1
|
Ensoy M, Parıltı DN, Alkan AH, İlhan KNK, Mutlu P, Dedeoğlu BG, Cansaran‐Duman D. Evernic Acid: A Low-Toxic and Selective Alternative to Chemotherapeutic Agents in the Treatment of Ovarian Cancer. Arch Pharm (Weinheim) 2025; 358:e70015. [PMID: 40405479 PMCID: PMC12099196 DOI: 10.1002/ardp.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/24/2025]
Abstract
Evernic acid (EA) has emerged as a potential therapeutic agent with its low toxicity and anticancer properties. In this study, the anticancer effect of EA on ovarian cancer cell lines and normal ovarian surface epithelial cells (OSE) was evaluated. The antiproliferative effect of EA was evaluated by xCELLigence Real-Time Cell analysis, colony formation assay, and acridine orange and DAPI staining methods. Genotoxicity analysis was performed by comet assay. The effect of EA on cell migration was analyzed by wound healing assay. The potential of EA to induce apoptosis was also determined by evaluating the changes in gene and protein expression levels by qRT-PCR and Western blot analysis, respectively. EA was found to be a promising potential therapeutic agent for ovarian cancer without showing significant cytotoxic effect on normal cells. Furthermore, EA decreased the ability of ovarian cancer cells for migration, increased the rate of apoptosis by inhibiting BIRC5 and activating CASP3, triggered cell cycle arrest in the G2/M phase, and caused a decrease in mitochondrial membrane potential and genotoxic effects. The results have shown that EA could be an effective candidate molecule for ovarian cancer treatment.
Collapse
Affiliation(s)
- Mine Ensoy
- Biotechnology InstituteAnkara UniversityKeçiörenAnkaraTürkiye
| | | | - Ayşe Hale Alkan
- Biotechnology InstituteAnkara UniversityKeçiörenAnkaraTürkiye
| | | | - Pelin Mutlu
- Biotechnology InstituteAnkara UniversityKeçiörenAnkaraTürkiye
| | | | | |
Collapse
|
2
|
He C, Wang X, Chiou YS, Basappa B, Zhu T, Pandey V, Lobie PE. Inhibition of TFF3 synergizes with c-MET inhibitors to decrease the CSC-like phenotype and metastatic burden in ER+HER2+ mammary carcinoma. Cell Death Dis 2025; 16:76. [PMID: 39920140 PMCID: PMC11806102 DOI: 10.1038/s41419-025-07387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
The interaction between HER2 and ERα signaling pathways contributes to resistance to anti-estrogen and HER2-targeted therapies, presenting substantial treatment challenges in ER-positive (ER+) HER2-positive (HER2+) mammary carcinoma (MC). Trefoil Factor-3 (TFF3) has been reported to mediate resistance to both anti-estrogen and anti-HER2 targeted therapies in ER+ and ER+HER2+ MC, respectively. Herein, the function and mechanism of TFF3 in ER+HER2+ MC were delineated; and novel combinatorial therapeutic strategies were identified. Elevated expression of TFF3 promoted the oncogenicity of ER+HER2+ MC cells, including enhanced cell proliferation, survival, anchorage-independent growth, 3D growth, cancer stem cell-like (CSC-like) phenotype, migration, invasion, and xenograft growth. Targeting TFF3 with an interfering RNA plasmid or a small-molecule inhibitor (AMPC) inhibited these oncogenic characteristics, highlighting the therapeutic potential of targeting TFF3 in ER+HER2+ MC. Furthermore, a high-throughput combinatorial anti-cancer compound library screening revealed that AMPC preferentially synergized with receptor tyrosine kinase c-MET inhibitors (c-METis) to reduce cell survival and the CSC-like phenotype. The combination of AMPC and c-METis also synergistically suppressed the in vivo growth of ER+HER2+ MC cell-derived xenografts and abrogated lung metastasis. Mechanistically, TFF3 was observed to activate c-MET signaling through a positive-feedback loop to enhance the CSC-like phenotype of ER+HER2+ MC. Therefore, proof of concept is provided herein that antagonizing of TFF3 is a promising therapeutic strategy in combination with c-MET inhibition for the treatment of ER+HER2+ MC.
Collapse
Affiliation(s)
- Chuyu He
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, PR China
| | - Xuejuan Wang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, PR China
| | - Yi-Shiou Chiou
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, PR China
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, PR China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, PR China.
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, PR China.
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, PR China.
| |
Collapse
|
3
|
Chowdhary S, Preeti, Shekhar, Gupta N, Kumar R, Kumar V. Advances in chalcone-based anticancer therapy: mechanisms, preclinical advances, and future perspectives. Expert Opin Drug Discov 2024; 19:1417-1437. [PMID: 39621431 DOI: 10.1080/17460441.2024.2436908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Cancer remains a leading cause of death worldwide with traditional treatments like chemotherapy, and radiotherapy becoming less effective due to multidrug resistance (MDR). This highlights the necessity for novel chemotherapeutics like chalcone-based compounds, which demonstrate broad anti-cancer properties and target multiple pathways. These compounds hold promise for improving cancer treatment outcomes compared to existing therapies. AREAS COVERED This review provides a comprehensive synopsis of the recent literature (2018-2024) for anti-proliferative/anti-cancer activity of chalcones. It includes the identification of potential targets, their mechanisms of action, and possible modes of binding. Additionally, chalcone derivatives in preclinical trials are also discussed. EXPERT OPINION Chalcones mark a significant stride in anticancer therapies due to their multifaceted approach in targeting various cellular pathways. Their ability to simultaneously target multiple pathways enables them to overcome drug resistance as compared to traditional therapies. With well-defined mechanisms of action, these compounds can serve as lead molecules for designing new, more promising treatments. Continued progress in synthesis and structural optimization, along with promising results from preclinical trials, offers hope for the development of more potent molecules, heralding a new era in cancer therapeutics.
Collapse
Affiliation(s)
| | - Preeti
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Nikita Gupta
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Rajesh Kumar
- Department of Physics, Lovely Professional University, Phagwara, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
4
|
Voßen S, Xerxa E, Bajorath J. Assessing Darkness of the Human Kinome from a Medicinal Chemistry Perspective. J Med Chem 2024; 67:17919-17928. [PMID: 39320975 DOI: 10.1021/acs.jmedchem.4c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
In drug discovery, human protein kinases (PKs) represent one of the major target classes due to their central role in cellular signaling, implication in various diseases as a consequence of deregulated signaling, and notable druggability. Individual PKs and their disease biology have been explored to different degrees, giving rise to heterogeneous functional knowledge and disease associations across the human kinome. The U.S. National Institutes of Health previously designated 162 understudied ("dark") human PKs and lipid kinases due to the lack of functional annotations and high-quality molecular probes for functional investigations. Given the large volumes of available PK inhibitors (PKIs) and activity data, we have systematically analyzed the distribution of PKIs and associated data at different confidence levels across the human kinome and distinguished between chemically explored, underexplored, and unexplored PKs. The analysis provides a medicinal chemistry-centric view of PK exploration and further extends prior assessment of the dark kinome.
Collapse
Affiliation(s)
- Selina Voßen
- B-IT, Department of Life Science Informatics and Data Science, Rheinische Friedrich-Wilhelms-Universität, Bonn D-53115, Germany
| | - Elena Xerxa
- B-IT, Department of Life Science Informatics and Data Science, Rheinische Friedrich-Wilhelms-Universität, Bonn D-53115, Germany
- Lamarr Institute for Machine Learning and Artificial Intelligence, Bonn D-53115, Germany
| | - Jürgen Bajorath
- B-IT, Department of Life Science Informatics and Data Science, Rheinische Friedrich-Wilhelms-Universität, Bonn D-53115, Germany
- Lamarr Institute for Machine Learning and Artificial Intelligence, Bonn D-53115, Germany
- LIMES Institute, Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, Bonn D-53115, Germany
| |
Collapse
|
5
|
Faris A, Ibrahim IM, Hadni H, Elhallaoui M. High-throughput virtual screening of phenylpyrimidine derivatives as selective JAK3 antagonists using computational methods. J Biomol Struct Dyn 2024; 42:7574-7599. [PMID: 37539779 DOI: 10.1080/07391102.2023.2240413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
In this study, we used phenylpyrimidine derivatives with known biological activity against JAK3, a critical tyrosine kinase enzyme involved in signaling pathways, to find similar compounds as potential treatments for rheumatoid arthritis. These inhibitors inhibited JAK3 activity by forming a covalent bond with the Cys909 residue, which resulted in a strong inhibitory effect. Phenylpyrimidine is considered a promising therapeutic target. For pharmacophore modeling, 39 phenylpyrimidine derivatives with high pIC50 (Exp) values were chosen. The best pharmacophore model produced 28 molecules, and the five-point common pharmacophore hypothesis from P HASE (DHRRR_1) revealed the requirement for a hydrogen bond donor feature, a hydrophobic group feature, and three aromatic ring features for further design. The validation of the pharmacophore model phase was performed through 3D-QSAR using partial least squares (P LS). The 3D-QSAR study produced two successful models, an atom-based model (R2 = 0.95; Q2 = 0.67) and a field-based model (R2 = 0.93; Q2 = 0.76), which were used to predict the biological activity of new compounds. The pharmacophore model successfully distinguished between active and inactive medications, discovered potential JAK3 inhibitors, and demonstrated validity with a ROC of 0. 77. ADME-Tox was used to eliminate compounds that might have adverse effects. The best pharmacokinetics and affinity derivatives were selected for covalent docking. A molecular dynamics simulation of the selected molecules and the protein complex was performed to confirm the stability of the interaction with JAK3, whereas MM/GBSA simulations further confirmed their binding affinity. By using the principle of retrosynthesis, we were able to map out a pathway for synthesizing these potential drug candidates. This study has the potential to offer valuable and practical insights for optimizing novel derivatives of phenylpyrimidine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hanine Hadni
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
6
|
Xinyi X, Gong Y. The role of ATP-binding cassette subfamily G member 1 in tumor progression. Cancer Med 2024; 13:e7285. [PMID: 38896016 PMCID: PMC11187935 DOI: 10.1002/cam4.7285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND ATP-binding cassette subfamily G member 1 is mostly known as a transporter for intracellular cholesterol efflux, and a number of studies indicate that ABCG1 also functions actively in tumor initiation and progression. This review aimed to provide an overall review of how ABCG1 acts in tumor progression. METHOD A comprehensive searching about ABCG1 and tumor was conducted up to November 2023 using proper keywords through databases including PubMed and Web of Science. RESULT Overall, ABCG1 plays a crucial role in the development of multiple tumorigenesis. ABCG1 enhances tumor-promoting ability through conferring stem-like properties to cancer cells and mediates chemoresistance in multiple cancers. Additionally, ABCG1 may act as a kinase to phosphorylate downstream molecules and induces tumor growth. In tumor microenvironment, ABCG1 plays a substantial role in immunity response through macrophages to create a tumor-favoring circumstance. CONCLUSION High expression of ABCG1 is usually associated with poor prognosis, which means ABCG1 may be a potential biomarker for early diagnosis and prognosis of various cancers. ABCG1-targeted therapy may provide a novel treatment for cancer patients.
