1
|
Zhu Q, He H, Long Q, Wei C, Chen J, Nong L, Li S. Lactate-Dehydrogenase-5 May Play a Key Role in the Disturbance of Brain Energy Caused by Tuberculous Meningitis. J Integr Neurosci 2025; 24:26741. [PMID: 40302261 DOI: 10.31083/jin26741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/25/2024] [Accepted: 01/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND The conversion of pyruvate to lactate is primarily catalyzed by lactate-dehydrogenase-5 (LDH-5), which comprises four lactate-dehydrogenase-A (LDHA) subunits. However, the mechanism of LDH-5 in tuberculous meningitis (TBM) remains elusive. METHODS Thirty-two samples of cerebrospinal fluid (CSF) were collected, including 15 from individuals without central nervous system (CNS) infectious diseases (control group) and 17 from individuals with TBM (TBM group). Based on the results of brain imaging, nine patients with TBM with meningeal enhancement were included in the meninges group. Eight patients with TBM with lesions in the brain parenchyma were included in the brain parenchyma group. The levels of adenosine triphosphatase (ATP), lactate, LDH-1, pyruvate and LDH-5 in the CSF were assessed. Subsequently, the levels of ATP, pyruvate and lactate, as well as the amplitude and frequency of action potentials (APs) in neurons overexpressing LDHA, were investigated. RESULTS Reduced levels of pyruvate and ATP and elevated levels of lactate and LDH-5 were observed in the CSF of individuals with TBM. The ATP level was decreased in the brain parenchyma group. In neurons with LDHA overexpression, the lactate level increased, while ATP and pyruvate levels, as well as the amplitude and frequency of APs, decreased. CONCLUSION Elevated levels of LDH-5 in the CNS of individuals with TBM may lead to a disturbance in brain energy and negatively affect neuronal activity.
Collapse
Affiliation(s)
- Qingdong Zhu
- Department of Tuberculosis, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Huawei He
- Department of Tuberculosis, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Qian Long
- Key Laboratory of Infectious Diseases of Nanning Municipal Health Commission, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Cailing Wei
- Infectious Disease Laboratory, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Jieling Chen
- Infectious Disease Laboratory, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Lanwei Nong
- Infectious Disease Laboratory, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Sijun Li
- Infectious Disease Laboratory, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
- Department of Internal Medicine, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| |
Collapse
|
2
|
Doerksen AH, Herath NN, Sanders SS. Fat traffic control: S-acylation in axonal transport. Mol Pharmacol 2025; 107:100039. [PMID: 40349611 DOI: 10.1016/j.molpha.2025.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Neuronal axons serve as a conduit for the coordinated transport of essential molecular cargo between structurally and functionally distinct subcellular compartments via axonal molecular machinery. Long-distance, efficient axonal transport of membrane-bound organelles enables signal transduction and neuronal homeostasis. Efficient axonal transport is conducted by dynein and kinesin ATPase motors that use a local ATP supply from metabolic enzymes tethered to transport vesicles. Molecular motor adaptor proteins promote the processive motility and cargo selectivity of fast axonal transport. Axonal transport impairments are directly causative or associated with many neurodegenerative diseases and neuropathologies. Cargo specificity, cargo-adaptor proteins, and posttranslational modifications of cargo, adaptor proteins, microtubules, or the motor protein subunits all contribute to the precise regulation of vesicular transit. One posttranslational lipid modification that is particularly important in neurons in regulating protein trafficking, protein-protein interactions, and protein association with lipid membranes is S-acylation. Interestingly, many fast axonal transport cargos, cytoskeletal-associated proteins, motor protein subunits, and adaptors are S-acylated to modulate axonal transport. Here, we review the established regulatory role of S-acylation in fast axonal transport and provide evidence for a broader role of S-acylation in regulating the motor-cargo complex machinery, adaptor proteins, and metabolic enzymes from low-throughput studies and S-acyl-proteomic data sets. We propose that S-acylation regulates fast axonal transport and vesicular motility through localization of the proteins required for the motile cargo-complex machinery and relate how perturbed S-acylation contributes to transport impairments in neurological disorders. SIGNIFICANCE STATEMENT: This review investigates the regulatory role of S-acylation in fast axonal transport and its connection to neurological diseases, with a focus on the emerging connections between S-acylation and the molecular motors, adaptor proteins, and metabolic enzymes that make up the trafficking machinery.
Collapse
Affiliation(s)
- Amelia H Doerksen
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Nisandi N Herath
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Shaun S Sanders
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Pan Z, Liu Y, Li H, Qiu H, Zhang P, Li Z, Wang X, Tian Y, Feng Z, Zhu S, Wang X. The role and mechanism of aerobic glycolysis in nasopharyngeal carcinoma. PeerJ 2025; 13:e19213. [PMID: 40191756 PMCID: PMC11971989 DOI: 10.7717/peerj.19213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
This review delves into the pivotal role and intricate mechanisms of aerobic glycolysis in nasopharyngeal carcinoma (NPC). NPC, a malignancy originating from the nasopharyngeal epithelium, displays distinct geographical and clinical features. The article emphasizes the significance of aerobic glycolysis, a pivotal metabolic alteration in cancer cells, in NPC progression. Key enzymes such as hexokinase 2, lactate dehydrogenase A, phosphofructokinase 1, and pyruvate kinase M2 are discussed for their regulatory functions in NPC glycolysis through signaling pathways like PI3K/Akt and mTOR. Further, the article explores how oncogenic signaling pathways and transcription factors like c-Myc and HIF-1α modulate aerobic glycolysis, thereby affecting NPC's proliferation, invasion, metastasis, angiogenesis, and immune evasion. By elucidating these mechanisms, the review aims to advance research and clinical practice in NPC, informing the development of targeted therapeutic strategies that enhance treatment precision and reduce side effects. Overall, this review offers a broad understanding of the multifaceted role of aerobic glycolysis in NPC and its potential impact on therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyong Pan
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuyi Liu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Hui Li
- Department of Ophthalmology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Huisi Qiu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Pingmei Zhang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhiying Li
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xinyu Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuxiao Tian
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhengfu Feng
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Song Zhu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xin Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| |
Collapse
|
4
|
Zong Z, Ren J, Yang B, Zhang L, Zhou F. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol 2025; 27:563-574. [PMID: 40185947 DOI: 10.1038/s41556-025-01635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Given its various roles in cellular functions, lactate is no longer considered a waste product of metabolism and lactate sensing is a pivotal step in the transduction of lactate signals. Lysine lactylation is a recently identified post-translational modification that serves as an intracellular mechanism of lactate sensing and transfer. Although acetyltransferases such as p300 exhibit general acyl transfer activity, no bona fide lactyltransferases have been identified. Recently, the protein synthesis machinery, alanyl-tRNA synthetase 1 (AARS1), AARS2 and their Escherichia coli orthologue AlaRS, have been shown to be able to sense lactate and mediate lactyl transfer and are thus considered pan-lactyltransferases. Here we highlight the mechanisms and functions of these lactyltransferases and discuss potential strategies that could be exploited for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhi Zong
- The First Affiliated Hospital of Soochow University, Suzhou, China
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Jiang Ren
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bing Yang
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Long Zhang
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fangfang Zhou
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Raghuwanshi K, Kushram B, Dandotiya D, Petkar S, Tambade S, Gandhe M. Lactate dehydrogenase (LDH) as an indicator of pre-eclampsia. Bioinformation 2025; 21:116-120. [PMID: 40322695 PMCID: PMC12044190 DOI: 10.6026/973206300210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 05/08/2025] Open
Abstract
High blood pressure (higher than 140/90 mm Hg), proteinuria and swelling due to fluid retention are symptoms of preeclampsia, a disease that affects pregnant women after the 20th week of pregnancy. The cytoplasm of cells undergoing anaerobic glycolysis contains the enzyme lactate dehydrogenase or LDH. Therefore, it is of interest to ascertain the blood lactate dehydrogenase levels of pre-eclamptic women, to assess and analyze these levels, to compare lactate dehydrogenase levels in different groups of preeclampsia patients and healthy controls and to examine the role of lactate dehydrogenase in preeclampsia severity ratings. Increased blood lactate dehydrogenase levels are associated with more severe preeclampsia, according to this study's results. Thus, it is crucial to determine lactate dehydrogenase levels in pre-eclamptic women early on so that these patients may get the right medicine and reduce the morbidity and mortality associated with these disorders.
Collapse
Affiliation(s)
- Kapil Raghuwanshi
- Department of Biochemistry, Chhindwara Institute of Medical Sciences, Chhindwara, Madhya Pradesh, India
| | - Bhupesh Kushram
- Department of Surgery, Chhindwara Institute of Medical Sciences, Chhindwara, Madhya Pradesh, India
| | - Dileep Dandotiya
- Department of Community Medicine, Chhindwara Institute of Medical Sciences, Chhindwara, Madhya Pradesh, India
| | - Sudhakar Petkar
- Department of Biochemistry, Chhindwara Institute of Medical Sciences, Chhindwara, Madhya Pradesh, India
| | - Swapnali Tambade
- Department of Dentistry, Chhindwara Institute of Medical Sciences, Madhya Pradesh, India
| | - Mahendra Gandhe
- Department of Biochemistry, Chhindwara Institute of Medical Sciences, Chhindwara, Madhya Pradesh, India
| |
Collapse
|
6
|
Cheon SY, Kim YE, Yang ES, Lim YJ, Bae CH, Jin JS, Park W, Kim BS, Kim C, Cho H, Kim S, Lee SH, Ha KT. Synthesis of 1-Hydroxy(and 1-Alkoxy, 1-Acyloxy)-1H-indoles and evaluations of their suppressive activities against tumor growth through inhibiting lactate dehydrogenase A. Eur J Med Chem 2025; 283:117104. [PMID: 39642694 DOI: 10.1016/j.ejmech.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Inhibition of lactate dehydrogenase (LDH) has emerged as a promising cancer therapy strategy due to its essential role in the metabolic transformation of cancer cells. In this study, 53 derivatives of 1-hydroxy(and 1-alkoxy, 1-acyloxy)indoles were designed, synthesized, and biologically evaluated. Several multi-substituted 1-hydroxy(and 1-alkoxy, 1-acyloxy)indole compounds exhibited inhibitory activity against the LDH-A isoform (LDHA). We confirmed that the C(3)-substituent provided additional significant hydrogen bonding and hydrophobic interactions, which enhanced the LDHA inhibitory activity with high selectivity. Our results revealed that methyl 4-bromo-3-[(n-hexyloxy)methyl]-1-hydroxy-1H-indole-2-carboxylate (1g), selectively inhibited LDHA (IC50 = 25 ± 1.12 nM) without affecting the LDH-B isoform (LDHB). The compound exhibited potent cytotoxic activity in several cancer cell lines, including DLD-1 colorectal cancer cells (GI50 = 27 ± 1.2 μM). Compound 1g significantly inhibited cancer cell growth by activating apoptotic pathways in a xenograft cancer model, without causing weight loss or liver and kidney damage. Therefore, compound 1g may serve as a highly specific and promising candidate for the development of LDHA inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Se-Yun Cheon
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Ye Eun Kim
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Eun-Sun Yang
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Yoo Jin Lim
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Chang-Hwan Bae
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Jung-Sook Jin
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Wonyoung Park
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Bo-Sung Kim
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Chorong Kim
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Hyunsung Cho
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Seungtae Kim
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Sang Hyup Lee
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea.
