1
|
Jarczak J, Bujko K, Ratajczak MZ, Kucia M. scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes. Sci Rep 2024; 14:29264. [PMID: 39587190 PMCID: PMC11589151 DOI: 10.1038/s41598-024-79810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
A population of CD133+lin-CD45- and CD34+lin-CD45- very small embryonic-like stem cells (VSELs) has been identified in postnatal human tissues, including bone marrow (BM), mobilized peripheral blood (mPB) and umbilical cord blood (UCB). Under appropriate conditions, VSELs in vitro and in vivo differentiate into tissue-committed stem cells for all three germ layers. Molecular analysis of adult murine BM-purified VSELs revealed that these rare cells deposited during development in adult tissues (i) express a similar transcriptome as embryonic stem cells, (ii) share several markers characteristic for epiblast and migratory primordial germ cells (PGCs), (iii) highly express a polycomb group protein enhancer of zeste drosophila homolog 2 (Ezh2) and finally (iv) display a unique pattern of imprinting at crucial paternally inherited genes that promotes their quiescence. Here, by employing single-cell RNA sequencing we demonstrate for the first time that purified from UCB human VSELs defined by expression of CD34 or CD133 antigens and lack of lineage markers, including CD45 antigen express similar molecular signature as murine BM-derived VSELs. Specifically, unsupervised clustering revealed numerous subpopulations of VSELs including ones i) annotated to germline compartments, ii) regulated by parental imprinting, iii) responding to early developmental fate decisions, iv) transcription factors involved in differentiation and development, including homeobox family of genes, and v) expressing innate immunity and purinergic signaling genes.
Collapse
Affiliation(s)
- Justyna Jarczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland.
| |
Collapse
|
2
|
Wan C, Huang Y, Xue X, Chang G, Wang M, Zhao X, Luo F, Tang Z. HELQ deficiency impairs the induction of primordial germ cell-like cells. FEBS Open Bio 2024; 14:1087-1100. [PMID: 38720471 PMCID: PMC11216937 DOI: 10.1002/2211-5463.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 07/03/2024] Open
Abstract
Helicase POLQ-like (HELQ) is a DNA helicase essential for the maintenance of genome stability. A recent study identified two HELQ missense mutations in some cases of infertile men. However, the functions of HELQ in the process of germline specification are not well known and whether its function is conserved between mouse and human remains unclear. Here, we revealed that Helq knockout (Helq-/-) could significantly reduce the efficiency of mouse primordial germ cell-like cell (PGCLC) induction. In addition, Helq-/- embryonic bodies exhibited a severe apoptotic phenotype on day 6 of mouse PGCLC induction. p53 inhibitor treatment could partially rescue the generation of mouse PGCLCs from Helq mutant mouse embryonic stem cells. Finally, the genetic ablation of HELQ could also significantly impede the induction of human PGCLCs. Collectively, our study sheds light on the involvement of HELQ in the induction of both mouse and human PGCLCs, providing new insights into the mechanisms underlying germline differentiation and the genetic studies of human fertility.
Collapse
Affiliation(s)
- Cong Wan
- Maoming People's HospitalChina
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yaping Huang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xingguo Xue
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Gang Chang
- Department of Biochemistry and Molecular BiologyShenzhen University Health Science CenterChina
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiao‐Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Guangdong Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH‐GDL)China
| | - Fang Luo
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | | |
Collapse
|
3
|
Li L, Ding X, Sheft AP, Schimenti JC. A high throughput CRISPR perturbation screen identifies epigenetic regulators impacting primordial germ cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582097. [PMID: 38463983 PMCID: PMC10925113 DOI: 10.1101/2024.02.26.582097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Certain environmental factors can impact fertility and reproductive parameters such as the number and quality of sperm and eggs. One possible mechanism is the perturbation of epigenetic landscapes in the germline. To explore this possibility, we conducted a CRISPRi screen of epigenetic-related genes to identify those that specifically perturb the differentiation of embryonic stem cells (ESCs) into primordial germ cell-like cells (PGCLCs), exploiting a highly scalable cytokine-free platform. Of the 701 genes screened, inhibition of 53 decreased the efficiency of PGCLC formation. NCOR2, a transcriptional repressor that acts via recruitment of Class I and Class IIa histone deacetylases (HDACs) to gene targets, was particularly potent in suppressing PGCLC differentiation. Consistent with evidence that histone deacetylation is crucial for germline differentiation, we found that the HDAC inhibitors (HDACi) valproic acid (VPA; an anti-convulsant) and sodium butyrate (SB; a widely-used dietary supplement) also suppressed ESC>PGCLC differentiation. Furthermore, exposure of developing mouse embryos to SB or VPA caused hypospermatogenesis. Transcriptome analyses of HDACi-treated, differentiating ESC>PGCLC cultures revealed suppression of germline-associated pathways and enhancement of somatic pathways. This work demonstrates the feasibility of conducting large-scale functional screens of genes, chemicals, or other agents that may impact germline development.
Collapse
|
4
|
Esfahani SN, Zheng Y, Arabpour A, Irizarry AMR, Kobayashi N, Xue X, Shao Y, Zhao C, Agranonik NL, Sparrow M, Hunt TJ, Faith J, Lara MJ, Wu QY, Silber S, Petropoulos S, Yang R, Chien KR, Clark AT, Fu J. Derivation of human primordial germ cell-like cells in an embryonic-like culture. Nat Commun 2024; 15:167. [PMID: 38167821 PMCID: PMC10762101 DOI: 10.1038/s41467-023-43871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of sperm and eggs. They transmit genetic and epigenetic information across generations. Given the prominent role of germline defects in diseases such as infertility, detailed understanding of human PGC (hPGC) development has important implications in reproductive medicine and studying human evolution. Yet, hPGC specification remains an elusive process. Here, we report the induction of hPGC-like cells (hPGCLCs) in a bioengineered human pluripotent stem cell (hPSC) culture that mimics peri-implantation human development. In this culture, amniotic ectoderm-like cells (AMLCs), derived from hPSCs, induce hPGCLC specification from hPSCs through paracrine signaling downstream of ISL1. Our data further show functional roles of NODAL, WNT, and BMP signaling in hPGCLC induction. hPGCLCs are successfully derived from eight non-obstructive azoospermia (NOA) participant-derived hPSC lines using this biomimetic platform, demonstrating its promise for screening applications.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Auriana Arabpour
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Norio Kobayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, 100084, Beijing, China
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Instituet, 14186, Stockholm, Sweden
| | - Nicole L Agranonik
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Megan Sparrow
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy J Hunt
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jared Faith
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mary Jasmine Lara
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Qiu Ya Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sherman Silber
- Infertility Center of St. Louis, St. Luke's Hospital, St. Louis, MO, 63017, USA
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Instituet, 14186, Stockholm, Sweden
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, QC, H2X 19A, Canada
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, QC, Canada
| | - Ran Yang
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Amander T Clark
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Verdikt R, Armstrong AA, Cheng J, Hwang YS, Clark AT, Yang X, Allard P. Metabolic memory of Δ9-tetrahydrocannabinol exposure in pluripotent stem cells and primordial germ cells-like cells. eLife 2023; 12:RP88795. [PMID: 38150302 PMCID: PMC10752584 DOI: 10.7554/elife.88795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Cannabis, the most consumed illicit psychoactive drug in the world, is increasingly used by pregnant women. However, while cannabinoid receptors are expressed in the early embryo, the impact of phytocannabinoids exposure on early embryonic processes is lacking. Here, we leverage a stepwise in vitro differentiation system that captures the early embryonic developmental cascade to investigate the impact of exposure to the most abundant phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC). We demonstrate that Δ9-THC increases the proliferation of naive mouse embryonic stem cells (ESCs) but not of their primed counterpart. Surprisingly, this increased proliferation, dependent on the CB1 receptor binding, is only associated with moderate transcriptomic changes. Instead, Δ9-THC capitalizes on ESCs' metabolic bivalence by increasing their glycolytic rates and anabolic capabilities. A memory of this metabolic rewiring is retained throughout differentiation to Primordial Germ Cell-Like Cells in the absence of direct exposure and is associated with an alteration of their transcriptional profile. These results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on early stages of germline development.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los AngelesLos AngelesUnited States
| | - Abigail A Armstrong
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility, University of California, Los AngelesLos AngelesUnited States
| | - Jenny Cheng
- Molecular, Cellular, and Integrative Physiology Graduate Program, University of California, Los AngelesLos AngelesUnited States
| | - Young Sun Hwang
- Department of Molecular Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Center for Reproductive Science, Health and Education, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
| | - Xia Yang
- Integrative Biology and Physiology Department, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos AngelesUnited States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
6
|
Shimada R, Kato Y, Takeda N, Fujimura S, Yasunaga KI, Usuki S, Niwa H, Araki K, Ishiguro KI. STRA8-RB interaction is required for timely entry of meiosis in mouse female germ cells. Nat Commun 2023; 14:6443. [PMID: 37880249 PMCID: PMC10600341 DOI: 10.1038/s41467-023-42259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Meiosis is differently regulated in males and females. In females, germ cells initiate meiosis within a limited time period in the fetal ovary and undergo a prolonged meiotic arrest until puberty. However, how meiosis initiation is coordinated with the cell cycle to coincide with S phase remains elusive. Here, we demonstrate that STRA8 binds to RB via the LXCXE motif. Mutation of the RB-binding site of STRA8 in female mice delays meiotic entry, which consequently delays progression of meiotic prophase and leads to precocious depletion of the oocyte pool. Single-cell RNA-sequencing analysis reveals that the STRA8-RB interaction is required for S phase entry and meiotic gene activation, ensuring precise timing of meiosis initiation in oocytes. Strikingly, the results suggest STRA8 could sequester RB from E2F during pre-meiotic G1/S transition. This study highlights the gene regulatory mechanisms underlying the female-specific mode of meiotic initiation in mice.
