of activating KATP channels in the hypothalamus. These effects were inhibited by both antipsychotics. In conclusion, olanzapine and haloperidol impair central glucose sensing. Although results of hypothalamic analyses in our study do not prove causality, they are novel and provide the basis for a multitude of future studies.
Collapse
|
16
|
El Mehdi M, Takhlidjt S, Devère M, Arabo A, Le Solliec MA, Maucotel J, Bénani A, Nedelec E, Duparc C, Lefranc B, Leprince J, Anouar Y, Prévost G, Chartrel N, Picot M. The 26RFa (QRFP)/GPR103 neuropeptidergic system in mice relays insulin signalling into the brain to regulate glucose homeostasis. Diabetologia 2022; 65:1198-1211. [PMID: 35476025 DOI: 10.1007/s00125-022-05706-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS 26RFa (pyroglutamilated RFamide peptide [QRFP]) is a biologically active peptide that regulates glucose homeostasis by acting as an incretin and by increasing insulin sensitivity at the periphery. 26RFa is also produced by a neuronal population localised in the hypothalamus. In this study we investigated whether 26RFa neurons are involved in the hypothalamic regulation of glucose homeostasis. METHODS 26Rfa+/+, 26Rfa-/- and insulin-deficient male C57Bl/6J mice were used in this study. Mice received an acute intracerebroventricular (i.c.v.) injection of 26RFa, insulin or the 26RFa receptor (GPR103) antagonist 25e and were subjected to IPGTTs, insulin tolerance tests, acute glucose-stimulated insulin secretion tests and pyruvate tolerance tests (PTTs). Secretion of 26RFa by hypothalamic explants after incubation with glucose, leptin or insulin was assessed. Expression and quantification of the genes encoding 26RFa, agouti-related protein, the insulin receptor and GPR103 were evaluated by quantitative reverse transcription PCR and RNAscope in situ hybridisation. RESULTS Our data indicate that i.c.v.-injected 26RFa induces a robust antihyperglycaemic effect associated with an increase in insulin production by the pancreatic islets. In addition, we found that insulin strongly stimulates 26Rfa expression and secretion by the hypothalamus. RNAscope experiments revealed that neurons expressing 26Rfa are mainly localised in the lateral hypothalamic area, that they co-express the gene encoding the insulin receptor and that insulin induces the expression of 26Rfa in these neurons. Concurrently, the central antihyperglycaemic effect of insulin is abolished in the presence of a GPR103 antagonist and in 26RFa-deficient mice. Finally, our data indicate that the hypothalamic 26RFa neurons are not involved in the central inhibitory effect of insulin on hepatic glucose production, but mediate the central effects of the hormone on its own peripheral production. CONCLUSION/INTERPRETATION We have identified a novel mechanism in the hypothalamic regulation of glucose homeostasis, the 26RFa/GPR103 system, and we provide evidence that this neuronal peptidergic system is a key relay for the central regulation of glucose metabolism by insulin.
Collapse
Affiliation(s)
- Mouna El Mehdi
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Saloua Takhlidjt
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Mélodie Devère
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Arnaud Arabo
- Department of Biological Resources (SRB), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Marie-Anne Le Solliec
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Julie Maucotel
- Department of Biological Resources (SRB), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Alexandre Bénani
- Centre for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nedelec
- Centre for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Céline Duparc
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Benjamin Lefranc
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
- Cell Imaging Platform of Normandy, Normandie Université, Rouen, France
| | - Jérôme Leprince
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
- Cell Imaging Platform of Normandy, Normandie Université, Rouen, France
| | - Youssef Anouar
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Gaëtan Prévost
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Université, UNIROUEN, Rouen University Hospital, Rouen, France
| | - Nicolas Chartrel
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France.
| | - Marie Picot
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| |
Collapse
|
17
|
Aldhshan MS, Jhanji G, Poritsanos NJ, Mizuno TM. Glucose Stimulates Glial Cell Line-Derived Neurotrophic Factor Gene Expression in Microglia through a GLUT5-Independent Mechanism. Int J Mol Sci 2022; 23:ijms23137073. [PMID: 35806073 PMCID: PMC9266953 DOI: 10.3390/ijms23137073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Feeding-regulating neurotrophic factors are expressed in both neurons and glial cells. However, nutritional regulation of anorexigenic glial cell line-derived neurotrophic factor (GDNF) and orexigenic mesencephalic astrocyte-derived neurotrophic factor (MANF) expression in specific cell types remains poorly understood. Hypothalamic glucose sensing plays a critical role in the regulation of food intake. It has been theorized that local glucose concentration modulates microglial activity partially via glucose transporter 5 (GLUT5). We hypothesized that an increased local glucose concentration stimulates GDNF expression while inhibiting MANF expression in the hypothalamus and microglia via GLUT5. The present study investigated the effect of glucose on Gdnf and Manf mRNA expression in the mouse hypothalamus and murine microglial cell line SIM-A9. Intracerebroventricular glucose treatment significantly increased Gdnf mRNA levels in the hypothalamus without altering Manf mRNA levels. Exposure to high glucose caused a significant increase in Gdnf mRNA expression and a time-dependent change in Manf mRNA expression in SIM-A9 cells. GLUT5 inhibitor treatment did not block glucose-induced Gdnf mRNA expression in these cells. These findings suggest that microglia are responsive to changes in the local glucose concentration and increased local glucose availability stimulates the expression of microglial GNDF through a GLUT5-independent mechanism, contributing to glucose-induced feeding suppression.
