1
|
Walter WD, Herbst A, Lue CH, Bartz JC, Hopkins MC. Overview of North American Isolates of Chronic Wasting Disease Used for Strain Research. Pathogens 2025; 14:250. [PMID: 40137736 PMCID: PMC11944812 DOI: 10.3390/pathogens14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic Wasting Disease (CWD) is a prion disease that affects Cervidae species, and is the only known prion disease transmitted among wildlife species. The key pathological feature is the conversion of the normal prion protein (PrPC) misfolding into abnormal forms (PrPSc), triggering the onset of CWD infections. The misfolding can generate distinct PrPSc conformations (strains) giving rise to diverse disease phenotypes encompassing pathology, incubation period, and clinical signs. These phenotypes operationally define distinct prion strains, a pivotal element in monitoring CWD spread and zoonotic potential-a complex endeavor compounded by defining and tracking CWD strains. This review pursues a tripartite objective: 1. to address the intricate challenges inherent in ongoing CWD strain classification; 2. to provide an overview of the known CWD-infected isolates, the strains they represent and their passage history; and 3. to describe the spatial diversity of CWD strains in North America, enriching our understanding of CWD strain dynamics. By delving into these dimensions, this review sheds light on the intricate interplay among polymorphisms, biochemical properties, and clinical expressions of CWD. This endeavor aims to elevate the trajectory of CWD research, advancing our insight into prion disease.
Collapse
Affiliation(s)
- W. David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA 16802, USA
| | - Allen Herbst
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA;
| | - Chia-Hua Lue
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA;
| | | |
Collapse
|
2
|
DeFranco JP, Telling GC. The Evolution of Experimental Rodent Models for Prion Diseases. J Neurochem 2025; 169:e70039. [PMID: 40108932 PMCID: PMC11968085 DOI: 10.1111/jnc.70039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Prion diseases are a group of fatal, neurodegenerative diseases that affect animals and humans. These diseases are characterized by the conformational conversion of normal, host-encoded PrPC into a disease-causing prion isoform, PrPSc. Significant advancements in biological, genetic, and prion research have led to the capability of studying this pathogenetic process using recombinant proteins, ex vivo systems, in vitro models, and mammalian hosts, the latter being the gold standard for assaying prion infectivity, transmission, and strain evolution. While devoid of nucleic acid, prions encipher strain information by the conformation of their constituent infectious proteins, with diversity altering pathogenesis, host-range dynamics, and the efficacy of therapeutics. To properly study the strain properties of natural prions and develop appropriate therapeutic strategies, it is essential to utilize models that authentically recapitulate these infectious agents in experimental mammalian hosts. In this review, we examine the evolution of research on prion diseases using non-transgenic and transgenic animals, primarily focusing on rodent models. We discuss the successes and limitations of each experimental system and provide insights based on recent findings in novel gene-targeted mice.
Collapse
Affiliation(s)
- Joseph P. DeFranco
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Glenn C. Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Vuong TT, Cazzaniga FA, Tran L, Våge J, Di Bari M, Pirisinu L, D'Agostino C, Nonno R, Moda F, Benestad SL. Prions in Muscles of Cervids with Chronic Wasting Disease, Norway. Emerg Infect Dis 2025; 31:246-255. [PMID: 39983705 PMCID: PMC11845164 DOI: 10.3201/eid3102.240903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025] Open
Abstract
Chronic wasting disease (CWD) is an emerging prion disease in Nordic countries and has been detected in reindeer, moose, and red deer since 2016. CWD sporadically detected in moose and red deer in 3 Nordic countries demonstrated pathologic and strain characteristics different from CWD in reindeer, including an unexpected lack of prions outside the central nervous system as measured by standard diagnostic tests. Using protein misfolding cyclic amplification, we detected prions in the lymphoreticular system of moose and red deer with CWD in Norway and, remarkably, in muscles of both of those species and in CWD-infected reindeer. One moose lymph node and 1 moose muscle sample showed infectivity when experimentally transmitted to bank voles. Our findings highlight the systemic nature of CWD strains in Europe and raise questions regarding the risk of human exposure through edible tissues.
Collapse
|
4
|
Benavente R, Brydon F, Bravo-Risi F, Soto P, Reed JH, Lockwood M, Telling G, Barria MA, Morales R. Detection of Chronic Wasting Disease Prions in Raw, Processed, and Cooked Elk Meat, Texas, USA. Emerg Infect Dis 2025; 31:363-367. [PMID: 39983676 PMCID: PMC11845151 DOI: 10.3201/eid3102.240906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025] Open
Abstract
We describe chronic wasting disease (CWD) prion detection in raw and cooked meat from a CWD-positive elk. We found limited zoonotic potential in CWD prions from those meat products. Nonetheless, risk for transmission to humans is still unclear, and monitoring of circulating and emerging CWD prion strains for zoonotic potential is warranted.
Collapse
|
5
|
Lynch EM, Pittman S, Daw J, Ikenaga C, Chen S, Dhavale DD, Jackrel ME, Ayala YM, Kotzbauer P, Ly CV, Pestronk A, Lloyd TE, Weihl CC. Seeding-competent TDP-43 persists in human patient and mouse muscle. Sci Transl Med 2024; 16:eadp5730. [PMID: 39602508 PMCID: PMC11812673 DOI: 10.1126/scitranslmed.adp5730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
TAR DNA binding protein 43 (TDP-43) is an RNA binding protein that accumulates as aggregates in the central nervous systems of some patients with neurodegenerative diseases. However, TDP-43 aggregation is also a sensitive and specific pathologic feature found in a family of degenerative muscle diseases termed inclusion body myopathy. TDP-43 aggregates from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia brain lysates may serve as self-templating aggregate seeds in vitro and in vivo, supporting a prion-like spread from cell to cell. Whether a similar process occurs in patient muscle is not clear. We developed a mouse model of inducible, muscle-specific cytoplasmic localized TDP-43. These mice develop muscle weakness with robust accumulation of insoluble and phosphorylated sarcoplasmic TDP-43, leading to eosinophilic inclusions, altered proteostasis, and changes in TDP-43-related RNA processing that resolve with the removal of doxycycline. Skeletal muscle lysates from these mice also have seeding-competent TDP-43, as determined by a FRET-based biosensor, that persists for weeks upon resolution of TDP-43 aggregate pathology. Human muscle biopsies with TDP-43 pathology also contain TDP-43 aggregate seeds. Using lysates from muscle biopsies of patients with sporadic inclusion body myositis (IBM), immune-mediated necrotizing myopathy (IMNM), and ALS, we found that TDP-43 seeding capacity was specific to IBM. TDP-43 seeding capacity anticorrelated with TDP-43 aggregate and vacuole abundance. These data support that TDP-43 aggregate seeds are present in IBM skeletal muscle and represent a unique TDP-43 pathogenic species not previously appreciated in human muscle disease.
Collapse
Affiliation(s)
- Eileen M. Lynch
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Sara Pittman
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Jil Daw
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, USA, 21205
| | - Sheng Chen
- Department of Chemistry, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Dhruva D. Dhavale
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Meredith E. Jackrel
- Department of Chemistry, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Yuna M. Ayala
- Department of Biochemistry and Molecular Biology, Saint Louis University; St Louis, MO, USA, 63130
| | - Paul Kotzbauer
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Cindy V. Ly
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Alan Pestronk
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Thomas E. Lloyd
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Conrad C. Weihl
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| |
Collapse
|
6
|
Kraft CN, Bissinger DW, McNulty EE, Denkers ND, Mathiason CK. Enhanced detection of chronic wasting disease in muscle tissue harvested from infected white-tailed deer employing combined prion amplification assays. PLoS One 2024; 19:e0309918. [PMID: 39441867 PMCID: PMC11498690 DOI: 10.1371/journal.pone.0309918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024] Open
Abstract
Zoonotic transmission of bovine spongiform encephalopathy or mad cow disease, by presumed consumption of infected beef, has increased awareness of the public health risk associated with prion diseases. Chronic wasting disease (CWD) affects moose, elk, and deer, all of which are frequently consumed by humans. Clear evidence of CWD transmission to humans has not been demonstrated, yet, establishing whether CWD prions are present in muscle tissue preferentially consumed by humans is of increasing interest. Conventional assays including immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) lack the sensitivity to detect low concentrations of prions presumed to be present outside neural or lymphatic tissues. Here we combined two prion amplification assays, the product of protein misfolding cyclic amplification (PMCA) applied directly into real-time quaking induced conversion (RT-QuIC) [denoted now as PQ] to demonstrate the presence of prion seeding activity (i.e. prions) in ~55% of hamstring muscles harvested from CWD-positive white-tailed deer. This compares to prion detection in only 10% of the same samples employing standard RT-QuIC. To determine the extent of CWD dissemination within muscle tissues commonly consumed we tested 7 additional muscles from a subset of deer by PQ. Tongue demonstrated the highest level of prions with ~92% positive. All negative controls remained negative in all PMCA and RT-QuIC assays. We conclude that the combination of PMCA with RT-QuIC readout permits detection of low prion concentrations present in muscle tissue of CWD-infected deer. These findings further demonstrate the utility of amplification assays as tools to detect very low levels of prion burden and supports their use to fill knowledge gaps in our understanding of CWD pathogenesis and zoonotic potential.
