1
|
Pereda J, Espinosa R, García-Solís B, Guerra-Galán T, Van-Den-Rym A, Kars M, Mena R, Galán V, de Andrés-Martín A, Rodríguez-Gallego C, López-Lera A, Corvillo F, Pérez-Martínez A, López-Collazo E, Sánchez-Ramón S, Martínez-Barricarte R, Quintana-Murci L, Lorenzo-Salazar J, Itan Y, Flores C, Pérez-de-Diego R. IEIVariantFilter: a bioinformatics tool to speed up genetic diagnosis of inborn errors of immunity patients. NAR Genom Bioinform 2025; 7:lqaf069. [PMID: 40438610 PMCID: PMC12117399 DOI: 10.1093/nargab/lqaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/25/2025] [Accepted: 05/14/2025] [Indexed: 06/01/2025] Open
Abstract
Severe infectious diseases remain the leading cause of death in children and young adults worldwide. Monogenic inborn errors of immunity (IEIs) are traditionally defined as a heterogeneous group of rare inborn genetic diseases affecting the functioning of the immune system. Greater awareness has led to the clinical definition of 485 monogenic IEIs and whole exome sequencing (WES) is becoming increasingly relevant for IEI genetic diagnosis. The current protocol for IEI genetic studies includes manual filtering of the list of genes obtained as a WES read-out providing a short list of candidate genes. This procedure is time-consuming and can produce mistakes due to human error in manual filtering. IEIVariantFilter is a new web-based bioinformatics tool to speed up and refine the genetic diagnosis of IEI patients oriented for users in the biomedical field without needing bioinformatics expertise. IEIVariantFilter prioritizes genetic variants based on ranges of zygosity, the quality of reads, the predicted variant effect, and genes related to immunity, considering a consanguineous hypothesis whenever necessary. IEIVariantFilter facilitates gene and variant list prioritization, speeding up the identification of candidate disease-causing variants for validation by experimental studies. The software improves the genetic diagnosis of patients, thereby facilitating precision medicine and fast and proper treatment.
Collapse
Affiliation(s)
| | | | - Blanca García-Solís
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid 28046, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid 28046, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Teresa Guerra-Galán
- Clinical Immunology Department, San Carlos Clinical Hospital, Madrid 28040, Spain
| | - Ana Van-Den-Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid 28046, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid 28046, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Meltem Ece Kars
- The Charles Bronfman Institute for Personalized Medicine and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rocío Mena
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid 28046, Spain
| | - Victor Galán
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid 28046, Spain
| | | | - Carlos Rodríguez-Gallego
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria 35010, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35016, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria 35450, Spain
| | - Alberto López-Lera
- IdiPAZ Institute for Health Research, La Paz University Hospital, CIBERER U-754, Madrid 28046, Spain
| | - Fernando Corvillo
- IdiPAZ Institute for Health Research, La Paz University Hospital, CIBERER U-754, Madrid 28046, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid 28046, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid 28046, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Clinical Immunology Department, San Carlos Clinical Hospital, Madrid 28040, Spain
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Lluis Quintana-Murci
- Unit of Human Evolutionary Genetics, Institut Pasteur and CNRS URA3012, Paris 75015, France
| | - José Miguel Lorenzo-Salazar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife 38600, Spain
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Carlos Flores
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria 35450, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife 38600, Spain
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife 38010, Spain
| | - Rebeca Pérez-de-Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid 28046, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid 28046, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Phillip West A, McGuire PJ. Tipping the balance: innate and adaptive immunity in mitochondrial disease. Curr Opin Immunol 2025; 95:102566. [PMID: 40424975 DOI: 10.1016/j.coi.2025.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025]
Abstract
Mitochondrial diseases (MtD) provide a unique window into the complex interplay between metabolism and immune function. These rare disorders, caused by defects in oxidative phosphorylation, result in bioenergetic deficiencies that disrupt multiple organ systems. While traditionally studied for their metabolic impact, MtD also profoundly affect the immune system, altering both innate and adaptive responses. This review explores how mitochondrial dysfunction shapes immune dysregulation, influencing thymocyte maturation, regulatory T cells, and B cell function while also driving innate immune activation through mitochondrial DNA instability and type I interferon signaling. Additionally, MtD highlight an emerging overlap between inborn errors of metabolism and inborn errors of immunity, revealing shared pathways that connect mitochondrial dysfunction to immune deficiencies and inflammatory disease. Studying MtD not only advances our understanding of immunometabolism but also provides critical insights into more common inflammatory and autoimmune conditions, offering potential therapeutic targets that extend beyond rare mitochondrial disorders.
Collapse
Affiliation(s)
| | - Peter J McGuire
- National Human Genome Research Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Moundir A, Aissaoui O, Akhrichi N, Allaoui A, Benhsaien I, Jouanguy E, Casanova JL, El Bakkouri J, Ailal F, Bousfiha AA. Application of whole-exome sequencing to predict inborn errors of immunity in pediatric severe infections and sepsis. Clin Exp Immunol 2025; 219:uxaf007. [PMID: 39918293 PMCID: PMC11966105 DOI: 10.1093/cei/uxaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/26/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025] Open
Abstract
Increasing evidence supports the involvement of inborn errors of immunity in severe infections, but little is known about the prevalence of these genetic defects in children with sepsis. Due to the limited understanding of the molecular and immunological mechanisms driving sepsis, genetic testing is rarely used in routine diagnostics to identify genetic susceptibility to the condition. We performed a prospective observational study on previously healthy children hospitalized for severe infections, including sepsis. Patients underwent immunophenotyping and whole-exome sequencing, followed by in silico analysis to identify potentially causal variants. We assembled a cohort of 194 previously healthy children, including 149 (77%) patients with severe infection and 45 (23%) with sepsis. Our cohort was marked by a high frequency of respiratory tract infections (35%), bloodstream infections (20%), and central nervous system infections (16%). The genetic investigation identified 28 potentially causal variants, 18 (64%) are classified as variants with uncertain significance, and 10 (36%) are likely pathogenic variants. Of 45 patients with sepsis, 6 (13%) had potentially causal genetic variants. Similarly, 22/149 (15%) patients with severe infection presented potentially causal genetic variants. Whole-exome sequencing predicted the impairment of various immune mechanistic pathways such as immune dysregulation defects, antibody deficiencies, and combined immunodeficiencies (18% each). We found no clear association between genetic variants and the studied parameters: organ failure, microbe identification, immunoglobulin levels, and lymphocyte subset numbers. Although whole-exome sequencing is a valuable tool for detecting inborn errors of immunity underlying sepsis and unexplained severe infections, it could be selectively recommended for patients with a strong clinical suspicion of genetic abnormalities, balancing its diagnostic value with its cost and complexity.
Collapse
Affiliation(s)
- Abderrahmane Moundir
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ouissal Aissaoui
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Nassima Akhrichi
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abire Allaoui
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Department of Internal Medicine, Cheikh Khalifa International University Hospital, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Department of Pediatric Infectious Diseases and Clinical Immunology, Children’s Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Jalila El Bakkouri
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Fatima Ailal
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Department of Pediatric Infectious Diseases and Clinical Immunology, Children’s Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Department of Pediatric Infectious Diseases and Clinical Immunology, Children’s Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
4
|
Zhang SY, Casanova JL. Genetic defects of brain immunity in childhood herpes simplex encephalitis. Nature 2024; 635:563-573. [PMID: 39567785 PMCID: PMC11822754 DOI: 10.1038/s41586-024-08119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024]
Abstract
Herpes simplex virus 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in humans. It is life-threatening and has a first peak of incidence in childhood, during primary infection. Children with HSE are not particularly prone to other infections, including HSV-1 infections of tissues other than the brain. About 8-10% of childhood cases are due to monogenic inborn errors of 19 genes, two-thirds of which are recessive, and most of which display incomplete clinical penetrance. Childhood HSE can therefore be sporadic but genetic, enabling new diagnostic and therapeutic approaches. In this Review, we examine essential cellular and molecular mechanisms of cell-intrinsic antiviral immunity in the brain that are disrupted in individuals with HSE. These mechanisms include both known (such as mutations in the TLR3 pathway) and previously unknown (such as the TMEFF1 restriction factor) antiviral pathways, which may be dependent (for example, IFNAR1) or independent (for example, through RIPK3) of type I interferons. They operate in cortical or brainstem neurons, and underlie forebrain and brainstem infections, respectively. Conversely, the most severe inborn errors of leukocytes, including a complete lack of myeloid and/or lymphoid blood cells, do not underlie HSE. Thus congenital defects in intrinsic immunity in brain-resident neurons that underlie HSE broaden natural host defences against HSV-1 from the leukocytes of the immune system to other cells in the organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France.
| |
Collapse
|
5
|
Rayzan E, Mirbeyk M, Pezeshki PS, Mohammadpour M, Yaghmaie B, Hassani SA, Sharifzadeh M, Tahernia L, Rezaei N. Whole-exome sequencing to identify undiagnosed primary immunodeficiency disorders in children with community-acquired sepsis, admitted in the pediatric intensive care unit. Pediatr Allergy Immunol 2023; 34:e14066. [PMID: 38146112 DOI: 10.1111/pai.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Whole-exome sequencing (WES) provides a powerful diagnostic tool for identifying primary immunodeficiency diseases (PIDs). This study explores the utility of this approach in uncovering previously undiagnosed PIDs in children with community-acquired sepsis (CAS), with a medical history of recurrent infections or a family history of PIDs. METHODS We performed WES on DNA samples extracted from the blood of the 34 enrolled patients, followed by bioinformatic analysis for variant calling, annotation, and prioritization. We also performed a segregation analysis in available family members to confirm the inheritance patterns and assessed the potential impact of the identified variants on protein function. RESULTS From 34 patients enrolled in the study, 29 patients (85%) with previously undiagnosed genetic diseases, including 28 patients with PIDs and one patient with interstitial lung and liver disease, were identified. We identified two patients with severe combined immunodeficiency (SCID), patients with combined immunodeficiency (CID), six patients with combined immunodeficiency with syndromic features (CID-SF), four patients with defects in intrinsic and innate immunity, four patients with congenital defects of phagocyte function (CPDF), and six patients with the disease of immune dysregulation. Autoinflammatory disorders and predominantly antibody deficiency were diagnosed in one patient each. CONCLUSION Our findings demonstrate the potential of WES in identifying undiagnosed PIDs in children with CAS. Implementing WES in the clinical evaluation of CAS patients with a warning sign for PIDs can aid in their timely diagnosis and potentially lead to improved patient care.