Collapse
|
18
|
Sanchez-Rangel E, Gunawan F, Jiang L, Savoye M, Dai F, Coppoli A, Rothman DL, Mason GF, Hwang JJ. Reversibility of brain glucose kinetics in type 2 diabetes mellitus. Diabetologia 2022; 65:895-905. [PMID: 35247067 PMCID: PMC8960594 DOI: 10.1007/s00125-022-05664-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022]
Abstract
AIMS/HYPOTHESIS We have previously shown that individuals with uncontrolled type 2 diabetes have a blunted rise in brain glucose levels measured by 1H magnetic resonance spectroscopy. Here, we investigate whether reductions in HbA1c normalise intracerebral glucose levels. METHODS Eight individuals (two men, six women) with poorly controlled type 2 diabetes and mean ± SD age 44.8 ± 8.3 years, BMI 31.4 ± 6.1 kg/m2 and HbA1c 84.1 ± 16.2 mmol/mol (9.8 ± 1.4%) underwent 1H MRS scanning at 4 Tesla during a hyperglycaemic clamp (~12.21 mmol/l) to measure changes in cerebral glucose at baseline and after a 12 week intervention that improved glycaemic control through the use of continuous glucose monitoring, diabetes regimen intensification and frequent visits to an endocrinologist and nutritionist. RESULTS Following the intervention, mean ± SD HbA1c decreased by 24.3 ± 15.3 mmol/mol (2.1 ± 1.5%) (p=0.006), with minimal weight changes (p=0.242). Using a linear mixed-effects regression model to compare glucose time courses during the clamp pre and post intervention, the pre-intervention brain glucose level during the hyperglycaemic clamp was significantly lower than the post-intervention brain glucose (p<0.001) despite plasma glucose levels during the hyperglycaemic clamp being similar (p=0.266). Furthermore, the increases in brain glucose were correlated with the magnitude of improvement in HbA1c (r = 0.71, p=0.048). CONCLUSION/INTERPRETATION These findings highlight the potential reversibility of cerebral glucose transport capacity and metabolism that can occur in individuals with type 2 diabetes following improvement of glycaemic control. Trial registration ClinicalTrials.gov NCT03469492.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Felona Gunawan
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Lihong Jiang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Mary Savoye
- Department of Pediatric Endocrinology and General Clinical Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Anastasia Coppoli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Janice Jin Hwang
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Diet-Induced Metabolic Dysfunction of Hypothalamic Nutrient Sensing in Rodents. Int J Mol Sci 2022; 23:ijms23073958. [PMID: 35409318 PMCID: PMC8999257 DOI: 10.3390/ijms23073958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
A sedentary lifestyle and excessive nutrient intake resulting from the consumption of high-fat and calorie-rich diets are environmental factors contributing to the rapid growth of the current pandemic of type 2 diabetes mellitus (DM2). Fasting hyperglycemia, an established hallmark of DM2, is caused by excessive production of glucose by the liver, resulting in the inability of insulin to suppress endogenous glucose production. To prevent inappropriate elevations of circulating glucose resulting from changes in nutrient availability, mammals rely on complex mechanisms for continuously detecting these changes and to respond to them with metabolic adaptations designed to modulate glucose output. The mediobasal hypothalamus (MBH) is the key center where nutritional cues are detected and appropriate modulatory responses are integrated. However, certain environmental factors may have a negative impact on these adaptive responses. For example, consumption of a diet enriched in saturated fat in rodents resulted in the development of a metabolic defect that attenuated these nutrient sensing mechanisms, rendering the animals prone to developing hyperglycemia. Thus, high-fat feeding leads to a state of “metabolic disability” in which animals’ glucoregulatory responses fail. We postulate that the chronic faltering of the hypothalamic glucoregulatory mechanisms contributes to the development of metabolic disease.
Collapse
|
20
|
Zhang X, Li C, Shahzad K, Han M, Guo Y, Huang X, Wu T, Wang L, Zhang Y, Tang H, Zhang Q, Wang M, Zhou P, Zhong F. Seasonal Differences in Fecal Microbial Community Structure and Metabolism of House-Feeding Chinese Merino Fine-Wool Sheep. Front Vet Sci 2022; 9:875729. [PMID: 35400091 PMCID: PMC8989412 DOI: 10.3389/fvets.2022.875729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
The digestive tract microorganisms play a very important role in the host's nutrient intake, environmental suitability, and affect the host's physiological mechanism. Previous studies showed that in different seasons, mammalian gut microbes would be different. However, most of them are concentrated in wild animals. It remains unclear how seasonal change affects the gut microbes of Chinese merino fine-wool Sheep. Therefore, in this experiment, we continuously collected blood and feces samples of 50 Chinese merino fine-wool sheep in different seasons, measured the physiological indicators of blood, and passed 16S rRNA amplicon sequencing, determined the microbial community structure of fecal microorganisms and predicted flora function by PICRUSt. The results of blood physiological indicators showed that WBC, Neu and Bas in spring were significantly higher than those of other seasons. Fecal microbial sequencing revealed seasonal changes in gut microbial diversity and richness. Among them, Chinese merino fine-wool sheep had the highest gut microbes in summer. Firmicutes and Bacteroidetes were the dominant phyla, and they were unaffected by seasonal fluctuations. LEfSE analysis was used to analyze representative microorganisms in different seasons. The Lachnospiraceae and its genera (Lachnospiraceae_NK4A136_group, Lachnospiraceae_AC2044_group, g_unclassified_f_ Lachnospiraceae) were representative microorganisms in the three seasons of spring, summer and winter with harsh environmental conditions; while in autumn with better environmental conditions, the Ruminococcaceae and its genus (Ruminococcaceae_UCG-009 and Ruminococcaceae_UCG-005) were the representative microorganism. In autumn, the ABC transporter and the pyruvate metabolic pathway were significantly higher than other seasons. Correlation analysis results showed that Lachnospiraceae participated in the ABC transporters metabolic pathway, which caused changes in the blood physiological indicators. Overall, our results showed that, in response to seasonal changes, Chinese merino fine-wool sheep under house-feeding have adjusted their own gut microbial community structure, causing changes in the metabolism, and thus changing the physiological conditions of the blood. In the cold season, producers should focus on regulating the nutritional level of feed, enhancing the level of butyric acid in young animals to increase the ABC transporter, resist the external harsh environment, and improve the survival rate.
Collapse
Affiliation(s)
- Xingxing Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Chuang Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mengli Han
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yanhua Guo
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xin Huang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Tongzhong Wu
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Limin Wang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yiyuan Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Hong Tang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Qian Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Mengzhi Wang
| | - Ping Zhou
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Ping Zhou
| | - Fagang Zhong
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Fagang Zhong
| |
Collapse
|
21
|
Wang Z, Hao D, Fang D, Yu J, Wang X, Qin G. Transcriptome Analysis Reveal Candidate Genes and Pathways Responses to Lactate Dehydrogenase Inhibition (Oxamate) in Hyperglycemic Human Renal Proximal Epithelial Tubular Cells. Front Endocrinol (Lausanne) 2022; 13:785605. [PMID: 35370938 PMCID: PMC8970056 DOI: 10.3389/fendo.2022.785605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of both chronic kidney disease (CKD) and end-stage renal disease (ESRD). Previous studies showed that oxamate could regulate glycemic homeostasis and impacted mitochondria respiration in a hyperglycemia-dependent manner in the rat proximal tubular cells. To explore the transcriptome gene expression profiling of kidney tissues in human renal proximal epithelial tubular cell line (HK-2), we treated HK-2 cells with high D-glucose (HG) for 7 days before the addition of 40 mM oxamate for a further 24 hours in the presence of HG in this study. Afterwards, we identified 3,884 differentially expressed (DE) genes based on adjusted P-value ≤ 0.05 and investigated gene relationships based on weighted gene co-expression network analysis (WGCNA). After qRT-PCR validations, MAP1LC3A, MAP1LC3B (P-value < 0.01) and BECN1 were found to show relatively higher expression levels in the treated groups than the control groups, while PGC1α (P-value < 0.05) showed the lower expressions. Accordingly, enrichment analyses of GO terms and KEGG pathways showed that several pathways [e.g., lysosome pathway (hsa04142) and p53 signaling pathway (hsa04115)] may be involved in the response of HK-2 cells to oxamate. Moreover, via WGCNA, we identified two modules: both the turquoise and blue modules were enriched in pathways associated with lysosome. However, the p53 signaling pathway was only found using all 3,884 DE genes. Furthermore, the key hub genes IGFBP3 (adjusted P-value = 1.34×10-75 and log2(FC) = 2.64) interacted with 6 up-regulated and 12 down-regulated DE genes in the network that were enriched in the p53 signaling pathway. This is the first study reporting co-expression patterns of a gene network after lactate dehydrogenase inhibition in HK-2 cells. Our results may contribute to our understanding of the underlying molecular mechanism of in vitro reprogramming under hyperglycemic stress that orchestrates the survival and functions of HK-2 cells.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Hao