Collapse
Affiliation(s)
- Caitlyn N. Kraft
- Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - David W. Bissinger
- Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erin E. McNulty
- Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nathaniel D. Denkers
- Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
7
|
Arifin MI, Hannaoui S, Ng RA, Zeng D, Zemlyankina I, Ahmed-Hassan H, Schatzl HM, Kaczmarczyk L, Jackson WS, Benestad SL, Gilch S. Norwegian moose CWD induces clinical disease and neuroinvasion in gene-targeted mice expressing cervid S138N prion protein. PLoS Pathog 2024; 20:e1012350. [PMID: 38950080 PMCID: PMC11244775 DOI: 10.1371/journal.ppat.1012350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/12/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting deer, elk and moose in North America and reindeer, moose and red deer in Northern Europe. Pathogenesis is driven by the accumulation of PrPSc, a pathological form of the host's cellular prion protein (PrPC), in the brain. CWD is contagious among North American cervids and Norwegian reindeer, with prions commonly found in lymphatic tissue. In Nordic moose and red deer CWD appears exclusively in older animals, and prions are confined to the CNS and undetectable in lymphatic tissues, indicating a sporadic origin. We aimed to determine transmissibility, neuroinvasion and lymphotropism of Nordic CWD isolates using gene-targeted mice expressing either wild-type (138SS/226QQ) or S138N (138NN/226QQ) deer PrP. When challenged with North American CWD strains, mice expressing S138N PrP did not develop clinical disease but harbored prion seeding activity in brain and spleen. Here, we infected these models intracerebrally or intraperitoneally with Norwegian moose, red deer and reindeer CWD isolates. The moose isolate was the first CWD type to cause full-blown disease in the 138NN/226QQ model in the first passage, with 100% attack rate and shortened survival times upon second passage. Furthermore, we detected prion seeding activity or PrPSc in brains and spinal cords, but not spleens, of 138NN/226QQ mice inoculated intraperitoneally with the moose isolate, providing evidence of prion neuroinvasion. We also demonstrate, for the first time, that transmissibility of the red deer CWD isolate was restricted to transgenic mice overexpressing elk PrPC (138SS/226EE), identical to the PrP primary structure of the inoculum. Our findings highlight that susceptibility to clinical disease is determined by the conformational compatibility between prion inoculum and host PrP primary structure. Our study indicates that neuroinvasion of Norwegian moose prions can occur without, or only very limited, replication in the spleen, an unprecedented finding for CWD.
Collapse
Affiliation(s)
| | - Samia Hannaoui
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Raychal Ashlyn Ng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Doris Zeng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Irina Zemlyankina
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Hanaa Ahmed-Hassan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hermann M. Schatzl
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | | | | | | | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Lynch EM, Pittman S, Daw J, Ikenaga C, Chen S, Dhavale DD, Jackrel ME, Ayala YM, Kotzbauer P, Ly CV, Pestronk A, Lloyd TE, Weihl CC. Seeding competent TDP-43 persists in human patient and mouse muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587918. [PMID: 38617354 PMCID: PMC11014586 DOI: 10.1101/2024.04.03.587918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
TAR DNA-binding protein 43 (TDP-43) is an RNA binding protein that accumulates as aggregates in the central nervous system of some neurodegenerative diseases. However, TDP-43 aggregation is also a sensitive and specific pathologic feature found in a family of degenerative muscle diseases termed inclusion body myopathy (IBM). TDP-43 aggregates from ALS and FTD brain lysates may serve as self-templating aggregate seeds in vitro and in vivo, supporting a prion-like spread from cell to cell. Whether a similar process occurs in IBM patient muscle is not clear. We developed a mouse model of inducible, muscle-specific cytoplasmic localized TDP-43. These mice develop muscle weakness with robust accumulation of insoluble and phosphorylated sarcoplasmic TDP-43, leading to eosinophilic inclusions, altered proteostasis and changes in TDP-43-related RNA processing that resolve with the removal of doxycycline. Skeletal muscle lysates from these mice also have seeding competent TDP-43, as determined by a FRET-based biosensor, that persists for weeks upon resolution of TDP-43 aggregate pathology. Human muscle biopsies with TDP-43 pathology also contain TDP-43 aggregate seeds. Using lysates from muscle biopsies of patients with IBM, IMNM and ALS we found that TDP-43 seeding capacity was specific to IBM. Surprisingly, TDP-43 seeding capacity anti-correlated with TDP-43 aggregate and vacuole abundance. These data support that TDP-43 aggregate seeds are present in IBM skeletal muscle and represent a unique TDP-43 pathogenic species not previously appreciated in human muscle disease.
Collapse
Affiliation(s)
- Eileen M. Lynch
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Sara Pittman
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Jil Daw
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Sheng Chen
- Department of Chemistry, Washington University in St Louis; St Louis, MO, USA
| | - Dhruva D. Dhavale
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Meredith E. Jackrel
- Department of Chemistry, Washington University in St Louis; St Louis, MO, USA
| | - Yuna M. Ayala
- Department of Biochemistry and Molecular Biology, Saint Louis University; St Louis, MO, USA
| | - Paul Kotzbauer
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Cindy V. Ly
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Alan Pestronk
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Thomas E. Lloyd
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Conrad C. Weihl
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| |
Collapse
|
9
|
Inzalaco HN, Brandell EE, Wilson SP, Hunsaker M, Stahler DR, Woelfel K, Walsh DP, Nordeen T, Storm DJ, Lichtenberg SS, Turner WC. Detection of prions from spiked and free-ranging carnivore feces. Sci Rep 2024; 14:3804. [PMID: 38360908 PMCID: PMC10869337 DOI: 10.1038/s41598-023-44167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/04/2023] [Indexed: 02/17/2024] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious, fatal neurodegenerative disease caused by infectious prions (PrPCWD) affecting wild and captive cervids. Although experimental feeding studies have demonstrated prions in feces of crows (Corvus brachyrhynchos), coyotes (Canis latrans), and cougars (Puma concolor), the role of scavengers and predators in CWD epidemiology remains poorly understood. Here we applied the real-time quaking-induced conversion (RT-QuIC) assay to detect PrPCWD in feces from cervid consumers, to advance surveillance approaches, which could be used to improve disease research and adaptive management of CWD. We assessed recovery and detection of PrPCWD by experimental spiking of PrPCWD into carnivore feces from 9 species sourced from CWD-free populations or captive facilities. We then applied this technique to detect PrPCWD from feces of predators and scavengers in free-ranging populations. Our results demonstrate that spiked PrPCWD is detectable from feces of free-ranging mammalian and avian carnivores using RT-QuIC. Results show that PrPCWD acquired in natural settings is detectable in feces from free-ranging carnivores, and that PrPCWD rates of detection in carnivore feces reflect relative prevalence estimates observed in the corresponding cervid populations. This study adapts an important diagnostic tool for CWD, allowing investigation of the epidemiology of CWD at the community-level.
Collapse
Affiliation(s)
- H N Inzalaco
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Madison, WI, 53706, USA.
| | - E E Brandell
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Madison, WI, 53706, USA
| | - S P Wilson
- Nebraska Game and Parks Commission, 2200 N 33rd St., P.O. Box 30370, Lincoln, NE, 68503, USA
| | - M Hunsaker
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Madison, WI, 53706, USA
| | - D R Stahler
- Yellowstone Center for Resources, Yellowstone National Park, WY, 82190, USA
| | - K Woelfel
- Wild and Free Wildlife Rehabilitation Program, 27264 MN-18, Garrison, MN, 56450, USA
| | - D P Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA
| | - T Nordeen
- Nebraska Game and Parks Commission, 2200 N 33rd St., P.O. Box 30370, Lincoln, NE, 68503, USA
| | - D J Storm
- Wisconsin Department of Natural Resources, Eau Claire, WI, 54701, USA
| | - S S Lichtenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, 55108, USA
| | - W C Turner
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
10
|
Prion agents (1st section). Transfusion 2024; 64 Suppl 1:S4-S18. [PMID: 38394039 DOI: 10.1111/trf.17627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/25/2024]
|
11
|
Simmons SM, Bartz JC. Strain-Specific Targeting and Destruction of Cells by Prions. BIOLOGY 2024; 13:57. [PMID: 38275733 PMCID: PMC10813089 DOI: 10.3390/biology13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Prion diseases are caused by the disease-specific self-templating infectious conformation of the host-encoded prion protein, PrPSc. Prion strains are operationally defined as a heritable phenotype of disease under controlled conditions. One of the hallmark phenotypes of prion strain diversity is tropism within and between tissues. A defining feature of prion strains is the regional distribution of PrPSc in the CNS. Additionally, in both natural and experimental prion disease, stark differences in the tropism of prions in secondary lymphoreticular system tissues occur. The mechanism underlying prion tropism is unknown; however, several possible hypotheses have been proposed. Clinical target areas are prion strain-specific populations of neurons within the CNS that are susceptible to neurodegeneration following the replication of prions past a toxic threshold. Alternatively, the switch from a replicative to toxic form of PrPSc may drive prion tropism. The normal form of the prion protein, PrPC, is required for prion formation. More recent evidence suggests that it can mediate prion and prion-like disease neurodegeneration. In vitro systems for prion formation have indicated that cellular cofactors contribute to prion formation. Since these cofactors can be strain specific, this has led to the hypothesis that the distribution of prion formation cofactors can influence prion tropism. Overall, there is evidence to support several mechanisms of prion strain tropism; however, a unified theory has yet to emerge.
Collapse
Affiliation(s)
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
12
|
Garza MC, Kang SG, Kim C, Monleón E, van der Merwe J, Kramer DA, Fahlman R, Sim VL, Aiken J, McKenzie D, Cortez LM, Wille H. In Vitro and In Vivo Evidence towards Fibronectin's Protective Effects against Prion Infection. Int J Mol Sci 2023; 24:17525. [PMID: 38139358 PMCID: PMC10743696 DOI: 10.3390/ijms242417525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
A distinctive signature of the prion diseases is the accumulation of the pathogenic isoform of the prion protein, PrPSc, in the central nervous system of prion-affected humans and animals. PrPSc is also found in peripheral tissues, raising concerns about the potential transmission of pathogenic prions through human food supplies and posing a significant risk to public health. Although muscle tissues are considered to contain levels of low prion infectivity, it has been shown that myotubes in culture efficiently propagate PrPSc. Given the high consumption of muscle tissue, it is important to understand what factors could influence the establishment of a prion infection in muscle tissue. Here we used in vitro myotube cultures, differentiated from the C2C12 myoblast cell line (dC2C12), to identify factors affecting prion replication. A range of experimental conditions revealed that PrPSc is tightly associated with proteins found in the systemic extracellular matrix, mostly fibronectin (FN). The interaction of PrPSc with FN decreased prion infectivity, as determined by standard scrapie cell assay. Interestingly, the prion-resistant reserve cells in dC2C12 cultures displayed a FN-rich extracellular matrix while the prion-susceptible myotubes expressed FN at a low level. In agreement with the in vitro results, immunohistopathological analyses of tissues from sheep infected with natural scrapie demonstrated a prion susceptibility phenotype linked to an extracellular matrix with undetectable levels of FN. Conversely, PrPSc deposits were not observed in tissues expressing FN. These data indicate that extracellular FN may act as a natural barrier against prion replication and that the extracellular matrix composition may be a crucial feature determining prion tropism in different tissues.