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
7
|
Zhu Q, Long Q, Wei C, Chen J, Nong L, Qin J, Huang Z, Zheng Y, Li S. Lactate dehydrogenase-1 may play a key role in the brain energy disturbance caused by cryptococcal meningitis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:887-895. [PMID: 39214781 DOI: 10.1016/j.jmii.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cryptococcal meningitis (CM) may affect the conversion of lactate to pyruvate in the brain, resulting in abnormal levels of adenosine triphosphate (ATP) throughout the brain. Lactate conversion to pyruvate is mainly caused by lactic dehydrogenase 1 (LDH1), which is composed of four LDHB subunits. However, the underlying mechanism of LDH1 in CM remains unclear. METHODS Cerebrospinal fluid (CSF) from 17 patients was collected, including eight patients with non-infectious diseases of the central nervous system and nine patients with CM. Based on clinical data and laboratory reports, data regarding intracranial pressure, CSF white cell counts, lactate dehydrogenase (LDH), adenosine deaminase, glucose, protein, and chloridion were collected. Meanwhile, LDH1, LDH5, lactate, pyruvate, and ATP levels were detected in CSF. Whereafter, the levels of lactate, pyruvate, ATP, and the amplitude and frequency of action potentials in the neurons with low expression of LDHB were explored. RESULTS Intracranial pressure and white cell count in CSF were significantly increased in patients with CM. In patients with CM, the LDH1, pyruvate, and ATP levels in the CSF were significantly decreased, and the levels of lactate were found to be increased. Furthermore, pyruvate and ATP levels were decreased, while lactate was increased in the neurons with low expression of LDHB. The amplitude and frequency of APs in the neurons with low expression of LDHB were significantly decreased. CONCLUSION Reduced levels of LDH1 in the brain of patients with CM may lead to increased lactate levels, decreased pyruvate and ATP levels, and negatively affect neuronal activity.
Collapse
Affiliation(s)
- Qingdong Zhu
- Department of Tuberculosis, Guangxi AlDs Clinical Treatment Center (Nanning)/The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Qian Long
- Key Laboratory of Infectious Diseases of Nanning Municipal Health Commission, Guangxi AlDs Clinical Treatment Center (Nanning)/The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Cailing Wei
- Infectious Disease Laboratory, Guangxi AlDs Clinical Treatment Center (Nanning)/The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Jieling Chen
- Infectious Disease Laboratory, Guangxi AlDs Clinical Treatment Center (Nanning)/The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Lanwei Nong
- Infectious Disease Laboratory, Guangxi AlDs Clinical Treatment Center (Nanning)/The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Jianglong Qin
- Department of Infectious Disease, Guangxi AlDs Clinical Treatment Center (Nanning)/The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Zhizhong Huang
- Department of Liver, Guangxi AlDs Clinical Treatment Center (Nanning)/The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Yanqing Zheng
- Infectious Disease Laboratory, Guangxi AlDs Clinical Treatment Center (Nanning)/The Fourth People's Hospital of Nanning, Nanning, Guangxi, China.
| | - Sijun Li
- Infectious Disease Laboratory, Guangxi AlDs Clinical Treatment Center (Nanning)/The Fourth People's Hospital of Nanning, Nanning, Guangxi, China; Department of Internal Medicine, Guangxi AlDs Clinical Treatment Center (Nanning)/The Fourth People's Hospital of Nanning, Nanning, Guangxi, China.
| |
Collapse
|
8
|
Zhou Y, Lou J, Tian Y, Ding J, Wang X, Tang B. How lactate affects immune strategies in lymphoma. Front Mol Biosci 2024; 11:1480884. [PMID: 39464313 PMCID: PMC11502318 DOI: 10.3389/fmolb.2024.1480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Tumor cells undergo metabolic reprogramming through shared pathways, resulting in a hypoxic, acidic, and highly permeable internal tumor microenvironment (TME). Lactate, once only regarded as a waste product of glycolysis, has an inseparable dual role with tumor immunity. It can not only provide a carbon source for immune cells to enhance immunity but also help the immune escape through a variety of ways. Lymphoma also depends on the proliferation signal of TME. This review focuses on the dynamic process of lactate metabolism and immune function changes in lymphoma and aims to comprehensively summarize and explore which genes, transcription factors, and pathways affect the biological changes and functions of immune cells. To deeply understand the complex and multifaceted role of lactate metabolism and immunity in lymphoma, the combination of lactate targeted therapy and classical immunotherapy will be a promising development direction in the future.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzhan Lou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Ji JX, Hoang LN, Cochrane DR, Lum A, Senz J, Farnell D, Tessier-Cloutier B, Huntsman DG, Klein Geltink RI. The unique metabolome of clear cell ovarian carcinoma. J Pathol 2024; 264:160-173. [PMID: 39096103 DOI: 10.1002/path.6329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/29/2024] [Accepted: 06/08/2024] [Indexed: 08/04/2024]
Abstract
Clear cell ovarian carcinoma (CCOC) is an aggressive malignancy affecting younger women. Despite ovarian cancer subtypes having diverse molecular and clinical characteristics, the mainstay of treatment for advanced stage disease remains cytotoxic chemotherapy. Late stage CCOC is resistant to conventional chemotherapy, which means a suboptimal outcome for patients affected. Despite detailed genomic, epigenomic, transcriptomic, and proteomic characterisation, subtype-specific treatment for CCOC has shown little progress. The unique glycogen accumulation defining CCOC suggests altered metabolic pathway activity and dependency. This study presents the first metabolomic landscape of ovarian cancer subtypes, including 42 CCOC, 20 high-grade serous and 21 endometrioid ovarian carcinomas, together comprising the three most common ovarian carcinoma subtypes. We describe a distinct metabolomic landscape of CCOC compared with other ovarian cancer subtypes, including alterations in energy utilisation and cysteine metabolism. In addition, we identify CCOC-specific alterations in metabolic pathways including serine biosynthesis and ROS-associated pathways that could serve as potential therapeutic targets. Our study provides the first in-depth study into the metabolome of ovarian cancers and a rich resource to support ongoing research efforts to identify subtype-specific therapeutic targets that could improve the dismal outcome for patients with this devastating malignancy. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jennifer X Ji
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lien N Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dawn R Cochrane
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Amy Lum
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Janine Senz
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - David Farnell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
10
|
Verma S, Budhu S, Serganova I, Dong L, Mangarin LM, Khan JF, Bah MA, Assouvie A, Marouf Y, Schulze I, Zappasodi R, Wolchok JD, Merghoub T. Pharmacologic LDH inhibition redirects intratumoral glucose uptake and improves antitumor immunity in solid tumor models. J Clin Invest 2024; 134:e177606. [PMID: 39225102 PMCID: PMC11364391 DOI: 10.1172/jci177606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor reliance on glycolysis is a hallmark of cancer. Immunotherapy is more effective in controlling glycolysis-low tumors lacking lactate dehydrogenase (LDH) due to reduced tumor lactate efflux and enhanced glucose availability within the tumor microenvironment (TME). LDH inhibitors (LDHi) reduce glucose uptake and tumor growth in preclinical models, but their impact on tumor-infiltrating T cells is not fully elucidated. Tumor cells have higher basal LDH expression and glycolysis levels compared with infiltrating T cells, creating a therapeutic opportunity for tumor-specific targeting of glycolysis. We demonstrate that LDHi treatment (a) decreases tumor cell glucose uptake, expression of the glucose transporter GLUT1, and tumor cell proliferation while (b) increasing glucose uptake, GLUT1 expression, and proliferation of tumor-infiltrating T cells. Accordingly, increasing glucose availability in the microenvironment via LDH inhibition leads to improved tumor-killing T cell function and impaired Treg immunosuppressive activity in vitro. Moreover, combining LDH inhibition with immune checkpoint blockade therapy effectively controls murine melanoma and colon cancer progression by promoting effector T cell infiltration and activation while destabilizing Tregs. Our results establish LDH inhibition as an effective strategy for rebalancing glucose availability for T cells within the TME, which can enhance T cell function and antitumor immunity.
Collapse
Affiliation(s)
- Svena Verma
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Sadna Budhu
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Inna Serganova
- Sandra and Edward Meyer Cancer Center
- Department of Medicine
| | - Lauren Dong
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Levi M. Mangarin
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Jonathan F. Khan
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Mamadou A. Bah
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
- Immunology and Microbial Pathogenesis Program
| | - Anais Assouvie
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Yacine Marouf
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Isabell Schulze
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Roberta Zappasodi
- Sandra and Edward Meyer Cancer Center
- Department of Medicine
- Immunology and Microbial Pathogenesis Program
| | - Jedd D. Wolchok
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
- Department of Medicine
- Immunology and Microbial Pathogenesis Program
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York, USA
| | - Taha Merghoub
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
11
|
Feng X, Ren J, Zhang X, Kong D, Yin L, Zhou Q, Wang S, Li A, Guo Y, Wang Y, Feng X, Wang X, Niu J, Jiang Y, Zheng C. Lactate dehydrogenase A is implicated in the pathogenesis of B-cell lymphoma through regulation of the FER signaling pathway. Biofactors 2024; 50:1024-1038. [PMID: 38516823 DOI: 10.1002/biof.2053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Lactate dehydrogenase A (LDHA) is highly expressed in various tumors. However, the role of LDHA in the pathogenesis of B-cell lymphoma remains unclear. Analysis of data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases revealed an elevated LDHA expression in diffuse large B-cell lymphoma (DLBC) tissues compared with normal tissues. Similarly, our results demonstrated a significant increase in LDHA expression in tumor tissues from the patients with B-cell lymphoma compared with those with lymphadenitis. To further elucidate potential roles of LDHA in B-cell lymphoma pathogenesis, we silenced LDHA in the Raji cells (a B-cell lymphoma cell line) using shRNA techniques. Silencing LDHA led to reduced mitochondrial membrane integrity, adenosine triphosphate (ATP) production, glycolytic activity, cell viability and invasion. Notably, LDHA knockdown substantially suppressed in vivo growth of Raji cells and extended survival in mice bearing lymphoma (Raji cells). Moreover, proteomic analysis identified feline sarcoma-related protein (FER) as a differential protein positively associated with LDHA expression. Treatment with E260, a FER inhibitor, significantly reduced the metabolism, proliferation and invasion of Raji cells. In summary, our findings highlight that LDHA plays multiple roles in B-cell lymphoma pathogenesis via FER pathways, establishing LDHA/FER may as a potential therapeutic target.
Collapse
MESH Headings
- Humans
- Animals
- Signal Transduction
- Mice
- Cell Line, Tumor
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Proliferation/genetics
- Lactate Dehydrogenase 5/metabolism
- Lactate Dehydrogenase 5/genetics
- L-Lactate Dehydrogenase/genetics
- L-Lactate Dehydrogenase/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Female
Collapse
Affiliation(s)
- Xiumei Feng
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
- Department of Hematology, Fourth People's Hospital of Jinan City, Jinan, China
| | - Jing Ren
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xunqi Zhang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Dexiao Kong
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Linlin Yin
- Department of Hematology, Fourth People's Hospital of Jinan City, Jinan, China
| | - Qian Zhou
- Hematology Department, Linyi Central Hospital, Yishui, China
| | - Shunye Wang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Ai Li
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Yanan Guo
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Yongjing Wang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoyun Wang
- Department of Nursing, The Second Hospital of Shandong University, Jinan, China
| | - Jianhua Niu
- Department of Hematology, Fourth People's Hospital of Jinan City, Jinan, China
| | - Yang Jiang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
12
|
Chen J, Chen C, Zhang Z, Zeng F, Zhang S. Exploring the Key Amino Acid Residues Surrounding the Active Center of Lactate Dehydrogenase A for the Development of Ideal Inhibitors. Molecules 2024; 29:2029. [PMID: 38731521 PMCID: PMC11085338 DOI: 10.3390/molecules29092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.