Collapse
Affiliation(s)
- Xu Xinyi
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Yang Gong
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyFudan University Shanghai Medical SchoolShanghaiChina
| |
Collapse
|
7
|
Xerxa E, Bajorath J. Data-oriented protein kinase drug discovery. Eur J Med Chem 2024; 271:116413. [PMID: 38636127 DOI: 10.1016/j.ejmech.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The continued growth of data from biological screening and medicinal chemistry provides opportunities for data-driven experimental design and decision making in early-phase drug discovery. Approaches adopted from data science help to integrate internal and public domain data and extract knowledge from historical in-house data. Protein kinase (PK) drug discovery is an exemplary area where large amounts of data are accumulating, providing a valuable knowledge base for discovery projects. Herein, the evolution of PK drug discovery and development of small molecular PK inhibitors (PKIs) is reviewed, highlighting milestone developments in the field and discussing exemplary studies providing a basis for increasing data orientation of PK discovery efforts.
Collapse
Affiliation(s)
- Elena Xerxa
- Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Lamarr Institute for Machine Learning and Artificial Intelligence, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115, Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Lamarr Institute for Machine Learning and Artificial Intelligence, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115, Bonn, Germany.
| |
Collapse
|
8
|
Liu J, Yan S, Du J, Teng L, Yang R, Xu P, Tao W. Mechanism and treatment of diarrhea associated with tyrosine kinase inhibitors. Heliyon 2024; 10:e27531. [PMID: 38501021 PMCID: PMC10945189 DOI: 10.1016/j.heliyon.2024.e27531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have become first-line drugs for cancer treatment. However, their clinical use is seriously hindered since many patients experience diarrhea after receiving TKIs. The mechanisms of TKI-associated diarrhea remain unclear. Most existing therapies are symptomatic treatments based on experience and their effects are unsatisfactory. Therefore, clarification of the mechanisms underlying diarrhea is critical to develop effective anti-diarrhea drugs. This article summarizes several potential mechanisms of TKI-associated diarrhea and reviews current treatment progress.
Collapse
Affiliation(s)
- Jiangnan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Shuai Yan
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Juntong Du
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Lizhi Teng
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Ru Yang
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Peng Xu
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Weiyang Tao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| |
Collapse
|
9
|
Mobasher M, Vogt M, Xerxa E, Bajorath J. Comprehensive Data-Driven Assessment of Non-Kinase Targets of Inhibitors of the Human Kinome. Biomolecules 2024; 14:258. [PMID: 38540679 PMCID: PMC10967794 DOI: 10.3390/biom14030258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 07/23/2024] Open
Abstract
Protein kinases (PKs) are involved in many intracellular signal transduction pathways through phosphorylation cascades and have become intensely investigated pharmaceutical targets over the past two decades. Inhibition of PKs using small-molecular inhibitors is a premier strategy for the treatment of diseases in different therapeutic areas that are caused by uncontrolled PK-mediated phosphorylation and aberrant signaling. Most PK inhibitors (PKIs) are directed against the ATP cofactor binding site that is largely conserved across the human kinome comprising 518 wild-type PKs (and many mutant forms). Hence, these PKIs often have varying degrees of multi-PK activity (promiscuity) that is also influenced by factors such as single-site mutations in the cofactor binding region, compound binding kinetics, and residence times. The promiscuity of PKIs is often-but not always-critically important for therapeutic efficacy through polypharmacology. Various in vitro and in vivo studies have also indicated that PKIs have the potential of interacting with additional targets other than PKs, and different secondary cellular targets of individual PKIs have been identified on a case-by-case basis. Given the strong interest in PKs as drug targets, a wealth of PKIs from medicinal chemistry and their activity data from many assays and biological screens have become publicly available over the years. On the basis of these data, for the first time, we conducted a systematic search for non-PK targets of PKIs across the human kinome. Starting from a pool of more than 155,000 curated human PKIs, our large-scale analysis confirmed secondary targets from diverse protein classes for 447 PKIs on the basis of high-confidence activity data. These PKIs were active against 390 human PKs, covering all kinase groups of the kinome and 210 non-PK targets, which included other popular pharmaceutical targets as well as currently unclassified proteins. The target distribution and promiscuity of the 447 PKIs were determined, and different interaction profiles with PK and non-PK targets were identified. As a part of our study, the collection of PKIs with activity against non-PK targets and the associated information are made freely available.
Collapse
Affiliation(s)
| | | | | | - Jürgen Bajorath
- LIMES Program Unit Chemical Biology and Medicinal Chemistry, Department of Life Science Informatics and Data Science, B-IT, Lamarr Institute for Machine Learning and Artificial Intelligence, University of Bonn, Friedrich-Hirzebruch-Allee 5/6, 53115 Bonn, Germany
| |
Collapse
|
10
|
Mugiya T, Mothibe M, Khathi A, Ngubane P, Sibiya N. Glycaemic abnormalities induced by small molecule tryosine kinase inhibitors: a review. Front Pharmacol 2024; 15:1355171. [PMID: 38362147 PMCID: PMC10867135 DOI: 10.3389/fphar.2024.1355171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
In light of the expected increase in the prevalence of diabetes mellitus due to an aging population, sedentary lifestyles, an increase in obesity, and unhealthy diets, there is a need to identify potential pharmacological agents that can heighten the risk of developing diabetes. Similarly, it is equally important to also identify those agents that show blood glucose-lowering properties. Amongst these agents are tyrosine kinase inhibitors used to treat certain types of cancers. Over the last two decades, there has been an increase in the use of targeted chemotherapy for cancers such as renal cell carcinoma, chronic leukaemia, and gastrointestinal stromal tumours. Small molecule tyrosine kinase inhibitors have been at the forefront of targeted chemotherapy. Studies have shown that small molecule tyrosine kinase inhibitors can alter glycaemic control and glucose metabolism, with some demonstrating hypoglycaemic activities whilst others showing hyperglycaemic properties. The mechanism by which small molecule tyrosine kinase inhibitors cause glycaemic dysregulation is not well understood, therefore, the clinical significance of these chemotherapeutic agents on glucose handling is also poorly documented. In this review, the effort is directed at mapping mechanistic insights into the effect of various small molecule tyrosine kinase inhibitors on glycaemic dysregulation envisaged to provide a deeper understanding of these chemotherapeutic agents on glucose metabolism. Small molecule tyrosine kinase inhibitors may elicit these observed glycaemic effects through preservation of β-cell function, improving insulin sensitivity and insulin secretion. These compounds bind to a spectrum of receptors and proteins implicated in glucose regulation for example, non-receptor tyrosine kinase SRC and ABL. Then receptor tyrosine kinase EGFR, PDGFR, and FGFR.
Collapse
Affiliation(s)
- Takudzwa Mugiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
11
|
Faris A, Alnajjar R, Guo J, AL Mughram MH, Aouidate A, Asmari M, Elhallaoui M. Computational 3D Modeling-Based Identification of Inhibitors Targeting Cysteine Covalent Bond Catalysts for JAK3 and CYP3A4 Enzymes in the Treatment of Rheumatoid Arthritis. Molecules 2023; 29:23. [PMID: 38202604 PMCID: PMC10779482 DOI: 10.3390/molecules29010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
This work aimed to find new inhibitors of the CYP3A4 and JAK3 enzymes, which are significant players in autoimmune diseases such as rheumatoid arthritis. Advanced computer-aided drug design techniques, such as pharmacophore and 3D-QSAR modeling, were used. Two strong 3D-QSAR models were created, and their predictive power was validated by the strong correlation (R2 values > 80%) between the predicted and experimental activity. With an ROC value of 0.9, a pharmacophore model grounded in the DHRRR hypothesis likewise demonstrated strong predictive ability. Eight possible inhibitors were found, and six new inhibitors were designed in silico using these computational models. The pharmacokinetic and safety characteristics of these candidates were thoroughly assessed. The possible interactions between the inhibitors and the target enzymes were made clear via molecular docking. Furthermore, MM/GBSA computations and molecular dynamics simulations offered insightful information about the stability of the binding between inhibitors and CYP3A4 or JAK3. Through the integration of various computational approaches, this study successfully identified potential inhibitor candidates for additional investigation and efficiently screened compounds. The findings contribute to our knowledge of enzyme-inhibitor interactions and may help us create more effective treatments for autoimmune conditions like rheumatoid arthritis.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi 16063, Libya;
- PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi 16063, Libya
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jingjing Guo
- Centre in Artificial Intelligence-Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China;
| | - Mohammed H. AL Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.H.A.M.); (M.A.)
| | - Adnane Aouidate
- Laboratory of Organic Chemistry and Physical Chemistry, Team of Molecular Modeling, Materials and Environment, Faculty of Sciences, University Ibn Zohr, Agadir 80060, Morocco;
| | - Mufarreh Asmari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.H.A.M.); (M.A.)
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| |
Collapse
|
12
|
Altharawi A, Alanazi MM, Alossaimi MA, Alanazi AS, Alqahtani SM, Geesi MH, Riadi Y. Novel 2-Sulfanylquinazolin-4(3 H)-one Derivatives as Multi-Kinase Inhibitors and Apoptosis Inducers: A Synthesis, Biological Evaluation, and Molecular Docking Study. Molecules 2023; 28:5548. [PMID: 37513420 PMCID: PMC10383864 DOI: 10.3390/molecules28145548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The discovery of multi-targeted kinase inhibitors emerged as a potential strategy in the therapy of multi-genic diseases, such as cancer, that cannot be effectively treated by modulating a single biological function or pathway. The current work presents an extension of our effort to design and synthesize a series of new quinazolin-4-one derivatives based on their established anti-cancer activities as inhibitors of multiple protein kinases. The cytotoxicity of the new derivatives was evaluated against a normal human cell line (WI-38) and four cancer lines, including HepG2, MCF-7, MDA-231, and HeLa. The most active compound, 5d, showed broad-spectrum anti-cancer activities against all tested cell lines (IC50 = 1.94-7.1 µM) in comparison to doxorubicin (IC50 = 3.18-5.57 µM). Interestingly, compound 5d exhibited lower toxicity in the normal WI-38 cells (IC50 = 40.85 µM) than doxorubicin (IC50 = 6.72 µM), indicating a good safety profile. Additionally, the potential of compound 5d as a multi-targeted kinase inhibitor was examined against different protein kinases, including VEGFR2, EGFR, HER2, and CDK2. In comparison to the corresponding positive controls, compound 5d exhibited comparable activities in nanomolar ranges against HER2, EGFR, and VEGFR2. However, compound 5d was the least active against CDK2 (2.097 ± 0.126 µM) when compared to the positive control roscovitine (0.32 ± 0.019 µM). The apoptotic activity investigation in HepG2 cells demonstrated that compound 5d arrested the cell cycle at the S phase and induced early and late apoptosis. Furthermore, the results demonstrated that the apoptosis pathway was provoked due to an upregulation in the expression of the proapoptotic genes caspase-3, caspase-9, and Bax and the downregulation of the Bcl-2 anti-apoptotic gene. For the in silico docking studies, compound 5d showed relative binding interactions, including hydrogen, hydrophobic, and halogen bindings, with protein kinases that are similar to the reference inhibitors.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11541, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ashwag S Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed H Geesi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
13
|
Yang CZ, Guo W, Wang YF, Hu LH, Wang J, Luo JM, Yao XH, Liu S, Tao LT, Sun LL, Lin LZ. Reduction in gefitinib resistance mediated by Yi-Fei San-Jie pill in non-small cell lung cancer through regulation of tyrosine metabolism, cell cycle, and the MET/EGFR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116566. [PMID: 37169317 DOI: 10.1016/j.jep.2023.116566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/16/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herbal prescription Yi-Fei San-Jie pill (YFSJ) has been used for adjuvant treatment in patients with lung cancer for a long time. AIM OF THE STUDY Reports have indicated that the combination of gefitinib (Gef) with YFSJ inhibits the proliferation of EGFR-TKI-resistant cell lines by enhancing cellular apoptosis and autophagy in non-small cell lung cancer (NSCLC). However, the molecular mechanisms underlying the effect of YFSJ on EGFR-TKI resistance and related metabolic pathways remain to be explored. MATERIALS AND METHODS In our report, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), metabolomics, network pharmacology, bioinformatics, and biological analysis methods were used to investigate the mechanism. RESULTS The UPLC-MS/MS data identified 42 active compounds of YFSJ extracts. YFSJ extracts can enhance the antitumor efficacy of Gef without hepatic and renal toxicity in vivo. The analysis of the metabolomics pathway enrichment revealed that YFSJ mainly affected the tyrosine metabolism pathway in rat models. Moreover, YFSJ has been shown to reverse Gef resistance and improve the effects of Gef on the cellular viability, migration capacity, and cell cycle arrest of NSCLC cell lines with EGFR mutations. The results of network pharmacology and molecular docking analyses revealed that tyrosine metabolism-related active compounds of YFSJ affect EGFR-TKIs resistance in NSCLC by targeting cell cycle and the MET/EGFR signaling pathway; these findings were validated by western blotting and immunohistochemistry. CONCLUSIONS YFSJ inhibits NSCLC by inducing cell cycle arrest in the G1/S phase to suppress tumor growth, cell viability, and cell migration through synergistic effects with Gef via the tyrosine metabolic pathway and the EGFR/MET signaling pathway. To summarize, the findings of the current study indicate that YFSJ is a prospective complementary treatment for Gef-resistant NSCLC.