Collapse
Affiliation(s)
- M. Carmen Garza
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chiye Kim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Eva Monleón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Departamento de Anatomía e Histología Humana, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Jacques van der Merwe
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - David A. Kramer
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Valerie L. Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Leonardo M. Cortez
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
13
|
Benavente R, Reed JH, Lockwood M, Morales R. PMCA screening of retropharyngeal lymph nodes in white-tailed deer and comparisons with ELISA and IHC. Sci Rep 2023; 13:20171. [PMID: 37978312 PMCID: PMC10656533 DOI: 10.1038/s41598-023-47105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervids. CWD diagnosis is conducted through enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) in retropharyngeal lymph nodes. Unfortunately, these techniques have limited sensitivity against the biomarker (CWD-prions). Two in vitro prion amplification techniques, real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), have shown promise in detecting CWD-prions in tissues and bodily fluids. Recent studies have demonstrated that RT-QuIC yields similar results compared to ELISA and IHC. Here, we analyzed 1003 retropharyngeal lymph nodes (RPLNs) from Texas white-tailed deer. PMCA detected CWD at a higher rate compared to ELISA/IHC, identified different prion strains, and revealed the presence of CWD-prions in places with no previous history. These findings suggest that PMCA exhibits greater sensitivity than current standard techniques and could be valuable for rapid and strain-specific CWD detection.
Collapse
Affiliation(s)
- Rebeca Benavente
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Hunter Reed
- Texas Parks and Wildlife Department, Kerrville, TX, USA
| | | | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
14
|
Chang SC, Hannaoui S, Arifin MI, Huang YH, Tang X, Wille H, Gilch S. Propagation of PrP Sc in mice reveals impact of aggregate composition on prion disease pathogenesis. Commun Biol 2023; 6:1162. [PMID: 37964018 PMCID: PMC10645910 DOI: 10.1038/s42003-023-05541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Infectious prions consist of PrPSc, a misfolded, aggregation-prone isoform of the host's prion protein. PrPSc assemblies encode distinct biochemical and biological properties. They harbor a specific profile of PrPSc species, from small oligomers to fibrils in different ratios, where the highest infectivity aligns with oligomeric particles. To investigate the impact of PrPSc aggregate complexity on prion propagation, biochemical properties, and disease pathogenesis, we fractionated elk prions by sedimentation velocity centrifugation, followed by sub-passages of individual fractions in cervidized mice. Upon first passage, different fractions generated PrPSc with distinct biochemical, biophysical, and neuropathological profiles. Notably, low or high molecular weight PrPSc aggregates caused different clinical signs of hyperexcitability or lethargy, respectively, which were retained over passage, whereas other properties converged. Our findings suggest that PrPSc quaternary structure determines an initial selection of a specific replication environment, resulting in transmissible features that are independent of PrPSc biochemical and biophysical properties.
Collapse
Affiliation(s)
- Sheng Chun Chang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Samia Hannaoui
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria Immaculata Arifin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuan-Hung Huang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xinli Tang
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Holger Wille
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sabine Gilch
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
15
|
Sun JL, Telling GC. New developments in prion disease research using genetically modified mouse models. Cell Tissue Res 2023; 392:33-46. [PMID: 36929219 DOI: 10.1007/s00441-023-03761-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
While much of what we know about the general principles of protein-based information transfer derives from studies of experimentally adapted rodent prions, these laboratory strains are limited in their ability to recapitulate features of human and animal prions and the diseases they produce. Here, we review how recent approaches using genetically modified mice have informed our understanding of naturally occurring prion diseases, their strain properties, and the factors controlling their transmission and evolution. In light of the increasing importance of chronic wasting disease, the application of mouse transgenesis to study this burgeoning and highly contagious prion disorder, in particular recent insights derived from gene-targeting approaches, will be a major focus of this review.
Collapse
Affiliation(s)
- Julianna L Sun
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA.
| |
Collapse
|
16
|
Islam MR, Bulut U, Feria-Arroyo TP, Tyshenko MG, Oraby T. Modeling the Impact of Climate Change on Cervid Chronic Wasting Disease in Semi-Arid South Texas. FRONTIERS IN EPIDEMIOLOGY 2022; 2:889280. [PMID: 38455276 PMCID: PMC10910938 DOI: 10.3389/fepid.2022.889280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 03/09/2024]
Abstract
Chronic wasting disease (CWD) is a spongiform encephalopathy disease caused by the transmission of infectious prion agents. CWD is a fatal disease that affects wild and farmed cervids in North America with few cases reported overseas. Social interaction of cervids, feeding practices by wildlife keepers and climate effects on the environmental carrying capacity all can affect CWD transmission in deer. Wildlife deer game hunting is economically important to the semi-arid South Texas region and is affected by climate change. In this paper, we model and investigate the effect of climate change on the spread of CWD using typical climate scenarios. We use a system of impulsive differential equations to depict the transmission of CWD between different age groups and gender of cervids. The carrying capacity and contact rates are assumed to depend on climate. Due to the polygamy of bucks, we use mating rates that depend on the number of bucks and does. We analyze the stability of the model and use simulations to study the effect of harvesting (culling) on eradicating the disease, given the climate of South Texas. We use typical climate change scenarios based on published data and our assumptions. For the climate indicator, we calculated and utilized the Standard Precipitation Evapotranspiration Index (SPEI). We found that climate change might hinder the efforts to reduce and effectively manage CWD as it becomes endemic to South Texas. The model shows the extinction of the deer population from this region is a likely outcome.
Collapse
Affiliation(s)
- Md Rafiul Islam
- Department of Mathematics, Iowa State University, Ames, IA, United States
| | - Ummugul Bulut
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX, United States
| | | | | | - Tamer Oraby
- School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
17
|
Wagner K, Pierce R, Gordon E, Hay A, Lessard A, Telling GC, Ballard JR, Moreno JA, Zabel MD. Tissue-specific biochemical differences between chronic wasting disease prions isolated from free-ranging white-tailed deer (Odocoileus virginianus). J Biol Chem 2022; 298:101834. [PMID: 35304100 PMCID: PMC9019250 DOI: 10.1016/j.jbc.2022.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 01/21/2023] Open
Abstract
Chronic wasting disease (CWD) is an invariably fatal prion disease affecting cervid species worldwide. Prions can manifest as distinct strains that can influence disease pathology and transmission. CWD is profoundly lymphotropic, and most infected cervids likely shed peripheral prions replicated in lymphoid organs. However, CWD is a neurodegenerative disease, and most research on prion strains has focused on neurogenic prions. Thus, a knowledge gap exists comparing neurogenic prions to lymphogenic prions. In this study, we compared prions from the obex and lymph nodes of naturally exposed white-tailed deer to identify potential biochemical strain differences. Here, we report biochemical evidence of strain differences between the brain and lymph node from these animals. Conformational stability assays, glycoform ratio analyses, and immunoreactivity scanning across the structured domain of the prion protein that refolds into the amyloid aggregate of the infectious prion reveal significantly more structural and glycoform variation in lymphogenic prions than neurogenic prions. Surprisingly, we observed greater biochemical differences among neurogenic prions than lymphogenic prions across individuals. We propose that the lymphoreticular system propagates a diverse array of prions from which the brain selects a more restricted pool of prions that may be quite different than those from another individual of the same species. Future work should examine the biological and zoonotic impact of these biochemical differences and examine more cervids from multiple locations to determine if these differences are conserved across species and locations.
Collapse
Affiliation(s)
- Kaitlyn Wagner
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Robyn Pierce
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth Gordon
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Arielle Hay
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Avery Lessard
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Glenn C. Telling
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer R. Ballard
- Research Division, Arkansas Game and Fish Commission, Little Rock, Arkansas, USA
| | - Julie A. Moreno
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mark D. Zabel
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,For correspondence: Mark D. Zabel
| |
Collapse
|
18
|
Gene-Edited Cell Models to Study Chronic Wasting Disease. Viruses 2022; 14:v14030609. [PMID: 35337016 PMCID: PMC8950194 DOI: 10.3390/v14030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders affecting both humans and animals. They are caused by the misfolded isoform of the cellular prion protein (PrPC), PrPSc, and currently no options exist to prevent or cure prion diseases. Chronic wasting disease (CWD) in deer, elk and other cervids is considered the most contagious prion disease, with extensive shedding of infectivity into the environment. Cell culture models provide a versatile platform for convenient quantification of prions, for studying the molecular and cellular biology of prions, and for performing high-throughput screening of potential therapeutic compounds. Unfortunately, only a very limited number of cell lines are available that facilitate robust and persistent propagation of CWD prions. Gene-editing using programmable nucleases (e.g., CRISPR-Cas9 (CC9)) has proven to be a valuable tool for high precision site-specific gene modification, including gene deletion, insertion, and replacement. CC9-based gene editing was used recently for replacing the PrP gene in mouse and cell culture models, as efficient prion propagation usually requires matching sequence homology between infecting prions and prion protein in the recipient host. As expected, such gene-editing proved to be useful for developing CWD models. Several transgenic mouse models were available that propagate CWD prions effectively, however, mostly fail to reproduce CWD pathogenesis as found in the cervid host, including CWD prion shedding. This is different for the few currently available knock-in mouse models that seem to do so. In this review, we discuss the available in vitro and in vivo models of CWD, and the impact of gene-editing strategies.
Collapse
|
19
|
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD. Acta Neuropathol 2022; 144:767-784. [PMID: 35996016 PMCID: PMC9468132 DOI: 10.1007/s00401-022-02482-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we provide evidence for a zoonotic potential of CWD prions, and its probable signature using mice expressing human prion protein (PrP) as an infection model. Inoculation of these mice with deer CWD isolates resulted in atypical clinical manifestation with prion seeding activity and efficient transmissible infectivity in the brain and, remarkably, in feces, but without classical neuropathological or Western blot appearances of prion diseases. Intriguingly, the protease-resistant PrP in the brain resembled that found in a familial human prion disease and was transmissible upon second passage. Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.