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, Beijing, China
| | - Jiating Yu
- Division of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Wang
- Konge Larsen ApS, Kongens Lyngby, Denmark
- *Correspondence: Xiao Wang, ; Guijun Qin,
| | - Guijun Qin
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiao Wang, ; Guijun Qin,
| |
Collapse
|
22
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
23
|
Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M, Miyakawa T. Protein lactylation induced by neural excitation. Cell Rep 2021; 37:109820. [PMID: 34644564 DOI: 10.1016/j.celrep.2021.109820] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Lactate has diverse roles in the brain at the molecular and behavioral levels under physiological and pathophysiological conditions. This study investigates whether lysine lactylation (Kla), a lactate-derived post-translational modification in macrophages, occurs in brain cells and if it does, whether Kla is induced by the stimuli that accompany changes in lactate levels. Here, we show that Kla in brain cells is regulated by neural excitation and social stress, with parallel changes in lactate levels. These stimuli increase Kla, which is associated with the expression of the neuronal activity marker c-Fos, as well as with decreased social behavior and increased anxiety-like behavior in the stress model. In addition, we identify 63 candidate lysine-lactylated proteins and find that stress preferentially increases histone H1 Kla. This study may open an avenue for the exploration of a role of neuronal activity-induced lactate mediated by protein lactylation in the brain.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hikari Otabi
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki 300-0393, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Masakazu Namihira
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
24
|
Scherer T, Sakamoto K, Buettner C. Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 2021; 17:468-483. [PMID: 34108679 DOI: 10.1038/s41574-021-00498-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Insulin signalling in the central nervous system regulates energy homeostasis by controlling metabolism in several organs and by coordinating organ crosstalk. Studies performed in rodents, non-human primates and humans over more than five decades using intracerebroventricular, direct hypothalamic or intranasal application of insulin provide evidence that brain insulin action might reduce food intake and, more importantly, regulates energy homeostasis by orchestrating nutrient partitioning. This Review discusses the metabolic pathways that are under the control of brain insulin action and explains how brain insulin resistance contributes to metabolic disease in obesity, the metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Kenichi Sakamoto
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
25
|
Lhomme T, Clasadonte J, Imbernon M, Fernandois D, Sauve F, Caron E, Lima N, Heras V, Martinez-Corral I, Müller-Fielitz H, Rasika S, Schwaninger M, Nogueiras R, Prevot V. Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. J Clin Invest 2021; 131:e140521. [PMID: 34324439 DOI: 10.1172/jci140521] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Hypothalamic glucose sensing enables an organism to match energy expenditure and food intake to circulating levels of glucose, the main energy source of the brain. Here, we established that tanycytes of the hypothalamic arcuate nucleus, specialized glia that line the wall of the third ventricle, convert brain glucose supplies into lactate that they transmit through monocarboxylate transporters to arcuate proopiomelanocortin neurons, which integrate this signal to drive their activity and to adapt the metabolic response to meet physiological demands. Furthermore, this transmission required the formation of extensive Connexin-43 gap-junction-mediated metabolic networks by arcuate tanycytes. Selectively suppressing either tanycytic monocarboxylate transporters or gap junctions resulted in altered feeding behavior and energy metabolism. Tanycytic intercellular communication and lactate production are thus integral to the mechanism by which hypothalamic neurons that regulate energy and glucose homeostasis efficiently perceive alterations in systemic glucose levels as a function of the physiological state of the organism.
Collapse
Affiliation(s)
- Tori Lhomme
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Jerome Clasadonte
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Monica Imbernon
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Daniela Fernandois
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Florent Sauve
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Emilie Caron
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Natalia Lima
- CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Violeta Heras
- CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ines Martinez-Corral
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - S Rasika
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ruben Nogueiras
- CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| |
Collapse
|
26
|
Kaneko K, Lin HY, Fu Y, Saha PK, De la Puente-Gomez AB, Xu Y, Ohinata K, Chen P, Morozov A, Fukuda M. Rap1 in the VMH regulates glucose homeostasis. JCI Insight 2021; 6:142545. [PMID: 33974562 PMCID: PMC8262364 DOI: 10.1172/jci.insight.142545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is a critical regulator of glucose metabolism and is capable of correcting diabetes conditions independently of an effect on energy balance. The small GTPase Rap1 in the forebrain is implicated in high-fat diet–induced (HFD-induced) obesity and glucose imbalance. Here, we report that increasing Rap1 activity selectively in the medial hypothalamus elevated blood glucose without increasing the body weight of HFD-fed mice. In contrast, decreasing hypothalamic Rap1 activity protected mice from diet-induced hyperglycemia but did not prevent weight gain. The remarkable glycemic effect of Rap1 was reproduced when Rap1 was specifically deleted in steroidogenic factor-1–positive (SF-1–positive) neurons in the ventromedial hypothalamic nucleus (VMH) known to regulate glucose metabolism. While having no effect on body weight regardless of sex, diet, and age, Rap1 deficiency in the VMH SF1 neurons markedly lowered blood glucose and insulin levels, improved glucose and insulin tolerance, and protected mice against HFD-induced neural leptin resistance and peripheral insulin resistance at the cellular and whole-body levels. Last, acute pharmacological inhibition of brain exchange protein directly activated by cAMP 2, a direct activator of Rap1, corrected glucose imbalance in obese mouse models. Our findings uncover the primary role of VMH Rap1 in glycemic control and implicate Rap1 signaling as a potential target for therapeutic intervention in diabetes.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Hsiao-Yun Lin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yukiko Fu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | | | - Ana B De la Puente-Gomez
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Peter Chen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexei Morozov
- Unit on Behavioral Genetics, Laboratory of Molecular Pathophysiology, National Institute of Mental Health, NIH, Maryland, USA.,Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Li RJW, Batchuluun B, Zhang SY, Abraham MA, Wang B, Lim YM, Yue JTY, Lam TKT. Nutrient infusion in the dorsal vagal complex controls hepatic lipid and glucose metabolism in rats. iScience 2021; 24:102366. [PMID: 33870148 PMCID: PMC8044434 DOI: 10.1016/j.isci.2021.102366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/08/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022] Open
Abstract
Hypothalamic regulation of lipid and glucose homeostasis is emerging, but whether the dorsal vagal complex (DVC) senses nutrients and regulates hepatic nutrient metabolism remains unclear. Here, we found in rats DVC oleic acid infusion suppressed hepatic secretion of triglyceride-rich very-low-density lipoprotein (VLDL-TG), which was disrupted by inhibiting DVC long-chain fatty acyl-CoA synthetase that in parallel disturbed lipid homeostasis during intravenous lipid infusion. DVC glucose infusion elevated local glucose levels similarly as intravenous glucose infusion and suppressed hepatic glucose production. This was independent of lactate metabolism as inhibiting lactate dehydrogenase failed to disrupt glucose sensing and neither could DVC lactate infusion recapitulate glucose effect. DVC oleic acid and glucose infusion failed to lower VLDL-TG secretion and glucose production in high-fat fed rats, while inhibiting DVC farnesoid X receptor enhanced oleic acid but not glucose sensing. Thus, an impairment of DVC nutrient sensing may lead to the disruption of lipid and glucose homeostasis in metabolic syndrome. DVC oleic acid infusion lowers hepatic secretion of VLDL-TG in chow but not HF rats Inhibition of ACSL in the DVC negates lipid sensing DVC glucose infusion lowers hepatic glucose production in chow but not HF rats Inhibition of FXR in the DVC enhances oleic acid but not glucose sensing in HF rats