Collapse
Affiliation(s)
- Cai-Zhi Yang
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Wei Guo
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yi-Fan Wang
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lei-Hao Hu
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jing Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Jia-Min Luo
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xiao-Hui Yao
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shan Liu
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lan-Ting Tao
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Ling-Ling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Li-Zhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
14
|
Xin X, Wang Y, Zhang L, Zhang D, Sha L, Zhu Z, Huang X, Mao W, Zhang J. Development and therapeutic potential of adaptor-associated kinase 1 inhibitors in human multifaceted diseases. Eur J Med Chem 2023; 248:115102. [PMID: 36640459 DOI: 10.1016/j.ejmech.2023.115102] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Adaptor-Associated Kinase 1 (AAK1), a Ser/Thr protein kinase, responsible for regulating clathrin-mediated endocytosis, is ubiquitous in the central nervous system (CNS). AAK1 plays an important role in neuropathic pain and a variety of other human diseases, including viral invasion, Alzheimer's disease, Parkinson's syndrome, etc. Therefore, targeting AAK1 is a promising therapeutic strategy. However, although small molecule AAK1 inhibitors have been vigorously developed, only BMS-986176/LX-9211 has entered clinical trials. Simultaneously, new small molecule inhibitors, including BMS-911172 and LP-935509, exhibited excellent druggability. This review elaborates on the structure, biological function, and disease relevance of AAK1. We emphatically analyze the structure-activity relationships (SARs) of small molecule AAK1 inhibitors based on different binding modalities and discuss prospective strategies to provide insights into novel AAK1 therapeutic agents for clinical practice.
Collapse
Affiliation(s)
- Xin Xin
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yue Wang
- Leling Traditional Chinese Medicine Hospital, Leling, 253600, Shandong, China
| | - Lele Zhang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Zhang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Leihao Sha
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ziyu Zhu
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoyi Huang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wuyu Mao
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
Li MM, Lu J, Deng Y. Dracaenone, a novel type of homoisoflavone: Natural source, biological activity and chemical synthesis. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220510151029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The discovery and synthesis of natural products, especially those possessing novel scaffolds, are crucial to the development of new drugs. Dracaenones are part of homoisoflavone natural products, owning a complex spiro-bridged polycyclic structures bearing benzylic quaternary carbon centers, and some of them reveal considerable biological activity. There have been continuous studies on these compounds due to the rare structure and the important biological properties. However, a systematic summary and analysis for dracaenone is lacking. This review aims to generally summarize the natural source, synthetic strategies and biological activities of dracaenones, moreover, the limitations, challenges, and future prospects were discussed, wishing to provide references for the follow-up study of compounds with similar skeleton.
Collapse
Affiliation(s)
- Mei-Mei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, , Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
16
|
Varma DA, Singh M, Wakode S, Dinesh NE, Vinaik S, Asthana S, Tiwari M. Structure-based pharmacophore mapping and virtual screening of natural products to identify polypharmacological inhibitor against c-MET/EGFR/VEGFR-2. J Biomol Struct Dyn 2022; 41:2956-2970. [PMID: 35196966 DOI: 10.1080/07391102.2022.2042388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three receptor tyrosine kinases (RTKs), c-MET, EGFR, and VEGFR-2 have been identified as potential oncogenic targets involved in tumor development, metastasis, and invasion. Designing inhibitors that can simultaneously interact with multiple targets is a promising approach, therefore, inhibiting these three RTKs with a single chemical component might give an effective chemotherapeutic strategy for addressing the disease while limiting adverse effects. The in-silico methods have been developed to identify the polypharmacological inhibitors particularly for drug repurposing and multitarget drug design. Here, to find a viable inhibitor from natural source against these three RTKs, structure-based pharmacophore mapping and virtual screening of SN-II database were carried out. The filtered compound SN00020821, identified as Cedeodarin, from different computational approaches, demonstrated good interactions with all the three targets, c-MET/EGFR/VEGFR-2, with interaction energies of -42.35 kcal/mol, -49.32 kcal/mol and -44.83 kcal/mol, respectively. SN00020821displayed stable key interactions with critical amino acids of all the three receptors' kinase catalytic domains including "DFG motif" explored through the MD simulations. Furthermore, it also met the ADMET requirements and was determined to be drug-like as predicted from the Lipinski's rule of five and Veber's rule. Finally, SN00020821 provides a novel molecular scaffold that could be investigated further as a polypharmacological anticancer therapeutic candidate that targets the three RTKs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Diksha A Varma
- Dr. B. R Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Mrityunjay Singh
- Non-communicable diseases, Translational Health Science and Technology Institute, Faridabad, India.,Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, DPSRU, New Delhi, India
| | - Sharad Wakode
- Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, DPSRU, New Delhi, India
| | - N E Dinesh
- Dr. B. R Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Simran Vinaik
- Dr. B. R Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Shailendra Asthana
- Non-communicable diseases, Translational Health Science and Technology Institute, Faridabad, India
| | - Manisha Tiwari
- Dr. B. R Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| |
Collapse
|
17
|
Ying M, Li Q, Wu J, Jiang Y, Xu Z, Ma M, Xu G. CuS@BSA-NB2 Nanoparticles for HER2-Targeted Photothermal Therapy. Front Pharmacol 2022; 12:779591. [PMID: 35126119 PMCID: PMC8815789 DOI: 10.3389/fphar.2021.779591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is characterized by the uncontrolled proliferation of breast epithelial cells under the action of a variety of carcinogens. Although HER2-inhibitors were currently applied for HER2-positive breast cancer patients, they didn't work for patients with resistance to HER2-targeted anti-cancer drugs. In this work, we prepared novel CuS@BSA-NB2 nanoparticles (NPs) for breast cancer photothermal therapy (PTT). The NPs had good biocompatibility due to the Bovine Serum Albumin (BSA) encapsulating and excellent targeting to HER2 because of nanobody 2 (NB2). Under 808 nm laser irradiation, CuS@BSA-NB2 NPs had high photothermal conversion efficiency and photothermal stability. Meanwhile, we constructed a stable cell line of MDA-MB-231/HER2 with a high expression of HER2 protein. Immunofluorescence and ICP-MS assays showed that CuS@BSA-NB2 NPs can be specifically enriched and be ingested in MDA-MB-231/HER2 cells. Furthermore, CuS@BSA-NB2 NPs had shown a more significant photothermal treatment effect than CuS@BSA under certain treatment conditions for MDA-MB-231/HER2. In addition, the cytotoxicity assay demonstrated that CuS@BSA-NB2 NPs had a low toxicity for MDA-MB-231/HER2 cells. The above results suggested that CuS@BSA-NB2 NPs were great photothermal therapeutic agents to reduce the malignant proliferation of breast epithelial cells and have potential for breast cancer therapy.
Collapse
Affiliation(s)
- Ming Ying
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jingbo Wu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Mingze Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Xiong Y, Li M, Lu W, Wang D, Tang M, Liu Y, Na B, Qin H, Qing G. Discerning Tyrosine Phosphorylation from Multiple Phosphorylations Using a Nanofluidic Logic Platform. Anal Chem 2021; 93:16113-16122. [PMID: 34841853 DOI: 10.1021/acs.analchem.1c03889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Discerning tyrosine phosphorylation (pTyr) catalyzed by Tyr kinase is central to the revelation of oncogenic mechanisms and the development of targeted anticancer drugs. Despite some techniques, this goal remains challenging, especially when faced with the interference of multiple phosphorylation events, including serine (pSer) and threonine phosphorylation (pThr). We describe here a functional polymer-modified artificial ion nanochannel, which enables the sensitive and selective recognition of phosphotyrosine (pY) peptide by the distinct ionic current change. Such a recognition effect allows for the nanochannel to work in a complex protein digest condition. Further, the implementation of nanofluidic logic functions with the addition of Ca2+ dramatically improves the selectivity of the nanochannel to pY peptide and thus can discern pTyr by the Tyr kinase from pSer by the Ser/Thr kinase through simultaneously monitoring multisite phosphorylation at the same or different peptide substrates in one-pot. This logic sensing platform displays the potential in differentiating Tyr kinase and Ser/Thr kinase and assessing multi-kinase activities in multi-targeted drug design.