Collapse
Affiliation(s)
- Elham Rayzan
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Boston, Massachusetts, USA
| | - Mona Mirbeyk
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parmida Sadat Pezeshki
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Mohammadpour
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Yaghmaie
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Hassani
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Meisam Sharifzadeh
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Tahernia
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
6
|
Tartaglia D, Cremonini C, Annunziata E, Catena F, Sartelli M, Kirkpatrick AW, Musetti S, Strambi S, Chiarugi M, Coccolini F. Acute diverticulitis in immunocompromised patients: evidence from an international multicenter observational registry (Web-based International Register of Emergency Surgery and Trauma, Wires-T). Tech Coloproctol 2023; 27:747-757. [PMID: 36749438 PMCID: PMC10404182 DOI: 10.1007/s10151-023-02758-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Immunocompromised patients with acute diverticulitis are at increased risk of morbidity and mortality. The aim of this study was to compare clinical presentations, types of treatment, and outcomes between immunocompromised and immunocompetent patients with acute diverticulitis. METHODS We compared the data of patients with acute diverticulitis extracted from the Web-based International Registry of Emergency Surgery and Trauma (WIRES-T) from January 2018 to December 2021. First, two groups were identified: medical therapy (A) and surgical therapy (B). Each group was divided into three subgroups: nonimmunocompromised (grade 0), mildly to moderately (grade 1), and severely immunocompromised (grade 2). RESULTS Data from 482 patients were analyzed-229 patients (47.5%) [M:F = 1:1; median age: 60 (24-95) years] in group A and 253 patients (52.5%) [M:F = 1:1; median age: 71 (26-94) years] in group B. There was a significant difference between the two groups in grade distribution: 69.9% versus 38.3% for grade 0, 26.6% versus 51% for grade 1, and 3.5% versus 10.7% for grade 2 (p < 0.00001). In group A, severe sepsis (p = 0.027) was more common in higher grades of immunodeficiency. Patients with grade 2 needed longer hospitalization (p = 0.005). In group B, a similar condition was found in terms of severe sepsis (p = 0.002), quick Sequential Organ Failure Assessment score > 2 (p = 0.0002), and Mannheim Peritonitis Index (p = 0.010). A Hartmann's procedure is mainly performed in grades 1-2 (p < 0.0001). Major complications increased significantly after a Hartmann's procedure (p = 0.047). Mortality was higher in the immunocompromised patients (p = 0.002). CONCLUSIONS Immunocompromised patients with acute diverticulitis present with a more severe clinical picture. When surgery is required, immunocompromised patients mainly undergo a Hartmann's procedure. Postoperative morbidity and mortality are, however, higher in immunocompromised patients, who also require a longer hospital stay.
Collapse
Affiliation(s)
- Dario Tartaglia
- General and Emergency Surgery Unit, Trauma Center, New Santa Chiara Hospital, University of Pisa, Via Paradisa, Pisa, Italy.
| | - Camilla Cremonini
- General and Emergency Surgery Unit, Trauma Center, New Santa Chiara Hospital, University of Pisa, Via Paradisa, Pisa, Italy
| | - Elena Annunziata
- General and Emergency Surgery Unit, Trauma Center, New Santa Chiara Hospital, University of Pisa, Via Paradisa, Pisa, Italy
| | - Fausto Catena
- Department of Surgery, Bufalini" Hospital, Cesena, Italy
| | | | - Andrew W Kirkpatrick
- General, Acute Care, Abdominal Wall Reconstruction, and Trauma Surgery, Foothills Medical Centre, Calgary, Canada
| | - Serena Musetti
- General and Emergency Surgery Unit, Trauma Center, New Santa Chiara Hospital, University of Pisa, Via Paradisa, Pisa, Italy
| | - Silvia Strambi
- General and Emergency Surgery Unit, Trauma Center, New Santa Chiara Hospital, University of Pisa, Via Paradisa, Pisa, Italy
| | - Massimo Chiarugi
- General and Emergency Surgery Unit, Trauma Center, New Santa Chiara Hospital, University of Pisa, Via Paradisa, Pisa, Italy
| | - Federico Coccolini
- General and Emergency Surgery Unit, Trauma Center, New Santa Chiara Hospital, University of Pisa, Via Paradisa, Pisa, Italy
| |
Collapse
|
7
|
Messelink MA, Berbers RM, van Montfrans JM, Ellerbroek PM, Gladiator A, Welsing PMJ, Leavis H. Development of a primary care screening algorithm for the early detection of patients at risk of primary antibody deficiency. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:44. [PMID: 37245042 DOI: 10.1186/s13223-023-00790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 04/09/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Primary antibody deficiencies (PAD) are characterized by a heterogeneous clinical presentation and low prevalence, contributing to a median diagnostic delay of 3-10 years. This increases the risk of morbidity and mortality from undiagnosed PAD, which may be prevented with adequate therapy. To reduce the diagnostic delay of PAD, we developed a screening algorithm using primary care electronic health record (EHR) data to identify patients at risk of PAD. This screening algorithm can be used as an aid to notify general practitioners when further laboratory evaluation of immunoglobulins should be considered, thereby facilitating a timely diagnosis of PAD. METHODS Candidate components for the algorithm were based on a broad range of presenting signs and symptoms of PAD that are available in primary care EHRs. The decision on inclusion and weight of the components in the algorithm was based on the prevalence of these components among PAD patients and control groups, as well as clinical rationale. RESULTS We analyzed the primary care EHRs of 30 PAD patients, 26 primary care immunodeficiency patients and 58,223 control patients. The median diagnostic delay of PAD patients was 9.5 years. Several candidate components showed a clear difference in prevalence between PAD patients and controls, most notably the mean number of antibiotic prescriptions in the 4 years prior to diagnosis (5.14 vs. 0.48). The final algorithm included antibiotic prescriptions, diagnostic codes for respiratory tract and other infections, gastro-intestinal complaints, auto-immune symptoms, malignancies and lymphoproliferative symptoms, as well as laboratory values and visits to the general practitioner. CONCLUSIONS In this study, we developed a screening algorithm based on a broad range of presenting signs and symptoms of PAD, which is suitable to implement in primary care. It has the potential to considerably reduce diagnostic delay in PAD, and will be validated in a prospective study. Trial registration The consecutive prospective study is registered at clinicaltrials.gov under NCT05310604.
Collapse
Affiliation(s)
- Marianne A Messelink
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| | - Roos M Berbers
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Joris M van Montfrans
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Pauline M Ellerbroek
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - André Gladiator
- Takeda Pharmaceuticals International AG, Thurgauerstrasse 130, 8152, Glattpark-Opfikon, Zurich, Switzerland
| | - Paco M J Welsing
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Helen Leavis
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
8
|
Asano T, Utsumi T, Kagawa R, Karakawa S, Okada S. Inborn errors of immunity with loss- and gain-of-function germline mutations in STAT1. Clin Exp Immunol 2023; 212:96-106. [PMID: 36420581 PMCID: PMC10128167 DOI: 10.1093/cei/uxac106] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
STAT1 dysfunction causes a wide range of immune dysregulation phenotypes, which have been classified into four disease types, namely, (i) autosomal recessive (AR) complete STAT1 deficiency, (ii) AR partial STAT1 deficiency, (iii) autosomal dominant (AD) STAT1 deficiency, and (iv) AD STAT1 gain of function (GOF), based on their mode of inheritance and function. Disease types (i, ii, and iii) are caused by STAT1 loss-of-function (LOF) mutations, whereas disease type (iv) is caused by STAT1 GOF mutations. Therefore, the functional analysis of mutations is necessary for the precise diagnosis.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takanori Utsumi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
9
|
Allegra A, Mirabile G, Ettari R, Pioggia G, Gangemi S. The Impact of Curcumin on Immune Response: An Immunomodulatory Strategy to Treat Sepsis. Int J Mol Sci 2022; 23:ijms232314710. [PMID: 36499036 PMCID: PMC9738113 DOI: 10.3390/ijms232314710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Primary and secondary immunodeficiencies cause an alteration in the immune response which can increase the rate of infectious diseases and worsened prognoses. They can also alter the immune response, thus, making the infection even worse. Curcumin is the most biologically active component of the turmeric root and appears to be an antimicrobial agent. Curcumin cooperates with various cells such as macrophages, dendritic cells, B, T, and natural killer cells to modify the body's defence capacity. Curcumin also inhibits inflammatory responses by suppressing different metabolic pathways, reduces the production of inflammatory cytokines, and increases the expression of anti-inflammatory cytokines. Curcumin may also affect oxidative stress and the non-coding genetic material. This review analyses the relationships between immunodeficiency and the onset of infectious diseases and discusses the effects of curcumin and its derivatives on the immune response. In addition, we analyse some of the preclinical and clinical studies that support its possible use in prophylaxis or in the treatment of infectious diseases. Lastly, we examine how nanotechnologies can enhance the clinical use of curcumin.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98100 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
10
|
Samitinjay A, Ramavath A, Kulakarni SC, Biswas R. Autoimmune haemolytic anaemia due to immunodeficiency. BMJ Case Rep 2022; 15:e250074. [PMID: 36414334 PMCID: PMC9685200 DOI: 10.1136/bcr-2022-250074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Autoimmune disorders are common presenting manifestations of immunodeficiency syndromes. We present a case of a woman in her late teens, with a history of frequent sinopulmonary tract infections during her childhood, who presented to our hospital with anaemia, jaundice and fatigue. She also had significant physical growth retardation for her age and sex. With this case report, we intend to present the diagnostic and therapeutic challenges faced by the patient and our healthcare system and propose a few feasible solutions to tackle these challenges.
Collapse
Affiliation(s)
- Aditya Samitinjay
- General Medicine, Kamineni Institute of Medical Sciences, Chityala, Telangana, India
- General Medicine, Government General and Chest Hospital, Hyderabad, Telangana, India
| | - Arjun Ramavath
- General Medicine, Kamineni Institute of Medical Sciences, Chityala, Telangana, India
| | - Sai Charan Kulakarni
- General Medicine, Kamineni Institute of Medical Sciences, Chityala, Telangana, India
| | - Rakesh Biswas
- General Medicine, Kamineni Institute of Medical Sciences, Chityala, Telangana, India
| |
Collapse
|
11
|
Miatello J, Lukaszewicz AC, Carter MJ, Faivre V, Hua S, Martinet KZ, Bourgeois C, Quintana-Murci L, Payen D, Boniotto M, Tissières P. CIITA promoter polymorphism impairs monocytes HLA-DR expression in patients with septic shock. iScience 2022; 25:105291. [PMID: 36304101 PMCID: PMC9593818 DOI: 10.1016/j.isci.2022.105291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Low monocyte (m)HLA-DR expression is associated with mortality in sepsis. G-286A∗rs3087456 polymorphism in promoter III of HLA class II transactivator (CIITA), the master regulator of HLA, has been associated with autoimmune diseases but its role in sepsis has never been demonstrated. In 203 patients in septic shock, GG genotype was associated with 28-day mortality and mHLA-DR remained low whereas it increased in patients with AA or AG genotype. In ex vivo cells, mHLA-DR failed to augment in GG in comparison with AG or AA genotype on exposure to IFN-γ. Promoter III transcript levels were similar in control monocytes regardless of genotype and exposure to IFN-γ. Promoter III activity was decreased in GG genotype in monocyte cell line but restored after stimulation with IFN-γ. Hereby, we demonstrated that G-286A∗rs3087456 significantly impact mHLA-DR expression in patients with septic shock in part through CIITA promoter III activity, that can be rescued using IFN-γ.