Collapse
Affiliation(s)
- Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Zhengfu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Fancai Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong 637009, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| |
Collapse
|
13
|
Gervasi F, Pojero F. Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine. Biomedicines 2024; 12:502. [PMID: 38540115 PMCID: PMC10968586 DOI: 10.3390/biomedicines12030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The fact that the Mediterranean diet could represent a source of natural compounds with cancer-preventive and therapeutic activity has been the object of great interest, especially with regard to the mechanisms of action of polyphenols found in olive oil and olive leaves. Secoiridoid oleuropein (OLE) and its derivative hydroxytyrosol (3,4-dihydroxyphenylethanol, HT) have demonstrated anti-proliferative properties against a variety of tumors and hematological malignancies both in vivo and in vitro, with measurable effects on cellular redox status, metabolism, and transcriptional activity. With this review, we aim to summarize the most up-to-date information on the potential use of OLE and HT for cancer treatment, making important considerations about OLE and HT bioavailability, OLE- and HT-mediated effects on drug metabolism, and OLE and HT dual activity as both pro- and antioxidants, likely hampering their use in clinical routine. Also, we focus on the details available on the effects of nutritionally relevant concentrations of OLE and HT on cell viability, redox homeostasis, and inflammation in order to evaluate if both compounds could be considered cancer-preventive agents or new potential chemotherapy drugs whenever their only source is represented by diet.
Collapse
Affiliation(s)
- Francesco Gervasi
- Specialistic Oncology Laboratory Unit, ARNAS Hospitals Civico Di Cristina e Benfratelli, 90127 Palermo, Italy;
| | - Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
14
|
Qin Z, Chen J, Zhang J, Lu H, Chen Q. Association between lactate metabolism‑related molecules and venous thromboembolism: A study based on bioinformatics and an in vitro model. Exp Ther Med 2024; 27:70. [PMID: 38234631 PMCID: PMC10792409 DOI: 10.3892/etm.2023.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Venous thromboembolism (VTE) is characterized by a high recurrence rate and adverse consequences, including high mortality. Damage to vascular endothelial cells (VECs) serves a key role in VTE and lactate (LA) metabolism is associated with VEC damage. However, the pathogenesis of VTE and the role of lactate metabolism-related molecules (LMRMs) remain unclear. Based on the GSE48000 dataset, the present study identified differentially expressed (DE-)LMRMs between healthy individuals and those with VTE. Thereafter, LMRMs were used to establish four machine learning models, namely, the random forest, support vector machine and generalized linear model (GLM) and eXtreme gradient boosting. To verify disease prediction efficiency of the models, nomograms, calibration curves, decision curve analyses and external datasets were used. The optimal machine learning model was used to predict genes involved in disease and an in vitro oxygen-glucose deprivation (OGD) model was used to detect the survival rate, LA levels and LMRM expression levels of VECs. A total of four DE-LMRMs, solute carrier family 16 member 1 (SLC16A1), SLC16A7, SLC16A8 and SLC5A12 were obtained and GLM was identified as the best performing model based on its ability to predict differential expression of the embigin, lactate dehydrogenase B, SLC16A1, SLC5A12 and SLC16A8 genes. Additionally, SLC16A1, SLC16A7 and SLC16A8 served key roles in VTE and the OGD model demonstrated a significant decrease in VEC survival rate as well as a significant increase and decrease in intracellular LA and SLC16A1 expression levels in VECs, respectively. Thus, LMRMs may be involved in VTE pathogenesis and be used to build accurate VTE prediction models. Further, it was hypothesized that the observed increase in intracellular LA levels in VECS was associated with the decrease in SLC16A1 expression. Therefore, SLC16A1 expression may be an essential target for VTE treatment.
Collapse
Affiliation(s)
- Zhong Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jianfeng Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hailin Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Quanzhi Chen
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
15
|
Mathew M, Nguyen NT, Bhutia YD, Sivaprakasam S, Ganapathy V. Metabolic Signature of Warburg Effect in Cancer: An Effective and Obligatory Interplay between Nutrient Transporters and Catabolic/Anabolic Pathways to Promote Tumor Growth. Cancers (Basel) 2024; 16:504. [PMID: 38339256 PMCID: PMC10854907 DOI: 10.3390/cancers16030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Aerobic glycolysis in cancer cells, originally observed by Warburg 100 years ago, which involves the production of lactate as the end product of glucose breakdown even in the presence of adequate oxygen, is the foundation for the current interest in the cancer-cell-specific reprograming of metabolic pathways. The renewed interest in cancer cell metabolism has now gone well beyond the original Warburg effect related to glycolysis to other metabolic pathways that include amino acid metabolism, one-carbon metabolism, the pentose phosphate pathway, nucleotide synthesis, antioxidant machinery, etc. Since glucose and amino acids constitute the primary nutrients that fuel the altered metabolic pathways in cancer cells, the transporters that mediate the transfer of these nutrients and their metabolites not only across the plasma membrane but also across the mitochondrial and lysosomal membranes have become an integral component of the expansion of the Warburg effect. In this review, we focus on the interplay between these transporters and metabolic pathways that facilitates metabolic reprogramming, which has become a hallmark of cancer cells. The beneficial outcome of this recent understanding of the unique metabolic signature surrounding the Warburg effect is the identification of novel drug targets for the development of a new generation of therapeutics to treat cancer.
Collapse
Affiliation(s)
| | | | | | | | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (N.T.N.); (Y.D.B.); (S.S.)
| |
Collapse
|
16
|
Centola CL, Dasso ME, Soria JD, Riera MF, Meroni SB, Galardo MN. Glycolysis as key regulatory step in FSH-induced rat Sertoli cell proliferation: Role of the mTORC1 pathway. Biochimie 2023; 214:145-156. [PMID: 37442535 DOI: 10.1016/j.biochi.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
The definitive number of Sertoli cells (SCs), achieved during the proliferative periods, defines the spermatogenic capacity in adulthood. It is recognized that FSH is the main mitogen targeting SC and that it exerts its action, at least partly, through the activation of the PI3K/Akt/mTORC1 pathway. mTORC1 controls a large number of cellular functions, including glycolysis and cell proliferation. Interestingly, recent evidence revealed that the glycolytic flux might modulate mTORC1 activity and, consequently, cell cycle progression. Although mature SC metabolism has been thoroughly studied, several aspects of metabolism regulation in proliferating SC are still to be elucidated. The objective of this study was to explore whether aerobic glycolysis is regulated by FSH through mTORC1 pathway in proliferating SC, and to assess the involvement of glycolysis in the regulation of SC proliferation. The present study was carried out utilizing 8-day-old rat SC cultures. The results obtained show that FSH enhances glycolytic flux through the induction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) and lactate dehydrogenase A (LDHA) in an mTORC1 dependent manner. In addition, PFKFB3 and LDH inhibitors prevent FSH from activating mTORC1 and stimulating SC proliferation and glycolysis, presumably through mTORC1 pathway inhibition. In summary, FSH simultaneously regulates SC proliferation and glycolysis in an mTORC1 dependent manner, and glycolysis seems to cooperate with FSH in the stimulation of both cellular functions through the modulation of the same signalling pathway. Therefore, a positive feedback between the mTORC1 pathway and glycolysis triggered by FSH is hypothesized.
Collapse
Affiliation(s)
- Cecilia Lucia Centola
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Ercilia Dasso
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julio Daniel Soria
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Fernanda Riera
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Noel Galardo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
17
|
Liao X, Liu S, Chen S, Shan X, He J, Li C. Transcriptomic analysis reveals the role of Glycolysis pathway in Litopenaeus vannamei during DIV1 infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109036. [PMID: 37640121 DOI: 10.1016/j.fsi.2023.109036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
In recent years, shrimp farming has experienced significant losses due to the emergence of DIV1 (Decapod iridescent virus 1), an infectious virus with a high fatality rate among shrimp. In this study, we conducted transcriptomic analyses on shrimp Litopenaeus vannamei hemocytes following DIV1 infection and focused on the function of genes in the Glycolysis pathway during DIV1 infection. A total of 2197 differentially expressed genes (DEGs) were identified, comprising 1506 up-regulated genes and 691 down-regulated genes. These genes were primarily associated with Phagosome, ECM-Receptor Interaction, Drug Metabolism-Other Enzymes, and the AGE-RAGE signaling pathway in diabetic complications. KEGG pathway enrichment analysis of the DEGs revealed a noteworthy correlation with metabolic pathways, with a specific focus on glucose metabolism. Specifically, the Glycolysis/Gluconeogenesis pathway exhibited significant upregulation following DIV1 infection. In line with this, we observed an augmented accumulation of glycolytic-related metabolites in the hemolymph following DIV1 challenge along with upregulation of the relative mRNA expression of several glycolytic-related genes. Moreover, we found that the inhibition of lactate dehydrogenase (LDH) activity through RNAi or the use of an inhibitor resulted in reduced lactate production, effectively safeguarding shrimp from DIV1 infection. These findings not only provide a comprehensive dataset for further investigation into DIV1 pathogenesis but also offer valuable insights into the immunometabolism mechanisms that govern shrimp responses to DIV1 infection.
Collapse
Affiliation(s)
- Xuzheng Liao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Sihong Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shihan Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xinxin Shan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch Center of Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Maoming, PR China.
| | - Chaozheng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch Center of Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Maoming, PR China.
| |
Collapse
|
18
|
Xiao X, Zhang J, Lang Y, Cai L, Yang Q, Liu K, Ji S, Ju X, Liu F. Associations of lactate dehydrogenase with risk of renal outcomes and cardiovascular mortality in individuals with diabetic kidney disease. Diabetes Res Clin Pract 2023; 203:110838. [PMID: 37478980 DOI: 10.1016/j.diabres.2023.110838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVE This study aimed to investigate the role of the lactate dehydrogenase (LDH) in the development of end-stage renal disease (ESRD) and the cardiovascular mortality in individuals with diabetic kidney disease (DKD). METHODS Two cohorts were recruited in this study. We explored the correlation between LDH and renal injury in individuals with DKD in using a Cohort 1. Additionally, we validated this correlation in the NHANES database and further investigated its association with the risk of cardiovascular mortality in Cohort 2 which also comprised individuals with DKD. RESULTS In cohort 1, multivariate Cox regression analysis demonstrated that individuals in DKD with higher LDH were independently associated with an increased risk of ESRD compared to those with lower LDH (HR = 2.11; 95 % CI, 1.07-4.16). In cohort 2, linear regression models showed that LDH affects the level of albumin-creatinine ratio (ACR) (β = 2.95, P = 0.001). Additionally, multivariate Cox regression analysis results showed that an increase in LDH per 1-standard deviation (SD) was associated with a 27 % increased risk of cardiovascular mortality (HR = 1.27; 95 % CI, 1.09-1.48). CONCLUSIONS LDH levels are associated with renal injury and progression to ESRD, as well as being an independent risk factor for cardiovascular in individuals with DKD.