Collapse
Affiliation(s)
- Rosa J W Li
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada
| | - Battsetseg Batchuluun
- Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada
| | - Mona A Abraham
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada
| | - Beini Wang
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada
| | - Yu-Mi Lim
- Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada.,Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Jessica T Y Yue
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Tony K T Lam
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada.,Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
28
|
Abstract
The endogenous timekeeping system evolved to anticipate the time of the day through the 24 hours cycle of the Earth's rotation. In mammals, the circadian clock governs rhythmic physiological and behavioral processes, including the daily oscillation in glucose metabolism, food intake, energy expenditure, and whole-body insulin sensitivity. The results from a series of studies have demonstrated that environmental or genetic alterations of the circadian cycle in humans and rodents are strongly associated with metabolic diseases such as obesity and type 2 diabetes. Emerging evidence suggests that astrocyte clocks have a crucial role in regulating molecular, physiological, and behavioral circadian rhythms such as glucose metabolism and insulin sensitivity. Given the concurrent high prevalence of type 2 diabetes and circadian disruption, understanding the mechanisms underlying glucose homeostasis regulation by the circadian clock and its dysregulation may improve glycemic control. In this review, we summarize the current knowledge on the tight interconnection between the timekeeping system, glucose homeostasis, and insulin sensitivity. We focus specifically on the involvement of astrocyte clocks, at the organism, cellular, and molecular levels, in the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
29
|
Khant Aung Z, Kokay IC, Grattan DR, Ladyman SR. Prolactin-Induced Adaptation in Glucose Homeostasis in Mouse Pregnancy Is Mediated by the Pancreas and Not in the Forebrain. Front Endocrinol (Lausanne) 2021; 12:765976. [PMID: 34867810 PMCID: PMC8632874 DOI: 10.3389/fendo.2021.765976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Adaptive changes in glucose homeostasis during pregnancy require proliferation of insulin-secreting beta-cells in the pancreas, together with increased sensitivity for glucose-stimulated insulin secretion. Increased concentrations of maternal prolactin/placental lactogen contribute to these changes, but the site of action remains uncertain. Use of Cre-lox technology has generated pancreas-specific prolactin receptor (Prlr) knockouts that demonstrate the development of a gestational diabetic like state. However, many Cre-lines for the pancreas also express Cre in the hypothalamus and prolactin could act centrally to modulate glucose homeostasis. The aim of the current study was to examine the relative contribution of prolactin action in the pancreas and brain to these pregnancy-induced adaptations in glucose regulation. Deletion of prolactin receptor (Prlr) from the pancreas using Pdx-cre or Rip-cre led to impaired glucose tolerance and increased non-fasting blood glucose levels during pregnancy. Prlrlox/lox /Pdx-Cre mice also had impaired glucose-stimulated insulin secretion and attenuated pregnancy-induced increase in beta-cell fraction. Varying degrees of Prlr recombination in the hypothalamus with these Cre lines left open the possibility that central actions of prolactin could contribute to the pregnancy-induced changes in glucose homeostasis. Targeted deletion of Prlr specifically from the forebrain, including areas of expression induced by Pdx-Cre and Rip-cre, had no effect on pregnancy-induced adaptations in glucose homeostasis. These data emphasize the pancreas as the direct target of prolactin/placental lactogen action in driving adaptive changes in glucose homeostasis during pregnancy.
Collapse
Affiliation(s)
- Zin Khant Aung
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Ilona C. Kokay
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - David R. Grattan
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sharon R. Ladyman
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- *Correspondence: Sharon R. Ladyman,
| |
Collapse
|
30
|
Haigh JL, New LE, Filippi BM. Mitochondrial Dynamics in the Brain Are Associated With Feeding, Glucose Homeostasis, and Whole-Body Metabolism. Front Endocrinol (Lausanne) 2020; 11:580879. [PMID: 33240218 PMCID: PMC7680879 DOI: 10.3389/fendo.2020.580879] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The brain is responsible for maintaining whole-body energy homeostasis by changing energy input and availability. The hypothalamus and dorsal vagal complex (DVC) are the primary sites of metabolic control, able to sense both hormones and nutrients and adapt metabolism accordingly. The mitochondria respond to the level of nutrient availability by fusion or fission to maintain energy homeostasis; however, these processes can be disrupted by metabolic diseases including obesity and type II diabetes (T2D). Mitochondrial dynamics are crucial in the development and maintenance of obesity and T2D, playing a role in the control of glucose homeostasis and whole-body metabolism across neurons and glia in the hypothalamus and DVC.
Collapse
Affiliation(s)
| | | | - Beatrice M. Filippi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
31
|
Eslami M, Sadrifar S, Karbalaei M, Keikha M, Kobyliak NM, Yousefi B. Importance of the Microbiota Inhibitory Mechanism on the Warburg Effect in Colorectal Cancer Cells. J Gastrointest Cancer 2020; 51:738-747. [PMID: 31735976 DOI: 10.1007/s12029-019-00329-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
METHODS AND RESULTS Colorectal cancer (CRC) is the third most common cancer in the world. Genetic backgrounds, lifestyle, and diet play an important role in CRC risk. The human gut microbiota has an influence on many features of human physiology such as metabolism, nutrient absorption, and immune function. Imbalance of the microbiota has been implicated in many disorders including CRC. It seems Warburg effect hypothesis corresponds to the early beginning of carcinogenesis because of eventual failure in the synthesis of a pyruvate dehydrogenase complex in cooperation with a supply of glucose in carbohydrates rich diets. From investigation among previous publications, we attempted to make it clear importance of Warburg effect in tumors; it also discusses the mechanisms of probiotics in inhibiting tumor progression and reverse Warburg effect of probiotics in modulating the microbiota and CRC therapies. These effects were observed in some clinical trials, the application of probiotics as a therapeutic agent against CRC still requirements further investigation. CONCLUSION Fiber is fermented by colonic bacteria into SCFAs such as butyrate/acetate, which may play a vital role in normal homeostasis by promoting turnover of the colonic epithelium. Butyrate enters the nucleus and functions as a histone deacetylase inhibitor (HDACi). Because cancerous colonocytes undertake the Warburg effect pathway, their favored energy source is glucose instead of butyrate. Therefore, accumulation of moderate concentrations of butyrate in cancerous colonocytes and role as HDACi. Probiotics have been shown to play a protective role against cancer development by modulating intestinal microbiota and immune response.
Collapse
Affiliation(s)
- Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sina Sadrifar
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazarii M Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
32
|
Carey M, Lontchi-Yimagou E, Mitchell W, Reda S, Zhang K, Kehlenbrink S, Koppaka S, Maginley SR, Aleksic S, Bhansali S, Huffman DM, Hawkins M. Central K ATP Channels Modulate Glucose Effectiveness in Humans and Rodents. Diabetes 2020; 69:1140-1148. [PMID: 32217610 PMCID: PMC7243288 DOI: 10.2337/db19-1256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this "glucose effectiveness" is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). KATP channels in the central nervous system have been shown to regulate EGP in humans and rodents. We examined the contribution of central KATP channels to glucose effectiveness. Under fixed hormonal conditions (studies using a pancreatic clamp), hyperglycemia suppressed EGP by ∼50% in both humans without diabetes and normal Sprague-Dawley rats. By contrast, antagonism of KATP channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes were abolished in rats by intracerebroventricular administration of the KATP channel agonist diazoxide. These findings indicate that about half of the suppression of EGP by hyperglycemia is mediated by central KATP channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in subjects with T2D.