Collapse
Affiliation(s)
- Yuting Xiong
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Minmin Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Bing Na
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
19
|
Bogatyrova O, Mattsson JSM, Ross EM, Sanderson MP, Backman M, Botling J, Brunnström H, Kurppa P, La Fleur L, Strell C, Wilm C, Zimmermann A, Esdar C, Micke P. FGFR1 overexpression in non-small cell lung cancer is mediated by genetic and epigenetic mechanisms and is a determinant of FGFR1 inhibitor response. Eur J Cancer 2021; 151:136-149. [PMID: 33984662 DOI: 10.1016/j.ejca.2021.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Amplification of fibroblast growth factor receptor 1 (FGFR1) in non-small cell lung cancer (NSCLC) has been considered as an actionable drug target. However, pan-FGFR tyrosine kinase inhibitors did not demonstrate convincing clinical efficacy in FGFR1-amplified NSCLC patients. This study aimed to characterise the molecular context of FGFR1 expression and to define biomarkers predictive of FGFR1 inhibitor response. In this study, 635 NSCLC samples were characterised for FGFR1 protein expression by immunohistochemistry and copy number gain (CNG) by in situ hybridisation (n = 298) or DNA microarray (n = 189). FGFR1 gene expression (n = 369) and immune cell profiles (n = 309) were also examined. Furthermore, gene expression, methylation and microRNA data from The Cancer Genome Atlas (TCGA) were compared. A panel of FGFR1-amplified NSCLC patient-derived xenograft (PDX) models were tested for response to the selective FGFR1 antagonist M6123. A minority of patients demonstrated FGFR1 CNG (10.5%) or increased FGFR1 mRNA (8.7%) and protein expression (4.4%). FGFR1 CNG correlated weakly with FGFR1 gene and protein expression. Tumours overexpressing FGFR1 protein were typically devoid of driver alterations (e.g. EGFR, KRAS) and showed reduced infiltration of T-lymphocytes and lower PD-L1 expression. Promoter methylation and microRNA were identified as regulators of FGFR1 expression in NSCLC and other cancers. Finally, NSCLC PDX models demonstrating FGFR1 amplification and FGFR1 protein overexpression were sensitive to M6123. The unique molecular and immune features of tumours with high FGFR1 expression provide a rationale to stratify patients in future clinical trials of FGFR1 pathway-targeting agents.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- B7-H1 Antigen/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- DNA Methylation
- Epigenesis, Genetic
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Targeted Therapy
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Olga Bogatyrova
- Translational Innovation Platform Oncology & Immuno-Oncology, Merck KGaA, Darmstadt, Germany
| | - Johanna S M Mattsson
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Edith M Ross
- Translational Medicine, Merck KGaA, Darmstadt, Germany
| | - Michael P Sanderson
- Translational Innovation Platform Oncology & Immuno-Oncology, Merck KGaA, Darmstadt, Germany
| | - Max Backman
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hans Brunnström
- Division of Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Pinja Kurppa
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linnéa La Fleur
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Carina Strell
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Claudia Wilm
- Translational Innovation Platform Oncology & Immuno-Oncology, Merck KGaA, Darmstadt, Germany
| | - Astrid Zimmermann
- Translational Innovation Platform Oncology & Immuno-Oncology, Merck KGaA, Darmstadt, Germany
| | - Christina Esdar
- Translational Innovation Platform Oncology & Immuno-Oncology, Merck KGaA, Darmstadt, Germany
| | - Patrick Micke
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Ramaiah MJ, Kumar KR. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme. Mol Biol Rep 2021; 48:4813-4835. [PMID: 34132942 DOI: 10.1007/s11033-021-06462-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the aggressive brain cancers with patients having less survival period upto 12-15 months. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase, belongs to the phosphatidylinositol 3-kinases (PI3K) pathway and is involved in various cellular processes of cancer cells. Cancer metabolism is regulated by mTOR and its components. mTOR forms two complexes as mTORC1 and mTORC2. Studies have identified the key component of the mTORC2 complex, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) plays a prominent role in the regulation of cancer cell proliferation and metabolism. Apart, growth factor receptor signaling such as epidermal growth factor signaling mediated by epidermal growth factor receptor (EGFR) regulates cancer-related processes. In EGFR signaling various other signaling cascades such as phosphatidyl-inositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR pathway) and Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) -dependent signaling cross-talk each other. From various studies about GBM, it is very well established that Rictor and EGFR mediated signaling pathways majorly playing a pivotal role in chemoresistance and tumor aggressiveness. Recent studies have shown that non-coding RNAs such as microRNAs (miRs) and long non-coding RNAs (lncRNAs) regulate the EGFR and Rictor and sensitize the cells towards chemotherapeutic agents. Thus, understanding of microRNA mediated regulation of EGFR and Rictor will help in cancer prevention and management as well as a future therapy.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| | - K Rohil Kumar
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
21
|
You KS, Yi YW, Cho J, Seong YS. Dual Inhibition of AKT and MEK Pathways Potentiates the Anti-Cancer Effect of Gefitinib in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:1205. [PMID: 33801977 PMCID: PMC8000364 DOI: 10.3390/cancers13061205] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
There is an unmet medical need for the development of new targeted therapeutic strategies for triple-negative breast cancer (TNBC). With drug combination screenings, we found that the triple combination of the protein kinase inhibitors (PKIs) of the epidermal growth factor receptor (EGFR), v-akt murine thymoma viral oncogene homolog (AKT), and MAPK/ERK kinase (MEK) is effective in inducing apoptosis in TNBC cells. A set of PKIs were first screened in combination with gefitinib in the TNBC cell line, MDA-MB-231. The AKT inhibitor, AT7867, was identified and further analyzed in two mesenchymal stem-like (MSL) subtype TNBC cells, MDA-MB-231 and HS578T. A combination of gefitinib and AT7867 reduced the proliferation and long-term survival of MSL TNBC cells. However, gefitinib and AT7867 induced the activation of the rat sarcoma (RAS)/ v-raf-1 murine leukemia viral oncogene homolog (RAF)/MEK/ extracellular signal-regulated kinase (ERK) pathway. To inhibit this pathway, MEK/ERK inhibitors were further screened in MDA-MB-231 cells in the presence of gefitinib and AT7867. As a result, we identified that the MEK inhibitor, PD-0325901, further enhanced the anti-proliferative and anti-clonogenic effects of gefitinib and AT7867 by inducing apoptosis. Our results suggest that the dual inhibition of the AKT and MEK pathways is a novel potential therapeutic strategy for targeting EGFR in TNBC cells.
Collapse
Affiliation(s)
- Kyu Sic You
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Yeon-Sun Seong
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| |
Collapse
|
22
|
Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2021; 1:493-506. [PMID: 22754768 PMCID: PMC3382908 DOI: 10.4161/onci.20459] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During the last two decades, a number of approaches for the activation of the immune system against cancer has been developed. These include highly specific interventions, such as monoclonal antibodies, vaccines and cell-based therapies, as well as relatively unselective strategies, such as the systemic administration of adjuvants and immunomodulatory cytokines. Cytokines constitute a huge group of proteins that, taken together, regulate not only virtually all the aspects of innate and cognate immunity, but also several other cellular and organismal functions. Cytokines operate via specific transmembrane receptors that are expressed on the plasma membrane of target cells and, depending on multiple variables, can engage autocrine, paracrine or endocrine signaling pathways. The most appropriate term for defining the cytokine network is “pleiotropic”: cytokines are produced by - and operate on - multiple, often overlapping, cell types, triggering context-depend biological outcomes as diverse as cell proliferation, chemotaxis, differentiation, inflammation, elimination of pathogens and cell death. Moreover, cytokines often induce the release of additional cytokines, thereby engaging self-amplificatory or self-inhibitory signaling cascades. In this Trial Watch, we will summarize the biological properties of cytokines and discuss the progress of ongoing clinical studies evaluating their safety and efficacy as immunomodulatory agents against cancer.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM; U848; Villejuif, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhao Y, Bilal M, Raza A, Khan MI, Mehmood S, Hayat U, Hassan STS, Iqbal HMN. Tyrosine kinase inhibitors and their unique therapeutic potentialities to combat cancer. Int J Biol Macromol 2021; 168:22-37. [PMID: 33290765 DOI: 10.1016/j.ijbiomac.2020.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023]
Abstract
Cancer is one of the leading causes of death with a mortality rate of 12%. Although significant progress has been achieved in cancer research, the effective treatment of cancer remains the greatest global challenge in medicine. Dysregulation of tyrosine kinases (TK) is one of the characteristics of several types of cancers. Thus, drugs that target and inhibit these enzymes, known as TK inhibitors (TKIs), are considered vital chemotherapeutics to combat various types of cancer. The oral bioavailability of available TKIs and their targeted therapy are their potential benefits. Based on these characteristics, most TKIs are included in first/second-line therapy for the treatment of different cancers. This review aims to shed light on orally-active TKIs (natural and synthetic molecules) and their promising implication in the therapy of numerous types of tumors along with their mechanisms of action. Further, recent progress in the development of synthetic and isolation of natural TKIs is reviewed. A significant growth in research regarding the development of new-generation TKIs is made with time (23 FDA-approved TKIs from 2018) due to their better therapeutic response. Oral bioavailability should be considered as an important parameter while developing of new-generation TKIs; however, drug delivery systems can also be used to address issue of poor bioavailability to a certain extent. Moreover, clinical trials should be designed in consideration of the development of resistance and tumor heterogeneity.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 6-Suchdol, 165 21 Prague, Czech Republic
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
24
|
Targeting of HER/ErbB family proteins using broad spectrum Sec61 inhibitors coibamide A and apratoxin A. Biochem Pharmacol 2020; 183:114317. [PMID: 33152346 DOI: 10.1016/j.bcp.2020.114317] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023]
Abstract
Coibamide A is a potent cancer cell toxin and one of a select group of natural products that inhibit protein entry into the secretory pathway via a direct inhibition of the Sec61 protein translocon. Many Sec61 client proteins are clinically relevant drug targets once trafficked to their final destination in or outside the cell, however the use of Sec61 inhibitors to block early biosynthesis of specific proteins is at a pre-clinical stage. In the present study we evaluated the action of coibamide A against human epidermal growth factor receptor (HER, ErbB) proteins in representative breast and lung cancer cell types. HERs were selected for this study as they represent a family of Sec61 clients that is frequently dysregulated in human cancers, including coibamide-sensitive cell types. Although coibamide A inhibits biogenesis of a broad range of Sec61 substrate proteins in a presumed substrate-nonselective manner, endogenous HER3 (ErbB-3) and EGFR (ErbB-1) proteins were more sensitive to coibamide A, and the related Sec61 inhibitor apratoxin A, than HER2 (ErbB-2). Despite this rank order of sensitivity (HER3 > EGFR > HER2), Sec61-dependent inhibition by coibamide A was sufficient to decrease cell surface expression of HER2. We report that coibamide A- or apratoxin A-mediated block of HER3 entry into the secretory pathway is unlikely to be mediated by the HER3 signal peptide alone. HER3 (G11L/S15L), that is fully resistant to the highly substrate-selective cotransin analogue CT8, was more resistant than wild-type HER3 but only at low coibamide A (3 nM) concentrations; HER3 (G11L/S15L) expression was inhibited by higher concentrations of either natural product. Time- and concentration-dependent decreases in HER protein expression induced a commensurate reduction in AKT/MAPK signaling in breast and lung cancer cell types and loss in cell viability. Coibamide A potentiated the cytotoxic efficacy of small molecule kinase inhibitors lapatinib and erlotinib in breast and lung cancer cell types, respectively. These data indicate that natural product modulators of Sec61 function have value as chemical probes to interrogate HER/ErbB signaling in treatment-resistant human cancers.