Collapse
Affiliation(s)
- Jordi Miatello
- Institute of Integrative Biology of the Cell, CNRS, CEA, Paris-Saclay University, Gif-sur-Yvette, France,Paediatric Intensive Care and Neonatal Medicine, AP-HP, Paris-Saclay University, Bicêtre Hospital, Le Kremlin-Bicêtre, France,FHU Sepsis, AP-HP, Paris-Saclay University, INSERM, Le Kremlin-Bicêtre, France
| | - Anne-Claire Lukaszewicz
- EA 7426 PI3 (Pathophysiology of Injury-induced Immunosuppression), Hospices Civils de Lyon/ Lyon University/bioMérieux, E. Herriot Hospital, Lyon, France,Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Michael J. Carter
- Paediatric Intensive Care and Neonatal Medicine, AP-HP, Paris-Saclay University, Bicêtre Hospital, Le Kremlin-Bicêtre, France,Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, UK,Paediatric Intensive Care, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Valérie Faivre
- Saint-Louis Lariboisière Hospital, AP-HP, Denis Diderot University, Paris, France,INSERM UMR1141 Neurodiderot, Université Paris Cité, France
| | - Stéphane Hua
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Kim Z. Martinet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Christine Bourgeois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France,Chair Human Genomics and Evolution, Collège de France, Paris, France
| | - Didier Payen
- Denis Diderot University, Paris, Sorbonne, Cité Paris, France
| | - Michele Boniotto
- University Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, 94010 Créteil, France
| | - Pierre Tissières
- Institute of Integrative Biology of the Cell, CNRS, CEA, Paris-Saclay University, Gif-sur-Yvette, France,Paediatric Intensive Care and Neonatal Medicine, AP-HP, Paris-Saclay University, Bicêtre Hospital, Le Kremlin-Bicêtre, France,FHU Sepsis, AP-HP, Paris-Saclay University, INSERM, Le Kremlin-Bicêtre, France,Corresponding author
| |
Collapse
|
12
|
“The Good, the Bad and the Ugly”: Interplay of Innate Immunity and Inflammation. Cell Microbiol 2022. [DOI: 10.1155/2022/2759513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Innate immunity recognizes microorganisms through certain invariant receptors named pattern recognition receptors (PRRs) by sensing conserved pathogen-associated molecular patterns (PAMPs). Their recognition activates several signaling pathways that lead the transcription of inflammatory mediators, contributing to trigger a very rapid inflammatory cascade aiming to contain the local infection as well as activating and instructing the adaptive immunity in a specific and synchronized immune response according to the microorganism. Inflammation is a coordinated process involving the secretion of cytokines and chemokines by macrophages and neutrophils leading to the migration of other leukocytes along the endothelium into the injured tissue. Sustained inflammatory responses can cause deleterious effects by promoting the development of autoimmune disorders, allergies, cancer, and other immune pathologies, while weak signals could exacerbate the severity of the disease. Therefore, PRR-mediated signal transduction must be tightly regulated to maintain host immune homeostasis. Innate immunity deficiencies and strategies deployed by microbes to avoid inflammatory responses lead to an altered immune response that allows the pathogen to proliferate causing death or uncontrolled inflammation. This review analyzes the complexity of the immune response at the beginning of the disease focusing on COVID-19 disease and the importance of unraveling its mechanisms to be considered when treating diseases and designing vaccines.
Collapse
|
13
|
Screening for Immunodeficiencies in Children With Invasive Pneumococcal Disease: Six-year Experience From a UK Children's Hospital. Pediatr Infect Dis J 2022; 41:575-578. [PMID: 35421038 DOI: 10.1097/inf.0000000000003554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A previous study showed that investigation of children with invasive pneumococcal disease (IPD) revealed an immunodeficiency in up to 10% of cases. Following this report, we implemented a protocol to investigate children with IPD, to assess the proportion with an immunodeficiency in our setting. METHODS We retrospectively identified patients who presented with IPD from January 2015 to November 2020 and collected data from medical records. Immunological investigations included complement C3 and C4 levels, classical and alternative pathway complement function, IgG, IgA and IgM levels, specific IgG levels (H. influenza B, tetanus and pneumococcal serotypes), peripheral blood film, lymphocyte subsets, and CD62L-shedding upon activation with Toll-like receptor-agonists in selected cases. RESULTS We identified a total of 68 children with IPD, with a mortality of 6%. Immunological investigations were performed in 51 children. Four children (8%) had abnormal findings that were deemed of clinical significance. Two children had complement deficiencies (Factor I and C2 deficiency), one child had specific antibody deficiency, and another child had low IgM, low NK-cells and poor persistence of serotype-specific anti-pneumococcal IgG concentrations. Of the 17 children with IPD who were not tested for immunodeficiencies, 4 died and four had possible explanations for the infection. CONCLUSIONS We identified clinically relevant abnormal immunological findings in 4/51 (8%) of children with IPD. Our results support the recommendation to perform immunological investigations in children with IPD, since this might reveal underlying immunodeficiencies, allowing for necessary preventive measures and close follow-up.
Collapse
|
14
|
Gray PE, Bartlett AW, Tangye SG. Severe COVID-19 represents an undiagnosed primary immunodeficiency in a high proportion of infected individuals. Clin Transl Immunology 2022; 11:e1365. [PMID: 35444807 PMCID: PMC9013505 DOI: 10.1002/cti2.1365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
Since the emergence of the COVID-19 pandemic in early 2020, a key challenge has been to define risk factors, other than age and pre-existing comorbidities, that predispose some people to severe disease, while many other SARS-CoV-2-infected individuals experience mild, if any, consequences. One explanation for intra-individual differences in susceptibility to severe COVID-19 may be that a growing percentage of otherwise healthy people have a pre-existing asymptomatic primary immunodeficiency (PID) that is unmasked by SARS-CoV-2 infection. Germline genetic defects have been identified in individuals with life-threatening COVID-19 that compromise local type I interferon (IFN)-mediated innate immune responses to SARS-CoV-2. Remarkably, these variants - which impact responses initiated through TLR3 and TLR7, as well as the response to type I IFN cytokines - may account for between 3% and 5% of severe COVID-19 in people under 70 years of age. Similarly, autoantibodies against type I IFN cytokines (IFN-α, IFN-ω) have been detected in patients' serum prior to infection with SARS-CoV-2 and were found to cause c. 20% of severe COVID-19 in the above 70s and 20% of total COVID-19 deaths. These autoantibodies, which are more common in the elderly, neutralise type I IFNs, thereby impeding innate antiviral immunity and phenocopying an inborn error of immunity. The discovery of PIDs underlying a significant percentage of severe COVID-19 may go some way to explain disease susceptibility, may allow for the application of targeted therapies such as plasma exchange, IFN-α or IFN-β, and may facilitate better management of social distancing, vaccination and early post-exposure prophylaxis.
Collapse
Affiliation(s)
- Paul E Gray
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Randwick NSW Australia.,School of Women's and Children's Health University of New South Wales Randwick NSW Australia
| | - Adam W Bartlett
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Randwick NSW Australia.,School of Women's and Children's Health University of New South Wales Randwick NSW Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research Darlinghurst NSW Australia.,St Vincent's Clinical School UNSW Sydney Randwick NSW Australia
| |
Collapse
|
15
|
Vorsteveld EE, Hoischen A, van der Made CI. Next-Generation Sequencing in the Field of Primary Immunodeficiencies: Current Yield, Challenges, and Future Perspectives. Clin Rev Allergy Immunol 2021; 61:212-225. [PMID: 33666867 PMCID: PMC7934351 DOI: 10.1007/s12016-021-08838-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Primary immunodeficiencies comprise a group of inborn errors of immunity that display significant clinical and genetic heterogeneity. Next-generation sequencing techniques and predominantly whole exome sequencing have revolutionized the understanding of the genetic and molecular basis of genetic diseases, thereby also leading to a sharp increase in the discovery of new genes associated with primary immunodeficiencies. In this review, we discuss the current diagnostic yield of this generic diagnostic approach by evaluating the studies that have employed next-generation sequencing techniques in cohorts of patients with primary immunodeficiencies. The average diagnostic yield for primary immunodeficiencies is determined to be 29% (range 10-79%) and 38% specifically for whole-exome sequencing (range 15-70%). The significant variation between studies is mainly the result of differences in clinical characteristics of the studied cohorts but is also influenced by varying sequencing approaches and (in silico) gene panel selection. We further discuss other factors contributing to the relatively low yield, including the inherent limitations of whole-exome sequencing, challenges in the interpretation of novel candidate genetic variants, and promises of exploring the non-coding part of the genome. We propose strategies to improve the diagnostic yield leading the way towards expanded personalized treatment in PIDs.