Collapse
Affiliation(s)
- Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Yuzuru Kato
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Naoki Takeda
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kei-Ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, 1-1-1, Honjo, Kumamoto, 860-8556, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan.
| |
Collapse
|
7
|
Cooke CB, Barrington C, Baillie-Benson P, Nichols J, Moris N. Gastruloid-derived primordial germ cell-like cells develop dynamically within integrated tissues. Development 2023; 150:dev201790. [PMID: 37526602 PMCID: PMC10508693 DOI: 10.1242/dev.201790] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Primordial germ cells (PGCs) are the early embryonic precursors of gametes - sperm and egg cells. PGC-like cells (PGCLCs) can currently be derived in vitro from pluripotent cells exposed to signalling cocktails and aggregated into large embryonic bodies, but these do not recapitulate the native embryonic environment during PGC formation. Here, we show that mouse gastruloids, a three-dimensional in vitro model of gastrulation, contain a population of gastruloid-derived PGCLCs (Gld-PGCLCs) that resemble early PGCs in vivo. Importantly, the conserved organisation of mouse gastruloids leads to coordinated spatial and temporal localisation of Gld-PGCLCs relative to surrounding somatic cells, even in the absence of specific exogenous PGC-specific signalling or extra-embryonic tissues. In gastruloids, self-organised interactions between cells and tissues, including the endodermal epithelium, enables the specification and subsequent maturation of a pool of Gld-PGCLCs. As such, mouse gastruloids represent a new source of PGCLCs in vitro and, owing to their inherent co-development, serve as a novel model to study the dynamics of PGC development within integrated tissue environments.
Collapse
Affiliation(s)
- Christopher B. Cooke
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Abcam, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, UK
| | | | - Peter Baillie-Benson
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Wellcome Trust – MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust – MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
8
|
Kim YM, Woo SJ, Han JY. Strategies for the Generation of Gene Modified Avian Models: Advancement in Avian Germline Transmission, Genome Editing, and Applications. Genes (Basel) 2023; 14:genes14040899. [PMID: 37107658 PMCID: PMC10137648 DOI: 10.3390/genes14040899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Avian models are valuable for studies of development and reproduction and have important implications for food production. Rapid advances in genome-editing technologies have enabled the establishment of avian species as unique agricultural, industrial, disease-resistant, and pharmaceutical models. The direct introduction of genome-editing tools, such as the clustered regularly interspaced short palindromic repeats (CRISPR) system, into early embryos has been achieved in various animal taxa. However, in birds, the introduction of the CRISPR system into primordial germ cells (PGCs), a germline-competent stem cell, is considered a much more reliable approach for the development of genome-edited models. After genome editing, PGCs are transplanted into the embryo to establish germline chimera, which are crossed to produce genome-edited birds. In addition, various methods, including delivery by liposomal and viral vectors, have been employed for gene editing in vivo. Genome-edited birds have wide applications in bio-pharmaceutical production and as models for disease resistance and biological research. In conclusion, the application of the CRISPR system to avian PGCs is an efficient approach for the production of genome-edited birds and transgenic avian models.
Collapse
Affiliation(s)
| | - Seung-Je Woo
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Yong Han
- Avinnogen Co., Ltd., Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Barchi M, Guida E, Dolci S, Rossi P, Grimaldi P. Endocannabinoid system and epigenetics in spermatogenesis and testicular cancer. VITAMINS AND HORMONES 2023; 122:75-106. [PMID: 36863802 DOI: 10.1016/bs.vh.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In mammals, male germ cell development starts during fetal life and is carried out in postnatal life with the formation of sperms. Spermatogenesis is the complex and highly orderly process during which a group of germ stem cells is set at birth, starts to differentiate at puberty. It proceeds through several stages: proliferation, differentiation, and morphogenesis and it is strictly regulated by a complex network of hormonal, autocrine and paracrine factors and it is associated with a unique epigenetic program. Altered epigenetic mechanisms or inability to respond to these factors can impair the correct process of germ development leading to reproductive disorders and/or testicular germ cell cancer. Among factors regulating spermatogenesis an emerging role is played by the endocannabinoid system (ECS). ECS is a complex system comprising endogenous cannabinoids (eCBs), their synthetic and degrading enzymes, and cannabinoid receptors. Mammalian male germ cells have a complete and active ECS which is modulated during spermatogenesis and that crucially regulates processes such as germ cell differentiation and sperm functions. Recently, cannabinoid receptor signaling has been reported to induce epigenetic modifications such as DNA methylation, histone modifications and miRNA expression. Epigenetic modifications may also affect the expression and function of ECS elements, highlighting the establishment of a complex mutual interaction. Here, we describe the developmental origin and differentiation of male germ cells and testicular germ cell tumors (TGCTs) focusing on the interplay between ECS and epigenetic mechanisms involved in these processes.
Collapse
Affiliation(s)
- Marco Barchi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Pellegrino Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
10
|
Bouchereau W, Jouneau L, Archilla C, Aksoy I, Moulin A, Daniel N, Peynot N, Calderari S, Joly T, Godet M, Jaszczyszyn Y, Pratlong M, Severac D, Savatier P, Duranthon V, Afanassieff M, Beaujean N. Major transcriptomic, epigenetic and metabolic changes underlie the pluripotency continuum in rabbit preimplantation embryos. Development 2022; 149:276385. [DOI: 10.1242/dev.200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Despite the growing interest in the rabbit model for developmental and stem cell biology, the characterization of embryos at the molecular level is still poorly documented. We conducted a transcriptome analysis of rabbit preimplantation embryos from E2.7 (morula stage) to E6.6 (early primitive streak stage) using bulk and single-cell RNA-sequencing. In parallel, we studied oxidative phosphorylation and glycolysis, and analysed active and repressive epigenetic modifications during blastocyst formation and expansion. We generated a transcriptomic, epigenetic and metabolic map of the pluripotency continuum in rabbit preimplantation embryos, and identified novel markers of naive pluripotency that might be instrumental for deriving naive pluripotent stem cell lines. Although the rabbit is evolutionarily closer to mice than to primates, we found that the transcriptome of rabbit epiblast cells shares common features with those of humans and non-human primates.
Collapse
Affiliation(s)
- Wilhelm Bouchereau
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Irène Aksoy
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Anais Moulin
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Sophie Calderari
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Thierry Joly
- ISARA-Lyon 4 , F-69007 Lyon , France
- VetAgroSup, UPSP ICE 5 , F-69280 Marcy l'Etoile , France
| | - Murielle Godet
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 6 , 91198 Gif-sur-Yvette , France
| | - Marine Pratlong
- MGX, Université Montpellier, CNRS, INSERM 7 , 34094 Montpellier , France
| | - Dany Severac
- MGX, Université Montpellier, CNRS, INSERM 7 , 34094 Montpellier , France
| | - Pierre Savatier
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Marielle Afanassieff
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Nathalie Beaujean
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| |
Collapse
|
11
|
Wang X, Wu Q. The Divergent Pluripotent States in Mouse and Human Cells. Genes (Basel) 2022; 13:genes13081459. [PMID: 36011370 PMCID: PMC9408542 DOI: 10.3390/genes13081459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs), which can self-renew and give rise to all cell types in all three germ layers, have great potential in regenerative medicine. Recent studies have shown that PSCs can have three distinct but interrelated pluripotent states: naive, formative, and primed. The PSCs of each state are derived from different stages of the early developing embryo and can be maintained in culture by different molecular mechanisms. In this review, we summarize the current understanding on features of the three pluripotent states and review the underlying molecular mechanisms of maintaining their identities. Lastly, we discuss the interrelation and transition among these pluripotency states. We believe that comprehending the divergence of pluripotent states is essential to fully harness the great potential of stem cells in regenerative medicine.