Collapse
Affiliation(s)
- Michelle Carey
- Albert Einstein College of Medicine, Bronx, NY
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | | | | | - Sarah Reda
- Albert Einstein College of Medicine, Bronx, NY
| | - Kehao Zhang
- Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Interaction of glucose sensing and leptin action in the brain. Mol Metab 2020; 39:101011. [PMID: 32416314 PMCID: PMC7267726 DOI: 10.1016/j.molmet.2020.101011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023] Open
Abstract
Background In response to energy abundant or deprived conditions, nutrients and hormones activate hypothalamic pathways to maintain energy and glucose homeostasis. The underlying CNS mechanisms, however, remain elusive in rodents and humans. Scope of review Here, we first discuss brain glucose sensing mechanisms in the presence of a rise or fall of plasma glucose levels, and highlight defects in hypothalamic glucose sensing disrupt in vivo glucose homeostasis in high-fat fed, obese, and/or diabetic conditions. Second, we discuss brain leptin signalling pathways that impact glucose homeostasis in glucose-deprived and excessed conditions, and propose that leptin enhances hypothalamic glucose sensing and restores glucose homeostasis in short-term high-fat fed and/or uncontrolled diabetic conditions. Major conclusions In conclusion, we believe basic studies that investigate the interaction of glucose sensing and leptin action in the brain will address the translational impact of hypothalamic glucose sensing in diabetes and obesity.
Collapse
|
34
|
Schwartsburd P. A View on Pathogenesis of ≪Vicious Cancer Progression Cycle≫. Front Oncol 2020; 10:690. [PMID: 32426290 PMCID: PMC7204907 DOI: 10.3389/fonc.2020.00690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Unrestricted tumor growth requires a permanent supply of glucose that can be obtained from cancer-stimulated hepatic glucose production and/or glucose redirecting from host insulin resistant tissues to cancer cells. This study proposes a mechanism based on metabolic and hormonal changes that may provoke glucose delivery to cancer cells through two interconnected "vicious cycles" whose continuous activity drives cancer progression. As follows from the proposed here feedback model, these "vicious cycles" result from cancer-mediated manipulation of host glucose sensors. The derived conclusions contribute to a better understanding of cancer pathogenesis and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Polina Schwartsburd
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
35
|
Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nat Commun 2020; 11:2014. [PMID: 32332733 PMCID: PMC7181611 DOI: 10.1038/s41467-020-15778-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Astrocytes support the energy demands of synaptic transmission and plasticity. Enduring changes in synaptic efficacy are highly sensitive to stress, yet whether changes to astrocyte bioenergetic control of synapses contributes to stress-impaired plasticity is unclear. Here we show in mice that stress constrains the shuttling of glucose and lactate through astrocyte networks, creating a barrier for neuronal access to an astrocytic energy reservoir in the hippocampus and neocortex, compromising long-term potentiation. Impairing astrocytic delivery of energy substrates by reducing astrocyte gap junction coupling with dominant negative connexin 43 or by disrupting lactate efflux was sufficient to mimic the effects of stress on long-term potentiation. Furthermore, direct restoration of the astrocyte lactate supply alone rescued stress-impaired synaptic plasticity, which was blocked by inhibiting neural lactate uptake. This gating of synaptic plasticity in stress by astrocytic metabolic networks indicates a broader role of astrocyte bioenergetics in determining how experience-dependent information is controlled. Enduring changes in synaptic efficacy are highly sensitive to stress. Here, the authors show that astrocytic delivery of metabolites has an important role in the stress-mediated impairment of synaptic plasticity.
Collapse
|
36
|
Ma Y, Ratnasabapathy R, De Backer I, Izzi-Engbeaya C, Nguyen-Tu MS, Cuenco J, Jones B, John CD, Lam BY, Rutter GA, Yeo GS, Dhillo WS, Gardiner J. Glucose in the hypothalamic paraventricular nucleus regulates GLP-1 release. JCI Insight 2020; 5:132760. [PMID: 32229720 PMCID: PMC7205434 DOI: 10.1172/jci.insight.132760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/25/2020] [Indexed: 01/23/2023] Open
Abstract
Glucokinase (GK) is highly expressed in the hypothalamic paraventricular nucleus (PVN); however, its role is currently unknown. We found that GK in the PVN acts as part of a glucose-sensing mechanism within the PVN that regulates glucose homeostasis by controlling glucagon-like peptide 1 (GLP-1) release. GLP-1 is released from enteroendocrine L cells in response to oral glucose. Here we identify a brain mechanism critical to the release of GLP-1 in response to oral glucose. We show that increasing expression of GK or injection of glucose into the PVN increases GLP-1 release in response to oral glucose. On the contrary, decreasing expression of GK or injection of nonmetabolizable glucose into the PVN prevents GLP-1 release. Our results demonstrate that gluco-sensitive GK neurons in the PVN are critical to the response to oral glucose and subsequent release of GLP-1.
Collapse
Affiliation(s)
- Yue Ma
- Section of Endocrinology and Investigative Medicine and
| | | | | | | | - Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | | - Ben Jones
- Section of Endocrinology and Investigative Medicine and
| | | | - Brian Yh Lam
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Giles Sh Yeo
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | | |
Collapse
|
37
|
RNA-Seq Study of Hepatic Response of Yellow-Feather Chickens to Acute Heat Stress. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The yellow-feather broiler is a popular poultry breed in Asia, particularly in China. In this study, we performed RNA-seq analysis to identify differentially expressed genes (deGs) in the liver of yellow-feather broilers that had been subjected to acute heat stress treatment (38±1°C for 4 h, recovery 2 h) and determine the response of the liver to high temperature and its effects on yellow-feather broiler physiology. We found that the cloacal temperature and respiratory rate of yellow-feather chickens were significantly increased immediately after the initiation of acute heat stress (38°c) treatment. And after recovery for 2 h, there was no difference in the cloacal temperature and respiratory rate between the acute heat stress and control groups. A total of 834 DEGs were observed in response to heat stress by RNA-seq. Almost half of the DEGs were involved in the lipid and energy metabolism, including fatty acid metabolism (ACOX1, ACACA, ACSL1, ACSL6, ACAA1, ACAA2, HADHB, and FASN) and propanoate metabolism (ACSS2, ALDH2, ACACA, DLAT, ALDH7A1, MDH1, ME1, ABAT, SUCLG2, and ACSS3). Our findings provide the context for RNA-seq studies in the liver of yellow-feather chickens and suggest that the liver of yellow-feather broilers has the lipid and energy metabolism physiological mechanisms activated in response to heat stress.