Collapse
Affiliation(s)
- Emil E Vorsteveld
- Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, The Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Caspar I van der Made
- Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Cagdas D, Mayr D, Baris S, Worley L, Langley DB, Metin A, Aytekin ES, Atan R, Kasap N, Bal SK, Dmytrus J, Heredia RJ, Karasu G, Torun SH, Toyran M, Karakoc-Aydiner E, Christ D, Kuskonmaz B, Uçkan-Çetinkaya D, Uner A, Oberndorfer F, Schiefer AI, Uzel G, Deenick EK, Keller B, Warnatz K, Neven B, Durandy A, Sanal O, Ma CS, Özen A, Stepensky P, Tezcan I, Boztug K, Tangye SG. Genomic Spectrum and Phenotypic Heterogeneity of Human IL-21 Receptor Deficiency. J Clin Immunol 2021; 41:1272-1290. [PMID: 33929673 PMCID: PMC8086229 DOI: 10.1007/s10875-021-01031-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023]
Abstract
Biallelic inactivating mutations in IL21R causes a combined immunodeficiency that is often complicated by cryptosporidium infections. While eight IL-21R-deficient patients have been reported previously, the natural course, immune characteristics of disease, and response to hematopoietic stem cell transplantation (HSCT) remain to be comprehensively examined. In our study, we have collected clinical histories of 13 patients with IL-21R deficiency from eight families across seven centers worldwide, including five novel patients identified by exome or NGS panel sequencing. Eight unique mutations in IL21R were identified in these patients, including two novel mutations. Median age at disease onset was 2.5 years (0.5–7 years). The main clinical manifestations were recurrent bacterial (84.6%), fungal (46.2%), and viral (38.5%) infections; cryptosporidiosis-associated cholangitis (46.2%); and asthma (23.1%). Inflammatory skin diseases (15.3%) and recurrent anaphylaxis (7.9%) constitute novel phenotypes of this combined immunodeficiency. Most patients exhibited hypogammaglobulinemia and reduced proportions of memory B cells, circulating T follicular helper cells, MAIT cells and terminally differentiated NK cells. However, IgE levels were elevated in 50% of IL-21R-deficient patients. Overall survival following HSCT (6 patients, mean follow-up 1.8 year) was 33.3%, with pre-existing organ damage constituting a negative prognostic factor. Mortality of non-transplanted patients (n = 7) was 57.1%. Our detailed analysis of the largest cohort of IL-21R-deficient patients to date provides in-depth clinical, immunological and immunophenotypic features of these patients, thereby establishing critical non-redundant functions of IL-21/IL-21R signaling in lymphocyte differentiation, humoral immunity and host defense against infection, and mechanisms of disease pathogenesis due to IL-21R deficiency. Outcome following HSCT depends on prior chronic infections and organ damage, which should thus be considered as early as possible following molecular diagnosis.
Collapse
Affiliation(s)
- Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey.
- Section of Pediatric Immunology, Institutes of Child Health, Health Science Institute, Hacettepe University, Ankara, Turkey.
| | - Daniel Mayr
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Safa Baris
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Lisa Worley
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - David B Langley
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Ayse Metin
- Department of Pediatric Immunology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Elif Soyak Aytekin
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Raziye Atan
- Department of Pediatrics, Hacettepe University Medical Faculty, 1031, Ankara, Turkey
| | - Nurhan Kasap
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Köstel Bal
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jasmin Dmytrus
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Gulsun Karasu
- School of Medicine, Goztepe Medicalpark Hospital, Pediatric stem Cell Transplantation Unit, İstinye University, İstanbul, Turkey
| | - Selda Hancerli Torun
- İstanbul Medical Faculty, Pediatric Infectious Disease, Istanbul University, İstanbul, Turkey
| | - Muge Toyran
- Department of Pediatric Immunology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Baris Kuskonmaz
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Hacettepe University Medical School, Ankara, Turkey
| | | | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elissa K Deenick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bénédicte Neven
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Children Hospital, Paris, France
| | - Anne Durandy
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Ozden Sanal
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey
- Section of Pediatric Immunology, Institutes of Child Health, Health Science Institute, Hacettepe University, Ankara, Turkey
| | - Cindy S Ma
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Ahmet Özen
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Polina Stepensky
- Department of Bone Marrow Transplantation, Hadassah Medical Center and Faculty of Medicine Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilhan Tezcan
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey
- Section of Pediatric Immunology, Institutes of Child Health, Health Science Institute, Hacettepe University, Ankara, Turkey
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
| | - Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia.
| |
Collapse
|
17
|
|
18
|
Casanova JL, Abel L. Lethal Infectious Diseases as Inborn Errors of Immunity: Toward a Synthesis of the Germ and Genetic Theories. ANNUAL REVIEW OF PATHOLOGY 2021; 16:23-50. [PMID: 32289233 PMCID: PMC7923385 DOI: 10.1146/annurev-pathol-031920-101429] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It was first demonstrated in the late nineteenth century that human deaths from fever were typically due to infections. As the germ theory gained ground, it replaced the old, unproven theory that deaths from fever reflected a weak personal or even familial constitution. A new enigma emerged at the turn of the twentieth century, when it became apparent that only a small proportion of infected individuals die from primary infections with almost any given microbe. Classical genetics studies gradually revealed that severe infectious diseases could be driven by human genetic predisposition. This idea gained ground with the support of molecular genetics, in three successive, overlapping steps. First, many rare inborn errors of immunity were shown, from 1985 onward, to underlie multiple, recurrent infections with Mendelian inheritance. Second, a handful of rare and familial infections, also segregating as Mendelian traits but striking humans resistant to other infections, were deciphered molecularly beginning in 1996. Third, from 2007 onward, a growing number of rare or common sporadicinfections were shown to result from monogenic, but not Mendelian, inborn errors. A synthesis of the hitherto mutually exclusive germ and genetic theories is now in view.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
| |
Collapse
|
19
|
Rapaport F, Boisson B, Gregor A, Béziat V, Boisson-Dupuis S, Bustamante J, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Gleeson JG, Quintana-Murci L, Casanova JL, Abel L, Patin E. Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance. Proc Natl Acad Sci U S A 2021; 118:e2001248118. [PMID: 33408250 PMCID: PMC7826345 DOI: 10.1073/pnas.2001248118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing. Nevertheless, genes underlying AR IEI that are lethal before reproductive maturity with complete penetrance have stronger negative selection scores than other genes underlying AR IEI. We also show that genes underlying AD IEI by loss of function have stronger negative selection scores than genes underlying AD IEI by gain of function, while genes underlying AD IEI by haploinsufficiency are under stronger negative selection than other genes underlying AD IEI. These results are replicated in 1,140 genes underlying inborn errors of neurodevelopment. Finally, we propose a supervised classifier, SCoNeS, which predicts better than state-of-the-art approaches whether a gene is more likely to underlie an AD or AR disease. The clinical outcomes of monogenic inborn errors, together with their mode and mechanisms of inheritance, determine the levels of negative selection at their corresponding loci. Integrating scores of negative selection may facilitate the prioritization of candidate genes and variants in patients suspected to carry an inborn error.
Collapse
Affiliation(s)
- Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065;
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Anne Gregor
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Joseph G Gleeson
- Howard Hughes Medical Institute, La Jolla, CA 92093
- Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, 75015 Paris, France
- Chair of Human Genomics and Evolution, Collège de France, 75231 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
- Howard Hughes Medical Institute, New York, NY 10065
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, 75015 Paris, France
| |
Collapse
|
20
|
Borghesi A, Trück J, Asgari S, Sancho-Shimizu V, Agyeman PKA, Bellos E, Giannoni E, Stocker M, Posfay-Barbe KM, Heininger U, Bernhard-Stirnemann S, Niederer-Loher A, Kahlert CR, Natalucci G, Relly C, Riedel T, Kuehni CE, Thorball CW, Chaturvedi N, Martinon-Torres F, Kuijpers TW, Coin L, Wright V, Herberg J, Levin M, Aebi C, Berger C, Fellay J, Schlapbach LJ. Whole-exome Sequencing for the Identification of Rare Variants in Primary Immunodeficiency Genes in Children With Sepsis: A Prospective, Population-based Cohort Study. Clin Infect Dis 2020; 71:e614-e623. [PMID: 32185379 PMCID: PMC7744985 DOI: 10.1093/cid/ciaa290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 03/15/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The role of primary immunodeficiencies (PID) in susceptibility to sepsis remains unknown. It is unclear whether children with sepsis benefit from genetic investigations. We hypothesized that sepsis may represent the first manifestation of underlying PID. We applied whole-exome sequencing (WES) to a national cohort of children with sepsis to identify rare, predicted pathogenic variants in PID genes. METHODS We conducted a multicenter, population-based, prospective study including previously healthy children aged ≥28 days and <17 years admitted with blood culture-proven sepsis. Using a stringent variant filtering procedure, analysis of WES data was restricted to rare, predicted pathogenic variants in 240 PID genes for which increased susceptibility to bacterial infection has been reported. RESULTS There were 176 children presenting with 185 sepsis episodes who underwent WES (median age, 52 months; interquartile range, 15.4-126.4). There were 41 unique predicted pathogenic PID variants (1 homozygous, 5 hemizygous, and 35 heterozygous) found in 35/176 (20%) patients, including 3/176 (2%) patients carrying variants that were previously reported to lead to PID. The variants occurred in PID genes across all 8 PID categories, as defined by the International Union of Immunological Societies. We did not observe a significant correlation between clinical or laboratory characteristics of patients and the presence or absence of PID variants. CONCLUSIONS Applying WES to a population-based cohort of previously healthy children with bacterial sepsis detected variants of uncertain significance in PID genes in 1 out of 5 children. Future studies need to investigate the functional relevance of these variants to determine whether variants in PID genes contribute to pediatric sepsis susceptibility.
Collapse
Affiliation(s)
- Alessandro Borghesi
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Neonatal Intensive Care Unit, Fondazione Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Johannes Trück
- University Children’s Hospital Zurich and the Children’s Research Center, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Samira Asgari
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Division of Genetics and Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Vanessa Sancho-Shimizu
- Section of Paediatrics, Imperial College London, London, United Kingdom
- Section of Virology, Imperial College London, London, United Kingdom
| | - Philipp K A Agyeman
- Department of Paediatrics, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Evangelos Bellos
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Eric Giannoni
- Service of Neonatology, Department Woman-Mother-Child, and Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Martin Stocker
- Department of Paediatrics, Children’s Hospital Lucerne, Lucerne, Switzerland
| | - Klara M Posfay-Barbe
- Paediatric Infectious Diseases Unit, Children’s Hospital of Geneva, University Hospitals of Geneva, Geneva, Switzerland
| | - Ulrich Heininger
- Infectious Diseases and Vaccinology, University of Basel Children’s Hospital, Basel, Switzerland
| | | | | | | | | | - Christa Relly
- University Children’s Hospital Zurich and the Children’s Research Center, Zurich, Switzerland
| | - Thomas Riedel
- Department of Paediatrics, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Claudia E Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Christian W Thorball
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nimisha Chaturvedi
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Federico Martinon-Torres
- Translational Paediatrics and Infectious Diseases Section, Paediatrics Department, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago, Genetics, Vaccines, Infectious Diseases and Paediatrics Research Group, Santiago de Compostela, Spain
| | - Taco W Kuijpers
- Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Lachlan Coin
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Victoria Wright
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Jethro Herberg
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Christoph Aebi
- Department of Paediatrics, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Berger
- University Children’s Hospital Zurich and the Children’s Research Center, Zurich, Switzerland
| | - Jacques Fellay
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital, Lausanne, Switzerland
| | - Luregn J Schlapbach
- University Children’s Hospital Zurich and the Children’s Research Center, Zurich, Switzerland
- Paediatric Critical Care Research Group, Child Health Research Centre, The University of Queensland, Brisbane, Australia
- Paediatric Intensive Care Unit, Queensland Children’s Hospital, Children’s Health Queensland, Brisbane, Australia
| |
Collapse
|
21
|
Bonagura VR, Casanova JL. Past, Present, and Future of The Journal of Clinical Immunology, the International Journal of Inborn Errors of Immunity. J Clin Immunol 2020; 40:955-957. [PMID: 32924073 DOI: 10.1007/s10875-020-00845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Vincent R Bonagura
- Laboratory of Host Defense, The Feinstein Institute for Medical Research , Manhasset, NY, USA.