Collapse
|
20
|
Abstract
Chronic wasting disease (CWD) is a transmissible prion disease first observed in the 1960s in North America. This invariably fatal disease affects multiple cervid species in the wild and in captivity. In addition to the several known transmission pathways involving cervid host species, prions have been detected in the feces of crows and coyotes after consumption of experimentally spiked tissues. This raises questions about the role of cervid consumers in the perpetuation of CWD. Mountain lions have been shown to preferentially select CWD-infected prey and are also apparently resistant to infection. In this study, two captive mountain lions were fed ground mule deer muscle tissue spiked with brain-derived CWD prions, and lion feces were collected for 1 week afterward. The input brain and resulting fecal materials were analyzed using the highly sensitive real-time quaking-induced conversion (RT-QuIC) assay to quantify prion seeding activity. We recovered only 2.8 to 3.9% of input CWD prions after passage through the mountain lions’ gastrointestinal tracts. Interestingly, CWD prions were shed only in the first defecation following consumption. Our data support the possibility that mountain lions feeding upon infected carcasses could excrete CWD prions in their feces over a short period of time but also suggest that most of the ingested prions are eliminated or sequestered by this large predator. IMPORTANCE CWD prions appear to spread naturally among susceptible cervid species in captivity and in the wild. A better understanding of all the ways these prions move, persist, and subsequently infect target species through the environment is critical to developing comprehensive disease control strategies. In our study, we show limited, transient pass-through of CWD prions in an apex predator, the mountain lion, using the highly sensitive RT-QuIC assay on feces collected after lions were fed prion-spiked muscle tissue. Prions were detected in feces only in the first defecation after exposure. Moreover, the amount of CWD prions recovered in feces was reduced by >96% after passing through the lion digestive system. This indicates that mountain lions may have some potential to distribute CWD prions within their home ranges but that they also effectively eliminate most of the CWD prions they consume.
Collapse
|
21
|
Pritzkow S, Gorski D, Ramirez F, Soto C. Prion Dissemination through the Environment and Medical Practices: Facts and Risks for Human Health. Clin Microbiol Rev 2021; 34:e0005919. [PMID: 34319151 PMCID: PMC8404694 DOI: 10.1128/cmr.00059-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are a group of fatal, infectious neurodegenerative disorders affecting various species of mammals, including humans. The infectious agent in these diseases, termed prion, is composed exclusively of a misfolded protein that can spread and multiply in the absence of genetic materials. In this article, we provide an overview of the mechanisms of prion replication, interindividual transmission, and dissemination in communities. In particular, we review the potential role of the natural environment in prion transmission, including the mechanisms and pathways for prion entry and accumulation in the environment as well as its roles in prion mutation, adaptation, evolution, and transmission. We also discuss the transmission of prion diseases through medical practices, scientific research, and use of biological products. Detailed knowledge of these aspects is crucial to limit the spreading of existing prion diseases as well as to prevent the emergence of new diseases with possible catastrophic consequences for public health.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Damian Gorski
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Frank Ramirez
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
22
|
Kincaid AE. The Role of the Nasal Cavity in the Pathogenesis of Prion Diseases. Viruses 2021; 13:v13112287. [PMID: 34835094 PMCID: PMC8621399 DOI: 10.3390/v13112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a class of fatal neurodegenerative diseases caused by the entry and spread of infectious prion proteins (PrPSc) in the central nervous system (CNS). These diseases are endemic to certain mammalian animal species that use their sense of smell for a variety of purposes and therefore expose their nasal cavity (NC) to PrPSc in the environment. Prion diseases that affect humans are either inherited due to a mutation of the gene that encodes the prion protein, acquired by exposure to contaminated tissues or medical devices, or develop without a known cause (referred to as sporadic). The purpose of this review is to identify components of the NC that are involved in prion transport and to summarize the evidence that the NC serves as a route of entry (centripetal spread) and/or a source of shedding (centrifugal spread) of PrPSc, and thus plays a role in the pathogenesis of the TSEs.
Collapse
Affiliation(s)
- Anthony E Kincaid
- Departments of Pharmacy Sciences and Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
23
|
Mountain Lions (Puma concolor) Resist Long-Term Dietary Exposure To Chronic Wasting Disease. J Wildl Dis 2021; 58:40-49. [PMID: 34753180 DOI: 10.7589/jwd-d-21-00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022]
Abstract
For nearly 18 yr, we evaluated susceptibility of captive mountain lions (Puma concolor) to chronic wasting disease (CWD) in the face of repeated exposure associated with consuming infected cervid carcasses. Three mountain lions with a monomorphic prion protein gene (PRNP) sequence identical to that described previously for the species had access to parts of ≥432 infected carcasses during ≥2,013 feeding occasions, conservatively representing >14,000 kg of infected feed material, during May 2002 to March 2020. The proportion of diet in infected carcass material averaged 43% overall but differed from year to year (minimally 11%-74%). Most infected carcasses were mule deer (Odocoileus hemionus; ∼75%). We observed no clinical signs suggestive of progressive encephalopathy or other neurologic disease over the ∼14.5-17.9 yr between first known exposure and eventual death. Histopathology revealed no spongiform changes or immunostaining suggestive of prion infection in multiple sections of nervous and lymphoid tissue. Similarly, none of 133 free-ranging mountain lion carcasses sampled opportunistically during 2004-2020 showed immunostaining consistent with prion infection in sections of brainstem or lymph node. These findings align with prior work suggesting that CWD-associated prions face strong barriers to natural transmission among species outside the family Cervidae.
Collapse
|
24
|
Bravo-Risi F, Soto P, Eckland T, Dittmar R, Ramírez S, Catumbela CSG, Soto C, Lockwood M, Nichols T, Morales R. Detection of CWD prions in naturally infected white-tailed deer fetuses and gestational tissues by PMCA. Sci Rep 2021; 11:18385. [PMID: 34526562 PMCID: PMC8443553 DOI: 10.1038/s41598-021-97737-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Chronic wasting disease (CWD) is a prevalent prion disease affecting cervids. CWD is thought to be transmitted through direct animal contact or by indirect exposure to contaminated environmental fomites. Other mechanisms of propagation such as vertical and maternal transmissions have also been suggested using naturally and experimentally infected animals. Here, we describe the detection of CWD prions in naturally-infected, farmed white-tailed deer (WTD) fetal tissues using the Protein Misfolding Cyclic Amplification (PMCA) technique. Prion seeding activity was identified in a variety of gestational and fetal tissues. Future studies should demonstrate if prions present in fetuses are at sufficient quantities to cause CWD after birth. This data confirms previous findings in other animal species and furthers vertical transmission as a relevant mechanism of CWD dissemination.
Collapse
Affiliation(s)
- Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Thomas Eckland
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | | | - Santiago Ramírez
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Celso S G Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | | | - Tracy Nichols
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, 80526, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA. .,Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
25
|
Otero A, Velásquez CD, Aiken J, McKenzie D. Chronic wasting disease: a cervid prion infection looming to spillover. Vet Res 2021; 52:115. [PMID: 34488900 PMCID: PMC8420063 DOI: 10.1186/s13567-021-00986-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
The spread of chronic wasting disease (CWD) during the last six decades has resulted in cervid populations of North America where CWD has become enzootic. This insidious disease has also been reported in wild and captive cervids from other continents, threatening ecosystems, livestock and public health. These CWD "hot zones" are particularly complex given the interplay between cervid PRNP genetics, the infection biology, the strain diversity of infectious prions and the long-term environmental persistence of infectivity, which hinder eradication efforts. Here, we review different aspects of CWD including transmission mechanisms, pathogenesis, epidemiology and assessment of interspecies infection. Further understanding of these aspects could help identify "control points" that could help reduce exposure for humans and livestock and decrease CWD spread between cervids.
Collapse
Affiliation(s)
- Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
26
|
Li M, Schwabenlander MD, Rowden GR, Schefers JM, Jennelle CS, Carstensen M, Seelig D, Larsen PA. RT-QuIC detection of CWD prion seeding activity in white-tailed deer muscle tissues. Sci Rep 2021; 11:16759. [PMID: 34408204 PMCID: PMC8373970 DOI: 10.1038/s41598-021-96127-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease circulating in wild and farmed cervid populations throughout North America (United States and Canada), Europe (Finland, Norway, Sweden), and South Korea. CWD is a long-term threat to all cervid populations and to cervid hunting heritage, with the potential to cause substantial economic losses across multiple sectors. In North America, hunting and farming industries focused on the processing and consumption of white-tailed deer (WTD) venison are particularly vulnerable to CWD prion contamination, as millions of WTD are consumed annually. Real-time quaking-induced conversion (RT-QuIC) is a highly sensitive assay amplifying misfolded CWD prions in vitro and has facilitated CWD prion detection in a variety of tissues and excreta. To date, no study has comprehensively examined CWD prion content across bulk skeletal muscle tissues harvested from individual CWD infected WTD. Here, we use RT-QuIC to characterize prion-seeding activity in a variety of skeletal muscles from both wild and farmed CWD-positive WTD. We successfully detected CWD prions in muscles commonly used for consumption (e.g., backstrap, tenderloin, etc.) as well as within tongue and neck samples of WTD. Our results suggest that CWD prions are distributed across the skeletal muscles of infected WTD. We posit that RT-QuIC will be a useful tool for monitoring CWD prions in venison and that the method (with additional protocol optimization and high-throughput functionality) could be used to reduce and/or prevent CWD prions from entering animal and human food chains.
Collapse
Affiliation(s)
- Manci Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave, Saint Paul, MN, 55108, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Marc D Schwabenlander
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave, Saint Paul, MN, 55108, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Gage R Rowden
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave, Saint Paul, MN, 55108, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jeremy M Schefers
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Christopher S Jennelle
- Minnesota Department of Natural Resources, 5463 West Broadway, Forest Lake, MN, 55025, USA
| | - Michelle Carstensen
- Minnesota Department of Natural Resources, 5463 West Broadway, Forest Lake, MN, 55025, USA
| | - Davis Seelig
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Peter A Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave, Saint Paul, MN, 55108, USA.