Collapse
Affiliation(s)
- Xiang Xiao
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, 610500 Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanling Lang
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Linli Cai
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Qing Yang
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Kai Liu
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Shuming Ji
- Department of Project Design and Statistics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuegui Ju
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, 610500 Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Tan Z, Liu J, Xu J, Zhang B, Yu X, Wang W, Liang C. LDHA is a prognostic biomarker on the immune response in pancreatic adenocarcinoma and associated with m6A modification. J Cancer Res Clin Oncol 2023; 149:4853-4865. [PMID: 36269388 DOI: 10.1007/s00432-022-04400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE N6-methyladenosine (m6A) is tightly associated with the progression of pancreatic ductal adenocarcinoma (PDAC). Another prominent feature of PDAC is metabolic reprogramming, which provides sufficient nutrients to support rapid cell growth via the tumor microenvironment. However, the underlying influences of m6A-associated metabolic genes on the PDAC microenvironment remain poorly understood. Therefore, we sought to construct a survival prediction model using m6A-related genes to clarify the molecular characteristics of PDAC. METHODS In the present study, m6A-related metabolic genes were obtained from The Cancer Genome Atlas (TCGA) pancreatic adenocarcinoma dataset and subjected to coexpression analysis. Consensus clustering recognized two distinct subgroups with different immune cell infiltration patterns according to the expression of m6A-associated metabolic genes. Multivariate Cox regression analyses and least absolute shrinkage and selection operator (LASSO) analysis were adopted to create an m6A-related metabolism model. A nomogram including clinical features and the risk score based on the expression of m6A-related metabolism regulators was constructed. RESULTS A four-gene signature comprising ATP8B2, GMPS, LDHA and SDR39U1 was built to predict the overall survival (OS) of PDAC patients. This signature also robustly predicted survival in two independent validation cohorts from the International Cancer Genome Consortium (ICGC) and ArrayExpress (E-MTAB-6134). The four-gene signature divided patients into high- and low-risk groups with distinct OS values as verified by the log-rank test. Among the four genes, LDHA was upregulated in both PDAC tissues and cell lines. CONCLUSIONS Collectively, we analyzed the immune microenvironment, predicted drug sensitivity and assessed the implications of the mutation landscape based on the crosstalk between m6A regulators and metabolic rewiring, and we also constructed a novel signature based on m6A-associated metabolic genes to predict PDAC prognosis.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
20
|
Wu P, Zhu T, Huang Y, Fang Z, Luo F. Current understanding of the contribution of lactate to the cardiovascular system and its therapeutic relevance. Front Endocrinol (Lausanne) 2023; 14:1205442. [PMID: 37396168 PMCID: PMC10309561 DOI: 10.3389/fendo.2023.1205442] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Research during the past decades has yielded numerous insights into the presence and function of lactate in the body. Lactate is primarily produced via glycolysis and plays special roles in the regulation of tissues and organs, particularly in the cardiovascular system. In addition to being a net consumer of lactate, the heart is also the organ in the body with the greatest lactate consumption. Furthermore, lactate maintains cardiovascular homeostasis through energy supply and signal regulation under physiological conditions. Lactate also affects the occurrence, development, and prognosis of various cardiovascular diseases. We will highlight how lactate regulates the cardiovascular system under physiological and pathological conditions based on evidence from recent studies. We aim to provide a better understanding of the relationship between lactate and cardiovascular health and provide new ideas for preventing and treating cardiovascular diseases. Additionally, we will summarize current developments in treatments targeting lactate metabolism, transport, and signaling, including their role in cardiovascular diseases.
Collapse
Affiliation(s)
- Panyun Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Tengteng Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyuan Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
White BE, Liu Y, Hakonarson H, Buono RJ. RNA Sequencing in Hypoxia-Adapted T98G Glioblastoma Cells Provides Supportive Evidence for IRE1 as a Potential Therapeutic Target. Genes (Basel) 2023; 14:genes14040841. [PMID: 37107600 PMCID: PMC10138146 DOI: 10.3390/genes14040841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain cancer with a median survival time of 14.6 months after diagnosis. GBM cells have altered metabolism and exhibit the Warburg effect, preferentially producing lactate under aerobic conditions. After standard-of-care treatment for GBM, there is an almost 100% recurrence rate. Hypoxia-adapted, treatment-resistant GBM stem-like cells are thought to drive this high recurrence rate. We used human T98G GBM cells as a model to identify differential gene expression induced by hypoxia and to search for potential therapeutic targets of hypoxia adapted GBM cells. RNA sequencing (RNAseq) and bioinformatics were used to identify differentially expressed genes (DEGs) and cellular pathways affected by hypoxia. We also examined expression of lactate dehydrogenase (LDH) genes using qRT-PCR and zymography as LDH dysregulation is a feature of many cancers. We found 2630 DEGs significantly altered by hypoxia (p < 0.05), 1241 upregulated in hypoxia and 1389 upregulated in normoxia. Hypoxia DEGs were highest in pathways related to glycolysis, hypoxia response, cell adhesion and notably the endoplasmic reticulum, including the inositol-requiring enzyme 1 (IRE1)-mediated unfolded protein response (UPR). These results, paired with numerous published preclinical data, provide additional evidence that inhibition of the IRE1-mediated UPR may have therapeutic potential in treating GBM. We propose a possible drug repurposing strategy to simultaneously target IRE1 and the spleen tyrosine kinase (SYK) in patients with GBM.
Collapse
|
22
|
Lai W, Liao J, Li X, Liang P, He L, Huang K, Liang X, Wang Y. Characterization of the microenvironment in different immune-metabolism subtypes of cervical cancer with prognostic significance. Front Genet 2023; 14:1067666. [PMID: 36816023 PMCID: PMC9935837 DOI: 10.3389/fgene.2023.1067666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Immune cell infiltration and metabolic reprogramming may have great impact on the tumorigenesis and progression of malignancies. The interaction between these two factors in cervical cancer remains to be clarified. Here we constructed a gene set containing immune and metabolism related genes and we applied this gene set to molecular subtyping of cervical cancer. Methods: Bulk sequencing and single-cell sequencing data were downloaded from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database respectively. Immune and metabolism related genes were collected from Immport and Kyoto encyclopedia of genes and genomes (KEGG) database respectively. Unsupervised consensus clustering was performed to identify the molecular subtypes. Cibersort was applied to evaluate the immune cells infiltration status. Differential expression analysis and Gene set enrichment analysis (GSEA) were performed to characterize the molecular pattern of different subtypes. Multivariate Cox regression analysis was used for prognosis prediction model construction and receiver operating characteristic (ROC) curve was used for performance evaluation. The hub genes in the model were verified in single-cell sequencing dataset and clinical specimens. In vitro experiments were performed to validate the findings in our research. Results: Three subtypes were identified with prognostic implications. C1 subgroup was in an immunosuppressive state with activation of mitochondrial cytochrome P450 metabolism, C2 had poor immune cells infiltration and was characterized by tRNA anabolism, and the C3 subgroup was in an inflammatory state with activation of aromatic amino acid synthesis. The area under the ROC curve of the constructed model was 0.8, which showed better performance than clinical features. IMPDH1 was found to be significantly upregulated in tumor tissue and it was demonstrated that IMPDH1 could be a novel therapeutic target in vitro. Discussion: In summary, our findings suggested novel molecular subtypes of cervical cancer with distinct immunometabolic profiles and uncovered a novel therapeutic target.
Collapse
Affiliation(s)
- Wujiang Lai
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinrong Liao
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Li
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peili Liang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqing He
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Keke Huang
- Department of Obstetrics, Shunde Hospital, The First People’s Hospital of Shunde, Southern Medical University, Foshan, Guangdong, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| | - Xiaomei Liang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| | - Yifeng Wang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| |
Collapse
|
23
|
Puzakova LV, Puzakov MV. Structure and Evolution of the AqE Gene in Insects. Mol Biol 2023. [DOI: 10.1134/s0026893323010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
24
|
Tang Y, Gu S, Zhu L, Wu Y, Zhang W, Zhao C. LDHA: The Obstacle to T cell responses against tumor. Front Oncol 2022; 12:1036477. [PMID: 36518315 PMCID: PMC9742379 DOI: 10.3389/fonc.2022.1036477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become a successful therapeutic strategy in certain solid tumors and hematological malignancies. However, this efficacy of immunotherapy is impeded by limited success rates. Cellular metabolic reprogramming determines the functionality and viability in both cancer cells and immune cells. Extensive research has unraveled that the limited success of immunotherapy is related to immune evasive metabolic reprogramming in tumor cells and immune cells. As an enzyme that catalyzes the final step of glycolysis, lactate dehydrogenase A (LDHA) has become a major focus of research. Here, we have addressed the structure, localization, and biological features of LDHA. Furthermore, we have discussed the various aspects of epigenetic regulation of LDHA expression, such as histone modification, DNA methylation, N6-methyladenosine (m6A) RNA methylation, and transcriptional control by noncoding RNA. With a focus on the extrinsic (tumor cells) and intrinsic (T cells) functions of LDHA in T-cell responses against tumors, in this article, we have reviewed the current status of LDHA inhibitors and their combination with T cell-mediated immunotherapies and postulated different strategies for future therapeutic regimens.
Collapse
Affiliation(s)
- Yu Tang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yujiao Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
25
|
Abstract
High serum lactate dehydrogenase (LDH) levels are typically associated with a poor prognosis in many cancer types. Even the most effective drugs, which have radically improved outcomes in patients with melanoma over the past decade, provide only marginal benefit to those with high serum LDH levels. When viewed separately from the oncological, biochemical, biological and immunological perspectives, serum LDH is often interpreted in very different ways. Oncologists usually see high serum LDH only as a robust biomarker of a poor prognosis, and biochemists are aware of the complexity of the various LDH isoforms and of their key roles in cancer metabolism, whereas LDH is typically considered to be oncogenic and/or immunosuppressive by cancer biologists and immunologists. Integrating these various viewpoints shows that the regulation of the five LDH isoforms, and their enzymatic and non-enzymatic functions is closely related to key oncological processes. In this Review, we highlight that serum LDH is far more than a simple indicator of tumour burden; it is a complex biomarker associated with the activation of several oncogenic signalling pathways as well as with the metabolic activity, invasiveness and immunogenicity of many tumours, and constitutes an extremely attractive target for cancer therapy.