Collapse
|
38
|
Iozzo P, Guzzardi MA. Imaging of brain glucose uptake by PET in obesity and cognitive dysfunction: life-course perspective. Endocr Connect 2019; 8:R169-R183. [PMID: 31590145 PMCID: PMC6865363 DOI: 10.1530/ec-19-0348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
The prevalence of obesity has reached epidemic proportions and keeps growing. Obesity seems implicated in the pathogenesis of cognitive dysfunction, Alzheimer's disease and dementia, and vice versa. Growing scientific efforts are being devoted to the identification of central mechanisms underlying the frequent association between obesity and cognitive dysfunction. Glucose brain handling undergoes dynamic changes during the life-course, suggesting that its alterations might precede and contribute to degenerative changes or signaling abnormalities. Imaging of the glucose analog 18F-labeled fluorodeoxyglucose (18FDG) by positron emission tomography (PET) is the gold-standard for the assessment of cerebral glucose metabolism in vivo. This review summarizes the current literature addressing brain glucose uptake measured by PET imaging, and the effect of insulin on brain metabolism, trying to embrace a life-course vision in the identification of patterns that may explain (and contribute to) the frequent association between obesity and cognitive dysfunction. The current evidence supports that brain hypermetabolism and brain insulin resistance occur in selected high-risk conditions as a transient phenomenon, eventually evolving toward normal or low values during life or disease progression. Associative studies suggest that brain hypermetabolism predicts low BDNF levels, hepatic and whole body insulin resistance, food desire and an unfavorable balance between anticipated reward from food and cognitive inhibitory control. Emerging mechanistic links involve the microbiota and the metabolome, which correlate with brain metabolism and cognition, deserving attention as potential future prevention targets.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Correspondence should be addressed to P Iozzo:
| | | |
Collapse
|
39
|
Li N, Yan QT, Jing Q, Pan RY, Wang HJ, Jiang B, Li XJ, Wang Y, Dong JH, Wang XJ, Zhang MJ, Meng QG, Li XZ, Liu ZJ, Gao ZQ, Qu MH. Duodenal-Jejunal Bypass Ameliorates Type 2 Diabetes Mellitus by Activating Insulin Signaling and Improving Glucose Utilization in the Brain. Obes Surg 2019; 30:279-289. [DOI: 10.1007/s11695-019-04153-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Microbiota signatures relating to reduced memory and exploratory behaviour in the offspring of overweight mothers in a murine model. Sci Rep 2019; 9:12609. [PMID: 31471539 PMCID: PMC6717200 DOI: 10.1038/s41598-019-48090-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022] Open
Abstract
An elevated number of women of reproductive age are overweight, predisposing their offspring to metabolic and neuropsychiatric disorders. Gut microbiota is influenced by maternal factors, and has been implicated in the pathogenesis of neurodegenerative diseases. Our aim was to explore the effects of maternal high-fat feeding on the relationship linking gut microbiota and cognitive development in the offspring. Murine offspring born to dams undergoing normal diet (NDm) and high-fat diet (HFDm) were studied at 1 or 6 months of age to assess cognitive function by Y-maze test, cerebral glucose metabolism and insulin sensitivity by Positron Emission Tomography, brain density by Computed Tomography, microbiota profile (colon, caecum) and inferred metabolic pathways (KEGG analysis) by 16S ribosomal RNA sequencing. From 3 weeks post-weaning, mice born to HFDm developed hyperphagia and overweight, showing reduction in memory and exploratory behaviour, and brain insulin resistance in adulthood. We identified a panel of bacteria characterizing offspring born to HFD dams from early life, and correlating with dysfunction in memory and exploratory behaviour in adults (including Proteobacteria phylum, Parabacteroides and unclassified Rikenellaceae genera). Microbiota-derived metabolic pathways involved in fatty acid, essential aminoacid and vitamin processing, sulphur metabolism, glutaminergic activation and Alzheimer’s disease were differently present in the HFDm and NDm offspring groups. Our results document tight relationships between gut dysbiosis and memory and behavioural impairment in relation to maternal HFD. Persistent bacterial signatures induced by maternal HFD during infancy can influence cognition during adulthood, opening the possibility of microbiota-targeted strategies to contrast cognitive decline.
Collapse
|
41
|
Wang A, Luan HH, Medzhitov R. An evolutionary perspective on immunometabolism. Science 2019; 363:363/6423/eaar3932. [PMID: 30630899 DOI: 10.1126/science.aar3932] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolism is at the core of all biological functions. Anabolic metabolism uses building blocks that are either derived from nutrients or synthesized de novo to produce the biological infrastructure, whereas catabolic metabolism generates energy to fuel all biological processes. Distinct metabolic programs are required to support different biological functions. Thus, recent studies have revealed how signals regulating cell quiescence, proliferation, and differentiation also induce the appropriate metabolic programs. In particular, a wealth of new studies in the field of immunometabolism has unveiled many examples of the connection among metabolism, cell fate decisions, and organismal physiology. We discuss these findings under a unifying framework derived from the evolutionary and ecological principles of life history theory.
Collapse
Affiliation(s)
- Andrew Wang
- Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Harding H Luan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Fuente-Martín E, Mellado-Gil JM, Cobo-Vuilleumier N, Martín-Montalvo A, Romero-Zerbo SY, Diaz Contreras I, Hmadcha A, Soria B, Martin Bermudo F, Reyes JC, Bermúdez-Silva FJ, Lorenzo PI, Gauthier BR. Dissecting the Brain/Islet Axis in Metabesity. Genes (Basel) 2019; 10:genes10050350. [PMID: 31072002 PMCID: PMC6562925 DOI: 10.3390/genes10050350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
The high prevalence of type 2 diabetes mellitus (T2DM), together with the fact that current treatments are only palliative and do not avoid major secondary complications, reveals the need for novel approaches to treat the cause of this disease. Efforts are currently underway to identify therapeutic targets implicated in either the regeneration or re-differentiation of a functional pancreatic islet β-cell mass to restore insulin levels and normoglycemia. However, T2DM is not only caused by failures in β-cells but also by dysfunctions in the central nervous system (CNS), especially in the hypothalamus and brainstem. Herein, we review the physiological contribution of hypothalamic neuronal and glial populations, particularly astrocytes, in the control of the systemic response that regulates blood glucose levels. The glucosensing capacity of hypothalamic astrocytes, together with their regulation by metabolic hormones, highlights the relevance of these cells in the control of glucose homeostasis. Moreover, the critical role of astrocytes in the response to inflammation, a process associated with obesity and T2DM, further emphasizes the importance of these cells as novel targets to stimulate the CNS in response to metabesity (over-nutrition-derived metabolic dysfunctions). We suggest that novel T2DM therapies should aim at stimulating the CNS astrocytic response, as well as recovering the functional pancreatic β-cell mass. Whether or not a common factor expressed in both cell types can be feasibly targeted is also discussed.