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
27
|
Bian J, Kim S, Kane SJ, Crowell J, Sun JL, Christiansen J, Saijo E, Moreno JA, DiLisio J, Burnett E, Pritzkow S, Gorski D, Soto C, Kreeger TJ, Balachandran A, Mitchell G, Miller MW, Nonno R, Vikøren T, Våge J, Madslien K, Tran L, Vuong TT, Benestad SL, Telling GC. Adaptive selection of a prion strain conformer corresponding to established North American CWD during propagation of novel emergent Norwegian strains in mice expressing elk or deer prion protein. PLoS Pathog 2021; 17:e1009748. [PMID: 34310663 PMCID: PMC8341702 DOI: 10.1371/journal.ppat.1009748] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/05/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Prions are infectious proteins causing fatal, transmissible neurodegenerative diseases of animals and humans. Replication involves template-directed refolding of host encoded prion protein, PrPC, by its infectious conformation, PrPSc. Following its discovery in captive Colorado deer in 1967, uncontrollable contagious transmission of chronic wasting disease (CWD) led to an expanded geographic range in increasing numbers of free-ranging and captive North American (NA) cervids. Some five decades later, detection of PrPSc in free-ranging Norwegian (NO) reindeer and moose marked the first indication of CWD in Europe. To assess the properties of these emergent NO prions and compare them with NA CWD we used transgenic (Tg) and gene targeted (Gt) mice expressing PrP with glutamine (Q) or glutamate (E) at residue 226, a variation in wild type cervid PrP which influences prion strain selection in NA deer and elk. Transmissions of NO moose and reindeer prions to Tg and Gt mice recapitulated the characteristic features of CWD in natural hosts, revealing novel prion strains with disease kinetics, neuropathological profiles, and capacities to infect lymphoid tissues and cultured cells that were distinct from those causing NA CWD. In support of strain variation, PrPSc conformers comprising emergent NO moose and reindeer CWD were subject to selective effects imposed by variation at residue 226 that were different from those controlling established NA CWD. Transmission of particular NO moose CWD prions in mice expressing E at 226 resulted in selection of a kinetically optimized conformer, subsequent transmission of which revealed properties consistent with NA CWD. These findings illustrate the potential for adaptive selection of strain conformers with improved fitness during propagation of unstable NO prions. Their potential for contagious transmission has implications for risk analyses and management of emergent European CWD. Finally, we found that Gt mice expressing physiologically controlled PrP levels recapitulated the lymphotropic properties of naturally occurring CWD strains resulting in improved susceptibilities to emergent NO reindeer prions compared with over-expressing Tg counterparts. These findings underscore the refined advantages of Gt models for exploring the mechanisms and impacts of strain selection in peripheral compartments during natural prion transmission. Prions cause fatal, transmissible neurodegenerative diseases in animals and humans. They are composed of an infectious, neurotoxic protein (PrP) which replicates by imposing pathogenic conformations on its normal, host-encoded counterpart. Chronic wasting disease (CWD) is a contagious prion disorder threatening increasing numbers of free-ranging and captive North American deer, elk, and moose. While CWD detection in Norwegian reindeer and moose in 2016 marked the advent of disease in Europe, its origins and relationship to North American CWD were initially unclear. Here we show, using mice engineered to express deer or elk PrP, that Norwegian reindeer and moose CWD are caused by novel prion strains with properties distinct from those of North American CWD. We found that selection and propagation of North American and Norwegian CWD strains was controlled by a key amino acid residue in host PrP. We also found that particular Norwegian isolates adapted during their propagation in mice to produce prions with characteristics of the North American strain. Our findings defining the transmission profiles of novel Norwegian prions and their unstable potential to produce adapted strains with improved fitness for contagious transmission have implications for risk analyses and management of emergent European CWD.
Collapse
Affiliation(s)
- Jifeng Bian
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sehun Kim
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sarah J. Kane
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jenna Crowell
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julianna L. Sun
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Christiansen
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eri Saijo
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julie A. Moreno
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - James DiLisio
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily Burnett
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Damian Gorski
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Terry J. Kreeger
- Wyoming Game and Fish Department, Wheatland, Wyoming, United States of America
| | - Aru Balachandran
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Gordon Mitchell
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Michael W. Miller
- Colorado Parks and Wildlife, Fort Collins, Colorado, United States of America
| | - Romolo Nonno
- Istituto Superiore di Sanità, Department of Veterinary Public Health, Nutrition and Food Safety, Rome, Italy
| | - Turid Vikøren
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Knut Madslien
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Tram Thu Vuong
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Sylvie L. Benestad
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Glenn C. Telling
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
28
|
Perception of the Health Threats Related to the Consumption of Wild Animal Meat-Is Eating Game Risky? Foods 2021; 10:foods10071544. [PMID: 34359415 PMCID: PMC8303633 DOI: 10.3390/foods10071544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Consumer interest in game meat has increased in recent years. Consumers appreciate its nutritional value but still have many concerns. Based on data from a quantitative study conducted in the group of 450 purposively selected Polish respondents declaring to consume the game meat, consumers were segmented concerning the perception of health risks associated with its consumption. Three separate clusters were identified using hierarchical cluster analysis: Indifferent (42%), Fearful (30%), and Selective (28%). The clusters differed significantly in the perception of the role of game in their lives and taking actions to mitigate the health risks associated with its consumption. In addition, their socioeconomic profiles were significantly different. The Indifferent segment-significantly more often than the other segments-believes that game has a positive impact on health, and the way to counteract the health risks is to not eat raw meat. The Selective segment attaches great importance to the choice of consumption place as a warranty of access to safe meat. The Fearful segment is willing to pay more for good quality meat and search for information. The results proved that the game consumers are not a homogenous group. Recognizing the differences can indicate a path for the traders to efficiently meet the consumers' expectations and needs.
Collapse
|
29
|
Arifin MI, Hannaoui S, Chang SC, Thapa S, Schatzl HM, Gilch S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052271. [PMID: 33668798 PMCID: PMC7956812 DOI: 10.3390/ijms22052271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Samia Hannaoui
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hermann M. Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
30
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
31
|
Watson N, Brandel JP, Green A, Hermann P, Ladogana A, Lindsay T, Mackenzie J, Pocchiari M, Smith C, Zerr I, Pal S. The importance of ongoing international surveillance for Creutzfeldt-Jakob disease. Nat Rev Neurol 2021; 17:362-379. [PMID: 33972773 PMCID: PMC8109225 DOI: 10.1038/s41582-021-00488-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/04/2023]
Abstract
Creutzfeldt-Jakob disease (CJD) is a rapidly progressive, fatal and transmissible neurodegenerative disease associated with the accumulation of misfolded prion protein in the CNS. International CJD surveillance programmes have been active since the emergence, in the mid-1990s, of variant CJD (vCJD), a disease linked to bovine spongiform encephalopathy. Control measures have now successfully contained bovine spongiform encephalopathy and the incidence of vCJD has declined, leading to questions about the requirement for ongoing surveillance. However, several lines of evidence have raised concerns that further cases of vCJD could emerge as a result of prolonged incubation and/or secondary transmission. Emerging evidence from peripheral tissue distribution studies employing high-sensitivity assays suggests that all forms of human prion disease carry a theoretical risk of iatrogenic transmission. Finally, emerging diseases, such as chronic wasting disease and camel prion disease, pose further risks to public health. In this Review, we provide an up-to-date overview of the transmission of prion diseases in human populations and argue that CJD surveillance remains vital both from a public health perspective and to support essential research into disease pathophysiology, enhanced diagnostic tests and much-needed treatments.
Collapse
Affiliation(s)
- Neil Watson
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jean-Philippe Brandel
- grid.411439.a0000 0001 2150 9058Cellule Nationale de référence des MCJ, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Alison Green
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Hermann
- grid.411984.10000 0001 0482 5331National Reference Centre for TSE, Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Anna Ladogana
- grid.416651.10000 0000 9120 6856Registry of Creutzfeldt-Jakob Disease, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Terri Lindsay
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Janet Mackenzie
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Maurizio Pocchiari
- grid.416651.10000 0000 9120 6856Registry of Creutzfeldt-Jakob Disease, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Colin Smith
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Inga Zerr
- grid.411984.10000 0001 0482 5331National Reference Centre for TSE, Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Suvankar Pal
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
The unique spatial ecology of human hunters. Nat Hum Behav 2020; 4:694-701. [PMID: 32203320 DOI: 10.1038/s41562-020-0836-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022]
Abstract
Human hunters are described as 'superpredators' with a unique ecology. Chronic wasting disease among cervids and African swine fever among wild boar are emerging wildlife diseases in Europe, with huge economic and cultural repercussions. Understanding hunter movements at broad scales has implications for how to control the spread of these diseases. Here we show, based on analysis of the settlement patterns and movements of hunters of reindeer (n = 9,685), red deer (n = 47,845), moose (n = 60,365) and roe deer (n = 42,530) from across Norway (2001-2017), that hunter density was more closely linked to human density than prey density and that hunters were largely migratory, aggregated with increasing regional prey densities and often used dogs. Hunter movements extended across Europe and to other continents. Our results provide extensive evidence that the broad-scale movements and residency patterns of postindustrial hunters relative to their prey differ from those of large carnivores.
Collapse
|
33
|
McNulty EE, Nalls AV, Xun R, Denkers ND, Hoover EA, Mathiason CK. In vitro detection of haematogenous prions in white-tailed deer orally dosed with low concentrations of chronic wasting disease. J Gen Virol 2020; 101:347-361. [PMID: 31846418 PMCID: PMC7416609 DOI: 10.1099/jgv.0.001367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Infectivity associated with prion disease has been demonstrated in blood throughout the course of disease, yet the ability to detect blood-borne prions by in vitro methods remains challenging. We capitalized on longitudinal pathogenesis studies of chronic wasting disease (CWD) conducted in the native host to examine haematogenous prion load by real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification. Our study demonstrated in vitro detection of amyloid seeding activity (prions) in buffy-coat cells harvested from deer orally dosed with low concentrations of CWD positive (+) brain (1 gr and 300 ng) or saliva (300 ng RT-QuIC equivalent). These findings make possible the longitudinal assessment of prion disease and deeper investigation of the role haematogenous prions play in prion pathogenesis.