Collapse
|
26
|
Yao H, Yang F, Li Y. Natural products targeting human lactate dehydrogenases for cancer therapy: A mini review. Front Chem 2022; 10:1013670. [PMID: 36247675 PMCID: PMC9556992 DOI: 10.3389/fchem.2022.1013670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Reprogramming cancer metabolism has become the hallmark of cancer progression. As the key enzyme catalyzing the conversion of pyruvate to lactate in aerobic glycolysis of cancer cells, human lactate dehydrogenase (LDH) has been a promising target in the discovery of anticancer agents. Natural products are important sources of new drugs. Up to now, some natural compounds have been reported with the activity to target LDH. To give more information on the development of LDH inhibitors and application of natural products, herein, we reviewed the natural compounds with inhibition of LDH from diverse structures and discussed the future direction of the discovery of natural LDH inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Huankai Yao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Huankai Yao,
| | - Feng Yang
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
27
|
Lee SH, Liu X, Jimenez-Morales D, Rinaudo PF. Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production. eLife 2022; 11:e79153. [PMID: 36107481 PMCID: PMC9519152 DOI: 10.7554/elife.79153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
In vitro fertilization (IVF) has resulted in the birth of over 8 million children. Although most IVF-conceived children are healthy, several studies suggest an increased risk of altered growth rate, cardiovascular dysfunction, and glucose intolerance in this population compared to naturally conceived children. However, a clear understanding of how embryonic metabolism is affected by culture condition and how embryos reprogram their metabolism is unknown. Here, we studied oxidative stress and metabolic alteration in blastocysts conceived by natural mating or by IVF and cultured in physiologic (5%) or atmospheric (20%) oxygen. We found that IVF-generated blastocysts manifest increased reactive oxygen species, oxidative damage to DNA/lipid/proteins, and reduction in glutathione. Metabolic analysis revealed IVF-generated blastocysts display decreased mitochondria respiration and increased glycolytic activity suggestive of enhanced Warburg metabolism. These findings were corroborated by altered intracellular and extracellular pH and increased intracellular lactate levels in IVF-generated embryos. Comprehensive proteomic analysis and targeted immunofluorescence showed reduction of lactate dehydrogenase-B and monocarboxylate transporter 1, enzymes involved in lactate metabolism. Importantly, these enzymes remained downregulated in the tissues of adult IVF-conceived mice, suggesting that metabolic alterations in IVF-generated embryos may result in alteration in lactate metabolism. These findings suggest that alterations in lactate metabolism are a likely mechanism involved in genomic reprogramming and could be involved in the developmental origin of health and disease.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California, San FranciscoSan FranciscoUnited States
| | - Xiaowei Liu
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California, San FranciscoSan FranciscoUnited States
| | - David Jimenez-Morales
- Division of Cardiovascular Medicine, Department of Medicine, Stanford UniversityStanfordUnited States
| | - Paolo F Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
28
|
Stefanello ST, Mizdal CR, Azzam I, Döhlinger L, Oeckinghaus A, Shahin V. Five‐to‐Seven Carbon Glycols Severely Impair Bioenergetics and Metabolism of Aggressive Lung Cancer Cells. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Caren Rigon Mizdal
- Institute of Physiology II University of Münster Robert-Koch-Str. 27b 48149 Münster Germany
| | - Ihab Azzam
- Institute of Immunology University of Münster Röntgen-Str. 21 48149 Münster Germany
| | - Lilly Döhlinger
- Institute of Physiology II University of Münster Robert-Koch-Str. 27b 48149 Münster Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology University of Münster Robert-Koch-Str. 43 48149 Münster Germany
| | - Victor Shahin
- Institute of Physiology II University of Münster Robert-Koch-Str. 27b 48149 Münster Germany
| |
Collapse
|
29
|
Moya-Garzon MD, Rodriguez-Rodriguez B, Martin-Higueras C, Franco-Montalban F, Fernandes MX, Gomez-Vidal JA, Pey AL, Salido E, Diaz-Gavilan M. New salicylic acid derivatives, double inhibitors of glycolate oxidase and lactate dehydrogenase, as effective agents decreasing oxalate production. Eur J Med Chem 2022; 237:114396. [DOI: 10.1016/j.ejmech.2022.114396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
|
30
|
In vivo CRISPR-Cas9 inhibition of hepatic LDH as treatment of primary hyperoxaluria. Mol Ther Methods Clin Dev 2022; 25:137-146. [PMID: 35402636 PMCID: PMC8971349 DOI: 10.1016/j.omtm.2022.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/14/2022] [Indexed: 12/26/2022]
Abstract
Genome-editing strategies, especially CRISPR-Cas9 systems, have substantially increased the efficiency of innovative therapeutic approaches for monogenic diseases such as primary hyperoxalurias (PHs). We have previously demonstrated that inhibition of glycolate oxidase using CRISPR-Cas9 systems represents a promising therapeutic option for PH type I (PH1). Here, we extended our work evaluating the efficacy of liver-specific inhibition of lactate dehydrogenase (LDH), a key enzyme responsible for converting glyoxylate to oxalate; this strategy would not be limited to PH1, being applicable to other PH subtypes. In this work, we demonstrate a liver-specific inhibition of LDH that resulted in a drastic reduction of LDH levels in the liver of PH1 and PH3 mice after a single-dose delivery of AAV8 vectors expressing the CRISPR-Cas9 system, resulting in reduced urine oxalate levels and kidney damage without signs of toxicity. Deep sequencing analysis revealed that this approach was safe and specific, with no off-targets detected in the liver of treated animals and no on-target/off-tissue events. Altogether, our data provide evidence that in vivo genome editing using CRISPR-Cas9 systems would represent a valuable tool for improved therapeutic approaches for PH.
Collapse
|
31
|
Decking SM, Bruss C, Babl N, Bittner S, Klobuch S, Thomas S, Feuerer M, Hoffmann P, Dettmer K, Oefner PJ, Renner K, Kreutz M. LDHB Overexpression Can Partially Overcome T Cell Inhibition by Lactic Acid. Int J Mol Sci 2022; 23:ijms23115970. [PMID: 35682650 PMCID: PMC9180663 DOI: 10.3390/ijms23115970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Accelerated glycolysis leads to secretion and accumulation of lactate and protons in the tumor environment and determines the efficacy of adoptive T cell and checkpoint inhibition therapy. Here, we analyzed effects of lactic acid on different human CD4 T cell subsets and aimed to increase CD4 T cell resistance towards lactic acid. In all CD4 T cell subsets analyzed, lactic acid inhibited metabolic activity (glycolysis and respiration), cytokine secretion, and cell proliferation. Overexpression of the lactate-metabolizing isoenzyme LDHB increased cell respiration and mitigated lactic acid effects on intracellular cytokine production. Strikingly, LDHB-overexpressing cells preferentially migrated into HCT116 tumor spheroids and displayed higher expression of cytotoxic effector molecules. We conclude, that LDHB overexpression might be a promising strategy to increase the efficacy of adoptive T cell transfer therapy.
Collapse
Affiliation(s)
- Sonja-Maria Decking
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
- Department of Gynecology and Obstetrics, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
| | - Sebastian Bittner
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
| | - Sebastian Klobuch
- Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
| | - Simone Thomas
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
| | - Markus Feuerer
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
| | - Petra Hoffmann
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany; (K.D.); (P.J.O.)
| | - Peter J. Oefner
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany; (K.D.); (P.J.O.)
| | - Kathrin Renner
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
| | - Marina Kreutz
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
- Correspondence:
| |
Collapse
|
32
|
Jin M, Cao W, Chen B, Xiong M, Cao G. Tumor-Derived Lactate Creates a Favorable Niche for Tumor via Supplying Energy Source for Tumor and Modulating the Tumor Microenvironment. Front Cell Dev Biol 2022; 10:808859. [PMID: 35646923 PMCID: PMC9136137 DOI: 10.3389/fcell.2022.808859] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/08/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor evolution is influenced by events involving tumor cells and the environment in which they live, known as the tumor microenvironment (TME). TME is a functional and structural niche composed of tumor cells, endothelial cells (ECs), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells (MSCs), and a subset of immune cells (macrophages, dendritic cells, natural killer cells, T cells, B cells). Otto Warburg revealed the Warburg effect in 1923, a characteristic metabolic mechanism of tumor cells that performs high glucose uptake and excessive lactate formation even in abundant oxygen. Tumor tissues excrete a large amount of lactate into the extracellular microenvironment in response to TME’s hypoxic or semi-hypoxic state. High lactate concentrations in tumor biopsies have been linked to metastasis and poor clinical outcome. This indicates that the metabolite may play a role in carcinogenesis and lead to immune escape in TME. Lactate is now recognized as an essential carbon source for cellular metabolism and as a signaling molecule in TME, forming an active niche that influences tumor progression. This review summarized the advanced literature demonstrating the functional role of lactate in TME remodeling, elucidating how lactate shapes the behavior and the phenotype of both tumor cells and tumor-associated cells. We also concluded the intriguing interactions of multiple immune cells in TME. Additionally, we demonstrated how lactate functioned as a novel function factor by being used in a new histone modification, histone lysine lactylation, and to regulate gene expression in TME. Ultimately, because lactate created a favorable niche for tumor progression, we summarized potential anti-tumor strategies targeting lactate metabolism and signaling to investigate better cancer treatment.
Collapse
Affiliation(s)
| | | | - Bo Chen
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Maoming Xiong
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Guodong Cao
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| |
Collapse
|
33
|
Shindo M, Maeda M, Myat K, Mane MM, Cohen IJ, Vemuri K, Albeg AS, Serganova I, Blasberg R. LDH-A—Modulation and the Variability of LDH Isoenzyme Profiles in Murine Gliomas: A Link with Metabolic and Growth Responses. Cancers (Basel) 2022; 14:cancers14092303. [PMID: 35565432 PMCID: PMC9100845 DOI: 10.3390/cancers14092303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Three murine glioma cell lines (GL261, CT2A, and ALTS1C1) were modified to downregulate the expression of the murine LDH-A gene using shRNA, and compared to shRNA scrambled control (NC) cell lines. Differences in the expression of LDH-A and LDH-B mRNA, protein and enzymatic activity, as well as their LDH isoenzyme profiles, were observed in the six cell lines, and confirmed successful LDH-A KD. LDH-A KD (knock-down) resulted in metabolic changes in cells with a reduction in glycolysis (GlycoPER) and an increase in basal respiratory rate (mitoOCR). GL261 cells had a more limited ATP production capacity compared to CT2A and ALTS1C1 cells. An analysis of mRNA expression data indicated that: (i) GL261 LDH-A KD cells may have an improved ability to metabolize lactate into the TCA cycle; and (ii) that GL261 LDH-A KD cells can upregulate lipid metabolism/fatty acid oxidation pathways, whereas the other glioma cell lines do not have this capacity. These two observations suggest that GL261 LDH-A KD cells can develop/activate alternative metabolic pathways for enhanced survival in a nutrient-limited environment, and that specific nutrient limitations have a variable impact on tumor cell metabolism and proliferation. The phenotypic effects of LDH-A KD were compared to those in control (NC) cells and tumors. LDH-A KD prolonged the doubling time of GL261 cells in culture and prevented the formation of subcutaneous flank tumors in immune-competent C57BL/6 mice, whereas GL261 NC tumors had a prolonged growth delay in C57BL/6 mice. In nude mice, both LDH-A KD and NC GL261 tumors grew rapidly (more rapidly than GL261 NC tumors in C57BL/6 mice), demonstrating the impact of an intact immune system on GL261 tumor growth. No differences between NC and KD cell proliferation (in vitro) or tumor growth in C57BL/6 mice (doubling time) were observed for CT2A and ALTS1C1 cells and tumors, despite the small changes to their LDH isoenzyme profiles. These results suggest that GL261 glioma cells (but not CT2A and ALTS1C1 cells) are pre-programmed to have the capacity for activating different metabolic pathways with higher TCA cycle activity, and that this capacity is enhanced by LDH-A depletion. We observed that the combined impact of LDH-A depletion and the immune system had a significant impact on the growth of subcutaneous-located GL261 tumors.