- Division of Allergy and Immunology, Departments of Pediatrics and Internal Medicine, Great Neck, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Steven and Alexandra Cohen Children's Medical Center of New York, Great Neck, NY, USA.
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Sepsis remains among the leading causes of childhood mortality worldwide. This review serves to highlight key areas of knowledge gain and ongoing controversies pertinent to sepsis in children. RECENT FINDINGS Several recent publications describe the epidemiology of paediatric sepsis, demonstrating the impact on child health in terms of mortality and morbidity, and the shortcomings of current paediatric sepsis definitions. Although emerging data support the importance of organ dysfunction as a hallmark of paediatric sepsis, the understanding of host susceptibility to sepsis and to sepsis severity remains very limited. Next-generation sequencing and host transcriptomics have the potential to provide new insights into the pathogenesis of sepsis and may enable personalized medicine approaches. Despite good observational data indicating benefit of sepsis recognition and treatment bundles, the evidence for the individual bundle components remains scarce, implying an urgent need for large trials. SUMMARY Recent studies have demonstrated distinct epidemiological patterns pertinent to age groups, healthcare settings, and comorbidities in the era post meningococcal epidemics. Although sepsis quality improvement initiatives have led to substantial outcome improvements, there is urgency for innovative trials to reduce uncertainty around the optimal approach for the recognition and treatment of sepsis in children.
Collapse
|
23
|
van der Made CI, Hoischen A, Netea MG, van de Veerdonk FL. Primary immunodeficiencies in cytosolic pattern-recognition receptor pathways: Toward host-directed treatment strategies. Immunol Rev 2020; 297:247-272. [PMID: 32640080 DOI: 10.1111/imr.12898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
In the last decade, the paradigm of primary immunodeficiencies (PIDs) as rare recessive familial diseases that lead to broad, severe, and early-onset immunological defects has shifted toward collectively more common, but sporadic autosomal dominantly inherited isolated defects in the immune response. Patients with PIDs constitute a formidable area of research to study the genetics and the molecular mechanisms of complex immunological pathways. A significant subset of PIDs affect the innate immune response, which is a crucial initial host defense mechanism equipped with pattern-recognition receptors. These receptors recognize pathogen- and damage-associated molecular patterns in both the extracellular and intracellular space. In this review, we will focus on primary immunodeficiencies caused by genetic defects in cytosolic pattern-recognition receptor pathways. We discuss these PIDs organized according to their mutational mechanisms and consequences for the innate host response. The advanced understanding of these pathways obtained by the study of PIDs creates the opportunity for the development of new host-directed treatment strategies.
Collapse
Affiliation(s)
- Caspar I van der Made
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Jung S, Gies V, Korganow AS, Guffroy A. Primary Immunodeficiencies With Defects in Innate Immunity: Focus on Orofacial Manifestations. Front Immunol 2020; 11:1065. [PMID: 32625202 PMCID: PMC7314950 DOI: 10.3389/fimmu.2020.01065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
The field of primary immunodeficiencies (PIDs) is rapidly evolving. Indeed, the number of described diseases is constantly increasing thanks to the rapid identification of novel genetic defects by next-generation sequencing. PIDs are now rather referred to as “inborn errors of immunity” due to the association between a wide range of immune dysregulation-related clinical features and the “prototypic” increased infection susceptibility. The phenotypic spectrum of PIDs is therefore very large and includes several orofacial features. However, the latter are often overshadowed by severe systemic manifestations and remain underdiagnosed. Patients with impaired innate immunity are predisposed to a variety of oral manifestations including oral infections (e.g., candidiasis, herpes gingivostomatitis), aphthous ulcers, and severe periodontal diseases. Although less frequently, they can also show orofacial developmental abnormalities. Oral lesions can even represent the main clinical manifestation of some PIDs or be inaugural, being therefore one of the first features indicating the existence of an underlying immune defect. The aim of this review is to describe the orofacial features associated with the different PIDs of innate immunity based on the new 2019 classification from the International Union of Immunological Societies (IUIS) expert committee. This review highlights the important role played by the dentist, in close collaboration with the multidisciplinary medical team, in the management and the diagnostic of these conditions.
Collapse
Affiliation(s)
- Sophie Jung
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Pôle de Médecine et de Chirurgie Bucco-Dentaires, Strasbourg, France.,Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France
| | - Vincent Gies
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Université de Strasbourg, Faculté de Pharmacie, Illkirch-Graffenstaden, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France
| | - Anne-Sophie Korganow
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Aurélien Guffroy
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| |
Collapse
|
25
|
Casanova JL, Abel L. The human genetic determinism of life-threatening infectious diseases: genetic heterogeneity and physiological homogeneity? Hum Genet 2020; 139:681-694. [PMID: 32462426 PMCID: PMC7251220 DOI: 10.1007/s00439-020-02184-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multicellular eukaryotes emerged late in evolution from an ocean of viruses, bacteria, archaea, and unicellular eukaryotes. These macroorganisms are exposed to and infected by a tremendous diversity of microorganisms. Those that are large enough can even be infected by multicellular fungi and parasites. Each interaction is unique, if only because it operates between two unique living organisms, in an infinite diversity of circumstances. This is neatly illustrated by the extraordinarily high level of interindividual clinical variability in human infections, even for a given pathogen, ranging from a total absence of clinical manifestations to death. We discuss here the idea that the determinism of human life-threatening infectious diseases can be governed by single-gene inborn errors of immunity, which are rarely Mendelian and frequently display incomplete penetrance. We briefly review the evidence in support of this notion obtained over the last two decades, referring to a number of focused and thorough reviews published by eminent colleagues in this issue of Human Genetics. It seems that almost any life-threatening infectious disease can be driven by at least one, and, perhaps, a great many diverse monogenic inborn errors, which may nonetheless be immunologically related. While the proportions of monogenic cases remain unknown, a picture in which genetic heterogeneity is combined with physiological homogeneity is emerging from these studies. A preliminary sketch of the human genetic architecture of severe infectious diseases is perhaps in sight.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris University, Imagine Institute, Paris, France.
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris University, Imagine Institute, Paris, France
| |
Collapse
|
26
|
Silva LM, Brenchley L, Moutsopoulos NM. Primary immunodeficiencies reveal the essential role of tissue neutrophils in periodontitis. Immunol Rev 2019; 287:226-235. [PMID: 30565245 DOI: 10.1111/imr.12724] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/06/2018] [Indexed: 12/14/2022]
Abstract
Periodontitis is a common human inflammatory disease. In this condition, microbiota trigger excessive inflammation in oral mucosal tissues surrounding the dentition, resulting in destruction of tooth-supporting structures (connective tissue and bone). While susceptibility factors for common forms of periodontitis are not clearly understood, studies in patients with single genetic defects reveal a critical role for tissue neutrophils in disease susceptibility. Indeed, various genetic defects in the development, egress from the bone marrow, chemotaxis, and extravasation are clearly linked to aggressive/severe periodontitis at an early age. Here, we provide an overview of genetic defects in neutrophil biology that are linked to periodontitis. In particular, we focus on the mechanisms underlying Leukocyte Adhesion Deficiency-I, the prototypic Mendelian defect of impaired neutrophil extravasation and severe periodontitis.
Collapse
Affiliation(s)
- Lakmali M Silva
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, Maryland.,Proteases and Remodeling Section, NIDCR, NIH, Bethesda, Maryland
| | - Laurie Brenchley
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, Maryland
| | | |
Collapse
|
27
|
Fayez EA, Koohini Z, Koohini Z, Zamanzadeh H, de Boer M, Roos D, Teimourian S. Characterization of two novel mutations in IL-12R signaling in MSMD patients. Pathog Dis 2019; 77:ftz030. [PMID: 31158284 DOI: 10.1093/femspd/ftz030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2023] Open
Abstract
Mendelian Susceptibility to Mycobacterial Disease (MSMD) is a rare syndrome with infections-among other complications-after Bacillus Calmette-Guerin (BCG) vaccination in children. We focused on the IL-12/IFN-γ pathway to identify new mutations in our patients. This study included 20 patients by vulnerability to mycobacteria and clinical manifestations of severe, recurrent infections. Blood samples were activated with BCG, BCG + IL-12 and BCG + IFN-γ. Cytokine levels were analyzed by ELISA. Measurements of IL-12Rβ1 and IL-12Rβ2 on the surface of peripheral blood mononuclear cells were performed by flow cytometry. To detect genetic defects, next-generation sequencing was performed by Thermo Fisher immunodeficiency panel. Flow cytometry analysis of 20 patients indicated reduction in IL-12R (β1/β2) expression in seven patients who showed incomplete production of IFN-γ by ELISA. In the patient with reduced IL-12 production, IFN-γR and IL-12R (β1/β2) expression levels were normal. Mutation analysis showed three previously reported mutations, two novel mutations in IL-12 R (β1/β2), and one previously reported mutation in IL-12.