Collapse
Affiliation(s)
| | - Qiang Wu
- Correspondence: ; Tel.: +853-8897-2708
| |
Collapse
|
12
|
A Krüppel-like factor is required for development and regeneration of germline and yolk cells from somatic stem cells in planarians. PLoS Biol 2022; 20:e3001472. [PMID: 35839223 PMCID: PMC9286257 DOI: 10.1371/journal.pbio.3001472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Sexually reproducing animals segregate their germline from their soma. In addition to gamete-producing gonads, planarian and parasitic flatworm reproduction relies on yolk cell–generating accessory reproductive organs (vitellaria) supporting development of yolkless oocytes. Despite the importance of vitellaria for flatworm reproduction (and parasite transmission), little is known about this unique evolutionary innovation. Here, we examine reproductive system development in the planarian Schmidtea mediterranea, in which pluripotent stem cells generate both somatic and germ cell lineages. We show that a homolog of the pluripotency factor Klf4 is expressed in primordial germ cells (PGCs), presumptive germline stem cells (GSCs), and yolk cell progenitors. Knockdown of this klf4-like (klf4l) gene results in animals that fail to specify or maintain germ cells; surprisingly, they also fail to maintain yolk cells. We find that yolk cells display germ cell–like attributes and that vitellaria are structurally analogous to gonads. In addition to identifying a new proliferative cell population in planarians (yolk cell progenitors) and defining its niche, our work provides evidence supporting the hypothesis that flatworm germ cells and yolk cells share a common evolutionary origin.
Collapse
|
13
|
Fang F, Iaquinta PJ, Xia N, Liu L, Diao L, Reijo Pera RA. Transcriptional control of human gametogenesis. Hum Reprod Update 2022; 28:313-345. [PMID: 35297982 PMCID: PMC9071081 DOI: 10.1093/humupd/dmac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
The pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the genome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated. Many reviews have focused on the molecular development and genetics of gametogenesis, in vivo and in vitro, in model organisms and in humans, including several recent comprehensive reviews: here, we focus specifically on the role of transcription factors. Recent advances in stem cell biology and multi-omic studies have enabled deeper investigation into the unique transcriptional mechanisms of human reproductive development. Moreover, as methods continually improve, in vitro differentiation of germ cells can provide the platform for robust gain- and loss-of-function genetic analyses. These analyses are delineating unique and shared human germ cell transcriptional network components that, together with somatic lineage specifiers and pluripotency transcription factors, function in transitions from pluripotent stem cells to gametes. This grand theme review offers additional insight into human infertility and reproductive disorders that are linked predominantly to defects in the transcription factor networks and thus may potentially contribute to the development of novel treatments for infertility.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Phillip J Iaquinta
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Renee A Reijo Pera
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
- McLaughlin Research Institute, Great Falls, MT, USA
| |
Collapse
|
14
|
Zhou S, Sakashita A, Yuan S, Namekawa SH. Retrotransposons in the Mammalian Male Germline. Sex Dev 2022; 16:404-422. [PMID: 35231923 PMCID: PMC11974347 DOI: 10.1159/000520683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
Retrotransposons are a subset of DNA sequences that constitute a large part of the mammalian genome. They can translocate autonomously or non-autonomously, potentially jeopardizing the heritable germline genome. Retrotransposons coevolved with the host genome, and the germline is the prominent battlefield between retrotransposons and the host genome to maximize their mutual fitness. Host genomes have developed various mechanisms to suppress and control retrotransposons, including DNA methylation, histone modifications, and Piwi-interacting RNA (piRNA), for their own benefit. Thus, rapidly evolved retrotransposons often acquire positive functions, including gene regulation within the germline, conferring reproductive fitness in a species over the course of evolution. The male germline serves as an ideal model to examine the regulation and evolution of retrotransposons, resulting in genomic co-evolution with the host genome. In this review, we summarize and discuss the regulatory mechanisms of retrotransposons, stage-by-stage, during male germ cell development, with a particular focus on mice as an extensively studied mammalian model, highlighting suppression mechanisms and emerging functions of retrotransposons in the male germline.
Collapse
Affiliation(s)
- Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| |
Collapse
|
15
|
Post-transcriptional regulation of factors important for the germ line. Curr Top Dev Biol 2022; 146:49-78. [PMID: 35152986 DOI: 10.1016/bs.ctdb.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Echinoderms are a major model system for many general aspects of biology, including mechanisms of gene regulation. Analysis of transcriptional regulation (Gene regulatory networks, direct DNA-binding of proteins to specific cis-elements, and transgenesis) has contributed to our understanding of how an embryo works. This chapter looks at post-transcriptional gene regulation in the context of how the primordial germ cells are formed, and how the factors essential for this process are regulated. Important in echinoderms, as in many embryos, is that key steps of fate determination are made post-transcriptionally. This chapter highlights these steps uncovered in sea urchins and sea stars, and links them to a general theme of how the germ line may regulate its fate differently than many of the embryo's somatic cell lineages.
Collapse
|
16
|
Vojtek M, Zhang J, Sun J, Zhang M, Chambers I. Differential repression of Otx2 underlies the capacity of NANOG and ESRRB to induce germline entry. Stem Cell Reports 2021; 17:35-42. [PMID: 34971561 PMCID: PMC8758940 DOI: 10.1016/j.stemcr.2021.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022] Open
Abstract
Primordial germ cells (PGCs) arise from cells of the post-implantation epiblast in response to cytokine signaling. PGC development can be recapitulated in vitro by differentiating epiblast-like cells (EpiLCs) into PGC-like cells (PGCLCs) through cytokine exposure. Interestingly, the cytokine requirement for PGCLC induction can be bypassed by enforced expression of the transcription factor (TF) NANOG. However, the underlying mechanisms are not fully elucidated. Here, we show that NANOG mediates Otx2 downregulation in the absence of cytokines and that this is essential for PGCLC induction by NANOG. Moreover, the direct NANOG target gene Esrrb, which can substitute for several NANOG functions, does not downregulate Otx2 when overexpressed in EpiLCs and cannot promote PGCLC specification. However, expression of ESRRB in Otx2+/− EpiLCs rescues emergence of PGCLCs. This study illuminates the interplay of TFs occurring at the earliest stages of PGC specification. NANOG overexpression induces cytokine-free PGCLC specification by repressing Otx2 Enforced OTX2 expression prevents NANOG-induced germline entry ESRRB overexpression cannot repress Otx2 or induce cytokine-free germline entry Otx2 heterozygosity enables ESRRB to induce cytokine-free PGCLC specification
Collapse
Affiliation(s)
- Matúš Vojtek
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | - Jingchao Zhang
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | - Juanjuan Sun
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Man Zhang
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China; The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland.
| |
Collapse
|
17
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
18
|
Hayaei Tehrani RS, Sayahpour FA, Esfandiari F. A comparison between BMP4 and SB4 in inducing germ line gene expression pattern during embryonic stem cells differentiation. Differentiation 2021; 123:9-17. [PMID: 34864442 DOI: 10.1016/j.diff.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/03/2022]
Abstract
Germ cell production from stem cells allows for studying the mechanisms involved in gamete development with the aim of helping infertile couples with the generation of healthy gametes. In this context, improving the protocols for in-vitro germ cell induction from stem cells is very important. Recently, SB4 small molecule has been introduced as a potent agonist for bone morphogenic protein 4 (BMP4). Herein, we investigated whether BMP4, is replaceable by SB4 for having affordable protocol for in vitro germ cell differentiation. We demonstrated that SB4 can induce Blimp1 (as the first gene induced germ line differentiation) expression significantly but at a lower level compared to BMP4. However, Tfap2c (a putative downstream target of Blimp1 during germ cell differentiation) expression level in SB4-induced aggregates was significantly higher than in BMP4-induced aggregates. Moreover, co-presence of both BMP4 and SB4 could increase the expression level of Prdm14, Nnose3 and Stella (Dppa3), and thereby improve establishment of the germ cell fate during in-vitro differentiation of embryonic stem cells. In summary, our data suggest that SB4 could improve germ line gene expression pattern induced by BMP4 during embryonic stem cells in-vitro differentiation.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
19
|
Mo C, Li W, Jia K, Liu W, Yi M. Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish. Int J Mol Sci 2021; 22:11962. [PMID: 34769390 PMCID: PMC8584686 DOI: 10.3390/ijms222111962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in post-transcriptional repression in nearly every biological process including germ cell development. Previously, we have identified a zebrafish germ plasm-specific miRNA miR-202-5p, which regulates PGC migration through targeting cdc42se1 to protect cdc42 expression. However, knockdown of cdc42se1 could not significantly rescue PGC migration in maternal miR-202 mutant (MmiR-202) embryos, indicating that there are other target genes of miR-202-5p required for the regulation of PGC migration. Herein, we revealed the transcriptional profiles of wild type and MmiR-202 PGCs and obtained 129 differentially expressed genes (DEGs), of which 42 DEGs were enriched cell migration-related signaling pathways. From these DEGs, we identified two novel miR-202-5p target genes prdm12b and rab10. Furthermore, we found that disruption of rab10 expression led to significantly migratory defects of PGC by overexpression of rab10 siRNA, or WT, inactive as well as active forms of rab10 mRNA, and WT rab10 overexpression mediated migratory defects could be partially but significantly rescued by overexpression of miR-202-5p, demonstrating that rab10 is an important factor involved miR-202-5p mediated regulation of PGC migration. Taken together, the present results provide significant information for understanding the molecular mechanism by which miR-202-5p regulates PGC migration in zebrafish.