Collapse
|
25
|
Wu C, Chen W, Yu F, Yuan Y, Chen Y, Hurst DR, Li Y, Li L, Liu Z. Long Noncoding RNA HITTERS Protects Oral Squamous Cell Carcinoma Cells from Endoplasmic Reticulum Stress-Induced Apoptosis via Promoting MRE11-RAD50-NBS1 Complex Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002747. [PMID: 33240783 PMCID: PMC7675039 DOI: 10.1002/advs.202002747] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 02/05/2023]
Abstract
Recent studies have proven that long noncoding RNAs (lncRNAs) exhibit regulatory functions of both DNA damage response (DDR) and endoplasmic reticulum (ER) stress. Herein, ER stress-induced lncRNA transcriptomic changes are reported in human oral squamous cell carcinoma (OSCC) cells and a novel lncRNA HITTERS ( H ERPUD1 intronic transcript of ER stress) is identified as the most significantly upregulated lncRNA. It is shown that HITTERS is a nucleus-located lncRNA including two transcript variants. HITTERS lacks an independent promoter but shares the same promoter with HERPUD1. HITTERS is transcriptionally regulated by Activating Transcription Factor (ATF) 6, ATF4, X-Box Binding Protein 1 (XBP1), and DNA methylation. In human OSCC tissues, HITTERS is significantly correlated with OSCC clinicopathological features and prognosis. Gain- and loss-of-function studies reveal that HITTERS promotes OSCC proliferation and invasion via influencing the expression of growth factor receptors and the downstream pathways. Once ER stress is triggered, HITTERS significantly attenuates ER stress-induced apoptosis both in vivo and in vitro. Mechanically, HITTERS functions as RNA scaffold to promote MRE11-RAD50-NBS1 complex formation in the repair of ER stress-induced DNA damage. To sum up, this study presents a novel lncRNA, namely HITTERS, which links ER stress and DDR together in OSCC.
Collapse
Affiliation(s)
- Chenzhou Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityNumber 14, Unit 3, Renmin Nan RoadChengduSichuan610041China
| | - Wen Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityNumber 14, Unit 3, Renmin Nan RoadChengduSichuan610041China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of EndodonticsWest China Hospital of StomatologySichuan UniversityNumber 14, Unit 3, Renmin Nan RoadChengduSichuan610041China
| | - Yihang Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityNumber 14, Unit 3, Renmin Nan RoadChengduSichuan610041China
| | - Yafei Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityNumber 14, Unit 3, Renmin Nan RoadChengduSichuan610041China
| | - Douglas R. Hurst
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAL35294USA
| | - Yi Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityNumber 14, Unit 3, Renmin Nan RoadChengduSichuan610041China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityNumber 14, Unit 3, Renmin Nan RoadChengduSichuan610041China
| | - Zhe Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityNumber 14, Unit 3, Renmin Nan RoadChengduSichuan610041China
| |
Collapse
|
26
|
Engineering Stem Cell Factor Ligands with Different c-Kit Agonistic Potencies. Molecules 2020; 25:molecules25204850. [PMID: 33096693 PMCID: PMC7588011 DOI: 10.3390/molecules25204850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are major players in signal transduction, regulating cellular activities in both normal regeneration and malignancy. Thus, many RTKs, c-Kit among them, play key roles in the function of both normal and neoplastic cells, and as such constitute attractive targets for therapeutic intervention. We thus sought to manipulate the self-association of stem cell factor (SCF), the cognate ligand of c-Kit, and hence its suboptimal affinity and activation potency for c-Kit. To this end, we used directed evolution to engineer SCF variants having different c-Kit activation potencies. Our yeast-displayed SCF mutant (SCFM) library screens identified altered dimerization potential and increased affinity for c-Kit by specific SCF-variants. We demonstrated the delicate balance between SCF homo-dimerization, c-Kit binding, and agonistic potencies by structural studies, in vitro binding assays and a functional angiogenesis assay. Importantly, our findings showed that a monomeric SCF variant exhibited superior agonistic potency vs. the wild-type SCF protein and vs. other high-affinity dimeric SCF variants. Our data showed that action of the monomeric ligands in binding to the RTK monomers and inducing receptor dimerization and hence activation was superior to that of the wild-type dimeric ligand, which has a higher affinity to RTK dimers but a lower activation potential. The findings of this study on the binding and c-Kit activation of engineered SCF variants thus provides insights into the structure–function dynamics of ligands and RTKs.
Collapse
|
27
|
Kaumaya PTP. B-cell epitope peptide cancer vaccines: a new paradigm for combination immunotherapies with novel checkpoint peptide vaccine. Future Oncol 2020; 16:1767-1791. [PMID: 32564612 PMCID: PMC7426751 DOI: 10.2217/fon-2020-0224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
In light of the numerous US FDA-approved humanized monoclonal antibodies (mAbs) for cancer immunotherapy, it is surprising that the advancement of B-cell epitope vaccines designed to elicit a natural humoral polyclonal antibody response has not gained traction in the immune-oncology landscape. Passive immunotherapy with humanized mAbs (Trastuzumab [Herceptin®]; Pertuzumab [Perjeta®]) has provided clinical benefit to breast cancer patients, albeit with significant shortcomings including toxicity problems and resistance, high costs, sophisticated therapeutic regimen and long half-life. The role of B-cell humoral immunity in cancer is under appreciated and underdeveloped. We have advanced the idea of active immunotherapy with chimeric B-cell epitope peptides incorporating a 'promiscuous' T-cell epitope that elicits a polyclonal antibody response, which provides safe, cost-effective therapeutic advantage over mAbs. We have created a portfolio of validated B-cell peptide epitopes against multiple receptor tyrosine kinases (HER-1, HER-3, IGF-1R and VEGF). We have successfully translated two HER-2 combination B-cell peptide vaccines in Phase I and II clinical trials. We have recently developed an effective novel PD-1 vaccine. In this article, I will review our approaches and strategies that focus on B-cell epitope cancer vaccines.
Collapse
Affiliation(s)
- Pravin TP Kaumaya
- Department of Obstetrics & Gynecology, College of Medicine, Wexner Medical Center, The James Cancer Hospital & Solove Research Institute, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Cubero FJ, Mohamed MR, Woitok MM, Zhao G, Hatting M, Nevzorova YA, Chen C, Haybaeck J, de Bruin A, Avila MA, Boekschoten MV, Davis RJ, Trautwein C. Loss of c-Jun N-terminal Kinase 1 and 2 Function in Liver Epithelial Cells Triggers Biliary Hyperproliferation Resembling Cholangiocarcinoma. Hepatol Commun 2020; 4:834-851. [PMID: 32490320 PMCID: PMC7262317 DOI: 10.1002/hep4.1495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Targeted inhibition of the c-Jun N-terminal kinases (JNKs) has shown therapeutic potential in intrahepatic cholangiocarcinoma (CCA)-related tumorigenesis. However, the cell-type-specific role and mechanisms triggered by JNK in liver parenchymal cells during CCA remain largely unknown. Here, we aimed to investigate the relevance of JNK1 and JNK2 function in hepatocytes in two different models of experimental carcinogenesis, the dethylnitrosamine (DEN) model and in nuclear factor kappa B essential modulator (NEMO)hepatocyte-specific knockout (Δhepa) mice, focusing on liver damage, cell death, compensatory proliferation, fibrogenesis, and tumor development. Moreover, regulation of essential genes was assessed by reverse transcription polymerase chain reaction, immunoblottings, and immunostainings. Additionally, specific Jnk2 inhibition in hepatocytes of NEMOΔhepa/JNK1Δhepa mice was performed using small interfering (si) RNA (siJnk2) nanodelivery. Finally, active signaling pathways were blocked using specific inhibitors. Compound deletion of Jnk1 and Jnk2 in hepatocytes diminished hepatocellular carcinoma (HCC) in both the DEN model and in NEMOΔhepa mice but in contrast caused massive proliferation of the biliary ducts. Indeed, Jnk1/2 deficiency in hepatocytes of NEMOΔhepa (NEMOΔhepa/JNKΔhepa) animals caused elevated fibrosis, increased apoptosis, increased compensatory proliferation, and elevated inflammatory cytokines expression but reduced HCC. Furthermore, siJnk2 treatment in NEMOΔhepa/JNK1Δhepa mice recapitulated the phenotype of NEMOΔhepa/JNKΔhepa mice. Next, we sought to investigate the impact of molecular pathways in response to compound JNK deficiency in NEMOΔhepa mice. We found that NEMOΔhepa/JNKΔhepa livers exhibited overexpression of the interleukin-6/signal transducer and activator of transcription 3 pathway in addition to epidermal growth factor receptor (EGFR)-rapidly accelerated fibrosarcoma (Raf)-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) cascade. The functional relevance was tested by administering lapatinib, which is a dual tyrosine kinase inhibitor of erythroblastic oncogene B-2 (ErbB2) and EGFR signaling, to NEMOΔhepa/JNKΔhepa mice. Lapatinib effectively inhibited cystogenesis, improved transaminases, and effectively blocked EGFR-Raf-MEK-ERK signaling. Conclusion: We define a novel function of JNK1/2 in cholangiocyte hyperproliferation. This opens new therapeutic avenues devised to inhibit pathways of cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Francisco Javier Cubero
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
- Department of Immunology, Ophthalmology, and ENTComplutense University School of MedicineMadridSpain
- 12 de Octubre Health Research InstituteMadridSpain
| | - Mohamed Ramadan Mohamed
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
- Department of Therapeutic ChemistryNational Research CenterGizaEgypt
| | - Marius M. Woitok
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Gang Zhao
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Maximilian Hatting
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Yulia A. Nevzorova
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
- Department of Genetics, Physiology, and MicrobiologyFaculty of BiologyComplutense UniversityMadridSpain
| | - Chaobo Chen
- Department of Immunology, Ophthalmology, and ENTComplutense University School of MedicineMadridSpain
| | - Johannes Haybaeck
- Department of PathologyOtto‐von‐Guericke UniversityMagdeburgGermany
- Diagnostic and Research Center for Molecular BioMedicineInstitute of PathologyMedical University of GrazGrazAustria
- Department of Pathology, Neuropathology, and Molecular PathologyMedical University of InnsbruckInnsbruckAustria
| | - Alain de Bruin
- Department of PathobiologyFaculty of Veterinary MedicineDutch Molecular Pathology CenterUtrecht UniversityUtrechtthe Netherlands
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Matias A. Avila
- Instituto de Investigación Sanitaria de NavarraPamplonaSpain
- Hepatology ProgramCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasInstituto de Salud Carlos IIIMadridSpain
| | - Mark V. Boekschoten
- Nutrition, Metabolism, and Genomics GroupDivision of Human NutritionWageningen UniversityWageningenthe Netherlands
| | - Roger J. Davis
- Howard Hughes Medical InstituteUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Christian Trautwein
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| |
Collapse
|
29
|
Ferreira Pimentel LC, Cunha AC, Boas Hoelz LV, Canzian HF, Leite Firmino Marinho DI, Boechat N, Bastos MM. Phenylamino-pyrimidine (PAP) Privileged Structure: Synthesis and Medicinal Applications. Curr Top Med Chem 2020; 20:227-243. [DOI: 10.2174/1568026620666200124094949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 12/23/2022]
Abstract
The phenylamino-pyrimidine (PAP) nucleus has been demonstrated to be useful for the development of new drugs and is present in a wide variety of antiretroviral agents and tyrosine kinase inhibitors (TKIs). This review aims to evaluate the application of PAP derivatives in drugs and other bioactive compounds. It was concluded that PAP derivatives are still worth exploring, as they may provide highly competitive ATP TKI’s with nano/picomolar activity.