Collapse
Affiliation(s)
- Elham Alipour Fayez
- Department of Immunology, School of Medicine, Iran University of Medical Sciences Tehran, Iran
| | - Zahra Koohini
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Koohini
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Zamanzadeh
- Department of biology, School of basic sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Schimke LF, Hibbard J, Martinez-Barricarte R, Khan TA, de Souza Cavalcante R, Borges de Oliveira Junior E, Takahashi França T, Iqbal A, Yamamoto G, Arslanian C, Feriotti C, Costa TA, Bustamante J, Boisson-Dupuis S, Casanova JL, Marzagao Barbuto JA, Zatz M, Poncio Mendes R, Garcia Calich VL, Ochs HD, Torgerson TR, Cabral-Marques O, Condino-Neto A. Paracoccidioidomycosis Associated With a Heterozygous STAT4 Mutation and Impaired IFN-γ Immunity. J Infect Dis 2019; 216:1623-1634. [PMID: 29029192 DOI: 10.1093/infdis/jix522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/24/2017] [Indexed: 01/01/2023] Open
Abstract
Background Mutations in genes affecting interferon-γ (IFN-γ) immunity have contributed to understand the role of IFN-γ in protection against intracellular pathogens. However, inborn errors in STAT4, which controls interleukin-12 (IL-12) responses, have not yet been reported. Our objective was to determine the genetic defect in a family with a history of paracoccidioidomycosis. Methods Genetic analysis was performed by whole-exome sequencing and Sanger sequencing. STAT4 phosphorylation (pSTAT4) and translocation to the nucleus, IFN-γ release by patient lymphocytes, and microbicidal activity of patient monocytes/macrophages were assessed. The effect on STAT4 function was evaluated by site-directed mutagenesis using a lymphoblastoid B cell line (B-LCL) and U3A cells. Results A heterozygous missense mutation, c.1952 A>T (p.E651V) in STAT4 was identified in the index patient and her father. Patient's and father's lymphocytes showed reduced pSTAT4, nuclear translocation, and impaired IFN-γ production. Mutant B-LCL and U3A cells also displayed reduced pSTAT4. Patient's and father's peripheral blood mononuclear cells and macrophages demonstrated impaired fungicidal activity compared with those from healthy controls that improved in the presence of recombinant human IFN-γ, but not rhIL-12. Conclusion Our data suggest autosomal dominant STAT4 deficiency as a novel inborn error of IL-12-dependent IFN-γ immunity associated with susceptibility to paracoccidioidomycosis.
Collapse
Affiliation(s)
- Lena F Schimke
- Department of Immunology, University of Sao Paulo, Brazil.,Department of Rheumatology and Clinical Immunology, University of Lübeck, Germany
| | - James Hibbard
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, New York
| | | | - Taj Ali Khan
- Department of Immunology, University of Sao Paulo, Brazil
| | | | | | | | - Asif Iqbal
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, Brazil
| | - Guilherme Yamamoto
- Human Genome and Stem Cell Research Center, University of Sao Paulo, Brazil
| | | | | | | | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, the Rockefeller University, New York.,Imagine Institute, Paris Descartes University, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Paris, France.,Center for the Study of Primary Immunodeficiencies, Paris, France
| | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, the Rockefeller University, New York.,Imagine Institute, Paris Descartes University, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, the Rockefeller University, New York.,Imagine Institute, Paris Descartes University, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, the Rockefeller University, New York
| | | | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of Sao Paulo, Brazil
| | | | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, New York
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, New York
| | - Otávio Cabral-Marques
- Department of Immunology, University of Sao Paulo, Brazil.,Department of Rheumatology and Clinical Immunology, University of Lübeck, Germany
| | - Antonio Condino-Neto
- Department of Immunology, University of Sao Paulo, Brazil.,Institute of Tropical Medicine, University of Sao Paulo, Brazil
| |
Collapse
|
29
|
Karakina ML, Shershnev VN. [Multivariate analysis of genealogical markers in adults with primary immunodeficiencies]. TERAPEVT ARKH 2018; 88:46-52. [PMID: 27070163 DOI: 10.17116/terarkh201688446-52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the genealogy of adult patients with primary immunodeficiencies (PID) and to analyze its data in the relatives of these patients. MATERIALS AND METHODS A genealogical analysis was carried out in 74 adult patients with PID and 200 adults without this condition, by examining groups of signs in the relatives in at least 4 generations, the genealogical markers were an atypical infectious and inflammatory process; allergic diseases; autoimmune diseases; the presence of relatives with cancers; cases of reproductive dysfunction; deaths from infectious diseases and/or cancers in children; and congenital malformations. The percentage of relatives with the above genealogical markers of the total number of the relatives in 4 generations was used as an indicator. The analysis applied nonparametric methods, such as quartile analysis, Spearman's correlation coefficient, and Mann-Whitney test to verify the statistical significance of differences between the independent groups. Multifactor prediction models were based on the decision theory (Wald-Bayesian analysis) and classification trees. At Stage 1, the investigators made a univariate analysis, the data of which were used to perform a correlation analysis of the indicators. Multifactor prediction models were based on the decision theory (Wald-Bayesian analysis) and classification trees. RESULTS The genealogical markers were identified and analyzed using different statistical methods and CONCLUSION were made on prognostically significant indicators. CONCLUSION The findings may be recommended for practical use in order to enhance the efficiency of work with patients having various immunopathological syndromes.
Collapse
Affiliation(s)
- M L Karakina
- Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia; Sverdlovsk Regional Clinical Hospital One, Yekaterinburg, Russia; Regional Children's Clinical Hospital One, Yekaterinburg, Russia
| | - V N Shershnev
- Institute of Ecology and Industrial Safety, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia; Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
30
|
Gupta K, Rawat A, Agrawal P, Jindal A, Nada R, Saikia B, Chan KW, Lau YL, Minz RW, Singh S. Infectious and non-infectious complications in primary immunodeficiency disorders: an autopsy study from North India. J Clin Pathol 2018; 71:425-435. [PMID: 28970295 DOI: 10.1136/jclinpath-2017-204708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Primary immunodeficiency disorders (PID) include a wide spectrum of inherited disorders characterised by functional abnormalities of one or more components of the immune system. Recent updates from the genomic data have contributed significantly to its better understanding with identification of new entities. Diagnosis is always challenging due to their variable clinical presentation. With the evolution of molecular diagnosis, many of these children are being diagnosed early and offered appropriate therapy. However, in developing countries, early diagnosis is still not being made: as a result these patients succumb to their disease. Autopsy data on PID is notably lacking in the literature with histopathological evaluation of PID being limited to rare case reports. OBJECTIVE To analyse the clinical, immunologic (including mutational) and morphologic features at autopsy in 10 proven and suspected cases of primary immunodeficiency disorders diagnosed at our Institute over the past decade. METHODS Study includes a detailed clinico-pathological analysis of 10 proven and suspected cases of primary immunodeficiency disorders. RESULTS A varied spectrum of infectious and non-infectious complications were identified in these cases of which fungal infections were found to be more frequent compared with viral or bacterial infections. Rare and novel morphological findings, like granulomatous involvement of the heart in a patient with chronic granulomatous disease, systemic amyloidosis in a teenage girl with X-linked agammaglobulinemia, are highlighted which is distinctly lacking in the literature. CONCLUSIONS The present study is perhaps the first autopsy series on PID. Even in the molecular era, such analysis is still important, as correlation of pathological features with clinical symptoms provides clues for a timely diagnosis and appropriate therapeutic intervention.
Collapse
Affiliation(s)
- Kirti Gupta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit Rawat
- Department of Paediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Parimal Agrawal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankur Jindal
- Department of Paediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Ranjana Walker Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Surjit Singh
- Department of Paediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| |
Collapse
|
31
|
Abstract
A large number of viruses belonging to various families are able to cause central nervous system (CNS) infections and contribute significantly to burden of disease in humans globally. Most viral CNS infections are benign and self-limiting, and most remain undiagnosed. However, some viruses can cause severe inflammation, leading to morbidity and mortality, and result in severe long-term residual damage and neurologic dysfunction in patients. The potential of viruses to cause CNS inflammation greatly varies depending on host factors, such as age, sex, and genetic background, as well as viral factors. Despite the need for protection against viral invasion and replication, the extent of the immune response in the CNS is carefully regulated to prevent excessive inflammation and tissue destruction leading to irretrievable loss of neurons. Direct cytopathology is for many virus infections a major cause of neurologic symptoms; however, the antiviral immune response can in some instances contribute substantially to pathology. This chapter highlights a selection of clinically important neurotropic viruses that infect the CNS and cause neurologic diseases such as meningitis, encephalitis, and myelitis in humans, with a focus on neuropathologic findings.
Collapse
Affiliation(s)
- Nikolaus Deigendesch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Pathogenesis of infections in HIV-infected individuals: insights from primary immunodeficiencies. Curr Opin Immunol 2017; 48:122-133. [PMID: 28992464 PMCID: PMC5682227 DOI: 10.1016/j.coi.2017.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022]
Abstract
Following infection with almost any given microorganism other than an emerging pathogen, only a minority of individuals develop life-threatening clinical disease, implying that these individuals have some form of immunodeficiency. A growing number of inherited and acquired immunodeficiencies have been deciphered over the last 50 years. HIV infection is probably the best-known acquired immunodeficiency. It emerged about 40 years ago and precipitates various severe infections, the occurrence of which is associated with a fall in circulating CD4+ T cells. However, despite the strength of this correlation, infection rates differ between patients with similar levels and durations of CD4+ T lymphopenia in the presence or absence of antiretroviral treatment. Moreover, a few infections seem to be less dependent on total CD4+ T-cell levels. The fine detail of the mechanisms underlying these infections is unknown. We discuss here how studies of the human genetics and immunology of some of these infections in patients with primary immunodeficiencies (PIDs) have provided unique insights into their molecular and cellular basis. Defects of specific CD4+ Th-cell subsets account for some of these infections, as best exemplified by Th1* for mycobacteriosis and Th17 for candidiasis. PIDs are individually rare, but collectively much more common than initially thought, with new disorders being discovered at an ever-increasing pace and a global prevalence worldwide approaching that of HIV infection. Studies of known and new PIDs should make it possible to dissect the pathogenesis of most human infections at an unprecedented level of molecular and cellular precision. The predictive, preventive, and therapeutic implications of studies of immunity to infection in PIDs may extend to HIV-infected patients and patients with infectious diseases in other settings.
Collapse
|
33
|
Hedrick SM. Understanding Immunity through the Lens of Disease Ecology. Trends Immunol 2017; 38:888-903. [PMID: 28882454 DOI: 10.1016/j.it.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 10/25/2022]
Abstract
As we describe the immune system in ever more exquisite detail, we might find that no matter how successful, this approach will not be sufficient to understand the spread of infectious agents, their susceptibility to vaccine therapy, and human disease resistance. Compared with the strict reductionism practiced as a means of characterizing most biological processes, I propose that the progression and outcome of disease-causing host-parasite interactions will be more clearly understood through a focus on disease ecology.