Collapse
Affiliation(s)
- Esther Fuente-Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Jose M Mellado-Gil
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Alejandro Martín-Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Silvana Y Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
| | - Irene Diaz Contreras
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Abdelkrim Hmadcha
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Bernat Soria
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Francisco Martin Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Jose C Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Francisco J Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Petra I Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Benoit R Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
43
|
Lundqvist MH, Almby K, Abrahamsson N, Eriksson JW. Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes? Front Physiol 2019; 10:457. [PMID: 31133864 PMCID: PMC6524713 DOI: 10.3389/fphys.2019.00457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Ever since Claude Bernards discovery in the mid 19th-century that a lesion in the floor of the third ventricle in dogs led to altered systemic glucose levels, a role of the CNS in whole-body glucose regulation has been acknowledged. However, this finding was later overshadowed by the isolation of pancreatic hormones in the 20th century. Since then, the understanding of glucose homeostasis and pathology has primarily evolved around peripheral mechanism. Due to scientific advances over these last few decades, however, increasing attention has been given to the possibility of the brain as a key player in glucose regulation and the pathogenesis of metabolic disorders such as type 2 diabetes. Studies of animals have enabled detailed neuroanatomical mapping of CNS structures involved in glucose regulation and key neuronal circuits and intracellular pathways have been identified. Furthermore, the development of neuroimaging techniques has provided methods to measure changes of activity in specific CNS regions upon diverse metabolic challenges in humans. In this narrative review, we discuss the available evidence on the topic. We conclude that there is much evidence in favor of active CNS involvement in glucose homeostasis but the relative importance of central vs. peripheral mechanisms remains to be elucidated. An increased understanding of this field may lead to new CNS-focusing pharmacologic strategies in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | - Kristina Almby
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
iTRAQ-Based Proteomics to Reveal the Mechanism of Hypothalamus in Kidney-Yin Deficiency Rats Induced by Levothyroxine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3703596. [PMID: 30949216 PMCID: PMC6425355 DOI: 10.1155/2019/3703596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 01/16/2023]
Abstract
Kidney-yin deficiency syndrome (KYDS) is a typical syndrome encountered in traditional Chinese medicine (TCM) and is characterized by impaired lipid and glucose homeostasis. The hypothalamus acts as an important regulatory organ by controlling lipid and glucose metabolism in the body. Therefore, proteins in the hypothalamus could play important roles in KYDS development; however, the mechanisms responsible for KYDS remain unclear. Herein, iTRAQ-based proteomics was performed to analyze the protein expression in the hypothalamus of KYDS rats induced by levothyroxine (L-T4). Results revealed a total of 44 downregulated and 18 upregulated proteins in KYDS group relative to the control group. Gene Ontology (GO) analysis revealed that the differently expressed proteins (DEPs) were related to single-organism metabolism process under the biological process (BP), extracellular region part and organelle under the cellular component (CC), and oxidoreductase activity under the molecular function (MF). Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis showed that fatty acid degradation and pyruvate metabolism participated in the metabolism regulation in KYDS rats. RT-PCR validation of five distinctly expressed proteins related to the two pathways was consistent with the results of proteomics analysis. Taken together, the inhibition of fatty acid degradation and pyruvate metabolism in hypothalamus could potentially cause the dysfunction of the lipid and glucose metabolism in KYDS rats. This current study identified some novel potential biomarkers of KYDS and provided the basis for further research of KYDS.
Collapse
|
45
|
Bouyakdan K, Martin H, Liénard F, Budry L, Taib B, Rodaros D, Chrétien C, Biron É, Husson Z, Cota D, Pénicaud L, Fulton S, Fioramonti X, Alquier T. The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system. J Clin Invest 2019; 129:2417-2430. [PMID: 30938715 PMCID: PMC6546475 DOI: 10.1172/jci123454] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glial cells have emerged as key players in the central control of energy balance and etiology of obesity. Astrocytes play a central role in neural communication via the release of gliotransmitters. Acyl-CoA binding protein (ACBP)-derived endozepines are secreted peptides that modulate the GABAA receptor. In the hypothalamus, ACBP is enriched in arcuate nucleus (ARC) astrocytes, ependymocytes and tanycytes. Central administration of the endozepine octadecaneuropeptide (ODN) reduces feeding and improves glucose tolerance, yet the contribution of endogenous ACBP in energy homeostasis is unknown. We demonstrated that ACBP deletion in GFAP+ astrocytes, but not in Nkx2.1-lineage neural cells, promoted diet-induced hyperphagia and obesity in both male and female mice, an effect prevented by viral rescue of ACBP in ARC astrocytes. ACBP-astrocytes were observed in apposition with proopiomelanocortin (POMC) neurons and ODN selectively activated POMC neurons through the ODN-GPCR but not GABAA, and supressed feeding while increasing carbohydrate utilization via the melanocortin system. Similarly, ACBP overexpression in ARC astrocytes reduced feeding and weight gain. Finally, the ODN-GPCR agonist decreased feeding and promoted weight loss in ob/ob mice. These findings uncover ACBP as an ARC gliopeptide playing a key role in energy balance control and exerting strong anorectic effects via the central melanocortin system.
Collapse
Affiliation(s)
- Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Hugo Martin
- Université de Bordeaux, INRA, NutriNeuro, Bordeaux, France
- Bordeaux INP, NutriNeuro, Talence, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Lionel Budry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Bouchra Taib
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Chrétien
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Éric Biron
- Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Quebec, Quebec, Canada
| | - Zoé Husson
- Université de Bordeaux, INRA, NutriNeuro, Bordeaux, France
- Bordeaux INP, NutriNeuro, Talence, France
- INSERM, Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| | - Daniela Cota
- INSERM, Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
- Stromalab, CNRS ERL 5311, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Xavier Fioramonti
- Université de Bordeaux, INRA, NutriNeuro, Bordeaux, France
- Bordeaux INP, NutriNeuro, Talence, France
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Cakir I, Nillni EA. Endoplasmic Reticulum Stress, the Hypothalamus, and Energy Balance. Trends Endocrinol Metab 2019; 30:163-176. [PMID: 30691778 DOI: 10.1016/j.tem.2019.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 01/09/2023]
Abstract
Overweight and obesity pose significant health problems globally, and are causatively linked to metabolic dysregulation. The hypothalamus integrates neural, nutritional, and hormonal cues to regulate homeostasis, including circadian rhythm, body temperature, thirst, food intake, energy expenditure, and glucose metabolism. Hypothalamic neuropeptides play a fundamental role in these processes. Studies during the past two decades suggest a role of central endoplasmic reticulum (ER) stress in the pathophysiology of obesity. This review covers recent findings on the role of ER stress and neuropeptide processing in the central regulation of energy homeostasis, with special emphasis on proopiomelanocortin (POMC)-encoding neurons. In addition, the role of neuroinflammation in the context of obesity is briefly discussed.