Collapse
Affiliation(s)
- Chengyu Mo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wenjing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| |
Collapse
|
20
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
21
|
Shimada R, Koike H, Hirano T, Kato Y, Saga Y. NANOS2 suppresses the cell cycle by repressing mTORC1 activators in embryonic male germ cells. iScience 2021; 24:102890. [PMID: 34401671 PMCID: PMC8350546 DOI: 10.1016/j.isci.2021.102890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
During murine germ cell development, male germ cells enter the mitotically arrested G0 stage, which is an initial step of sexually dimorphic differentiation. The male-specific RNA-binding protein NANOS2 has a key role in suppressing the cell cycle in germ cells. However, the detailed mechanism of how NANOS2 regulates the cell cycle remains unclear. Using single-cell RNA sequencing (scRNA-seq), we extracted the cell cycle state of each germ cell in wild-type and Nanos2-KO testes and revealed that Nanos2 expression starts in mitotic cells and induces mitotic arrest. We identified Rheb, a regulator of mTORC1, and Ptma as possible targets of NANOS2. We propose that repression of the cell cycle is a primary function of NANOS2 and that it is mediated via the suppression of mTORC1 activity through the repression of Rheb in a post-transcriptional manner.
Collapse
Affiliation(s)
- Ryuki Shimada
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroko Koike
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takamasa Hirano
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yuzuru Kato
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yumiko Saga
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Division for the Development of Genetically Engineered Mouse Resources, Genetic Resource Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Hong TK, Song JH, Lee SB, Do JT. Germ Cell Derivation from Pluripotent Stem Cells for Understanding In Vitro Gametogenesis. Cells 2021; 10:cells10081889. [PMID: 34440657 PMCID: PMC8394365 DOI: 10.3390/cells10081889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Assisted reproductive technologies (ARTs) have developed considerably in recent years; however, they cannot rectify germ cell aplasia, such as non-obstructive azoospermia (NOA) and oocyte maturation failure syndrome. In vitro gametogenesis is a promising technology to overcome infertility, particularly germ cell aplasia. Early germ cells, such as primordial germ cells, can be relatively easily derived from pluripotent stem cells (PSCs); however, further progression to post-meiotic germ cells usually requires a gonadal niche and signals from gonadal somatic cells. Here, we review the recent advances in in vitro male and female germ cell derivation from PSCs and discuss how this technique is used to understand the biological mechanism of gamete development and gain insight into its application in infertility.
Collapse
|
23
|
Di Giovannantonio LG, Acampora D, Omodei D, Nigro V, Barba P, Barbieri E, Chambers I, Simeone A. Direct repression of Nanog and Oct4 by OTX2 modulates the contribution of epiblast-derived cells to germline and somatic lineage. Development 2021; 148:263923. [PMID: 33999993 DOI: 10.1242/dev.199166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window. However, the mechanisms by which OTX2 suppresses PGC fate are unknown. Here, we show that, in mice, OTX2 prevents epiblast cells from activating the pluripotency GRN by direct repression of Oct4 and Nanog. Loss of this control during PGC differentiation in vitro causes widespread activation of the pluripotency GRN and a deregulated response to LIF, BMP4 and WNT signaling. These abnormalities, in specific cell culture conditions, result in massive germline entry at the expense of somatic mesoderm differentiation. Increased generation of PGCs also occurs in mutant embryos. We propose that the OTX2-mediated repressive control of Oct4 and Nanog is the basis of the mechanism that determines epiblast contribution to germline and somatic lineage.
Collapse
Affiliation(s)
| | - Dario Acampora
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Daniela Omodei
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy.,Institute of Biostructures and Bioimaging, CNR, Via Tommaso De Amicis, 95, 80145 Naples, Italy
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania 'Luigi Vanvitelli', Via L. De Crecchio, 7, 80138 Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80087 Pozzuoli (NA), Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Elisa Barbieri
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Antonio Simeone
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
24
|
de Souza AF, Pieri NCG, Martins DDS. Step by Step about Germ Cells Development in Canine. Animals (Basel) 2021; 11:ani11030598. [PMID: 33668687 PMCID: PMC7996183 DOI: 10.3390/ani11030598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The progression of germ cells is a remarkable event that allows biological discovery in the differ-entiation process during in vivo and in vitro development. This is crucial for understanding one toward making oogenesis and spermatogenesis. Companion animals, such as canine, could offer new animal models for experimental and clinical testing for translation to human models. In this review, we describe the latest and more relevant findings on germ cell development. In addition, we showed the methods available for obtaining germ cells in vitro and the characterization of pri-mordial germ cells and spermatogonial stem cells. However, it is necessary to further conduct basic research in canine to clarify the beginning of germ cell development. Abstract Primordial germ cells (PGCs) have been described as precursors of gametes and provide a connection within generations, passing on the genome to the next generation. Failures in the formation of gametes/germ cells can compromise the maintenance and conservation of species. Most of the studies with PGCs have been carried out in mice, but this species is not always the best study model when transposing this knowledge to humans. Domestic animals, such as canines (canine), have become a valuable translational research model for stem cells and therapy. Furthermore, the study of canine germ cells opens new avenues for veterinary reproduction. In this review, the objective is to provide a comprehensive overview of the current knowledge on canine germ cells. The aspects of canine development and germ cells have been discussed since the origin, specifications, and development of spermatogonial canine were first discussed. Additionally, we discussed and explored some in vitro aspects of canine reproduction with germ cells, such as embryonic germ cells and spermatogonial stem cells.
Collapse
|
25
|
Mukherjee N, Mukherjee C. Germ cell ribonucleoprotein granules in different clades of life: From insects to mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1642. [PMID: 33555143 DOI: 10.1002/wrna.1642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Ribonucleoprotein (RNP) granules are no newcomers in biology. Found in all life forms, ranging across taxa, these membrane-less "organelles" have been classified into different categories based on their composition, structure, behavior, function, and localization. Broadly, they can be listed as stress granules (SGs), processing bodies (PBs), neuronal granules (NGs), and germ cell granules (GCGs). Keeping in line with the topic of this review, RNP granules present in the germ cells have been implicated in a wide range of cellular functions including cellular specification, differentiation, proliferation, and so forth. The mechanisms used by them can be diverse and many of them remain partly obscure and active areas of research. GCGs can be of different types in different organisms and at different stages of development, with multiple types coexisting in the same cell. In this review, the different known subcategories of GCGs have been studied with respect to five distinct model organisms, namely, Drosophila, Caenorhabditis elegans, Xenopus, Zebrafish, and mammals. Of them, the cytoplasmic polar granules in Drosophila, P granules in C. elegans, balbiani body in Xenopus and Zebrafish, and chromatoid bodies in mammals have been specifically emphasized upon. A descriptive account of the same has been provided along with insights into our current understanding of their functional significance with respect to cellular events relating to different developmental and reproductive processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease.