Collapse
Affiliation(s)
- Luiz Claudio Ferreira Pimentel
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Anna Claudia Cunha
- Universidade Federal Fluminense, Departamento de Quimica Organica, Campus do Valonguinho, CEP 24020-150, Niteroi, RJ, Brazil
| | - Lucas Villas Boas Hoelz
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Henayle Fernandes Canzian
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Debora Inacio Leite Firmino Marinho
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Nubia Boechat
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Monica Macedo Bastos
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
Jiao Y, Preston S, Hofmann A, Taki A, Baell J, Chang BCH, Jabbar A, Gasser RB. A perspective on the discovery of selected compounds with anthelmintic activity against the barber's pole worm-Where to from here? ADVANCES IN PARASITOLOGY 2020; 108:1-45. [PMID: 32291083 DOI: 10.1016/bs.apar.2019.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial morbidity and mortality in animals worldwide. Anthelmintic treatment is central to controlling these worms, but widespread resistance to most of the commercially available anthelmintics for veterinary and agricultural use is compromising control, such that there is an urgency to discover new and effective drugs. The purpose of this article is to review information on parasitic nematodes, the treatment and control of parasitic nematode infections and aspects of discovering new anthelmintics in the context of anthelmintic resistance problems, and then to discuss some progress that our group has made in identifying selected compounds with activity against nematodes. The focus of our recent work has been on discovering new chemical entities and known drugs with anthelmintic activities against Haemonchus contortus as well as other socioeconomically important parasitic nematodes for subsequent development. Using whole worm-based phenotypic assays, we have been screening compound collections obtained via product-development-partnerships and/or collaborators, and active compounds have been assessed for their potential as anthelmintic candidates. Following the screening of 15,333 chemicals from five distinct compound collections against H. contortus, we have discovered one new chemical entity (designated SN00797439), two human kinase inhibitors (SNS-032 and AG-1295), 14 tetrahydroquinoxaline analogues, one insecticide (tolfenpyrad) and two tolfenpyrad (pyrazole-5-carboxamide) derivatives (a-15 and a-17) with anthelmintic activity in vitro. Some of these 20 'hit' compounds have selectivity against H. contortus in vitro when compared to particular human cell lines. In our opinion, some of these compounds could represent starting points for 'lead' development. Accordingly, the next research steps to be pursued include: (i) chemical optimisation of representative chemicals via structure-activity relationship (SAR) evaluations; (ii) assessment of the breadth of spectrum of anthelmintic activity on a range of other parasitic nematodes, such as strongyloids, ascaridoids, enoplids and filarioids; (iii) detailed investigations of the absorption, distribution, metabolism, excretion and toxicity (ADMET) of optimised chemicals with broad nematocidal or nematostatic activity; and (iv) establishment of the modes of action of lead candidates.
Collapse
Affiliation(s)
- Yaqing Jiao
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Faculty of Science and Technology, Federation University, Ballarat, VIC, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Aya Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
31
|
Nanocarriers as Magic Bullets in the Treatment of Leukemia. NANOMATERIALS 2020; 10:nano10020276. [PMID: 32041219 PMCID: PMC7075174 DOI: 10.3390/nano10020276] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
Abstract
Leukemia is a type of hematopoietic stem/progenitor cell malignancy characterized by the accumulation of immature cells in the blood and bone marrow. Treatment strategies mainly rely on the administration of chemotherapeutic agents, which, unfortunately, are known for their high toxicity and side effects. The concept of targeted therapy as magic bullet was introduced by Paul Erlich about 100 years ago, to inspire new therapies able to tackle the disadvantages of chemotherapeutic agents. Currently, nanoparticles are considered viable options in the treatment of different types of cancer, including leukemia. The main advantages associated with the use of these nanocarriers summarized as follows: i) they may be designed to target leukemic cells selectively; ii) they invariably enhance bioavailability and blood circulation half-life; iii) their mode of action is expected to reduce side effects. FDA approval of many nanocarriers for treatment of relapsed or refractory leukemia and the desired results extend their application in clinics. In the present review, different types of nanocarriers, their capability in targeting leukemic cells, and the latest preclinical and clinical data are discussed.
Collapse
|
32
|
STK31 regulates the proliferation and cell cycle of lung cancer cells via the Wnt/β‑catenin pathway and feedback regulation by c‑myc. Oncol Rep 2020; 43:395-404. [PMID: 31894338 PMCID: PMC6967196 DOI: 10.3892/or.2019.7441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer, which is a leading cause of cancer‑related deaths, is diagnosed at a male to female ratio of 2.1:1. Serine‑threonine kinase 31 (STK31) is a novel cancer/testis (CT)‑related gene that is highly expressed in several types of cancers, such as lung and colorectal cancer, and plays crucial roles in cancer. In the present study, increased expression of STK31 and β‑catenin was observed in lung cancer tissues and cell lines. Downregulation of STK31 expression in lung cancer cells significantly inhibited their proliferation by arresting the cell cycle in the G1 phase concurrent with decreased β‑catenin, c‑myc and cyclin D1 protein levels, while upregulation of STK31 had the opposite effects. In addition, STK31‑induced lung cancer cell viability, proliferation, cell cycle progression, and expression of related genes were completely attenuated by a Wnt/β‑catenin inhibitor (XAV939). Similar to XAV939, a c‑myc inhibitor (10058‑F4) also significantly attenuated STK31‑induced proliferation and cell cycle progression in lung cancer cells. Inhibiting c‑myc and TRRAP significantly decreased the expression of STK31, and a chromatin immunoprecipitation (ChIP) assay confirmed that c‑myc directly bound to the STK31 promoter. These results indicated that STK31 may act as an oncogene in lung cancer and that c‑myc may be the transcription factor that promotes STK31 expression. Moreover, the results suggested that c‑myc can also regulate STK31 expression in a positive feedback loop, and the downregulation of STK31 in lung cancer cells had an inhibitory effect on cell viability, cell proliferation and cell cycle progression, likely by inactivating the Wnt/β‑catenin pathway and positive feedback regulation by c‑myc.
Collapse
|
33
|
Zhao Y, Kang Y, Xu F, Zheng W, Luo Q, Zhang Y, Jia F, Wang F. Pharmacophore conjugation strategy for multi-targeting metal-based anticancer complexes. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Zolotovskaia M, Sorokin M, Garazha A, Borisov N, Buzdin A. Molecular Pathway Analysis of Mutation Data for Biomarkers Discovery and Scoring of Target Cancer Drugs. Methods Mol Biol 2020; 2063:207-234. [PMID: 31667773 DOI: 10.1007/978-1-0716-0138-9_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA mutations govern cancer development. Cancer mutation profiles vary dramatically among the individuals. In some cases, they may serve as the predictors of disease progression and response to therapies. However, the biomarker potential of cancer mutations can be dramatically (several orders of magnitude) enhanced by applying molecular pathway-based approach. We developed Oncobox system for calculation of pathway instability (PI) values for the molecular pathways that are aggregated mutation frequencies of the pathway members normalized on gene lengths and on number of genes in the pathway. PI scores can be effective biomarkers in different types of comparisons, for example, as the cancer type biomarkers and as the predictors of tumor response to target therapies. The latter option is implemented using mutation drug score (MDS) values, which algorithmically rank the drugs capacity of interfering with the mutated molecular pathways. Here, describe the mathematical basis and algorithms for PI and MDS values calculation, validation and implementation. The example analysis is provided encompassing 5956 human tumor mutation profiles of 15 cancer types from The Cancer Genome Atlas (TCGA) project, that totally make 2,316,670 mutations in 19,872 genes and 1748 molecular pathways, thus enabling ranking of 128 clinically approved target drugs. Our results evidence that the Oncobox PI and MDS approaches are highly useful for basic and applied aspects of molecular oncology and pharmacology research.
Collapse
Affiliation(s)
- Marianna Zolotovskaia
- Omicsway Corp., Walnut, CA, USA
- Department of Oncology, Hematology and Radiotherapy of Pediatric Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maxim Sorokin
- Omicsway Corp., Walnut, CA, USA
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Nikolay Borisov
- Omicsway Corp., Walnut, CA, USA
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Buzdin
- Omicsway Corp., Walnut, CA, USA.
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| |
Collapse
|
35
|
Teramae F, Yamaguchi N, Makino T, Sengoku S, Kodama K. Holistic cost-effectiveness analysis of anticancer drug regimens in Japan. Drug Discov Today 2019; 25:269-273. [PMID: 31782999 DOI: 10.1016/j.drudis.2019.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Japan officially introduced cost-effectiveness analysis (CEA) in 2019, whereas some countries, such as England, Sweden, Canada, and Australia, have experience with health technology assessment (HTA). Therefore, there are few reports that comprehensively examine the situation of health economic evaluation in Japan. In this paper, we review the health economic evaluation systems among those countries. We also conducted a case study that investigated the time-trend of cost, effectiveness, and incremental cost-effectiveness ratio (ICER) for anticancer drug regimens in Japan. We found a time-trend ICER for breast cancer (BC). Additionally, molecular targeting drugs for BC had a positive effect on the ICER, and both small molecular-targeting drugs and monoclonal antibodies (mAb) had a higher ICER for BC compared with conventional drugs. Finally, we discuss a possible way to implement a health economic evaluation system in Japan.
Collapse
Affiliation(s)
- Fumio Teramae
- Graduate School of Technology Management, Ritsumeikan University, Osaka, Japan; Eli Lilly Japan, Tokyo, Japan.
| | - Naoya Yamaguchi
- Graduate School of Technology Management, Ritsumeikan University, Osaka, Japan; Novartis Pharma, Tokyo, Japan
| | - Tomohiro Makino
- Graduate School of Technology Management, Ritsumeikan University, Osaka, Japan
| | - Shintaro Sengoku
- School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Kota Kodama
- Graduate School of Technology Management, Ritsumeikan University, Osaka, Japan.
| |
Collapse
|
36
|
Das S, Bhattacharya B, Das B, Sinha B, Jamatia T, Paul K. Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies. Indian J Surg Oncol 2019; 12:34-45. [PMID: 33994726 DOI: 10.1007/s13193-019-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the dominant causes of death worldwide while lifelong prognosis is still inauspicious. The maturation of the cancer is seen as a process of transformation of a healthy cell into a tumor-sensitive cell, which is held entirely at the cellular, molecular, and genetic levels of the organism. Tyrosine kinases can play a major, etiologic role in the inception of malignancy and devote to the uncontrolled proliferation of cancerous cells and the progression of a tumor as well as the development of metastatic disease. Angiogenesis and oncogene activation are the major event in cell proliferation. The growth of a tumor and metastasis are fully depending on angiogenesis and lymphangiogenesis triggered by chemical signals from tumor cells in a phase of rapid growth. Tyrosine kinase inhibitors are compounds that inhibit tyrosine kinases and effective in targeting angiogenesis and blocking the signaling pathways of oncogenes. Small molecule tyrosine kinase inhibitors like afatinib, erlotinib, crizotinib, gefitinib, and cetuximab are shown to a selective cut off tactic toward the constitutive activation of an oncogene in tumor cells, and thus contemplated as promising therapeutic approaches for the diagnosis of cancer and malignancies.