Collapse
Affiliation(s)
- Masahiro Shindo
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 52, New York, NY 10065, USA; (M.S.); (M.M.); (K.M.); (M.M.M.); (K.V.); (A.S.A.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Department of Neurosurgery, Nozaki Tokushukai Hospital, Osaka 5740074, Japan
| | - Masatomo Maeda
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 52, New York, NY 10065, USA; (M.S.); (M.M.); (K.M.); (M.M.M.); (K.V.); (A.S.A.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Department of Neurosurgery, Nozaki Tokushukai Hospital, Osaka 5740074, Japan
| | - Ko Myat
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 52, New York, NY 10065, USA; (M.S.); (M.M.); (K.M.); (M.M.M.); (K.V.); (A.S.A.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mayuresh M. Mane
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 52, New York, NY 10065, USA; (M.S.); (M.M.); (K.M.); (M.M.M.); (K.V.); (A.S.A.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ivan J. Cohen
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kiranmayi Vemuri
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 52, New York, NY 10065, USA; (M.S.); (M.M.); (K.M.); (M.M.M.); (K.V.); (A.S.A.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Department of Genetics, Rutgers University, New Brunswick, NJ 08901, USA
| | - Avi S. Albeg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 52, New York, NY 10065, USA; (M.S.); (M.M.); (K.M.); (M.M.M.); (K.V.); (A.S.A.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Inna Serganova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 52, New York, NY 10065, USA; (M.S.); (M.M.); (K.M.); (M.M.M.); (K.V.); (A.S.A.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ronald Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 52, New York, NY 10065, USA; (M.S.); (M.M.); (K.M.); (M.M.M.); (K.V.); (A.S.A.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence: ; Tel.: +1-212-639-2211
| |
Collapse
|
34
|
Park JS, Saeed K, Jo MH, Kim MW, Lee HJ, Park CB, Lee G, Kim MO. LDHB Deficiency Promotes Mitochondrial Dysfunction Mediated Oxidative Stress and Neurodegeneration in Adult Mouse Brain. Antioxidants (Basel) 2022; 11:antiox11020261. [PMID: 35204143 PMCID: PMC8868245 DOI: 10.3390/antiox11020261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Age-related decline in mitochondrial function and oxidative stress plays a critical role in neurodegeneration. Lactate dehydrogenase-B (LDHB) is a glycolytic enzyme that catalyzes the conversion of lactate, an important brain energy substrate, into pyruvate. It has been reported that the LDHB pattern changes in the brain during ageing. Yet very little is known about the effect of LDHB deficiency on brain pathology. Here, we have used Ldhb knockout (Ldhb−/−) mice to test the hypothesis that LDHB deficiency plays an important role in oxidative stress-mediated neuroinflammation and neurodegeneration. LDHB knockout (Ldhb−/−) mice were generated by the ablation of the Ldhb gene using the Cre/loxP-recombination system in the C57BL/6 genetic background. The Ldhb−/− mice were treated with either osmotin (15 μg/g of the body; intraperitoneally) or vehicle twice a week for 5-weeks. After behavior assessments, the mice were sacrificed, and the cortical and hippocampal brain regions were analyzed through biochemical and morphological analysis. Ldhb−/− mice displayed enhanced reactive oxygen species (ROS) and lipid peroxidation (LPO) production, and they revealed depleted stores of cellular ATP, GSH:GSSG enzyme ratio, and downregulated expression of Nrf2 and HO-1 proteins, when compared to WT littermates. Importantly, the Ldhb−/− mice showed upregulated expression of apoptosis mediators (Bax, Cytochrome C, and caspase-3), and revealed impaired p-AMPK/SIRT1/PGC-1alpha signaling. Moreover, LDHB deficiency-induced gliosis increased the production of inflammatory mediators (TNF-α, Nf-ĸB, and NOS2), and revealed cognitive deficits. Treatment with osmotin, an adipoR1 natural agonist, significantly increased cellular ATP production by increasing mitochondrial function and attenuated oxidative stress, neuroinflammation, and neuronal apoptosis, probably, by upregulating p-AMPK/SIRT1/PGC-1alpha signaling in Ldhb−/− mice. In brief, LDHB deficiency may lead to brain oxidative stress-mediated progression of neurodegeneration via regulating p-AMPK/SIRT1/PGC-1alpha signaling, while osmotin could improve mitochondrial functions, abrogate oxidative stress and alleviate neuroinflammation and neurodegeneration in adult Ldhb−/− mice.
Collapse
Affiliation(s)
- Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
| | - Kamran Saeed
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
| | - Myeung Hoon Jo
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
| | - Min Woo Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
| | - Chan-Bae Park
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; or
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
- Alz-Dementia Korea Co., Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
35
|
Sun Q, Wu J, Zhu G, Li T, Zhu X, Ni B, Xu B, Ma X, Li J. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer. Front Endocrinol (Lausanne) 2022; 13:1089918. [PMID: 36778600 PMCID: PMC9909490 DOI: 10.3389/fendo.2022.1089918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023] Open
Abstract
Changes in cellular metabolism involving fuel sources are well-known mechanisms of cancer cell differentiation in the context of carcinogenesis. Metabolic reprogramming is regulated by oncogenic signaling and transcriptional networks and has been identified as an essential component of malignant transformation. Hypoxic and acidified tumor microenvironment contributes mainly to the production of glycolytic products known as lactate. Mounting evidence suggests that lactate in the tumor microenvironment of colorectal cancer(CRC) contributes to cancer therapeutic resistance and metastasis. The contents related to the regulatory effects of lactate on metabolism, immune response, and intercellular communication in the tumor microenvironment of CRC are also constantly updated. Here we summarize the latest studies about the pleiotropic effects of lactate in CRC and the clinical value of targeting lactate metabolism as treatment. Different effects of lactate on various immune cell types, microenvironment characteristics, and pathophysiological processes have also emerged. Potential specific therapeutic targeting of CRC lactate metabolism is also discussed. With increased knowledge, effective druggable targets might be identified, with the aim of improving treatment outcomes by reducing chemoresistance.
Collapse
Affiliation(s)
- Qianhui Sun
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyuan Wu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Guanghui Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Tingting Li
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaoyu Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xinyi Ma
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
36
|
van de Pol ILE, Hermaniuk A, Verberk WCEP. Interacting Effects of Cell Size and Temperature on Gene Expression, Growth, Development and Swimming Performance in Larval Zebrafish. Front Physiol 2021; 12:738804. [PMID: 34950046 PMCID: PMC8691434 DOI: 10.3389/fphys.2021.738804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cell size may be important in understanding the thermal biology of ectotherms, as the regulation and consequences of cell size appear to be temperature dependent. Using a recently developed model system of triploid zebrafish (which have around 1.5-fold larger cells than their diploid counterparts) we examine the effects of cell size on gene expression, growth, development and swimming performance in zebrafish larvae at different temperatures. Both temperature and ploidy affected the expression of genes related to metabolic processes (citrate synthase and lactate dehydrogenase), growth and swimming performance. Temperature also increased development rate, but there was no effect of ploidy level. We did find interactive effects between ploidy and temperature for gene expression, body size and swimming performance, confirming that the consequences of cell size are temperature dependent. Triploids with larger cells performed best at cool conditions, while diploids performed better at warmer conditions. These results suggest different selection pressures on ectotherms and their cell size in cold and warm habitats.
Collapse
Affiliation(s)
- Iris Louise Eleonora van de Pol
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Adam Hermaniuk
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Białystok, Białystok, Poland
| | | |
Collapse
|
37
|
Bockstahler M, Salbach C, Müller AM, Kübler A, Müller OJ, Katus HA, Frey N, Kaya Z. LNA oligonucleotide mediates an anti-inflammatory effect in autoimmune myocarditis via targeting lactate dehydrogenase B. Immunology 2021; 165:158-170. [PMID: 34606637 PMCID: PMC9426621 DOI: 10.1111/imm.13421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 08/18/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Treatment of myocarditis is often limited to symptomatic treatment due to unknown pathomechanisms. In order to identify new therapeutic approaches, the contribution of locked nucleic acid antisense oligonucleotides (LNA ASOs) in autoimmune myocarditis was investigated. Hence, A/J mice were immunized with cardiac troponin I (TnI) to induce experimental autoimmune myocarditis (EAM) and treated with LNA ASOs. The results showed an unexpected anti‐inflammatory effect for one administered LNA ASO MB_1114 by reducing cardiac inflammation and fibrosis. The target sequence of MB_1114 was identified as lactate dehydrogenase B (mLDHB). For further analysis, mice received mLdhb‐specific GapmeR during induction of EAM. Here, mice receiving the mLdhb‐specific GapmeR showed increased protein levels of cardiac mLDHB and a reduced cardiac inflammation and fibrosis. The effect of increased cardiac mLDHB protein level was associated with a downregulation of genes of reactive oxygen species (ROS)‐associated proteins, indicating a reduction in ROS. Here, the suppression of murine pro‐apoptotic Bcl‐2‐associated X protein (mBax) was also observed. In our study, an unexpected anti‐inflammatory effect of LNA ASO MB_1114 and mLdhb‐specific GapmeR during induction of EAM could be demonstrated in vivo. This effect was associated with increased protein levels of cardiac mLDHB, mBax suppression and reduced ROS activation. Thus, LDHB and LNA ASOs may be considered as a promising target for directed therapy of myocarditis. Nevertheless, further investigations are necessary to clarify the mechanism of action of anti‐inflammatory LDHB‐triggered effects.
Collapse
Affiliation(s)
- Mariella Bockstahler
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christian Salbach
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anna-Maria Müller
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andrea Kübler
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
38
|
Burns JE, Hurst CD, Knowles MA, Phillips RM, Allison SJ. The Warburg effect as a therapeutic target for bladder cancers and intratumoral heterogeneity in associated molecular targets. Cancer Sci 2021; 112:3822-3834. [PMID: 34181805 PMCID: PMC8409428 DOI: 10.1111/cas.15047] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer is the 10th most common cancer worldwide. For muscle-invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non-muscle-invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial-mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH-A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH-B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH-A is expressed in normal urothelial cells, LDH-A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected-identifying LDH-A as a cancer-selective therapeutic target for bladder cancers. LDH-A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling.