Collapse
|
26
|
Wang JJ, Ge W, Zhai QY, Liu JC, Sun XW, Liu WX, Li L, Lei CZ, Dyce PW, De Felici M, Shen W. Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice. PLoS Biol 2020; 18:e3001025. [PMID: 33351795 PMCID: PMC7787681 DOI: 10.1371/journal.pbio.3001025] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2021] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Primordial follicle assembly in the mouse occurs during perinatal ages and largely determines the ovarian reserve that will be available to support the reproductive life span. The development of primordial follicles is controlled by a complex network of interactions between oocytes and ovarian somatic cells that remain poorly understood. In the present research, using single-cell RNA sequencing performed over a time series on murine ovaries, coupled with several bioinformatics analyses, the complete dynamic genetic programs of germ and granulosa cells from E16.5 to postnatal day (PD) 3 were reported. Along with confirming the previously reported expression of genes by germ cells and granulosa cells, our analyses identified 5 distinct cell clusters associated with germ cells and 6 with granulosa cells. Consequently, several new genes expressed at significant levels at each investigated stage were assigned. By building single-cell pseudotemporal trajectories, 3 states and 1 branch point of fate transition for the germ cells were revealed, as well as for the granulosa cells. Moreover, Gene Ontology (GO) term enrichment enabled identification of the biological process most represented in germ cells and granulosa cells or common to both cell types at each specific stage, and the interactions of germ cells and granulosa cells basing on known and novel pathway were presented. Finally, by using single-cell regulatory network inference and clustering (SCENIC) algorithm, we were able to establish a network of regulons that can be postulated as likely candidates for sustaining germ cell-specific transcription programs throughout the period of investigation. Above all, this study provides the whole transcriptome landscape of ovarian cells and unearths new insights during primordial follicle assembly in mice.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qiu-Yue Zhai
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jing-Cai Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Wen Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wen-Xiang Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chu-Zhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Paul W. Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
27
|
Ravichandran M, Lei R, Tang Q, Zhao Y, Lee J, Ma L, Chrysanthou S, Lorton BM, Cvekl A, Shechter D, Zheng D, Dawlaty MM. Rinf Regulates Pluripotency Network Genes and Tet Enzymes in Embryonic Stem Cells. Cell Rep 2020; 28:1993-2003.e5. [PMID: 31433977 PMCID: PMC6716522 DOI: 10.1016/j.celrep.2019.07.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/07/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022] Open
Abstract
The Retinoid inducible nuclear factor (Rinf), also known as CXXC5, is a nuclear protein, but its functions in the context of the chromatin are poorly defined. We find that in mouse embryonic stem cells (mESCs), Rinf binds to the chromatin and is enriched at promoters and enhancers of Tet1, Tet2, and pluripotency genes. The Rinf-bound regions show significant overlapping occupancy of pluripotency factors Nanog, Oct4, and Sox2, as well as Tet1 and Tet2. We found that Rinf forms a complex with Nanog, Oct4, Tet1, and Tet2 and facilitates their proper recruitment to regulatory regions of pluripotency and Tet genes in ESCs to positively regulate their transcription. Rinf deficiency in ESCs reduces expression of Rinf target genes, including several pluripotency factors and Tet enzymes, and causes aberrant differentiation. Together, our findings establish Rinf as a regulator of the pluripotency network genes and Tet enzymes in ESCs.
Collapse
Affiliation(s)
- Mirunalini Ravichandran
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Run Lei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Qin Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Joun Lee
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Liyang Ma
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Stephanie Chrysanthou
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Benjamin M Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA.
| |
Collapse
|
28
|
Proteome landscape and spatial map of mouse primordial germ cells. SCIENCE CHINA-LIFE SCIENCES 2020; 64:966-981. [PMID: 32860578 DOI: 10.1007/s11427-020-1762-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
Primordial germ cells (PGCs) are precursors of both male and female gametes as fundamental materials for organism development. The transcriptome, methylome, and chromatin accessibility profiles of PGCs in both mice and humans have been recently reported. However, little is known about the characteristics of PGCs at the protein levels, which directly exert cellular functions. Here, we construct landscapes of both proteome and 3D spatial distribution of mouse PGCs at E11.5, E13.5 and E16.5 days, the three critical developmental windows for PGCs' sex differentiation, female meiosis initiation and male mitotic arrest. In each developmental stage of PGCs, nearly 2,000-3,000 proteins are identified, among which specific functional pathways such as oxidative phosphorylation, DNA damage repair, and meiotic cell cycle are involved for different events during PGCs development. Interestingly, by 3D modeling we find that PGCs spatially cluster into around 1,300 nests in genital ridge at E11.5 and the nest number is not increased by the exponential proliferation of PGCs. Comparative analysis of our proteomic data with published transcriptomic data does not show a close correlation, meaning that the practically executive factors are beyond the transcriptome. Thus, our work offers a valuable resource for the systematic investigations of PGC development at protein level and spatial map.
Collapse
|
29
|
Müller MR, Skowron MA, Albers P, Nettersheim D. Molecular and epigenetic pathogenesis of germ cell tumors. Asian J Urol 2020; 8:144-154. [PMID: 33996469 PMCID: PMC8099689 DOI: 10.1016/j.ajur.2020.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/24/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
The development of germ cell tumors (GCTs) is a unique pathogenesis occurring at an early developmental stage during specification, migration or colonization of primordial germ cells (PGCs) in the genital ridge. Since driver mutations could not be identified so far, the involvement of the epigenetic machinery during the pathogenesis seems to play a crucial role. Currently, it is investigated whether epigenetic modifications occurring between the omnipotent two-cell stage and the pluripotent implanting PGCs might result in disturbances eventually leading to GCTs. Although progress in understanding epigenetic mechanisms during PGC development is ongoing, little is known about the complete picture of its involvement during GCT development and eventual classification into clinical subtypes. This review will shed light into the current knowledge of the complex epigenetic and molecular contribution during pathogenesis of GCTs by emphasizing on early developmental stages until arrival of late PGCs in the gonads. We questioned how misguided migrating and/or colonizing PGCs develop to either type I or type II GCTs. Additionally, we asked how pluripotency can be regulated during PGC development and which epigenetic changes contribute to GCT pathogenesis. We propose that SOX2 and SOX17 determine either embryonic stem cell-like (embryonal carcinoma) or PGC-like cell fate (seminoma). Finally, we suggest that factors secreted by the microenvironment, i.e. BMPs and BMP inhibiting molecules, dictate the fate decision of germ cell neoplasia in situ (into seminoma and embryonal carcinoma) and seminomas (into embryonal carcinoma or extraembryonic lineage), indicating an important role of the microenvironment on GCT plasticity.
Collapse
Affiliation(s)
- Melanie R Müller
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Margaretha A Skowron
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Peter Albers
- Department of Urology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
30
|
Legoff L, D’Cruz SC, Tevosian S, Primig M, Smagulova F. Transgenerational Inheritance of Environmentally Induced Epigenetic Alterations during Mammalian Development. Cells 2019; 8:cells8121559. [PMID: 31816913 PMCID: PMC6953051 DOI: 10.3390/cells8121559] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic studies traditionally focus on DNA as the molecule that passes information on from parents to their offspring. Changes in the DNA code alter heritable information and can more or less severely affect the progeny's phenotype. While the idea that information can be inherited between generations independently of the DNA's nucleotide sequence is not new, the outcome of recent studies provides a mechanistic foundation for the concept. In this review, we attempt to summarize our current knowledge about the transgenerational inheritance of environmentally induced epigenetic changes. We focus primarily on studies using mice but refer to other species to illustrate salient points. Some studies support the notion that there is a somatic component within the phenomenon of epigenetic inheritance. However, here, we will mostly focus on gamete-based processes and the primary molecular mechanisms that are thought to contribute to epigenetic inheritance: DNA methylation, histone modifications, and non-coding RNAs. Most of the rodent studies published in the literature suggest that transgenerational epigenetic inheritance through gametes can be modulated by environmental factors. Modification and redistribution of chromatin proteins in gametes is one of the major routes for transmitting epigenetic information from parents to the offspring. Our recent studies provide additional specific cues for this concept and help better understand environmental exposure influences fitness and fidelity in the germline. In summary, environmental cues can induce parental alterations and affect the phenotypes of offspring through gametic epigenetic inheritance. Consequently, epigenetic factors and their heritability should be considered during disease risk assessment.
Collapse
Affiliation(s)
- Louis Legoff
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Shereen Cynthia D’Cruz
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Sergei Tevosian
- University of Florida, Department of Physiological Sciences Box 100144, 1333 Center Drive, Gainesville, FL 32610, USA;
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Fatima Smagulova
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
- Correspondence:
| |
Collapse
|
31
|
Evolving Role of RING1 and YY1 Binding Protein in the Regulation of Germ-Cell-Specific Transcription. Genes (Basel) 2019; 10:genes10110941. [PMID: 31752312 PMCID: PMC6895862 DOI: 10.3390/genes10110941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Separation of germline cells from somatic lineages is one of the earliest decisions of embryogenesis. Genes expressed in germline cells include apoptotic and meiotic factors, which are not transcribed in the soma normally, but a number of testis-specific genes are active in numerous cancer types. During germ cell development, germ-cell-specific genes can be regulated by specific transcription factors, retinoic acid signaling and multimeric protein complexes. Non-canonical polycomb repressive complexes, like ncPRC1.6, play a critical role in the regulation of the activity of germ-cell-specific genes. RING1 and YY1 binding protein (RYBP) is one of the core members of the ncPRC1.6. Surprisingly, the role of Rybp in germ cell differentiation has not been defined yet. This review is focusing on the possible role of Rybp in this process. By analyzing whole-genome transcriptome alterations of the Rybp-/- embryonic stem (ES) cells and correlating this data with experimentally identified binding sites of ncPRC1.6 subunits and retinoic acid receptors in ES cells, we propose a model how germ-cell-specific transcription can be governed by an RYBP centered regulatory network, underlining the possible role of RYBP in germ cell differentiation and tumorigenesis.