Collapse
Affiliation(s)
- Isin Cakir
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eduardo A Nillni
- Department of Medicine, Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
47
|
Xiao C, Liu N, Jacobson KA, Gavrilova O, Reitman ML. Physiology and effects of nucleosides in mice lacking all four adenosine receptors. PLoS Biol 2019; 17:e3000161. [PMID: 30822301 PMCID: PMC6415873 DOI: 10.1371/journal.pbio.3000161] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/13/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022] Open
Abstract
Adenosine is a constituent of many molecules of life; increased free extracellular adenosine indicates cell damage or metabolic stress. The importance of adenosine signaling in basal physiology, as opposed to adaptive responses to danger/damage situations, is unclear. We generated mice lacking all four adenosine receptors (ARs), Adora1−/−;Adora2a−/−;Adora2b−/−;Adora3−/− (quad knockout [QKO]), to enable investigation of the AR dependence of physiologic processes, focusing on body temperature. The QKO mice demonstrate that ARs are not required for growth, metabolism, breeding, and body temperature regulation (diurnal variation, response to stress, and torpor). However, the mice showed decreased survival starting at about 15 weeks of age. While adenosine agonists cause profound hypothermia via each AR, adenosine did not cause hypothermia (or bradycardia or hypotension) in QKO mice, indicating that AR-independent signals do not contribute to adenosine-induced hypothermia. The hypothermia elicited by adenosine kinase inhibition (with A134974), inosine, or uridine also required ARs, as each was abolished in the QKO mice. The proposed mechanism for uridine-induced hypothermia is inhibition of adenosine transport by uridine, increasing local extracellular adenosine levels. In contrast, adenosine 5′-monophosphate (AMP)–induced hypothermia was attenuated in QKO mice, demonstrating roles for both AR-dependent and AR-independent mechanisms in this process. The physiology of the QKO mice appears to be the sum of the individual knockout mice, without clear evidence for synergy, indicating that the actions of the four ARs are generally complementary. The phenotype of the QKO mice suggests that, while extracellular adenosine is a signal of stress, damage, and/or danger, it is less important for baseline regulation of body temperature. A study of mice lacking all four adenosine receptors shows that while they mediate effects of uridine, inosine and adenosine, these receptors are dispensable for growth, metabolism, breeding, and body temperature regulation. This suggests that extracellular adenosine is a damage or danger signal, rather than a major regulator of baseline physiology. Elevated extracellular adenosine generally indicates metabolic stress or cell damage and regulates many aspects of physiology. We studied “QKO” mice lacking all four adenosine receptors. Young QKO mice do not appear obviously ill, but do show decreased survival later in life. QKO mice demonstrate that adenosine receptors are not required for growth, metabolism, breeding, and body temperature regulation. QKO mice are missing the pharmacologic effects of adenosine on body temperature, heart rate, and blood pressure. Therefore, all of these effects are mediated by the four adenosine receptors. We also determined that the hypothermic effects of a pharmacologic adenosine kinase inhibitor (A134974), uridine, or inosine each requires adenosine receptors. The uridine-induced hypothermia is likely due to its inhibition of adenosine uptake into cells. QKO mouse physiology appears to be the sum of the individual knockout mice, without evidence for synergy, indicating that the actions of the four adenosine receptors are generally complementary.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Marc L. Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
48
|
Desmoulins L, Chrétien C, Paccoud R, Collins S, Cruciani-Guglielmacci C, Galinier A, Liénard F, Quinault A, Grall S, Allard C, Fenech C, Carneiro L, Mouillot T, Fournel A, Knauf C, Magnan C, Fioramonti X, Pénicaud L, Leloup C. Mitochondrial Dynamin-Related Protein 1 (DRP1) translocation in response to cerebral glucose is impaired in a rat model of early alteration in hypothalamic glucose sensing. Mol Metab 2019; 20:166-177. [PMID: 30553770 PMCID: PMC6358535 DOI: 10.1016/j.molmet.2018.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH). METHODS Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (H2O2) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals. RESULTS Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS. CONCLUSIONS A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.
Collapse
Affiliation(s)
- Lucie Desmoulins
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Chloé Chrétien
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Romain Paccoud
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Stephan Collins
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Céline Cruciani-Guglielmacci
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France; Department of Physiology, Université Paris Diderot, Paris, France.
| | - Anne Galinier
- STROMALab, UMR CNRS 5273, EFS Pyrénées-Méditerranée, Université Paul Sabatier, Toulouse, France.
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Aurore Quinault
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Sylvie Grall
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Camille Allard
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Claire Fenech
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Lionel Carneiro
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Thomas Mouillot
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; Service d'Hépato-Gastroentérologie, hôpital du Bocage, Dijon, France.
| | - Audren Fournel
- Institut de Recherche en Santé Digestive, INSERM U1220, Université Paul Sabatier, Toulouse, France.
| | - Claude Knauf
- Institut de Recherche en Santé Digestive, INSERM U1220, Université Paul Sabatier, Toulouse, France.
| | - Christophe Magnan
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France.
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; UMR 1286, NutriNeuro, INRA, Université de Bordeaux, Bordeaux INP, Bordeaux, France.
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
49
|
Joseph B, Shimojo G, Li Z, Thompson-Bonilla MDR, Shah R, Kanashiro A, Salgado HC, Ulloa L. Glucose Activates Vagal Control of Hyperglycemia and Inflammation in Fasted Mice. Sci Rep 2019; 9:1012. [PMID: 30700738 PMCID: PMC6354016 DOI: 10.1038/s41598-018-36298-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a leading cause of death in hospitalized patients. Many experimental treatments may have failed in clinical trials for sepsis, in part, because they focused on immune responses of healthy animals that did not mimic the metabolic settings of septic patients. Epidemiological studies show an association between metabolic and immune alterations and over 1/3 of septic patients are diabetic, but the mechanism linking these systems is unknown. Here, we report that metabolic fasting increased systemic inflammation and worsened survival in experimental sepsis. Feeding and administration of glucose in fasted mice activated the vagal tone without affecting blood pressure. Vagal stimulation attenuated hyperglycemia and serum TNF levels in sham but only hyperglycemia in splenectomized mice. Vagal stimulation induced the production of dopamine from the adrenal glands. Experimental diabetes increased hyperglycemia and systemic inflammation in experimental sepsis. Fenoldopam, a specific dopaminergic type-1 agonist, attenuated hyperglycemia and systemic inflammation in diabetic endotoxemic mice. These results indicate that glucose activates vagal control of hyperglycemia and inflammation in fasted septic mice via dopamine.
Collapse
Affiliation(s)
- Biju Joseph
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Guilherme Shimojo
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Zhifeng Li
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Maria Del Rocio Thompson-Bonilla
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
- Hospital "October 1st", ISSSTE", 1669 National Polytechnic Institute Ave, Mexico City, Mexico
| | - Roshan Shah
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alexandre Kanashiro
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Physiology, Medical School - University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Helio C Salgado
- Department of Physiology, Medical School - University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luis Ulloa
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA.
- Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
50
|
Abstract
Glucose-sensitive neurons have long been implicated in glucose homeostasis, but how glucose-sensing information is used by the brain in this process remains uncertain. Here, we propose a model in which (1) information relevant to the circulating glucose level is essential to the proper function of this regulatory system, (2) this input is provided by neurons located outside the blood-brain barrier (BBB) (since neurons situated behind the BBB are exposed to glucose in brain interstitial fluid, rather than that in the circulation), and (3) while the efferent limb of this system is comprised of neurons situated behind the BBB, many of these neurons are also glucose sensitive. Precedent for such an organizational scheme is found in the thermoregulatory system, which we draw upon in this framework for understanding the role played by brain glucose sensing in glucose homeostasis.
Collapse
Affiliation(s)
- Marie Aare Bentsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, Building 7 (Maersk Tower), Copenhagen N 2200, Denmark; University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington at South Lake Union, 750 Republican St, F704, Box 358062, Seattle, WA 98109, USA
| | - Zaman Mirzadeh
- Department of Neurological Surgery, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington at South Lake Union, 750 Republican St, F704, Box 358062, Seattle, WA 98109, USA.
| |
Collapse
|