Collapse
Affiliation(s)
- Erin E. McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amy V. Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Randy Xun
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel D. Denkers
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edward A. Hoover
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
34
|
Haley NJ, Merrett K, Buros Stein A, Simpson D, Carlson A, Mitchell G, Staskevicius A, Nichols T, Lehmkuhl AD, Thomsen BV. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLoS One 2019; 14:e0224342. [PMID: 31790424 PMCID: PMC6886763 DOI: 10.1371/journal.pone.0224342] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic wasting disease is a prion disease affecting both free-ranging and farmed cervids in North America and Scandinavia. A range of cervid species have been found to be susceptible, each with variations in the gene for the normal prion protein, PRNP, reportedly influencing both disease susceptibility and progression in the respective hosts. Despite the finding of several different PRNP alleles in white-tailed deer, the majority of past research has focused on two of the more common alleles identified-the 96G and 96S alleles. In the present study, we evaluate both infection status and disease stage in nearly 2100 farmed deer depopulated in the United States and Canada, including 714 CWD-positive deer and correlate our findings with PRNP genotype, including the more rare 95H, 116G, and 226K alleles. We found significant differences in either likelihood of being found infected or disease stage (and in many cases both) at the time of depopulation in all genotypes present, relative to the most common 96GG genotype. Despite high prevalence in many of the herds examined, infection was not found in several of the reported genotypes. These findings suggest that additional research is necessary to more properly define the role that these genotypes may play in managing CWD in both farmed and free-ranging white-tailed deer, with consideration for factors including relative fitness levels, incubation periods, and the kinetics of shedding in animals with these rare genotypes.
Collapse
Affiliation(s)
- Nicholas J. Haley
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Kahla Merrett
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Amy Buros Stein
- Office of Research and Sponsored Programs, Midwestern University, Glendale, Arizona
| | - Dennis Simpson
- Simpson Whitetails Genetic Testing, Belleville, Michigan
| | - Andrew Carlson
- Simpson Whitetails Genetic Testing, Belleville, Michigan
| | - Gordon Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - Antanas Staskevicius
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - Tracy Nichols
- United States Department of Agriculture, APHIS, Veterinary Services, Cervid Health Program, Fort Collins, Colorado, United States of America
| | - Aaron D. Lehmkuhl
- United States Department of Agriculture, APHIS, Veterinary Services, National Veterinary Services Laboratories, Ames, Iowa, United States of America
| | - Bruce V. Thomsen
- United States Department of Agriculture, APHIS, Veterinary Services, National Veterinary Services Laboratories, Ames, Iowa, United States of America
- United States Department of Agriculture, APHIS, Veterinary Services, Center for Veterinary Biologics, Ames, Iowa, United States of America
| |
Collapse
|
35
|
Koutsoumanis K, Allende A, Alvarez-Ordoňez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Skandamis P, Suffredini E, Andreoletti O, Benestad SL, Comoy E, Nonno R, da Silva Felicio T, Ortiz-Pelaez A, Simmons MM. Update on chronic wasting disease (CWD) III. EFSA J 2019; 17:e05863. [PMID: 32626163 PMCID: PMC7008890 DOI: 10.2903/j.efsa.2019.5863] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The European Commission asked EFSA for a Scientific Opinion: to revise the state of knowledge about the differences between the chronic wasting disease (CWD) strains found in North America (NA) and Europe and within Europe; to review new scientific evidence on the zoonotic potential of CWD and to provide recommendations to address the potential risks and to identify risk factors for the spread of CWD in the European Union. Full characterisation of European isolates is being pursued, whereas most NA CWD isolates have not been characterised in this way. The differing surveillance programmes in these continents result in biases in the types of cases that can be detected. Preliminary data support the contention that the CWD strains identified in Europe and NA are different and suggest the presence of strain diversity in European cervids. Current data do not allow any conclusion on the implications of strain diversity on transmissibility, pathogenesis or prevalence. Available data do not allow any conclusion on the zoonotic potential of NA or European CWD isolates. The risk of CWD to humans through consumption of meat cannot be directly assessed. At individual level, consumers of meat, meat products and offal derived from CWD-infected cervids will be exposed to the CWD agent(s). Measures to reduce human dietary exposure could be applied, but exclusion from the food chain of whole carcasses of infected animals would be required to eliminate exposure. Based on NA experiences, all the risk factors identified for the spread of CWD may be associated with animals accumulating infectivity in both the peripheral tissues and the central nervous system. A subset of risk factors is relevant for infected animals without involvement of peripheral tissues. All the risk factors should be taken into account due to the potential co-localisation of animals presenting with different disease phenotypes.
Collapse
|
36
|
Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal Species. mBio 2019; 10:mBio.01091-19. [PMID: 31337719 PMCID: PMC6650550 DOI: 10.1128/mbio.01091-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion-related transmissible spongiform encephalopathy of cervids, including deer, elk, reindeer, sika deer, and moose. CWD has been confirmed in at least 26 U.S. states, three Canadian provinces, South Korea, Finland, Norway, and Sweden, with a notable increase in the past 5 years. The continued geographic spread of this disease increases the frequency of exposure to CWD prions among cervids, humans, and other animal species. Chronic wasting disease (CWD) is a prion-related transmissible spongiform encephalopathy of cervids, including deer, elk, reindeer, sika deer, and moose. CWD has been confirmed in at least 26 U.S. states, three Canadian provinces, South Korea, Finland, Norway, and Sweden, with a notable increase in the past 5 years. The continued geographic spread of this disease increases the frequency of exposure to CWD prions among cervids, humans, and other animal species. Since CWD is now an established wildlife disease in North America, proactive steps, where possible, should be taken to limit transmission of CWD among animals and reduce the potential for human exposure.
Collapse
|
37
|
Gavin C, Henderson D, Benestad SL, Simmons M, Adkin A. Estimating the amount of Chronic Wasting Disease infectivity passing through abattoirs and field slaughter. Prev Vet Med 2019; 166:28-38. [PMID: 30935503 DOI: 10.1016/j.prevetmed.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/23/2022]
Abstract
Chronic Wasting Disease (CWD) is a highly infectious, naturally occurring, transmissible spongiform encephalopathy (TSE, or prion disease) affecting many cervid species. CWD has been widely circulating in North America since it was first reported in 1967. In 2016, the first European case of prion disease in deer was reported and confirmed in Norway. There have since been several confirmed several cases in reindeer and moose and in one red deer in Norway, and recently in a moose in Finland. There is concern over the susceptibility of certain species, especially domestic livestock, to CWD. Recently, a study was presented showing transmission to cynomolgus macaques. Although preliminary, these results raise concerns that CWD may be transmissible to humans. This quantitative risk assessment estimates, by stochastic simulation, the titre of infectivity (herein referred to as "infectivity"), that would pass into the human food chain and environment (in the UK) as a result of a single CWD positive red deer passing through an abattoir, or being field dressed. The model estimated that around 11,000 mouse i.c. log ID50 units would enter the human food chain through the farmed route or wild route. The model estimated that there are around 83,000 mouse i.c. log ID50 units in a deer carcase, compared to around 22,000 in a sheep carcase infected with scrapie, mainly due to the size difference between a red deer and a sheep. For farmed deer, the model estimated that 87% of total carcase infectivity would become animal by-product category 3 material, with only 13% going to the food chain and a small amount to wastewater via the abattoir floor. For wild deer, the model estimated that on average, 85% of total carcase infectivity would be buried in the environment, with 13% going to the food chain and 2% to category 3 material which may be used as a protein source in other industries. Results indicate that if CWD was found in the UK there would be a risk of prions entering the human food chain and the environment. However, it is unclear if humans would be susceptible to CWD following consumption of contaminated meat, or what the environmental impact would be. This risk assessment highlights the need for further research in order to quantify the infectivity in all tissue types, in particular blood, gastrointestinal (GI) tract and skeletal muscle.
Collapse
Affiliation(s)
- Christine Gavin
- Department of Epidemiological Sciences, Animal & Plant Health Agency, Woodham Lane, Weybridge, KT15 3NB, United Kingdom.
| | - Davin Henderson
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sylvie L Benestad
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway
| | - Marion Simmons
- Department of Pathology, Animal & Plant Health Agency, Woodham Lane, Weybridge, KT15 3NB, United Kingdom
| | - Amie Adkin
- Department of Epidemiological Sciences, Animal & Plant Health Agency, Woodham Lane, Weybridge, KT15 3NB, United Kingdom
| |
Collapse
|
38
|
Otero A, Duque Velásquez C, Johnson C, Herbst A, Bolea R, Badiola JJ, Aiken J, McKenzie D. Prion protein polymorphisms associated with reduced CWD susceptibility limit peripheral PrP CWD deposition in orally infected white-tailed deer. BMC Vet Res 2019; 15:50. [PMID: 30717795 PMCID: PMC6360794 DOI: 10.1186/s12917-019-1794-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
Background Chronic wasting disease (CWD) is a prion disease affecting members of the Cervidae family. PrPC primary structures play a key role in CWD susceptibility resulting in extended incubation periods and regulating the propagation of CWD strains. We analyzed the distribution of abnormal prion protein (PrPCWD) aggregates in brain and peripheral organs from orally inoculated white-tailed deer expressing four different PRNP genotypes: Q95G96/Q95G96 (wt/wt), S96/wt, H95/wt and H95/S96 to determine if there are substantial differences in the deposition pattern of PrPCWD between different PRNP genotypes. Results Although we detected differences in certain brain areas, globally, the different genotypes showed similar PrPCWD deposition patterns in the brain. However, we found that clinically affected deer expressing H95 PrPC, despite having the longest survival periods, presented less PrPCWD immunoreactivity in particular peripheral organs. In addition, no PrPCWD was detected in skeletal muscle of any of the deer. Conclusions Our data suggest that expression of H95-PrPC limits peripheral accumulation of PrPCWD as detected by immunohistochemistry. Conversely, infected S96/wt and wt/wt deer presented with similar PrPCWD peripheral distribution at terminal stage of disease, suggesting that the S96-PrPC allele, although delaying CWD progression, does not completely limit the peripheral accumulation of the infectious agent.