Collapse
|
32
|
Jouneau A. Heterogeneity in Epiblast Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:5-17. [PMID: 31016592 DOI: 10.1007/978-3-030-11096-3_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Epiblast stem cells (EpiSCs) are pluripotent cells that are derived from mouse embryos at gastrulation stages. They represent the primed state of pluripotency, in which cells are on the verge of differentiation and already express markers of the three primary lineages (mesoderm, endoderm, neurectoderm). EpiSCs display some heterogeneity intra- and inter-cell lines in the expression of some of these lineage markers. We relate this heterogeneity to signalling pathways that are active in EpiSCs, either due to addition of growth factors (FGF2 and activin) in the culture medium, or endogenously active (FGF, Nodal, and Wnt). By modulating Wnt or activin/nodal pathways, cell lines close to EpiSCs but with different properties can be obtained. These signalling pathways are all at work in vivo to pattern the pluripotent epiblast and specify cellular fates.
Collapse
Affiliation(s)
- Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France.
| |
Collapse
|
33
|
Babaee A, Nematollahi-Mahani SN, Dehghani-Soltani S, Shojaei M, Ezzatabadipour M. Photobiomodulation and gametogenic potential of human Wharton's jelly-derived mesenchymal cells. Biochem Biophys Res Commun 2019; 514:239-245. [PMID: 31029424 DOI: 10.1016/j.bbrc.2019.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 01/22/2023]
Abstract
Recently, light emitting diode (LED) irradiation has been introduced as a new strategy to enhance proliferation and affect differentiation of stem cells. Human Wharton's jelly-derived mesenchymal (hWJM) cells have unique characteristics that make them an appropriate source of stem cells for use in basic and clinical applications. In this study, we aimed to evaluate the effect of polarized (PL) and non-polarized (NPL) red light irradiation on gametogenic differentiation of hWJM cells in the presence or absence of bone morphogenetic protein 4 (BMP4) and retinoic acid (RA). Exposure of hWJM cells to PL and NPL red LED (625 nm, 1.9 J/cm2) with or without BMP4+RA pre-treatment effectively differentiated them into germ lineage when the gene expression pattern (Fragilis, DAZL, VASA, SCP3 and Acrosin) and protein synthesis (anti-DAZL, anti-VASA, anti-SCP3 and anti-Acrosin antibodies) of the induced cells was evaluated. These data demonstrated that photobiomodulation may be applied for gametogenic differentiation in-vitro.
Collapse
Affiliation(s)
- Abdolreza Babaee
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Samereh Dehghani-Soltani
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Massood Ezzatabadipour
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
34
|
Zhang S, Chen T, Chen N, Gao D, Shi B, Kong S, West RC, Yuan Y, Zhi M, Wei Q, Xiang J, Mu H, Yue L, Lei X, Wang X, Zhong L, Liang H, Cao S, Belmonte JCI, Wang H, Han J. Implantation initiation of self-assembled embryo-like structures generated using three types of mouse blastocyst-derived stem cells. Nat Commun 2019; 10:496. [PMID: 30700702 PMCID: PMC6353907 DOI: 10.1038/s41467-019-08378-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/04/2019] [Indexed: 11/09/2022] Open
Abstract
Spatially ordered embryo-like structures self-assembled from blastocyst-derived stem cells can be generated to mimic embryogenesis in vitro. However, the assembly system and developmental potential of such structures needs to be further studied. Here, we devise a nonadherent-suspension-shaking system to generate self-assembled embryo-like structures (ETX-embryoids) using mouse embryonic, trophoblast and extra-embryonic endoderm stem cells. When cultured together, the three cell types aggregate and sort into lineage-specific compartments. Signaling among these compartments results in molecular and morphogenic events that closely mimic those observed in wild-type embryos. These ETX-embryoids exhibit lumenogenesis, asymmetric patterns of gene expression for markers of mesoderm and primordial germ cell precursors, and formation of anterior visceral endoderm-like tissues. After transplantation into the pseudopregnant mouse uterus, ETX-embryoids efficiently initiate implantation and trigger the formation of decidual tissues. The ability of the three cell types to self-assemble into an embryo-like structure in vitro provides a powerful model system for studying embryogenesis.
Collapse
Affiliation(s)
- Shaopeng Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Tianzhi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Naixin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Bingbo Shi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, 361102, China
| | | | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Qingqing Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Jinzhu Xiang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Haiyuan Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Liang Yue
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuepeng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Zhong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Liang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | | | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, 361102, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China. .,Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
35
|
ES-mediated chimera analysis revealed requirement of DDX6 for NANOS2 localization and function in mouse germ cells. Sci Rep 2019; 9:515. [PMID: 30679547 PMCID: PMC6345806 DOI: 10.1038/s41598-018-36502-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 01/22/2023] Open
Abstract
In embryonic male germ cells, the RNA-binding protein NANOS2 recruits its target RNAs to processing bodies (P-bodies), where they are repressed. This process is necessary to promote male-type germ cell differentiation. However, it remains unclear whether all NANOS2 functions depend on P-bodies. To address this question, we established ES cell lines containing a germ cell-specific inducible Cre and reporter together with the floxed Ddx6 allele. We deleted the Ddx6 gene by administering tamoxifen to chimeric embryos containing germ cells derived from recombinant ES cells. DDX6-null germ cells exhibited both similar and distinct defects from those observed in NANOS2-null germ cells. These results demonstrate that NANOS2 function is carried out via both P-body-dependent and -independent mechanisms. RNA-seq analyses further supported the phenotypic differences between DDX6-null and NANOS2-null germ cells, and indicated distinct molecular cascades involved in NANOS2-mediated gene regulation.
Collapse
|
36
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
37
|
Bujko K, Kucia M, Ratajczak J, Ratajczak MZ. Hematopoietic Stem and Progenitor Cells (HSPCs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:49-77. [PMID: 31898781 DOI: 10.1007/978-3-030-31206-0_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) isolated from bone marrow have been successfully employed for 50 years in hematological transplantations. Currently, these cells are more frequently isolated from mobilized peripheral blood or umbilical cord blood. In this chapter, we overview several topics related to these cells including their phenotype, methods for isolation, and in vitro and in vivo assays to evaluate their proliferative potential. The successful clinical application of HSPCs is widely understood to have helped establish the rationale for the development of stem cell therapies and regenerative medicine.
Collapse
Affiliation(s)
- Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
38
|
Gestational exposure to chlordecone promotes transgenerational changes in the murine reproductive system of males. Sci Rep 2018; 8:10274. [PMID: 29980752 PMCID: PMC6035262 DOI: 10.1038/s41598-018-28670-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/27/2018] [Indexed: 12/14/2022] Open
Abstract
Environmental factors can affect epigenetic events during germline reprogramming and impose distinctive transgenerational consequences onto the offspring. In this study, we examined the transgenerational effects of chlordecone (CD), an organochlorine insecticide with well-known estrogenic properties. We exposed pregnant mice to CD from embryonic day 6.5 to 15.5 and observed a reduction in spermatogonia (SG) numbers in F3, meiotic defects in spermatocytes and decrease in spermatozoa number in the first and third generation of male progeny. The RNA qRT-PCR expression analysis in F1 and transcriptomics analysis in F3 males using the whole testes revealed changes in the expression of genes associated with chromosome segregation, cell division and DNA repair. The expression of the master regulator of pluripotency, Pou5f1, decreased in foetal and increased in adult F1, but not in F3 adult testes. Analysis of histone H3K4me3 distribution revealed widespread changes in its occupancy in the genome of F1 and F3 generations. We established that 7.1% of altered epigenetic marks were conserved between F1 and F3 generations. The overlapping changes common to F1 and F3 include genes implicated in cell adhesion and transcription factor activities functions. Differential peaks observed in F1 males are significantly enriched in predicted ESR1 binding sites, some of which we confirmed to be functional. Our data demonstrate that CD-mediated impairment of reproductive functions could be transmitted to subsequent generations.