Collapse
Affiliation(s)
- Stephen M Hedrick
- Departments of Molecular Biology and Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
34
|
Erman B, Bilic I, Hirschmugl T, Salzer E, Boztug H, Sanal Ö, Çağdaş Ayvaz D, Tezcan I, Boztug K. Investigation of Genetic Defects in Severe Combined Immunodeficiency Patients from Turkey by Targeted Sequencing. Scand J Immunol 2017; 85:227-234. [PMID: 28109013 DOI: 10.1111/sji.12523] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/13/2017] [Indexed: 12/30/2022]
Abstract
Primary immunodeficiencies (PIDs) represent a large group of disorders with an increased susceptibility to infections. Severe combined immunodeficiency (SCID) is the most severe form of primary immunodeficiencies (PIDs) with marked T-cell lymphopenia. Investigation of the genetic aetiology using classical Sanger sequencing is associated with considerable diagnostic delay. We here established a custom-designed, next-generation sequencing (NGS)-based panel to efficiently identify disease-causing genetic defects in PID patients and applied this method in SCID patients of Turkish origin with previously undefined genetic aetiology. We used HaloPlex enrichment technology, a targeted, NGS-based method which was designed to diagnose patients with SCID and other PIDs. Our HaloPlex panel included a total of 356 PID-related genes, and we searched disease-causing mutations in 19 Turkish SCID patients without a genetic diagnosis. The coverage of targeted regions ranged from 97.47% to 99.62% with an average of 98.31% for all patients. All known SCID genes were covered with a percentage of at least 97.3%. We made a genetic diagnosis in six of 19 (33%) patients, including four novel disease-causing mutations identified in RAG1, JAK3 and IL2RG, respectively. We showed that this NGS-based method can provide rapid genetic diagnosis for patients suffering from SCID, potentially facilitating clinical treatment decisions.
Collapse
Affiliation(s)
- B Erman
- Department of Immunology, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - I Bilic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - T Hirschmugl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - E Salzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - H Boztug
- Department of Paediatrics, St. Anna Kinderspital, Medical University of Vienna, Vienna, Austria
| | - Ö Sanal
- Department of Immunology, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - D Çağdaş Ayvaz
- Department of Immunology, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - I Tezcan
- Department of Immunology, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - K Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Paediatrics, St. Anna Kinderspital, Medical University of Vienna, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
35
|
Borghesi A, Stronati M, Fellay J. Neonatal Group B Streptococcal Disease in Otherwise Healthy Infants: Failure of Specific Neonatal Immune Responses. Front Immunol 2017; 8:215. [PMID: 28326082 PMCID: PMC5339282 DOI: 10.3389/fimmu.2017.00215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/15/2017] [Indexed: 12/26/2022] Open
Abstract
Only a small proportion of newborn infants exposed to a pathogenic microorganism develop overt infection. Susceptibility to infection in preterm infants and infants with known comorbidities has a likely multifactorial origin and can be often attributed to the concurrence of iatrogenic factors, environmental determinants, underlying pathogenic processes, and probably genetic predisposition. Conversely, infection occurring in otherwise healthy full-term newborn infants is unexplained in most cases. Microbial virulence factors and the unique characteristics of the neonatal immune system only partially account for the interindividual variability in the neonatal immune responses to pathogens. We here suggest that neonatal infection occurring in otherwise healthy infants is caused by a failure of the specific protective immunity to the microorganism. To explain infection in term and preterm infants, we propose an extension of the previously proposed model of the genetic architecture of infectious diseases in humans. We then focus on group B streptococcus (GBS) disease, the best characterized neonatal infection, and outline the potential molecular mechanisms underlying the selective failure of the immune responses against GBS. In light of the recent discoveries of pathogen-specific primary immunodeficiencies and of the role of anticytokine autoantibodies in increasing susceptibility to specific infections, we hypothesize that GBS disease occurring in otherwise healthy infants could reflect an immunodeficiency caused either by rare genetic defects in the infant or by transmitted maternal neutralizing antibodies. These hypotheses are consistent with available epidemiological data, with clinical and epidemiological observations, and with the state of the art of neonatal physiology and disease. Studies should now be designed to comprehensively search for genetic or immunological factors involved in susceptibility to severe neonatal infections.
Collapse
Affiliation(s)
- Alessandro Borghesi
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Neonatal Intensive Care Unit, San Matteo Hospital, Pavia, Italy
| | - Mauro Stronati
- Neonatal Intensive Care Unit, San Matteo Hospital, Pavia, Italy
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
36
|
Jo JH, Kennedy EA, Kong HH. Topographical and physiological differences of the skin mycobiome in health and disease. Virulence 2016; 8:324-333. [PMID: 27754756 DOI: 10.1080/21505594.2016.1249093] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skin constantly encounters external elements, including microbes. Culture-based studies have identified fungi present on human skin and have linked some species with certain skin diseases. Moreover, modern medical treatments, especially immunosuppressants, have increased the population at risk for cutaneous and invasive fungal infections, emphasizing the need to understand skin fungal communities in health and disease. A major hurdle for studying fungal flora at a community level has been the heterogeneous culture conditions required by skin fungi. Recent advances in DNA sequencing technologies have dramatically expanded our knowledge of the skin microbiome through culture-free methods. This review discusses historical and recent research on skin fungal communities - the mycobiome - in health and disease, and challenges associated with sequencing-based mycobiome research.
Collapse
Affiliation(s)
- Jay-Hyun Jo
- a Dermatology Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Elizabeth A Kennedy
- a Dermatology Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Heidi H Kong
- a Dermatology Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
37
|
Interferon-Gamma Improves Macrophages Function against M. tuberculosis in Multidrug-Resistant Tuberculosis Patients. CHEMOTHERAPY RESEARCH AND PRACTICE 2016; 2016:7295390. [PMID: 27478636 PMCID: PMC4960331 DOI: 10.1155/2016/7295390] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/14/2016] [Indexed: 01/04/2023]
Abstract
Background. Mycobacterium tuberculosis (M. tuberculosis) that causes tuberculosis (TB) kills millions of infected people annually especially multidrug-resistant tuberculosis (MDR-TB). On infection, macrophages recognize the mycobacteria by toll-like receptor (TLR) followed by phagocytosis and control of mycobacteria. In addition, macrophages also secrete IL-12 to induce IFN-γ production by T, which, in turn, increases the phagocytosis and oxidative burst. Individuals with defects in innate or adaptive immunity exhibit increased susceptibility to M. tuberculosis. Understanding these immunologic mechanisms will help in TB control. We aimed to investigate the immunopathologic mechanisms in MDR-TB and role of recombinant human interferon-gamma (rhIFN-γ). Study Design and Methods. Monocyte-derived macrophages (MDMs) were generated from peripheral blood mononuclear cells of MDR-TB patients and healthy subjects and were investigated for immunologic response by ELISA and flow cytometry. Results. Different functional and molecular anomalies were observed in macrophages. In addition, a defective immune response to M. tuberculosis from the patient's MDMs was characterized, which in turn improved by pretreatment with rhIFN-γ. Conclusion. This work highlights the fact that rhIFN-γ improves macrophages function against M. tuberculosis and treatment of patients with poor responsiveness to TB therapy may be needed in future to include IFN-γ as adjuvant therapy after the full characterization of pathological and molecular mechanisms in these and in other more multidrug-resistant TB patients.
Collapse
|
38
|
Susceptibility to Lower Respiratory Infections in Childhood is Associated with Perturbation of the Cytokine Response to Pathogenic Airway Bacteria. Pediatr Infect Dis J 2016; 35:561-6. [PMID: 26910587 DOI: 10.1097/inf.0000000000001092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Neonatal colonization of the airways with respiratory pathogens is associated with increased risk of lower respiratory infections (LRI) in early childhood. Therefore, we hypothesized that children developing LRI have an aberrant immune response to pathogenic bacteria in infancy. The objective was to characterize in vitro the early life systemic immune response to pathogenic bacteria and study the possible association with incidence of LRI during the first 3 years of life. METHODS The Copenhagen Prospective Studies on Asthma in Childhood2000 (COPSAC2000) is a clinical birth cohort study of 411 children born of mothers with asthma. LRI incidence was prospectively captured from 6-monthly planned visits and visits at acute respiratory episodes. The in vitro systemic immune response to Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae was characterized by the production of TNF-α, IFN-γ, IL-2, IL-5, IL-10, IL-13 and IL-17 in peripheral blood mononuclear cells isolated at age 6 months from 291 infants. Data were analyzed by Poisson regression against incidence of LRI in infancy. RESULTS A multivariable model including all cytokine responses from the 3 different bacterial stimulations significantly identified children at risk of LRI (P = 0.006). The immune response pattern associated with LRI was characterized by perturbed production of several cytokines rather than production of one specific cytokine, and was independent of concurrent asthma. TNF-α and IL-5 were key drivers but did not explain the entire variation in LRI susceptibility. CONCLUSIONS Children at risk of future LRI present a perturbed systemic immune response upon exposure to common airway pathogens in early life.
Collapse
|
39
|
Mentzer AJ, O'Connor D, Pollard AJ, Hill AVS. Searching for the human genetic factors standing in the way of universally effective vaccines. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0341. [PMID: 25964463 DOI: 10.1098/rstb.2014.0341] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccines have revolutionized modern public health. The effectiveness of some vaccines is limited by the variation in response observed between individuals and across populations. There is compelling evidence that a significant proportion of this variability can be attributed to human genetic variation, especially for those vaccines administered in early life. Identifying and understanding the determinants of this variation could have a far-reaching influence upon future methods of vaccine design and deployment. In this review, we summarize the genetic studies that have been undertaken attempting to identify the genetic determinants of response heterogeneity for the vaccines against hepatitis B, measles and rubella. We offer a critical appraisal of these studies and make a series of suggestions about how modern genetic techniques, including genome-wide association studies, could be used to characterize the genetic architecture of vaccine response heterogeneity. We conclude by suggesting how the findings from such studies could be translated to improve vaccine effectiveness and target vaccination in a more cost-effective manner.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel O'Connor
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Adrian V S Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| |
Collapse
|
40
|
Shih AR, Murali MR. Laboratory tests for disorders of complement and complement regulatory proteins. Am J Hematol 2015; 90:1180-6. [PMID: 26437749 DOI: 10.1002/ajh.24209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 12/25/2022]
Abstract
The complement pathway is a cascade of proteases that is involved in immune surveillance and innate immunity, as well as adaptive immunity. Dysfunction of the complement cascade may be mediated by aberrations in the pathways of activation, complement regulatory proteins, or complement deficiencies, and has been linked to a number of hematologic disorders, including paroxysmal noctural hemoglobinuria (PNH), hereditary angioedema (HAE), and atypical hemolytic-uremic syndrome (aHUS). Here, current laboratory tests for disorders of the complement pathway are reviewed, and their utility and limitations in hematologic disorders and systemic diseases are discussed. Current therapeutic advances targeting the complement pathway in treatment of complement-mediated hematologic disorders are also reviewed.