Collapse
Affiliation(s)
- Sanjoy Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bireswar Bhattacharya
- Regional Institute of Pharmaceutical Science and Technology, Agartala, Tripura 799005 India
| | - Biplajit Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bibek Sinha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Taison Jamatia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Kishan Paul
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
37
|
Noh YS, Yoon S, Kim SR, Lee KT, Jang IJ. A safety, pharmacokinetic, pharmacogenomic and population pharmacokinetic analysis of the third-generation EGFR TKI, olmutinib (HM61713), after single oral administration in healthy volunteers. Basic Clin Pharmacol Toxicol 2019; 125:370-381. [PMID: 31125491 DOI: 10.1111/bcpt.13262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023]
Abstract
The main objective of this phase I trial was to investigate pharmacokinetics (PKs) of olmutinib in three racial subjects. We also evaluate safety/tolerability and a population PK and pharmacogenomic analysis were performed for explorative purposes. A dose escalation study was conducted in 56 Korean, Japanese and Caucasian subjects. The food effect was assessed in the 300 mg Korean group. Individual PK parameters were calculated by non-compartmental methods and presented by dose and race. Genotype analysis was performed using DMET® plus to identify genotypes which affect PK characteristics. A population PK model was developed to explore inter-individual variability and to evaluate the influence of possible covariates using NONMEM® . Tmax was 2-3 hour, regardless of race. The mean terminal half-life ranged from 4.8 to 7.4 hour, with no significant differences between dose or racial groups. Dose-normalized Cmax and AUClast were not significantly different between race groups. PK parameters were similar between the fasting and fed conditions. A single-nucleotide polymorphism in the GSTM3 gene (rs4783) and a copy number variation in the GSTM1 gene were significantly related to AUC. A one-compartment model with first-order absorption adequately described the observed olmutinib data. Thirty adverse events were observed in 15 subjects, of which 26 events, all mild, were possibly related to olmutinib. A single oral dose of olmutinib 100-300 mg was safe and well tolerated. PK parameters were dose-proportional and did not differ by race. Food intake did not affect olmutinib absorption. Pharmacogenomic analysis indicated that glutathione S-transferase might be involved in olmutinib metabolism.
Collapse
Affiliation(s)
- Young Su Noh
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Seonghae Yoon
- Clinical Trials Center, Seoul National University Bundang Hospital, Seoul, Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Suk Ran Kim
- Clinical Research and Development, Hanmi Pharmaceutical Co., Ltd., Seoul, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| |
Collapse
|
38
|
Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci 2019; 134:116-137. [PMID: 30981885 DOI: 10.1016/j.ejps.2019.04.011] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022]
Abstract
Autophagy is an evolutionarily conserved catabolic mechanism, by which eukaryotic cells recycle or degrades internal constituents through membrane-trafficking pathway. Thus, autophagy provides the cells with a sustainable source of biomolecules and energy for the maintenance of homeostasis under stressful conditions such as tumor microenvironment. Recent findings revealed a close relationship between autophagy and malignant transformation. However, due to the complex dual role of autophagy in tumor survival or cell death, efforts to develop efficient treatment strategies targeting the autophagy/cancer relation have largely been unsuccessful. Here we review the two-faced role of autophagy in cancer as a tumor suppressor or as a pro-oncogenic mechanism. In this sense, we also review the shared regulatory pathways that play a role in autophagy and malignant transformation. Finally, anti-cancer therapeutic agents used as either inhibitors or inducers of autophagy have been discussed.
Collapse
|
39
|
Martin-Fernandez ML, Clarke DT, Roberts SK, Zanetti-Domingues LC, Gervasio FL. Structure and Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung Cancer. Cells 2019; 8:E316. [PMID: 30959819 PMCID: PMC6523254 DOI: 10.3390/cells8040316] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is historically the prototypical receptor tyrosine kinase, being the first cloned and the first where the importance of ligand-induced dimer activation was ascertained. However, many years of structure determination has shown that EGFR is not completely understood. One challenge is that the many structure fragments stored at the PDB only provide a partial view because full-length proteins are flexible entities and dynamics play a key role in their functionality. Another challenge is the shortage of high-resolution data on functionally important higher-order complexes. Still, the interest in the structure/function relationships of EGFR remains unabated because of the crucial role played by oncogenic EGFR mutants in driving non-small cell lung cancer (NSCLC). Despite targeted therapies against EGFR setting a milestone in the treatment of this disease, ubiquitous drug resistance inevitably emerges after one year or so of treatment. The magnitude of the challenge has inspired novel strategies. Among these, the combination of multi-disciplinary experiments and molecular dynamic (MD) simulations have been pivotal in revealing the basic nature of EGFR monomers, dimers and multimers, and the structure-function relationships that underpin the mechanisms by which EGFR dysregulation contributes to the onset of NSCLC and resistance to treatment.
Collapse
Affiliation(s)
- Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | | |
Collapse
|
40
|
Qu Y, Dou B, Tan H, Feng Y, Wang N, Wang D. Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment. Mol Cancer 2019; 18:69. [PMID: 30927928 PMCID: PMC6441162 DOI: 10.1186/s12943-019-0992-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is of great concern in cancer treatment because most effective drugs are limited by the development of resistance following some periods of therapeutic administration. The tumor microenvironment (TME), which includes various types of cells and extracellular components, mediates tumor progression and affects treatment efficacy. TME-mediated drug resistance is associated with tumor cells and their pericellular matrix. Noninherent-adaptive drug resistance refers to a non-cell-autonomous mechanism in which the resistance lies in the treatment process rather than genetic or epigenetic changes, and this mechanism is closely related to the TME. A new concept is therefore proposed in which tumor cell resistance to targeted therapy may be due to non-cell-autonomous mechanisms. However, knowledge of non-cell-autonomous mechanisms of resistance to different treatments is not comprehensive. In this review, we outlined TME factors and molecular events involved in the regulation of non-cell-autonomous resistance of cancer, summarized how the TME contributes to non-cell-autonomous drug resistance in different types of antineoplastic treatment, and discussed the novel strategies to investigate and overcome the non-cell-autonomous mechanism of cancer non-cell-autonomous resistance.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bo Dou
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Horyue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
41
|
Patil V, Patil SA, Patil R, Bugarin A, Beaman K, Patil SA. Exploration of (hetero)aryl Derived Thienylchalcones for Antiviral and Anticancer Activities. Med Chem 2019; 15:150-161. [PMID: 29792154 DOI: 10.2174/1573406414666180524074648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Search for new antiviral and anticancer agents are essential because of the emergence of drug resistance in recent years. In continuation of our efforts in identifying the new small molecule antiviral and anticancer agents, we identified chalcones as potent antiviral and anticancer agents. OBJECTIVE With the aim of identifying the broad acting antiviral and anticancer agents, we discovered substituted aryl/heteroaryl derived thienyl chalcones as antiviral and anticancer agents. METHOD A focused set of thienyl chalcone derivaties II-VI was screened for selected viruses Hepatitis B virus (HBV), Herpes simplex virus 1 (HSV-1), Human cytomegalovirus (HCMV), Dengue virus 2 (DENV2), Influenza A (H1N1) virus, MERS coronavirus, Poliovirus 1 (PV 1), Rift Valley fever (RVF), Tacaribe virus (TCRV), Venezuelan equine encephalitis virus (VEE) and Zika virus (ZIKV) using the National Institute of Allergy and Infectious Diseases (NIAID)'s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. Additionally, a cyclopropylquinoline derivative IV has been screened for 60 human cancer cell lines using the Development Therapeutics Program (DTP) of NCI. RESULTS All thienyl chalcone derivatives II-VI displayed moderate to excellent antiviral activity towards several viruses tested. Compounds V and VI were turned out be active compounds towards human cytomegalovirus for both normal strain (AD169) as well as resistant isolate (GDGr K17). Particularly, cyano derivative V showed very high potency (EC50: <0.05 µM) towards AD169 strain of HCMV compared to standard drug Ganciclovir (EC50: 0.12 µM). Additionally, it showed moderate activity in the secondary assay (AD169; EC50: 2.30 µM). The cyclopropylquinoline derivative IV displayed high potency towards Rift Valley fever virus (RVFV) and Tacaribe virus (TCRV) towards Rift Valley fever virus (RVFV). The cyclopropylquinoline derivative IV is nearly 28 times more potent in our initial in vitro visual assay (EC50: 0.39 µg/ml) and nearly 17 times more potent in neutral red assay (EC50: 0.71 μg/ml) compared to the standard drug Ribavirin (EC50: 11 µg/ml; visual assay and EC50: 12 µg/ml; neutral red assay). It is nearly 12 times more potent in our initial in vitro visual assay (EC50: >1 µg/ml) and nearly 8 times more potent in neutral red assay (EC50: >1.3 µg/ml) compared to the standard drug Ribavirin (EC50: 12 µg/ml; visual assay and EC50: 9.9 µg/ml; neutral red assay) towards Tacaribe virus (TCRV). Additionally, cyclopropylquinoline derivative IV has shown strong growth inhibitory activity towards three major cancers (colon, breast, and leukemia) cell lines and moderate growth inhibition shown towards other cancer cell lines screened. CONCLUSION Compounds V and VI were demonstrated viral inhibition towards Human cytomegalovirus, whereas cyclopropylquinoline derivative IV towards Rift Valley fever virus and Tacaribe virus. Additionally, cyclopropylquinoline derivative IV has displayed very good cytotoxicity against colon, breast and leukemia cell lines in vitro.
Collapse
Affiliation(s)
- Vikrant Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Renukadevi Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - Alejandro Bugarin
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Kenneth Beaman
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - Shivaputra A Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| |
Collapse
|
42
|
Seigal A, Beguerisse-Díaz M, Schoeberl B, Niepel M, Harrington HA. Tensor clustering with algebraic constraints gives interpretable groups of crosstalk mechanisms in breast cancer. J R Soc Interface 2019; 16:20180661. [PMID: 30958184 PMCID: PMC6408352 DOI: 10.1098/rsif.2018.0661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We introduce a tensor-based clustering method to extract sparse, low-dimensional structure from high-dimensional, multi-indexed datasets. This framework is designed to enable detection of clusters of data in the presence of structural requirements which we encode as algebraic constraints in a linear program. Our clustering method is general and can be tailored to a variety of applications in science and industry. We illustrate our method on a collection of experiments measuring the response of genetically diverse breast cancer cell lines to an array of ligands. Each experiment consists of a cell line–ligand combination, and contains time-course measurements of the early signalling kinases MAPK and AKT at two different ligand dose levels. By imposing appropriate structural constraints and respecting the multi-indexed structure of the data, the analysis of clusters can be optimized for biological interpretation and therapeutic understanding. We then perform a systematic, large-scale exploration of mechanistic models of MAPK–AKT crosstalk for each cluster. This analysis allows us to quantify the heterogeneity of breast cancer cell subtypes, and leads to hypotheses about the signalling mechanisms that mediate the response of the cell lines to ligands.