Collapse
|
39
|
RNA processing in the male germline: Mechanisms and implications for fertility. Semin Cell Dev Biol 2018; 79:80-91. [DOI: 10.1016/j.semcdb.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
40
|
Ma X, Li P, Sun X, Sun Y, Hu R, Yuan P. Differentiation of female Oct4-GFP embryonic stem cells into germ lineage cells. Cell Biol Int 2018; 42:488-494. [PMID: 29271529 DOI: 10.1002/cbin.10918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/17/2017] [Indexed: 02/05/2023]
Abstract
Due to high infertility ratio nowadays, it is essential to explore efficient ways of enhancing mammalian reproductivity, in particular female reproductivity. Using female Oct4-GFP embryonic stem cells, we mimic the in vivo development procedure to induce ES cells into epiblast cell-like cells (EpiLCs) and then primordial germ cell-like cells (PGCLCs). GFP positive PGCLCs that showed typical PGC markers and epigenetic modification were efficiently obtained. Further transplantation of the GFP positive PGCLC and native ovary cell mixture into ovary of infertile mice revealed that both MVH and GFP positive cells could be developed in ovary, but no later developmental stage germ cells were observed. This study suggested that Oct4-GFP ES cells may be only suitable for tracing early germ cell development.
Collapse
Affiliation(s)
- Xin Ma
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Futian Hospital for Rheumatic Disease, No.22 Nonglin Road, Shenzhen, China
| | - Peng Li
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Sun
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yifeng Sun
- Sing Loong Limited, Hong Kong SAR, China
| | - Rong Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Ping Yuan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| |
Collapse
|
41
|
de Souza AF, Pieri NCG, Roballo KCS, Bressan FF, Casals JB, Ambrósio CE, Perecin F, Martins DS. Dynamics of male canine germ cell development. PLoS One 2018; 13:e0193026. [PMID: 29489867 PMCID: PMC5831030 DOI: 10.1371/journal.pone.0193026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/02/2018] [Indexed: 12/18/2022] Open
Abstract
Primordial germ cells (PGCs) are precursors of gametes that can generate new individuals throughout life in both males and females. Additionally, PGCs have been shown to differentiate into embryonic germ cells (EGCs) after in vitro culture. Most studies investigating germinative cells have been performed in rodents and humans but not dogs (Canis lupus familiaris). Here, we elucidated the dynamics of the expression of pluripotent (POU5F1 and NANOG), germline (DDX4, DAZL and DPPA3), and epigenetic (5mC, 5hmC, H3K27me3 and H3K9me2) markers that are important for the development of male canine germ cells during the early (22-30 days post-fertilization (dpf)), middle (35-40 dpf) and late (45-50 dpf) gestational periods. We performed sex genotype characterization, immunofluorescence, immunohistochemistry, and quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) analyses. Furthermore, in a preliminary study, we evaluated the capacity of canine embryo PGCs (30 dpf) to differentiate into EGCs. To confirm the canine EGCs phenotype, we performed alkaline phosphatase detection, immunohistochemistry, electron and transmission scanning microscopy and RT-qPCR analyses. The PGCs were positive for POU5F1 and H3K27me3 during all assessed developmental periods, including all periods between the gonadal tissue stage and foetal testes development. The number of NANOG, DDX4, DAZL, DPPA3 and 5mC-positive cells increased along with the developing cords from 35-50 dpf. Moreover, our results demonstrate the feasibility of inducing canine PGCs into putative EGCs that present pluripotent markers, such as POU5F1 and the NANOG gene, and exhibit reduced expression of germinative genes and increased expression of H3K27me3. This study provides new insight into male germ cell development mechanisms in dogs.
Collapse
Affiliation(s)
- Aline F. de Souza
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Naira C. Godoy Pieri
- Department of Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kelly C. S. Roballo
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Fabiana F. Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliana B. Casals
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos E. Ambrósio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Felipe Perecin
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Daniele S. Martins
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
42
|
Zhao Y, Ye S, Liang D, Wang P, Fu J, Ma Q, Kong R, Shi L, Gong X, Chen W, Ding W, Yang W, Zhu Z, Chen H, Sun X, Zhu J, Li Z, Wang Y. In Vitro Modeling of Human Germ Cell Development Using Pluripotent Stem Cells. Stem Cell Reports 2018; 10:509-523. [PMID: 29398481 PMCID: PMC5830957 DOI: 10.1016/j.stemcr.2018.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
Due to differences across species, the mechanisms of cell fate decisions determined in mice cannot be readily extrapolated to humans. In this study, we developed a feeder- and xeno-free culture protocol that efficiently induced human pluripotent stem cells (iPSCs) into PLZF+/GPR125+/CD90+ spermatogonium-like cells (SLCs). These SLCs were enriched with key genes in germ cell development such as MVH, DAZL, GFRα1, NANOS3, and DMRT1. In addition, a small fraction of SLCs went through meiosis in vitro to develop into haploid cells. We further demonstrated that this chemically defined induction protocol faithfully recapitulated the features of compromised germ cell development of PSCs with NANOS3 deficiency or iPSC lines established from patients with non-obstructive azoospermia. Taken together, we established a powerful experimental platform to investigate human germ cell development and pathology related to male infertility.
Collapse
Affiliation(s)
- Yuncheng Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shicheng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dongli Liang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jing Fu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Qing Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ruijiao Kong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Linghong Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xueping Gong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wubin Ding
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zijue Zhu
- Department of Andrology, Urologic Medical Center, Shanghai Key Lab of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Huixing Chen
- Department of Andrology, Urologic Medical Center, Shanghai Key Lab of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Xiaoxi Sun
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Li
- Department of Andrology, Urologic Medical Center, Shanghai Key Lab of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Yuan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Department of Animal Science, Michigan State University, Lansing, MI 48824, USA.
| |
Collapse
|
43
|
Ibarra-Soria X, Jawaid W, Pijuan-Sala B, Ladopoulos V, Scialdone A, Jörg DJ, Tyser RCV, Calero-Nieto FJ, Mulas C, Nichols J, Vallier L, Srinivas S, Simons BD, Göttgens B, Marioni JC. Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation. Nat Cell Biol 2018; 20:127-134. [PMID: 29311656 PMCID: PMC5787369 DOI: 10.1038/s41556-017-0013-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023]
Abstract
During gastrulation, cell types from all three germ layers are specified and the basic body plan is established 1 . However, molecular analysis of this key developmental stage has been hampered by limited cell numbers and a paucity of markers. Single-cell RNA sequencing circumvents these problems, but has so far been limited to specific organ systems 2 . Here, we report single-cell transcriptomic characterization of >20,000 cells immediately following gastrulation at E8.25 of mouse development. We identify 20 major cell types, which frequently contain substructure, including three distinct signatures in early foregut cells. Pseudo-space ordering of somitic progenitor cells identifies dynamic waves of transcription and candidate regulators, which are validated by molecular characterization of spatially resolved regions of the embryo. Within the endothelial population, cells that transition from haemogenic endothelial to erythro-myeloid progenitors specifically express Alox5 and its co-factor Alox5ap, which control leukotriene production. Functional assays using mouse embryonic stem cells demonstrate that leukotrienes promote haematopoietic progenitor cell generation. Thus, this comprehensive single-cell map can be exploited to reveal previously unrecognized pathways that contribute to tissue development.
Collapse
Affiliation(s)
- Ximena Ibarra-Soria
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Wajid Jawaid
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatric Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Blanca Pijuan-Sala
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Vasileios Ladopoulos
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
| | - David J Jörg
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Richard C V Tyser
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Fernando J Calero-Nieto
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Shankar Srinivas
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Benjamin D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
44
|
Butler AM, Owens DA, Wang L, King ML. A novel role for sox7 in Xenopus early primordial germ cell development: mining the PGC transcriptome. Development 2018; 145:dev.155978. [PMID: 29158442 DOI: 10.1242/dev.155978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
Xenopus primordial germ cells (PGCs) are determined by the presence of maternally derived germ plasm. Germ plasm components both protect PGCs from somatic differentiation and begin a unique gene expression program. Segregation of the germline from the endodermal lineage occurs during gastrulation, and PGCs subsequently initiate zygotic transcription. However, the gene network(s) that operate to both preserve and promote germline differentiation are poorly understood. Here, we utilized RNA-sequencing analysis to comprehensively interrogate PGC and neighboring endoderm cell mRNAs after lineage segregation. We identified 1865 transcripts enriched in PGCs compared with endoderm cells. We next compared the PGC-enriched transcripts with previously identified maternal, vegetally enriched transcripts and found that ∼38% of maternal transcripts were enriched in PGCs, including sox7 PGC-directed sox7 knockdown and overexpression studies revealed an early requirement for sox7 in germ plasm localization, zygotic transcription and PGC number. We identified pou5f3.3 as the most highly expressed and enriched POU5F1 homolog in PGCs. We compared the Xenopus PGC transcriptome with human PGC transcripts and showed that 80% of genes are conserved, underscoring the potential usefulness of Xenopus for understanding human germline specification.