Collapse
Affiliation(s)
- Julie E. Burns
- Leeds Institute of Medical ResearchSt. James’ University HospitalUniversity of LeedsLeedsUK
| | - Carolyn D. Hurst
- Leeds Institute of Medical ResearchSt. James’ University HospitalUniversity of LeedsLeedsUK
| | - Margaret A. Knowles
- Leeds Institute of Medical ResearchSt. James’ University HospitalUniversity of LeedsLeedsUK
| | | | - Simon J. Allison
- Leeds Institute of Medical ResearchSt. James’ University HospitalUniversity of LeedsLeedsUK
- School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| |
Collapse
|
39
|
La Montagna M, Shi L, Magee P, Sahoo S, Fassan M, Garofalo M. AMPKα loss promotes KRAS-mediated lung tumorigenesis. Cell Death Differ 2021; 28:2673-2689. [PMID: 34040167 PMCID: PMC8408205 DOI: 10.1038/s41418-021-00777-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/04/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a critical sensor of energy status that coordinates cell growth with energy balance. In non-small cell lung cancer (NSCLC) the role of AMPKα is controversial and its contribution to lung carcinogenesis is not well-defined. Furthermore, it remains largely unknown whether long non-coding RNAs (lncRNAs) are involved in the regulation of AMPK-mediated pathways. Here, we found that loss of AMPKα in combination with activation of mutant KRASG12D increased lung tumour burden and reduced survival in KrasLSLG12D/+/AMPKαfl/fl mice. In agreement, functional in vitro studies revealed that AMPKα silencing increased growth and migration of NSCLC cells. In addition, we identified an AMPKα-modulated lncRNA, KIMAT1 (ENSG00000228709), which in turn regulates AMPKα activation by stabilizing the lactate dehydrogenase B (LDHB). Collectively, our study indicates that AMPKα loss promotes KRAS-mediated lung tumorigenesis and proposes a novel KRAS/KIMAT1/LDHB/AMPKα axis that could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Manuela La Montagna
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Peter Magee
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Sudhakar Sahoo
- Computational Biology Support, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK.
| |
Collapse
|
40
|
Arundhathi JRD, Mathur SR, Gogia A, Deo SVS, Mohapatra P, Prasad CP. Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis. Mol Biol Rep 2021; 48:4733-4745. [PMID: 34047880 DOI: 10.1007/s11033-021-06414-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023]
Abstract
Among breast cancer subtypes, the triple negative breast cancer (TNBC) has the worst prognosis. In absence of any permitted targeted therapy, standard chemotherapy is the mainstay for TNBC treatment. Hence, there is a crucial need to identify potential druggable targets in TNBCs for its effective treatment. In recent times, metabolic reprogramming has emerged as cancer cells hallmark, wherein cancer cells display discrete metabolic phenotypes to fuel cell progression and metastasis. Altered glycolysis is one such phenotype, in which even in oxygen abundance majority of cancer cells harvest considerable amount of energy through elevated glycolytic-flux. In the present review, we attempt to summarize the role of key glycolytic enzymes i.e. HK, Hexokinase; PFK, Phosphofructokinase; PKM2, Pyruvate kinase isozyme type 2; and LDH, Lactate dehydrogenase in TNBCs, and possible therapeutic options presently available.
Collapse
Affiliation(s)
- J R Dev Arundhathi
- Department of Medical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - S V S Deo
- Department of Surgical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | | | | |
Collapse
|
41
|
Chen Y, Maniakas A, Tan L, Cui M, Le X, Niedzielski JS, Michel KA, Harlan CJ, Lu W, Henderson YC, Mohamed ASR, Lorenzi PL, Putluri N, Bankson JA, Sandulache VC, Lai SY. Development of a rational strategy for integration of lactate dehydrogenase A suppression into therapeutic algorithms for head and neck cancer. Br J Cancer 2021; 124:1670-1679. [PMID: 33742144 PMCID: PMC8110762 DOI: 10.1038/s41416-021-01297-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/09/2021] [Accepted: 01/27/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Lactate dehydrogenase (LDH) is a critical metabolic enzyme. LDH A (LDHA) overexpression is a hallmark of aggressive malignancies and has been linked to tumour initiation, reprogramming and progression in multiple tumour types. However, successful LDHA inhibition strategies have not materialised in the translational and clinical space. We sought to develop a rational strategy for LDHA suppression in the context of solid tumour treatment. METHODS We utilised a doxycycline-inducible short hairpin RNA (shRNA) system to generate LDHA suppression. Lactate and LDH activity levels were measured biochemically and kinetically using hyperpolarised 13C-pyruvate nuclear magnetic resonance spectroscopy. We evaluated effects of LDHA suppression on cellular proliferation and clonogenic survival, as well as on tumour growth, in orthotopic models of anaplastic thyroid carcinoma (ATC) and head and neck squamous cell carcinoma (HNSCC), alone or in combination with radiation. RESULTS shRNA suppression of LDHA generated a time-dependent decrease in LDH activity with transient shifts in intracellular lactate levels, a decrease in carbon flux from pyruvate into lactate and compensatory shifts in metabolic flux in glycolysis and the Krebs cycle. LDHA suppression decreased cellular proliferation and temporarily stunted tumour growth in ATC and HNSCC xenografts but did not by itself result in tumour cure, owing to the maintenance of residual viable cells. Only when chronic LDHA suppression was combined with radiation was a functional cure achieved. CONCLUSIONS Successful targeting of LDHA requires exquisite dose and temporal control without significant concomitant off-target toxicity. Combinatorial strategies with conventional radiation are feasible as long as the suppression is targeted, prolonged and non-toxic.
Collapse
Affiliation(s)
- Yunyun Chen
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, QC, Canada
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meng Cui
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Head Neck and Thyroid, Henan Cancer Hospital affiliated to Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xiangdong Le
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joshua S Niedzielski
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith A Michel
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Collin J Harlan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wuhao Lu
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying C Henderson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vlad C Sandulache
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Stephen Y Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
42
|
Qing Y, Dong L, Gao L, Li C, Li Y, Han L, Prince E, Tan B, Deng X, Wetzel C, Shen C, Gao M, Chen Z, Li W, Zhang B, Braas D, Ten Hoeve J, Sanchez GJ, Chen H, Chan LN, Chen CW, Ann D, Jiang L, Müschen M, Marcucci G, Plas DR, Li Z, Su R, Chen J. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m 6A/PFKP/LDHB axis. Mol Cell 2021; 81:922-939.e9. [PMID: 33434505 PMCID: PMC7935770 DOI: 10.1016/j.molcel.2020.12.026] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/09/2020] [Accepted: 12/12/2020] [Indexed: 01/13/2023]
Abstract
R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.
Collapse
MESH Headings
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Female
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic
- Glutarates/pharmacology
- Glycolysis/drug effects
- Glycolysis/genetics
- HEK293 Cells
- Humans
- K562 Cells
- Lactate Dehydrogenases/antagonists & inhibitors
- Lactate Dehydrogenases/genetics
- Lactate Dehydrogenases/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oxidative Phosphorylation/drug effects
- Phosphofructokinase-1, Type C/antagonists & inhibitors
- Phosphofructokinase-1, Type C/genetics
- Phosphofructokinase-1, Type C/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Survival Analysis
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pathology and Genomic Medicine, Houston Methodist, Houston, TX 77030, USA
| | - Chenying Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Key Laboratory of Hematopoietic Malignancies, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 31003, China
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, China
| | - Emily Prince
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Collin Wetzel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Min Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineer (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - Daniel Braas
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerardo Javier Sanchez
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Huiying Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lai N Chan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Internal Medicine (Hematology) and Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - David Ann
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Lei Jiang
- Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Department of Internal Medicine (Hematology) and Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist, Houston, TX 77030, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
43
|
Johnston K, Pachnis P, Tasdogan A, Faubert B, Zacharias LG, Vu HS, Rodgers-Augustyniak L, Johnson A, Huang F, Ricciardo S, Zhao Z, Mathews TP, Watt T, Leavey P, DeBerardinis RJ. Isotope tracing reveals glycolysis and oxidative metabolism in childhood tumors of multiple histologies. MED 2021; 2:395-410. [PMID: 33860280 DOI: 10.1016/j.medj.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Survival among children with high-risk solid tumors remains poor. Reprogrammed metabolism promotes tumor growth and may contain therapeutic liabilities. Tumor metabolism has been assessed in adults using intra-operative 13C-glucose infusions. Pediatric tumors differ from adult cancers in their low mutational burden and derivation from embryonic tissues. Here we used 13C infusions to examine tumor metabolism in children, comparing phenotypes among tumor types and between childhood and adult cancers. Methods Patients recruited to study NCT03686566 received an intra-operative infusion of [U-13C]glucose during tumor resection to evaluate central carbon pathways in the tumor, with concurrent metabolomics to provide a broad overview of metabolism. Differential characteristics were determined using multiple comparison tests and mixed effect analyses. Findings We studied 23 tumors from 22 patients. All tumors analyzed by [U-13C]glucose contained labeling in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Labeling in the TCA cycle indicated activity of pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC), with PDH predominating. Neuroblastomas had high lactate labeling relative to other childhood cancers and lung cancer, and were distinguished by abundant tyrosine catabolites consistent with catecholamine synthesis. Conclusions Intra-operative [U13C]glucose infusions are safe and informative in pediatric cancer. Tumors of various histologies use glycolysis and oxidative metabolism, with subtype-selective differences evident from this small cohort. Expanding this cohort may uncover predictive biomarkers and therapeutic targets from tumor metabolism. Funding N.C.I grants to P.L. (R21CA220090-01A1) and R.J.D. (R35CA22044901); H.H.M.I. funding to R.J.D.; Children's Clinical Research Advisory Committee funding to K.J.
Collapse
Affiliation(s)
- Kendra Johnston
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Children's Medical Center, Dallas, Texas 75235, USA.,Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Panayotis Pachnis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Alpaslan Tasdogan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brandon Faubert
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hieu Sy Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | - Fang Huang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sean Ricciardo
- Children's Medical Center, Dallas, Texas 75235, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tanya Watt
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Children's Medical Center, Dallas, Texas 75235, USA
| | - Patrick Leavey
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Children's Medical Center, Dallas, Texas 75235, USA
| | - Ralph J DeBerardinis
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
44
|
Dumont U, Sanchez S, Repond C, Beauvieux MC, Chateil JF, Pellerin L, Bouzier-Sore AK, Roumes H. Neuroprotective Effect of Maternal Resveratrol Supplementation in a Rat Model of Neonatal Hypoxia-Ischemia. Front Neurosci 2021; 14:616824. [PMID: 33519368 PMCID: PMC7844160 DOI: 10.3389/fnins.2020.616824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/23/2020] [Indexed: 02/04/2023] Open
Abstract
Neonatal hypoxia-ischemia (nHI) is a major cause of death or subsequent disabilities in infants. Hypoxia-ischemia causes brain lesions, which are induced by a strong reduction in oxygen and nutrient supply. Hypothermia is the only validated beneficial intervention, but not all newborns respond to it and today no pharmacological treatment exists. Among possible therapeutic agents to test, trans-resveratrol is an interesting candidate as it has been reported to exhibit neuroprotective effects in some neurodegenerative diseases. This experimental study aimed to investigate a possible neuroprotection by resveratrol in rat nHI, when administered to the pregnant rat female, at a nutritional dose. Several groups of pregnant female rats were studied in which resveratrol was added to drinking water either during the last week of pregnancy, the first week of lactation, or both. Then, 7-day old pups underwent a hypoxic-ischemic event. Pups were followed longitudinally, using both MRI and behavioral testing. Finally, a last group was studied in which breastfeeding females were supplemented 1 week with resveratrol just after the hypoxic-ischemic event of the pups (to test the curative rather than the preventive effect). To decipher the molecular mechanisms of this neuroprotection, RT-qPCR and Western blots were also performed on pup brain samples. Data clearly indicated that when pregnant and/or breastfeeding females were supplemented with resveratrol, hypoxic-ischemic offspring brain lesions were significantly reduced. Moreover, maternal resveratrol supplementation allowed to reverse sensorimotor and cognitive deficits caused by the insult. The best recoveries were observed when resveratrol was administered during both gestation and lactation (2 weeks before the hypoxic-ischemic event in pups). Furthermore, neuroprotection was also observed in the curative group, but only at the latest stages examined. Our hypothesis is that resveratrol, in addition to the well-known neuroprotective benefits via the sirtuin’s pathway (antioxidant properties, inhibition of apoptosis), has an impact on brain metabolism, and more specifically on the astrocyte-neuron lactate shuttle (ANLS) as suggested by RT-qPCR and Western blot data, that contributes to the neuroprotective effects.