Collapse
Affiliation(s)
- Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Chad Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Judd Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada. .,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada.
| |
Collapse
|
39
|
Houston F, Andréoletti O. Animal prion diseases: the risks to human health. Brain Pathol 2019; 29:248-262. [PMID: 30588682 DOI: 10.1111/bpa.12696] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases of animals notably include scrapie in small ruminants, chronic wasting disease (CWD) in cervids and classical bovine spongiform encephalopathy (C-BSE). As the transmission barrier phenomenon naturally limits the propagation of prions from one species to another, and the lack of epidemiological evidence for an association with human prion diseases, the zoonotic potential of these diseases was for a long time considered negligible. However, in 1996, C-BSE was recognized as the cause of a new human prion disease, variant Creutzfeldt-Jakob disease (vCJD), which triggered an unprecedented public health crisis in Europe. Large-scale epidemio-surveillance programs for scrapie and C-BSE that were implemented in the EU after the BSE crisis revealed that the distribution and prevalence of prion diseases in the ruminant population had previously been underestimated. They also led to the recognition of new forms of TSEs (named atypical) in cattle and small ruminants and to the recent identification of CWD in Europe. At this stage, the characterization of the strain diversity and zoonotic abilities associated with animal prion diseases remains largely incomplete. However, transmission experiments in nonhuman primates and transgenic mice expressing human PrP clearly indicate that classical scrapie, and certain forms of atypical BSE (L-BSE) or CWD may have the potential to infect humans. The remaining uncertainties about the origins and relationships between animal prion diseases emphasize the importance of the measures implemented to limit human exposure to these potentially zoonotic agents, and of continued surveillance for both animal and human prion diseases.
Collapse
Affiliation(s)
- Fiona Houston
- Infection and Immunity Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
40
|
Benestad SL, Telling GC. Chronic wasting disease: an evolving prion disease of cervids. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:135-151. [PMID: 29887133 DOI: 10.1016/b978-0-444-63945-5.00008-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic wasting disease (CWD) is a relatively new and burgeoning prion epidemic of deer, elk, reindeer, and moose, which are members of the cervid family. While the disease was first described in captive deer, its subsequent discovery in various species of free-ranging animals makes it the only currently recognized prion disorder of both wild and farmed animals. In addition to its expanding range of host species, CWD continues to spread from North America to new geographic areas, including South Korea, and most recently Norway, marking the first time this disease was detected in Europe. Its unparalleled efficiency of contagious transmission, combined with high densities of deer in certain areas, complicates strategies for controlling CWD, raising concerns about its potential for spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, and since prions from cattle with bovine spongiform encephalopathy have been transmitted to humans causing variant Creutzfeldt-Jakob disease, the possibility of zoonotic transmission of CWD is particularly concerning. Here we review the clinical and pathologic features of CWD and its disturbing epidemiology, and discuss features that affect its transmission, including genetic susceptibility, pathogenesis, and agent strain variability. Finally, we discuss evidence that speaks to the potential for zoonotic transmission of this emerging disease.
Collapse
Affiliation(s)
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
41
|
Moreno JA, Telling GC. Molecular Mechanisms of Chronic Wasting Disease Prion Propagation. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024448. [PMID: 28193766 DOI: 10.1101/cshperspect.a024448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prion disease epidemics, which have been unpredictable recurrences, are of significant concern for animal and human health. Examples include kuru, once the leading cause of death among the Fore people in Papua New Guinea and caused by mortuary feasting; bovine spongiform encephalopathy (BSE) and its subsequent transmission to humans in the form of variant Creutzfeldt-Jakob disease (vCJD), and repeated examples of large-scale prion disease epidemics in animals caused by contaminated vaccines. The etiology of chronic wasting disease (CWD), a relatively new and burgeoning prion epidemic in deer, elk, and moose (members of the cervid family), is more enigmatic. The disease was first described in captive and later in wild mule deer and subsequently in free-ranging as well as captive Rocky Mountain elk, white-tailed deer, and most recently moose. It is therefore the only recognized prion disorder of both wild and captive animals. In addition to its expanding range of hosts, CWD continues to spread to new geographical areas, including recent cases in Norway. The unparalleled efficiency of the contagious transmission of the disease combined with high densities of deer in certain areas of North America complicates strategies for controlling CWD and raises concerns about its potential spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, the possibility of zoonotic transmission is particularly concerning. Here, we review the current status of naturally occurring CWD and describe advances in our understanding of its molecular pathogenesis, as shown by studies of CWD prions in novel in vivo and in vitro systems.
Collapse
Affiliation(s)
- Julie A Moreno
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| |
Collapse
|
42
|
Davenport KA, Christiansen JR, Bian J, Young M, Gallegos J, Kim S, Balachandran A, Mathiason CK, Hoover EA, Telling GC. Comparative analysis of prions in nervous and lymphoid tissues of chronic wasting disease-infected cervids. J Gen Virol 2018; 99:753-758. [PMID: 29580373 DOI: 10.1099/jgv.0.001053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The prevalence, host range and geographical bounds of chronic wasting disease (CWD), the prion disease of cervids, are expanding. Horizontal transmission likely contributes the majority of new CWD cases, but the mechanism by which prions are transmitted among CWD-affected cervids remains unclear. To address the extent to which prion amplification in peripheral tissues contributes to contagious transmission, we assessed the prion levels in central nervous and lymphoreticular system tissues in white-tailed deer (Odocoileus virginianus), red deer (Cervus elaphus elaphus) and elk (Cervus canadensis). Using real-time quaking-induced conversion, cervid prion cell assay and transgenic mouse bioassay, we found that the retropharyngeal lymph nodes of red deer, white-tailed deer and elk contained similar prion titres to brain from the same individuals. We propose that marked lymphotropism is essential for the horizontal transmission of prion diseases and postulate that shed CWD prions are produced in the periphery.
Collapse
Affiliation(s)
- Kristen A Davenport
- Prion Research Center (PRC), Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jeffrey R Christiansen
- Prion Research Center (PRC), Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jifeng Bian
- Prion Research Center (PRC), Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael Young
- Prion Research Center (PRC), Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Joseph Gallegos
- Prion Research Center (PRC), Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sehun Kim
- Prion Research Center (PRC), Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | - Candace K Mathiason
- Prion Research Center (PRC), Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edward A Hoover
- Prion Research Center (PRC), Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Glenn C Telling
- Prion Research Center (PRC), Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
43
|
Mejía‐Salazar MF, Waldner CL, Hwang YT, Bollinger TK. Use of environmental sites by mule deer: a proxy for relative risk of chronic wasting disease exposure and transmission. Ecosphere 2018. [DOI: 10.1002/ecs2.2055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- María Fernanda Mejía‐Salazar
- Department of Veterinary Pathology University of Saskatchewan 52 Campus Drive Saskatoon Saskatchewan S7N 5B4 Canada
| | - Cheryl L. Waldner
- Department of Large Animal Clinical Sciences University of Saskatchewan 52 Campus Drive Saskatoon Saskatchewan S7N 5B4 Canada
| | - Yeen Ten Hwang
- Department of Veterinary Pathology University of Saskatchewan 52 Campus Drive Saskatoon Saskatchewan S7N 5B4 Canada
- Fish and Wildlife Branch Saskatchewan Ministry of Environment Regina Saskatchewan S4S 5W6 Canada
| | - Trent K. Bollinger
- Department of Veterinary Pathology University of Saskatchewan 52 Campus Drive Saskatoon Saskatchewan S7N 5B4 Canada
- Canadian Wildlife Health Cooperative (CWHC) 52 Campus Drive Saskatoon Saskatchewan S7N 5B4 Canada
| |
Collapse
|
44
|
Gutiérrez EE, Helgen KM, McDonough MM, Bauer F, Hawkins MTR, Escobedo-Morales LA, Patterson BD, Maldonado JE. A gene-tree test of the traditional taxonomy of American deer: the importance of voucher specimens, geographic data, and dense sampling. Zookeys 2017; 697:87-131. [PMID: 29134018 PMCID: PMC5673856 DOI: 10.3897/zookeys.697.15124] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/30/2017] [Indexed: 11/12/2022] Open
Abstract
The taxonomy of American deer has been established almost entirely on the basis of morphological data and without the use of explicit phylogenetic methods; hence, phylogenetic analyses including data for all of the currently recognized species, even if based on a single gene, might improve current understanding of their taxonomy. We tested the monophyly of the morphology-defined genera and species of New World deer (Odocoileini) with phylogenetic analyses of mitochondrial DNA sequences. This is the first such test conducted using extensive geographic and taxonomic sampling. Our results do not support the monophyly of Mazama, Odocoileus, Pudu, M. americana, M. nemorivaga, Od. hemionus, and Od. virginianus. Mazama contains species that belong to other genera. We found a novel sister-taxon relationship between "Mazama" pandora and a clade formed by Od. hemionus columbianus and Od. h. sitkensis, and transfer pandora to Odocoileus. The clade formed by Od. h. columbianus and Od. h. sitkensis may represent a valid species, whereas the remaining subspecies of Od. hemionus appear closer to Od. virginianus. Pudu (Pudu) puda was not found sister to Pudu (Pudella) mephistophiles. If confirmed, this result will prompt the recognition of the monotypic Pudella as a distinct genus. We provide evidence for the existence of an undescribed species now confused with Mazama americana, and identify other instances of cryptic, taxonomically unrecognized species-level diversity among populations here regarded as Mazama temama, "Mazama" nemorivaga, and Hippocamelus antisensis. Noteworthy records that substantially extend the known distributions of M. temama and "M." gouazoubira are provided, and we unveil a surprising ambiguity regarding the distribution of "M." nemorivaga, as it is described in the literature. The study of deer of the tribe Odocoileini has been hampered by the paucity of information regarding voucher specimens and the provenance of sequences deposited in GenBank. We pinpoint priorities for future systematic research on the tribe Odocoileini.