Collapse
Affiliation(s)
- Anna Seigal
- 1 Department of Mathematics, University of California , Berkeley, CA 94702 , USA
| | | | - Birgit Schoeberl
- 3 Novartis Institutes for BioMedical Research , Cambridge, MA 02139 , USA
| | - Mario Niepel
- 4 Ribon Therapeutics , Lexington, MA 02421 , USA
| | | |
Collapse
|
43
|
Kim H, Cho MH, Choi HS, Lee BI, Choi Y. Zwitterionic near-infrared fluorophore-conjugated epidermal growth factor for fast, real-time, and target-cell-specific cancer imaging. Am J Cancer Res 2019; 9:1085-1095. [PMID: 30867817 PMCID: PMC6401407 DOI: 10.7150/thno.29719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/26/2018] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in many types of cancers, which is associated with metastatic potential and poor prognosis in cancer patients. Therefore, development of EGFR-targeted sensitive imaging probes has been a challenge in tumor targeting, image-guided cancer surgery, patient-selective anti-EGFR therapy, and efficient targeted therapies. Methods: We synthesized a zwitterionic near-infrared fluorophore (ATTO655)-conjugated epidermal growth factor (EGF) as a novel activatable molecular probe. Fluorescence OFF/ON property and EGFR-targeting specificity of EGF-ATTO655 as well as its utility in real-time near-infrared (NIR) fluorescence imaging of EGFR-positive cancers were evaluated using in vitro and in vivo studies. Results: When conjugated to EGF, the fluorescence of ATTO655 quenched efficiently by photo-induced electron transfer (PET) mechanism between the conjugated dyes and nearby amino acid quenchers (tryptophan/tyrosine residues), which was stably maintained at physiological pH and in the presence of serum for at least 17 h. The fluorescence of EGF-ATTO655 turned on by receptor-mediated endocytosis and subsequent disintegration of EGF in EGFR-positive A431 cancer cells, thereby enabling specific and real-time fluorescence imaging of EGFR-positive cancer cells. Consequently, EGFR-positive tumors could be clearly visualized 3 h post-injection with a significantly high tumor-to-background ratio (TBR = 6.37). Conclusion: This PET mechanism-based OFF/ON type of EGF probe showed great potential for rapid, real-time, and target-cell-specific imaging of EGFR-overexpressing cancers in vitro and in vivo.
Collapse
|
44
|
Zolotovskaia MA, Sorokin MI, Emelianova AA, Borisov NM, Kuzmin DV, Borger P, Garazha AV, Buzdin AA. Pathway Based Analysis of Mutation Data Is Efficient for Scoring Target Cancer Drugs. Front Pharmacol 2019; 10:1. [PMID: 30728774 PMCID: PMC6351482 DOI: 10.3389/fphar.2019.00001] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the significant achievements in chemotherapy, cancer remains one of the leading causes of death. Target therapy revolutionized this field, but efficiencies of target drugs show dramatic variation among individual patients. Personalization of target therapies remains, therefore, a challenge in oncology. Here, we proposed molecular pathway-based algorithm for scoring of target drugs using high throughput mutation data to personalize their clinical efficacies. This algorithm was validated on 3,800 exome mutation profiles from The Cancer Genome Atlas (TCGA) project for 128 target drugs. The output values termed Mutational Drug Scores (MDS) showed positive correlation with the published drug efficiencies in clinical trials. We also used MDS approach to simulate all known protein coding genes as the putative drug targets. The model used was built on the basis of 18,273 mutation profiles from COSMIC database for eight cancer types. We found that the MDS algorithm-predicted hits frequently coincide with those already used as targets of the existing cancer drugs, but several novel candidates can be considered promising for further developments. Our results evidence that the MDS is applicable to ranking of anticancer drugs and can be applied for the identification of novel molecular targets.
Collapse
Affiliation(s)
- Marianna A Zolotovskaia
- Oncobox Ltd., Moscow, Russia.,Department of Oncology, Hematology and Radiotherapy of Pediatric Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maxim I Sorokin
- The Laboratory of Clinical Bioinformatics, IM Sechenov First Moscow State Medical University, Moscow, Russia.,Omicsway Corp., Walnut, CA, United States.,Science-Educational Center Department, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna A Emelianova
- Science-Educational Center Department, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay M Borisov
- The Laboratory of Clinical Bioinformatics, IM Sechenov First Moscow State Medical University, Moscow, Russia.,Omicsway Corp., Walnut, CA, United States
| | - Denis V Kuzmin
- Science-Educational Center Department, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pieter Borger
- Laboratory of the Swiss Hepato-Pancreato-Biliary, Department of Surgery, Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Anton A Buzdin
- Oncobox Ltd., Moscow, Russia.,The Laboratory of Clinical Bioinformatics, IM Sechenov First Moscow State Medical University, Moscow, Russia.,Science-Educational Center Department, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
45
|
A novel scaffold for EGFR inhibition: Introducing N-(3-(3-phenylureido)quinoxalin-6-yl) acrylamide derivatives. Sci Rep 2019; 9:14. [PMID: 30626888 PMCID: PMC6327040 DOI: 10.1038/s41598-018-36846-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/29/2018] [Indexed: 11/08/2022] Open
Abstract
Clinical data acquired over the last decade on non-small cell lung cancer (NSCLC) treatment with small molecular weight Epidermal Growth Factor Receptor (EGFR) inhibitors have shown significant influence of EGFR point mutations and in-frame deletions on clinical efficacy. Identification of small molecules capable of inhibiting the clinically relevant EGFR mutant forms is desirable, and novel chemical scaffolds might provide knowledge regarding selectivity among EGFR forms and shed light on new strategies to overcome current clinical limitations. Design, synthesis, docking studies and in vitro evaluation of N-(3-(3-phenylureido)quinoxalin-6-yl) acrylamide derivatives (7a-m) against EGFR mutant forms are described. Compounds 7h and 7l were biochemically active in the nanomolar range against EGFRwt and EGFRL858R. Molecular docking and reaction enthalpy calculations have shown the influence of the combination of reversible and covalent binding modes with EGFR on the inhibitory activity. The inhibitory profile of 7h against a panel of patient-derived tumor cell lines was established, demonstrating selective growth inhibition of EGFR related cells at 10 μM among a panel of 30 cell lines derived from colon, melanoma, breast, bladder, kidney, prostate, pancreas and ovary tumors.
Collapse
|
46
|
Abdou WM, Bekheit MS. One-pot three-component synthesis of peptidomimics for investigation of antibacterial and antineoplastic properties. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2015.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
47
|
Park YH, Lee KH, Sohn JH, Lee KS, Jung KH, Kim JH, Lee KH, Ahn JS, Kim TY, Kim GM, Park IH, Kim SB, Kim SH, Han HS, Im YH, Ahn JH, Kim JY, Kang J, Im SA. A phase II trial of the pan-HER inhibitor poziotinib, in patients with HER2-positive metastatic breast cancer who had received at least two prior HER2-directed regimens: results of the NOV120101-203 trial. Int J Cancer 2018; 143:3240-3247. [DOI: 10.1002/ijc.31651] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul South Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine; Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine; Seoul South Korea
| | - Joo Hyuk Sohn
- Department of Internal Medicine, Yonsei Cancer Center; Seoul South Korea
| | - Keun Seok Lee
- Center for Breast Cancer, National Cancer Center Hospital; Goyang South Korea
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center; University of Ulsan College of Medicine; Seoul South Korea
| | - Jee-Hyun Kim
- Department of Internal Medicine; Seoul National University Bundang Hospital, Seoul National University College of Medicine; Soengnam South Korea
| | - Ki Hyeong Lee
- Department of Internal Medicine; Chungbuk National University Hospital; Cheongju South Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul South Korea
| | - Tae-Yong Kim
- Department of Internal Medicine; Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine; Seoul South Korea
| | - Gun Min Kim
- Department of Internal Medicine, Yonsei Cancer Center; Seoul South Korea
| | - In Hae Park
- Center for Breast Cancer, National Cancer Center Hospital; Goyang South Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center; University of Ulsan College of Medicine; Seoul South Korea
| | - Se Hyun Kim
- Department of Internal Medicine; Seoul National University Bundang Hospital, Seoul National University College of Medicine; Soengnam South Korea
| | - Hye Sook Han
- Department of Internal Medicine; Chungbuk National University Hospital; Cheongju South Korea
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul South Korea
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Center; University of Ulsan College of Medicine; Seoul South Korea
| | - Jung-Yong Kim
- Clinical Development Division; National OncoVenture; Goyang South Korea
| | - Jahoon Kang
- Clinical Research and Development; Hanmi Pharmaceutical Co., Ltd.; Seoul South Korea
| | - Seock-Ah Im
- Department of Internal Medicine; Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine; Seoul South Korea
| |
Collapse
|
48
|
Balça-Silva J, Matias D, Carmo AD, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol 2018; 58:130-141. [PMID: 30266571 DOI: 10.1016/j.semcancer.2018.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the more frequent and malignant brain tumour. In spite of all efforts, the median overall survival of GB patients remains approximately 15 months under therapy. The molecular biology underlying GB is complex, which highlight the need of specific treatment strategies. In fact, the deregulation of several molecular signalling pathways, the existence of the blood-brain barrier (BBB), that makes almost all the chemotherapeutic agents inaccessible to the tumour site, and the existence of a population of stem-like cells known to be responsible for tumour recurrence after therapy, can contribute to GB chemoresistance. In the present review, we summarize the reliable factors responsible for the failure of the most important chemotherapeutic agents in GB. Specifically, we describe the utmost important characteristics of the BBB, as well as the genetic, molecular and transcription factors alterations that lead to tumour malignancy, and ultimately their impact on stem-like cell plasticity modulation. Recently, nanocarriers have attracted increasing attention in brain- and tumour-targeted drug-delivery systems, owing to their potential ability to target cell surface specific molecules and to cross the BBB delivering the drug specifically to the tumour cells, improving efficacy and thus reducing non-specific toxicity. In this sense, we will lastly highlight the therapeutic challenges and improvements regarding GB treatment.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Clinical Pathology Department, Coimbra Hospital and Universitary Center (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- Faculty of Medicine, University of Coimbra (FMUC) and Coimbra Institute for Clinical and Biomedical Research (iCBR), group of Environment, Genetics and Oncobiology (CIMAGO), Coimbra, Portugal; Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra (FFUC); Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
49
|
Wiese EK, Hitosugi T. Tyrosine Kinase Signaling in Cancer Metabolism: PKM2 Paradox in the Warburg Effect. Front Cell Dev Biol 2018; 6:79. [PMID: 30087897 PMCID: PMC6066570 DOI: 10.3389/fcell.2018.00079] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022] Open
Abstract
The Warburg Effect, or aerobic glycolysis, is one of the major metabolic alterations observed in cancer. Hypothesized to increase a cell's proliferative capacity via regenerating NAD+, increasing the pool of glycolytic biosynthetic intermediates, and increasing lactate production that affects the tumor microenvironment, the Warburg Effect is important for the growth and proliferation of tumor cells. The mechanisms by which a cell acquires the Warburg Effect phenotype are regulated by the expression of numerous oncogenes, including oncogenic tyrosine kinases. Oncogenic tyrosine kinases play a significant role in phosphorylating and regulating the activity of numerous metabolic enzymes. Tyrosine phosphorylation of glycolytic enzymes increases the activities of a majority of glycolytic enzymes, thus promoting increased glycolytic rate and tumor cell proliferation. Paradoxically however, tyrosine phosphorylation of pyruvate kinase M2 isoform (PKM2) results in decreased PKM2 activity, and this decrease in PKM2 activity promotes the Warburg Effect. Furthermore, recent studies have shown that PKM2 is also able to act as a protein kinase using phosphoenolpyruvate (PEP) as a substrate to promote tumorigenesis. Therefore, numerous recent studies have investigated both the role of the classical and non-canonical activity of PKM2 in promoting the Warburg Effect and tumor growth, which raise further interesting questions. In this review, we will summarize these recent advances revealing the importance of tyrosine kinases in the regulation of the Warburg Effect as well as the role of PKM2 in the promotion of tumor growth.
Collapse
Affiliation(s)
- Elizabeth K Wiese
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States.,Molecular Pharmacology and Experimental Therapeutics Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Taro Hitosugi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States.,Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
50
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|