Collapse
Affiliation(s)
- Ursule Dumont
- CRMSB, UMR 5536, CNRS/University of Bordeaux, Bordeaux, France.,Département de Physiologie, University of Lausanne, Lausanne, Switzerland
| | | | - Cendrine Repond
- Département de Physiologie, University of Lausanne, Lausanne, Switzerland
| | - Marie-Christine Beauvieux
- CRMSB, UMR 5536, CNRS/University of Bordeaux, Bordeaux, France.,CHU de Bordeaux, Place Amélie Raba Léon, Bordeaux, France
| | - Jean-François Chateil
- CRMSB, UMR 5536, CNRS/University of Bordeaux, Bordeaux, France.,CHU de Bordeaux, Place Amélie Raba Léon, Bordeaux, France
| | - Luc Pellerin
- Département de Physiologie, University of Lausanne, Lausanne, Switzerland.,IRTOMIT, Inserm U1082, University of Poitiers, Poitiers, France
| | | | - Hélène Roumes
- CRMSB, UMR 5536, CNRS/University of Bordeaux, Bordeaux, France
| |
Collapse
|
45
|
Wijaya DA, Louisa M, Wibowo H, Taslim A, Permata TBM, Handoko H, Nuryadi E, Kodrat H, Gondhowiardjo SA. The future potential of Annona muricata L. extract and its bioactive compounds as radiation sensitizing agent: proposed mechanisms based on a systematic review. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite technological advances in cancer treatment, especially in radiotherapy, many efforts are being made in improving cancer cell radio-sensitivity to increase therapeutic ratio and overcome cancer cell radio-resistance. In the present review, we evaluated the anticancer mechanism of Annona muricata L. (AM) leaves extract and its bioactive compounds such as annonaceous acetogenins, annomuricin, annonacin, or curcumin; and further correlated them with the potential of the mechanism to increase or to reduce cancer cells radio-sensitivity based on literature investigation. We see that AM has a promising future potential as a radio-sensitizer agent.
Collapse
Affiliation(s)
- David Andi Wijaya
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Heri Wibowo
- Laboratorium Terpadu, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Aslim Taslim
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Handoko Handoko
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Endang Nuryadi
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Henry Kodrat
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Soehartati Argadikoesoema Gondhowiardjo
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| |
Collapse
|
46
|
Haydinger CD, Kittipassorn T, Peet DJ. Power to see-Drivers of aerobic glycolysis in the mammalian retina: A review. Clin Exp Ophthalmol 2020; 48:1057-1071. [PMID: 32710505 DOI: 10.1111/ceo.13833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
The mammalian retina converts most glucose to lactate rather than catabolizing it completely to carbon dioxide via oxidative phosphorylation, despite the availability of oxygen. This unusual metabolism is known as aerobic glycolysis or the Warburg effect. Molecules and pathways that drive aerobic glycolysis have been identified and thoroughly studied in the context of cancer but remain relatively poorly understood in the retina. Here, we review recent research on the molecular mechanisms that underly aerobic glycolysis in the retina, focusing on key glycolytic enzymes including hexokinase 2 (HK2), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). We also discuss the potential involvement of cell signalling and transcriptional pathways including phosphoinositide 3-kinase (PI3K) signalling, fibroblast growth factor receptor (FGFR) signalling, and hypoxia-inducible factor 1 (HIF-1), which have been implicated in driving aerobic glycolysis in the context of cancer.
Collapse
Affiliation(s)
- Cameron D Haydinger
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Thaksaon Kittipassorn
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Mahidol, Thailand
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
47
|
Long DM, Frame AK, Reardon PN, Cumming RC, Hendrix DA, Kretzschmar D, Giebultowicz JM. Lactate dehydrogenase expression modulates longevity and neurodegeneration in Drosophila melanogaster. Aging (Albany NY) 2020; 12:10041-10058. [PMID: 32484787 PMCID: PMC7346061 DOI: 10.18632/aging.103373] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/14/2020] [Indexed: 11/25/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the conversion of glycolysis-derived pyruvate to lactate. Lactate has been shown to play key roles in brain energetics and memory formation. However, lactate levels are elevated in aging and Alzheimer's disease patients, and it is not clear whether lactate plays protective or detrimental roles in these contexts. Here we show that Ldh transcript levels are elevated and cycle with diurnal rhythm in the heads of aged flies and this is associated with increased LDH protein, enzyme activity, and lactate concentrations. To understand the biological significance of increased Ldh gene expression, we genetically manipulated Ldh levels in adult neurons or glia. Overexpression of Ldh in both cell types caused a significant reduction in lifespan whereas Ldh down-regulation resulted in lifespan extension. Moreover, pan-neuronal overexpression of Ldh disrupted circadian locomotor activity rhythms and significantly increased brain neurodegeneration. In contrast, reduction of Ldh in neurons delayed age-dependent neurodegeneration. Thus, our unbiased genetic approach identified Ldh and lactate as potential modulators of aging and longevity in flies.
Collapse
Affiliation(s)
- Dani M Long
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA.,Present address: Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ariel K Frame
- Department of Biology, Western University of London, London N6A 5B7, Ontario, Canada
| | | | - Robert C Cumming
- Department of Biology, Western University of London, London N6A 5B7, Ontario, Canada
| | - David A Hendrix
- Department of Biochemistry and Biophysics, School of Electrical Engineering and Computer Science, Corvallis, OR 97331, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
48
|
Chen G, Cai ZD, Lin ZY, Wang C, Liang YX, Han ZD, He HC, Mo RJ, Lu JM, Pan B, Wu CL, Wang F, Zhong WD. ARNT-dependent CCR8 reprogrammed LDH isoform expression correlates with poor clinical outcomes of prostate cancer. Mol Carcinog 2020; 59:897-907. [PMID: 32319143 DOI: 10.1002/mc.23201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023]
Abstract
Lactate dehydrogenase isozyme (LDH) is a tetramer constituted of two isoforms, LDHA and LDHB, the expression of which is associated with cell metabolism and cancer progression. Our previous study reveals that CC-chemokine ligand-18 (CCL18) is involved in progression of prostate cancer (PCa).This study aims to investigate how CCL18 regulates LDH isoform expression, and therefore, contributes to PCa progression. The data revealed that the expression of LDHA was upregulated and LDHB was downregulated in PCa cells by CCL18 at both messenger RNA and protein levels. The depletion of CCR8 reduced the ability of CCL18 to promote the proliferation, migration, and lactate production of PCa cells. Depletion of a CCR8 regulated transcription factor, ARNT, significantly reduced the expression of LDHA. In addition, The Cancer Genome Atlas dataset analyses revealed a positive correlation between CCR8 and ARNT expression. Two dimension difference gel electrophoresis revealed that the LDHA/LDHB ratio was increased in the prostatic fluid of patients with PCa and PCa tissues. Furthermore, increased LDHA/LDHB ratio was associated with poor clinical outcomes of patients with PCa. Together, our results indicate that the CCR8 pathway programs LDH isoform expression in an ARNT dependent manner and that the ratio of LDHA/LDHB has the potential to serve as biomarkers for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhi-Duan Cai
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuo-Yuan Lin
- Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cong Wang
- School of pharmaceutical sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu-Xiang Liang
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhao-Dong Han
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Hui-Chan He
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital, Guangzhou Institute of Urology, Guangzhou, Guangdong, China
| | - Ru-Jun Mo
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jian-Ming Lu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Bin Pan
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Chin-Lee Wu
- Department of Pathology and Urology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Fen Wang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Wei-de Zhong
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.,Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
49
|
Wang L, Zhu R, Wang J, Yu S, Wang J, Zhang Y. Nrf2 Activation Enhances Muscular MCT1 Expression and Hypoxic Exercise Capacity. Med Sci Sports Exerc 2020; 52:1719-1728. [PMID: 32079911 DOI: 10.1249/mss.0000000000002312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Skeletal muscle is the major producing and metabolizing site of lactic acid. A family of monocarboxylate transporter (MCT) proteins, especially MCT1 and MCT4, are involved in the lactate-pyruvate exchange and metabolism. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal coordinator of antioxidant response and energy metabolism, and has been reported to associate with the physiological functions of the skeletal muscle. METHODS In this study, C57BL/6 J mice were administrated with an Nrf2 activator, sulforaphane (SFN) before taking incremental treadmill exercise to exhaustion under hypoxia; then the effects of SFN on exercise endurance and molecular/biochemical makers of the skeletal muscle were evaluated. RESULTS The results indicated that SFN pretreatment enhanced the exercise endurance under hypoxia. SFN not only increased the expressions of antioxidant genes and activity of antioxidant enzymes, but also significantly increased the mRNA and protein levels of MCT1 and CD147, but not MCT4. Moreover, the expressions of LDH-B and LDH activity of converting lactate into pyruvate, as well as citrate synthase activity were significantly higher, whereas the LDH activity of converting pyruvate into lactate and blood lactate level were remarkably lower in the SFN-exercise mice than those of the phosphate-buffered saline-exercise group. Furthermore, Atf3Δzip2 (the alternatively spliced isoform of activating transcription factor-3) mRNA was increased by the exercise and further potentiated by SFN. CONCLUSION These results show, for the first time, that SFN increases MCT1 expression in the skeletal muscle under acute hypoxic exercise and suggest that Nrf2 activation is a promising strategy to enhance exercise performance under hypoxia.
Collapse
Affiliation(s)
- Linjia Wang
- School of Sport Science, Beijing Sport University, Beijing, CHINA
| | - Rongxin Zhu
- Shanghai Research Institute of Sports Science, Shanghai, CHINA
| | - Jiahui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, CHINA
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, CHINA
| | - Jianxiong Wang
- Faculty of Health, Engineering, and Sciences, University of Southern Queensland, Toowoomba, Queensland, AUSTRALIA
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing, CHINA
| |
Collapse
|
50
|
Disruption of the lactate dehydrogenase and acetate kinase genes in Klebsiella pneumoniae HD79 to enhance 2,3-butanediol production, and related transcriptomics analysis. Biotechnol Lett 2020; 42:537-549. [PMID: 31974647 DOI: 10.1007/s10529-020-02802-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES 2,3-Butanediol (2,3-BD) is widely used in several chemical syntheses as well as the manufacture of plastics, solvents, and antifreeze formulations, and can be manufactured by microbial glucose fermentation. Conventional (2,3-BD) fermentation typically has low productivity, yield, and purity, and is expensive for commercial applications. We aimed to delete the lactate dehydrogenase and acetate kinase (ldhA and ack) genes in Klebsiella pneumoniae HD79 by using λRed homologous recombination technology, to eliminate by-products and thereby improve (2,3-BD) production. We also analyzed the resulting gene changes by using transcriptomics. RESULTS The yield of (2,3-BD) from the mutant Klebsiella strain was 46.21 g/L, the conversion rate was 0.47 g/g, and the productivity was 0.64 g/L·h, which represented increases of 54.9%, 20.5%, and 106.5% respectively, compared to (WT) strains. Lactate and acetate decreased by 48.2% and 62.8%, respectively. Transcriptomics analysis showed that 4628 genes were differentially expressed (404 significantly up-regulated and 162 significantly down-regulated). Moreover, the (2,3-BD) operon genes were differentially expressed. CONCLUSION Our data showed that the biosynthesis of (2,3-BD) was regulated by inducers (lactate and acetate), a regulator (BudR), and carbon flux. Elimination of acidic by-products by ldhA and ack knockdown significantly improved (2,3-BD) production. Our results provide a deeper understanding of the mechanisms underlying (2,3-BD) production, and form a molecular basis for the improvement this process by genetic modification in the future.
Collapse
|