Collapse
Affiliation(s)
- Eliécer E. Gutiérrez
- PPG Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Av. Roraima n. 1000, Prédio 17, sala 1140-D, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
- Departamento de Zoologia, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Center for Conservation Genomics, National Zoological Park, Smithsonian Institution, Washington DC, USA
| | - Kristofer M. Helgen
- School of Biological Sciences and Environment Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Molly M. McDonough
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Center for Conservation Genomics, National Zoological Park, Smithsonian Institution, Washington DC, USA
| | - Franziska Bauer
- Museum of Zoology, Senckenberg Natural History Collections, Dresden, Germany
| | - Melissa T. R. Hawkins
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Center for Conservation Genomics, National Zoological Park, Smithsonian Institution, Washington DC, USA
| | - Luis A. Escobedo-Morales
- Instituto de Biología, Universidad Nacional Autónoma de México, circuito exterior s/n, Ciudad Universitaria, Coyoacán, CP04510, Mexico City, Mexico
| | - Bruce D. Patterson
- Integrative Research Center, Field Museum of Natural History, Chicago, IL60605, USA
| | - Jesús E. Maldonado
- Center for Conservation Genomics, National Zoological Park, Smithsonian Institution, Washington DC, USA
- Environmental Science & Policy, George Mason University, 4400 University Dr., Fairfax, VA 22030, USA
| |
Collapse
|
45
|
Davenport KA, Hoover CE, Bian J, Telling GC, Mathiason CK, Hoover EA. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer. PLoS One 2017; 12:e0183927. [PMID: 28880938 PMCID: PMC5589181 DOI: 10.1371/journal.pone.0183927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022] Open
Abstract
The agent responsible for prion diseases is a misfolded form of a normal protein (PrPC). The prion hypothesis stipulates that PrPC must be present for the disease to manifest. Cervid populations across the world are infected with chronic wasting disease, a horizontally-transmissible prion disease that is likely spread via oral exposure to infectious prions (PrPCWD). Though PrPCWD has been identified in many tissues, there has been little effort to characterize the overall PrPC expression in cervids and its relationship to PrPCWD accumulation. We used immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay to describe PrPC expression in naïve white-tailed deer. We used real-time, quaking-induced conversion (RT-QuIC) to detect prion seeding activity in CWD-infected deer. We assessed tissues comprising the alimentary tract, alimentary-associated lymphoid tissue and systemic lymphoid tissue from 5 naïve deer. PrPC was expressed in all tissues, though expression was often very low compared to the level in the CNS. IHC identified specific cell types wherein PrPC expression is very high. To compare the distribution of PrPC to PrPCWD, we examined 5 deer with advanced CWD infection. Using RT-QuIC, we detected prion seeding activity in all 21 tissues. In 3 subclinical deer sacrificed 4 months post-inoculation, we detected PrPCWD consistently in alimentary-associated lymphoid tissue, irregularly in alimentary tract tissues, and not at all in the brain. Contrary to our hypothesis that PrPC levels dictate prion accumulation, PrPC expression was higher in the lower gastrointestinal tissues than in the alimentary-associated lymphoid system and was higher in salivary glands than in the oropharyngeal lymphoid tissue. These data suggest that PrPC expression is not the sole driver of prion accumulation and that alimentary tract tissues accumulate prions before centrifugal spread from the brain occurs.
Collapse
Affiliation(s)
- Kristen A. Davenport
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Clare E. Hoover
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jifeng Bian
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Glenn C. Telling
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Edward A. Hoover
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
46
|
Immunization of cervidized transgenic mice with multimeric deer prion protein induces self-antibodies that antagonize chronic wasting disease infectivity in vitro. Sci Rep 2017; 7:10538. [PMID: 28874781 PMCID: PMC5585258 DOI: 10.1038/s41598-017-11235-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is the most contagious prion disease. It is expanding rapidly in North America, was found recently in Europe, and the potential for transmission to humans cannot be excluded yet. We hypothesized that it is possible to prevent peripheral CWD infection and CWD prion shedding by inducing auto-antibodies against the cellular prion protein (PrPC) by active vaccination. Our objective is to overcome self-tolerance against PrP by using a multimeric recombinant PrP (recPrP) as an immunogen. We expressed in E. coli, purified and refolded four immunogens: cervid and murine recPrP in monomeric and dimeric form. Testing immunogenicity in sera of the vaccinated transgenic mice expressing cervid PrP revealed that all four immunogens effectively overcame self-tolerance against the prion protein as shown by high antibody titers. Confocal microscopy analysis revealed effective binding of post-immune sera to surface-located PrPC in both murine and cervid PrP expressing cultured cells. Remarkably, the post-immune auto-antibodies effectively inhibited CWD-induced prion conversion in RT-QuIC assay when incubated with either PrP substrate or CWD seed. Furthermore, they mitigated prion propagation in CWD-infected cervid-PrP expressing RK13 cells. Together, multimeric recombinant cervid PrP effectively overcomes self-tolerance to PrP and induces auto-antibodies that interfere with CWD conversion in vitro.
Collapse
|
47
|
Mathiason CK. Scrapie, CWD, and Transmissible Mink Encephalopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:267-292. [PMID: 28838664 DOI: 10.1016/bs.pmbts.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prions, are neurodegenerative diseases that affect a variety of animal species, including humans. Cruetzfeldt-Jakob disease (CJD) in humans, sheep and goat scrapie, chronic wasting disease (CWD) of cervids, and transmissible mink encephalopathy (TME) of mink are classified as TSEs. According to the "protein-only" hypothesis (Prusiner, 1982),1 prions are devoid of nucleic acids and consist of assemblies of misfolded host-encoded normal protein, the prion protein (PrPC). Prion propagation is thought to occur by a templating mechanism during which PrPC is recruited, converted to a disease-associated isoform (PrPD), and assembled onto the growing amyloid fibril. This fibular assembly is infectious, with ability to initiate disease processes similar to other pathogenic agents. Evidence indicates that scrapie, CWD, and TME disease processes follow this rule.
Collapse
|
48
|
Haley NJ, Richt JA. Evolution of Diagnostic Tests for Chronic Wasting Disease, a Naturally Occurring Prion Disease of Cervids. Pathogens 2017; 6:pathogens6030035. [PMID: 28783058 PMCID: PMC5617992 DOI: 10.3390/pathogens6030035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Since chronic wasting disease (CWD) was first identified nearly 50 years ago in a captive mule deer herd in the Rocky Mountains of the United States, it has slowly spread across North America through the natural and anthropogenic movement of cervids and their carcasses. As the endemic areas have expanded, so has the need for rapid, sensitive, and cost effective diagnostic tests—especially those which take advantage of samples collected antemortem. Over the past two decades, strategies have evolved from the recognition of microscopic spongiform pathology and associated immunohistochemical staining of the misfolded prion protein to enzyme-linked immunoassays capable of detecting the abnormal prion conformer in postmortem samples. In a history that parallels the diagnosis of more conventional infectious agents, both qualitative and real-time amplification assays have recently been developed to detect minute quantities of misfolded prions in a range of biological and environmental samples. With these more sensitive and semi-quantitative approaches has come a greater understanding of the pathogenesis and epidemiology of this disease in the native host. Because the molecular pathogenesis of prion protein misfolding is broadly analogous to the misfolding of other pathogenic proteins, including Aβ and α-synuclein, efforts are currently underway to apply these in vitro amplification techniques towards the diagnosis of Alzheimer’s disease, Parkinson’s disease, and other proteinopathies. Chronic wasting disease—once a rare disease of Colorado mule deer—now represents one of the most prevalent prion diseases, and should serve as a model for the continued development and implementation of novel diagnostic strategies for protein misfolding disorders in the natural host.
Collapse
Affiliation(s)
- Nicholas J Haley
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA.
| | - Jürgen A Richt
- College of Veterinary Medicine, Kansas State University (KSU), Manhattan, KS 66506, USA.
| |
Collapse
|
49
|
Cheng YC, Musiani M, Cavedon M, Gilch S. High prevalence of prion protein genotype associated with resistance to chronic wasting disease in one Alberta woodland caribou population. Prion 2017; 11:136-142. [PMID: 28350512 PMCID: PMC5399904 DOI: 10.1080/19336896.2017.1300741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in deer, elk and moose in North America and since recently, wild reindeer in Norway. Caribou are at-risk to encounter CWD in areas such as Alberta, Canada, where the disease spreads toward caribou habitats. CWD susceptibility is modulated by species-specific polymorphisms in the prion protein gene (Prnp). We sequenced Prnp of woodland caribou from 9 Albertan populations. In one population (Chinchaga) a significantly higher frequency of the 138N allele linked to reduced CWD susceptibility was observed. These data are relevant for developing CWD management strategies including conservation of threatened caribou populations.
Collapse
Affiliation(s)
- Yo Ching Cheng
- a Department of Ecosystem and Public Health , Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary , Calgary , Canada
| | - Marco Musiani
- b Department of Biological Sciences, Faculty of Science , University of Calgary , Calgary , Canada
| | - Maria Cavedon
- b Department of Biological Sciences, Faculty of Science , University of Calgary , Calgary , Canada
| | - Sabine Gilch
- a Department of Ecosystem and Public Health , Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary , Calgary , Canada
| |
Collapse
|
50
|
Abstract
Prions cause fatal neurodegenerative diseases in humans and animals and can be transmitted zoonotically. Chronic wasting disease (CWD) is a highly transmissible prion disease of wild deer and elk that affects cervids over extensive regions of the United States and Canada. The risk of cross-species CWD transmission has been experimentally evaluated in a wide array of mammals, including non-human primates and mouse models expressing human cellular prion protein. Here we review the determinants of cross-species CWD transmission, and propose a model that may explain a structural barrier for CWD transmission to humans.
Collapse
Affiliation(s)
- Timothy D Kurt
- a Departments of Pathology and Medicine , UC San Diego , La Jolla , CA , USA
| | - Christina J Sigurdson
- a Departments of Pathology and Medicine , UC San Diego , La Jolla , CA , USA.,b Department of Pathology, Immunology, and Microbiology , UC Davis , Davis , CA , USA
| |
Collapse
|