Collapse
Affiliation(s)
- Amanda M Butler
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Dawn A Owens
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
45
|
Lima A, Burgstaller J, Sanchez-Nieto JM, Rodríguez TA. The Mitochondria and the Regulation of Cell Fitness During Early Mammalian Development. Curr Top Dev Biol 2017; 128:339-363. [PMID: 29477168 DOI: 10.1016/bs.ctdb.2017.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
From fertilization until the onset of gastrulation the early mammalian embryo undergoes a dramatic series of changes that converts a single fertilized cell into a remarkably complex organism. Much attention has been given to the molecular changes occurring during this process, but here we will review what is known about the changes affecting the mitochondria and how they impact on the energy metabolism and apoptotic response of the embryo. We will also focus on understanding what quality control mechanisms ensure optimal mitochondrial activity in the embryo, and in this way provide an overview of the importance of the mitochondria in determining cell fitness during early mammalian development.
Collapse
Affiliation(s)
- Ana Lima
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom; Cell Stress Group, MRC London Institute of Medical Sciences (LMS), London, United Kingdom
| | - Jörg Burgstaller
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom; Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, Tulln, Austria
| | - Juan M Sanchez-Nieto
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | - Tristan A Rodríguez
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
46
|
Flora P, Schowalter S, Wong-Deyrup S, DeGennaro M, Nasrallah MA, Rangan P. Transient transcriptional silencing alters the cell cycle to promote germline stem cell differentiation in Drosophila. Dev Biol 2017; 434:84-95. [PMID: 29198563 PMCID: PMC5830152 DOI: 10.1016/j.ydbio.2017.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/18/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Transcriptional silencing is a conserved process used by embryonic germ cells to repress somatic fate and maintain totipotency and immortality. In Drosophila, this transcriptional silencing is mediated by polar granule component (pgc). Here, we show that in the adult ovary, pgc is required for timely germline stem cell (GSC) differentiation. Pgc is expressed transiently in the immediate GSC daughter (pre-cystoblast), where it mediates a pulse of transcriptional silencing. This transcriptional silencing mediated by pgc indirectly promotes the accumulation of Cyclin B (CycB) and cell cycle progression into late-G2 phase, when the differentiation factor bag of marbles (bam) is expressed. Pgc mediated accumulation of CycB is also required for heterochromatin deposition, which protects the germ line genome against selfish DNA elements. Our results suggest that transient transcriptional silencing in the pre-cystoblast “re-programs” it away from self-renewal and toward the gamete differentiation program.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/The RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Sean Schowalter
- Department of Biological Sciences/The RNA Institute, University at Albany SUNY, Albany, NY 12222, USA; Boston University School of Medicine, 815 Albany Street, MA 02119, USA
| | - SiuWah Wong-Deyrup
- Department of Biological Sciences/The RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Matthew DeGennaro
- Biomolecular Sciences Institute, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Mohamad Ali Nasrallah
- Department of Biological Sciences/The RNA Institute, University at Albany SUNY, Albany, NY 12222, USA; University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Prashanth Rangan
- Department of Biological Sciences/The RNA Institute, University at Albany SUNY, Albany, NY 12222, USA.
| |
Collapse
|
47
|
Seah MKY, Messerschmidt DM. From Germline to Soma: Epigenetic Dynamics in the Mouse Preimplantation Embryo. Curr Top Dev Biol 2017; 128:203-235. [PMID: 29477164 DOI: 10.1016/bs.ctdb.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When reflecting about cell fate commitment we think of differentiation. Be it during embryonic development or in an adult stem cell niche, where cells of a higher potency specialize and cell fate decisions are taken. Under normal circumstances this process is definitive and irreversible. Cell fate commitment is achieved by the establishment of cell-type-specific transcriptional programmes, which in turn are guided, reinforced, and ultimately locked-in by epigenetic mechanisms. Yet, this plunging drift in cellular potency linked to epigenetically restricted access to genomic information is problematic for reproduction. Particularly in mammals where germ cells are not set aside early on like in other species. Instead they are rederived from the embryonic ectoderm, a differentiating embryonic tissue with somatic epigenetic features. The epigenomes of germ cell precursors are efficiently reprogrammed against the differentiation trend, only to specialize once more into highly differentiated, sex-specific gametes: oocyte and sperm. Their differentiation state is reflected in their specialized epigenomes, and erasure of these features is required to enable the acquisition of the totipotent cell fate to kick start embryonic development of the next generation. Recent technological advances have enabled unprecedented insights into the epigenetic dynamics, first of DNA methylation and then of histone modifications, greatly expanding the historically technically limited understanding of this processes. In this chapter we will focus on the details of embryonic epigenetic reprogramming, a cell fate determination process against the tide to a higher potency.
Collapse
Affiliation(s)
- Michelle K Y Seah
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel M Messerschmidt
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
48
|
Nettersheim D, Jostes S, Schneider S, Schorle H. Elucidating human male germ cell development by studying germ cell cancer. Reproduction 2017; 152:R101-13. [PMID: 27512122 DOI: 10.1530/rep-16-0114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Abstract
Human germ cell development is regulated in a spatio-temporal manner by complex regulatory networks. Here, we summarize results obtained in germ cell tumors and respective cell lines and try to pinpoint similarities to normal germ cell development. This comparison allows speculating about the critical and error-prone mechanisms, which when disturbed, lead to the development of germ cell tumors. Short after specification, primordial germ cells express markers of pluripotency, which, in humans, persists up to the stage of fetal/infantile spermatogonia. Aside from the rare spermatocytic tumors, virtually all seminomas and embryonal carcinomas express markers of pluripotency and show signs of pluripotency or totipotency. Therefore, it appears that proper handling of the pluripotency program appears to be the most critical step in germ cell development in terms of tumor biology. Furthermore, data from mice reveal that germline cells display an epigenetic signature, which is highly similar to pluripotent cells. This signature (poised histone code, DNA hypomethylation) is required for the rapid induction of toti- and pluripotency upon fertilization. We propose that adult spermatogonial cells, when exposed to endocrine disruptors or epigenetic active substances, are prone to reinitiate the pluripotency program, giving rise to a germ cell tumor. The fact that pluripotent cells can be derived from adult murine and human testicular cells further corroborates this idea.
Collapse
Affiliation(s)
- Daniel Nettersheim
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Sina Jostes
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Simon Schneider
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| |
Collapse
|
49
|
Smith A. Formative pluripotency: the executive phase in a developmental continuum. Development 2017; 144:365-373. [PMID: 28143843 PMCID: PMC5430734 DOI: 10.1242/dev.142679] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regulative capability of single cells to give rise to all primary embryonic lineages is termed pluripotency. Observations of fluctuating gene expression and phenotypic heterogeneity in vitro have fostered a conception of pluripotency as an intrinsically metastable and precarious state. However, in the embryo and in defined culture environments the properties of pluripotent cells change in an orderly sequence. Two phases of pluripotency, called naïve and primed, have previously been described. In this Hypothesis article, a third phase, called formative pluripotency, is proposed to exist as part of a developmental continuum between the naïve and primed phases. The formative phase is hypothesised to be enabling for the execution of pluripotency, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues. Summary: This Hypothesis article poses that a third state of pluripotency, called formative pluripotency, exists between the naïve and primed states, and is enabling for the execution of pluripotency.
Collapse
Affiliation(s)
- Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
50
|
Wang J, Tang C, Wang Q, Su J, Ni T, Yang W, Wang Y, Chen W, Liu X, Wang S, Zhang J, Song H, Zhu J, Wang Y. NRF1 coordinates with DNA methylation to regulate spermatogenesis. FASEB J 2017; 31:4959-4970. [PMID: 28754714 DOI: 10.1096/fj.201700093r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/10/2017] [Indexed: 01/27/2023]
Abstract
Spermatogenesis is a highly coordinated process that requires tightly regulated gene expression programmed by transcription factors and epigenetic modifiers. In this study, we found that nuclear respiratory factor (NRF)-1, a key transcription factor for mitochondrial biogenesis, cooperated with DNA methylation to directly regulate the expression of multiple germ cell-specific genes, including Asz1 In addition, conditional ablation of NRF1 in gonocytes dramatically down-regulated these germline genes, blocked germ cell proliferation, and subsequently led to male infertility in mice. Our data highlight a precise crosstalk between transcriptional regulation by NRF1 and epigenetic modulation during germ cell development and unequivocally demonstrate a novel role of NRF1 in spermatogenesis.-Wang, J., Tang, C., Wang, Q., Su, J., Ni, T., Yang, W., Wang, Y., Chen, W., Liu, X., Wang, S., Zhang, J., Song, H., Zhu, J., Wang, Y. NRF1 coordinates with DNA methylation to regulate spermatogenesis.
Collapse
Affiliation(s)
- Junpeng Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chao Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qian Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jun Su
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Ministry of Education (MOE), Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; and
| | - Yongsheng Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiqiang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuai Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jingjing Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Huili Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; and
| | - Yuan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; .,Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|