Collapse
Affiliation(s)
- Angela R. Shih
- Department of Pathology; Massachusetts General Hospital; Boston Massachusetts 02114
| | | |
Collapse
|
41
|
Spârchez M, Lupan I, Delean D, Bizo A, Damian L, Muntean L, Tămaș MM, Bolba C, Simionescu B, Slăvescu C, Felea I, Lazăr C, Spârchez Z, Rednic S. Primary complement and antibody deficiencies in autoimmune rheumatologic diseases with juvenile onset: a prospective study at two centers. Pediatr Rheumatol Online J 2015; 13:51. [PMID: 26590091 PMCID: PMC4654875 DOI: 10.1186/s12969-015-0050-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our aim was to investigate the prevalence and clinical relevance of inherited complement and antibody deficiency states in a large series of patients with various autoimmune rheumatologic diseases (ARD) with juvenile onset. METHODS A total number of 117 consecutive patients from 2 tertiary referral hospitals were included in the study. All patients underwent genetic screening for type I C2 deficiency and C4 allotyping. Serum levels of immunoglobulin classes measured systematically throughout their regular medical care were recorded retrospectively. RESULTS Our cohort of patients included 84 with juvenile idiopathic arthritis (JIA), 21 with systemic lupus erythematosus (SLE), 6 with systemic vasculitis, 2 with juvenile scleroderma, 2 with idiopathic uveitis, 1 with mixed connective tissue disease and 1 with SLE/scleroderma overlap syndrome. We have found 16 patients with evidence of primary immunodeficiency in our series (13.7%), including 7 with C4 deficiency, 5 with selective IgA deficiency, 3 with C2 deficiency and 2 with unclassified hypogammaglobulinemia (one also presented C4D). Of the 84 patients with JIA, 4 (4.8%) had a complement deficiency, which was less prevalent than in the SLE cohort (23.8%), but all of them have exhibited an aggressive disease. Most of our patients with primary antibody deficiencies showed a more complicated and severe disease course and even the co-occurrence of two associated autoimmune diseases (SLE/scleroderma overlap syndrome and SLE/autoimmune hepatitis type 1 overlap). CONCLUSIONS Our findings among others demonstrate that complement and immunoglobulin immunodeficiencies need careful consideration in patients with ARD, as they are common and might contribute to a more severe clinical course of the disease.
Collapse
Affiliation(s)
- Mihaela Spârchez
- 2nd Department of Paediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 3-5 Crisan Street, Cluj-Napoca, 400177, Romania.
- Emergency Children's Hospital, Cluj-Napoca, Romania.
| | - Iulia Lupan
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Delean
- Emergency Children's Hospital, Cluj-Napoca, Romania
| | - Aurel Bizo
- 2nd Department of Paediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 3-5 Crisan Street, Cluj-Napoca, 400177, Romania
- Emergency Children's Hospital, Cluj-Napoca, Romania
| | - Laura Damian
- Rheumatology Department, Emergency Clinical County Hospital, Cluj-Napoca, Romania
| | - Laura Muntean
- Rheumatology Department, Emergency Clinical County Hospital, Cluj-Napoca, Romania
- Department of Rheumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Magdalena Tămaș
- Rheumatology Department, Emergency Clinical County Hospital, Cluj-Napoca, Romania
- Department of Rheumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Bianca Simionescu
- 2nd Department of Paediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 3-5 Crisan Street, Cluj-Napoca, 400177, Romania
- Emergency Children's Hospital, Cluj-Napoca, Romania
| | - Cristina Slăvescu
- 2nd Department of Paediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 3-5 Crisan Street, Cluj-Napoca, 400177, Romania
- Emergency Children's Hospital, Cluj-Napoca, Romania
| | - Ioana Felea
- Rheumatology Department, Emergency Clinical County Hospital, Cluj-Napoca, Romania
| | - Călin Lazăr
- Emergency Children's Hospital, Cluj-Napoca, Romania
| | - Zeno Spârchez
- 3rd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Rednic
- Rheumatology Department, Emergency Clinical County Hospital, Cluj-Napoca, Romania
- Department of Rheumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
42
|
Mørk N, Kofod-Olsen E, Sørensen KB, Bach E, Ørntoft TF, Østergaard L, Paludan SR, Christiansen M, Mogensen TH. Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis. Genes Immun 2015; 16:552-66. [PMID: 26513235 DOI: 10.1038/gene.2015.46] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022]
Abstract
Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon production downstream of Toll-like receptor (TLR)3. In the present study, we used whole-exome sequencing to investigate the genetic profile of 16 adult patients with a history of HSE. We identified novel mutations in IRF3, TYK2 and MAVS, molecules involved in generating innate antiviral immune responses, which have not previously been associated with HSE. Moreover, data revealed mutations in TLR3, TRIF, TBK1 and STAT1 known to be associated with HSE in children but not previously described in adults. All discovered mutations were heterozygous missense mutations, the majority of which were associated with significantly decreased antiviral responses to HSV-1 infection and/or the TLR3 agonist poly(I:C) in patient peripheral blood mononuclear cells compared with controls. Altogether, this study demonstrates novel mutations in the TLR3 signaling pathway in molecules previously identified in children, suggesting that impaired innate immunity to HSV-1 may also increase susceptibility to HSE in adults. Importantly, the identification of mutations in innate signaling molecules not directly involved in TLR3 signaling suggests the existence of innate immunodeficiencies predisposing to HSE beyond the TLR3 pathway.
Collapse
Affiliation(s)
- N Mørk
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - E Kofod-Olsen
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - K B Sørensen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - E Bach
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - T F Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - L Østergaard
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark.,International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - S R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - M Christiansen
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - T H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark.,International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
43
|
Pérez de Diego R, Sánchez-Ramón S, López-Collazo E, Martínez-Barricarte R, Cubillos-Zapata C, Ferreira Cerdán A, Casanova JL, Puel A. Genetic errors of the human caspase recruitment domain-B-cell lymphoma 10-mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity. J Allergy Clin Immunol 2015; 136:1139-49. [PMID: 26277595 DOI: 10.1016/j.jaci.2015.06.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022]
Abstract
Three members of the caspase recruitment domain (CARD) family of adaptors (CARD9, CARD10, and CARD11) are known to form heterotrimers with B-cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1). These 3 CARD-BCL10-MALT1 (CBM) complexes activate nuclear factor κB in both the innate and adaptive arms of immunity. Human inherited defects of the 3 components of the CBM complex, including the 2 adaptors CARD9 and CARD11 and the 2 core components BCL10 and MALT1, have recently been reported. Biallelic loss-of-function mutant alleles underlie several different immunologic and clinical phenotypes, which can be assigned to 2 distinct categories. Isolated invasive fungal infections of unclear cellular basis are associated with CARD9 deficiency, whereas a broad range of clinical manifestations, including those characteristic of T- and B-lymphocyte defects, are associated with CARD11, MALT1, and BCL10 deficiencies. Interestingly, human subjects with these mutations have some features in common with the corresponding knockout mice, but other features are different between human subjects and mice. Moreover, germline and somatic gain-of-function mutations of MALT1, BCL10, and CARD11 have also been found in patients with other lymphoproliferative disorders. This broad range of germline and somatic CBM lesions, including loss-of-function and gain-of-function mutations, highlights the contribution of each of the components of the CBM complex to human immunity.
Collapse
Affiliation(s)
- Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain.
| | | | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Laboratory of Tumor Immunology, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Rubén Martínez-Barricarte
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Laboratory of Tumor Immunology, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | | | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University Paris Descartes, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University Paris Descartes, Imagine Institute, Paris, France
| |
Collapse
|
44
|
Andersen LL, Mørk N, Reinert LS, Kofod-Olsen E, Narita R, Jørgensen SE, Skipper KA, Höning K, Gad HH, Østergaard L, Ørntoft TF, Hornung V, Paludan SR, Mikkelsen JG, Fujita T, Christiansen M, Hartmann R, Mogensen TH. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. ACTA ACUST UNITED AC 2015. [PMID: 26216125 PMCID: PMC4548062 DOI: 10.1084/jem.20142274] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon (IFN) production downstream of Toll-like receptor 3. Here, we describe a novel genetic etiology of HSE by identifying a heterozygous loss-of-function mutation in the IFN regulatory factor 3 (IRF3) gene, leading to autosomal dominant (AD) IRF3 deficiency by haploinsufficiency, in an adolescent female patient with HSE. IRF3 is activated by most pattern recognition receptors recognizing viral infections and plays an essential role in induction of type I IFN. The identified IRF3 R285Q amino acid substitution results in impaired IFN responses to HSV-1 infection and particularly impairs signaling through the TLR3-TRIF pathway. In addition, the R285Q mutant of IRF3 fails to become phosphorylated at S386 and undergo dimerization, and thus has impaired ability to activate transcription. Finally, transduction with WT IRF3 rescues the ability of patient fibroblasts to express IFN in response to HSV-1 infection. The identification of IRF3 deficiency in HSE provides the first description of a defect in an IFN-regulating transcription factor conferring increased susceptibility to a viral infection in the CNS in humans.
Collapse
Affiliation(s)
- Line Lykke Andersen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Nanna Mørk
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Line S Reinert
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Emil Kofod-Olsen
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Ryo Narita
- Department of Molecular Genetics, Kyoto University, Kyoto 606-8507, Japan
| | - Sofie E Jørgensen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Kristian A Skipper
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Klara Höning
- Department of Molecular Medicine, University of Bonn, 53113 Bonn, Germany
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Torben F Ørntoft
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Veit Hornung
- Department of Molecular Medicine, University of Bonn, 53113 Bonn, Germany
| | - Søren R Paludan
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Takashi Fujita
- Department of Molecular Genetics, Kyoto University, Kyoto 606-8507, Japan
| | - Mette Christiansen
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Trine H Mogensen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| |
Collapse
|
45
|
Abstract
BACKGROUND Scleroma is a rare, chronic, granulomatous infectious disease of the respiratory tract mucosa which begins in the nose and spreads to the respiratory tract and adjoining structures. We report on the extensions and the management of 134 cases of scleroma in the Highlands region of Papua New Guinea. METHODS The charts and treatment records of 134 scleroma cases were retrospectively reviewed from 1995 to 2013. The staging, extensions, treatment and results of treatment were reviewed and analysed. RESULTS Of the 134 cases, 72 (53.7%) were females and the age ranged from 6 to 65 years. The disease was confined to the nose and nasopharynx in 71 (53.0%) cases. Extension of the disease from the nose to the Eustachian tube occurred in nine (6.7%) cases and into the middle ear in four (3.0%) cases. Further extensions to the larynx and trachea were seen in 17 (12.7%) cases each and the bronchus in three (2.2%) cases. Primary laryngoscleroma without involvement of the nose and nasopharyngeal stenosis without laryngeal involvement were managed in 11 (8.2%) and nine (6.7%) cases respectively. Others cases treated were ethmoid scleroma with proptosis and scleroma involving the upper lip in one (0.75%) case each. Ninety-nine (74.9%) patients were treated medically while 35 (26.1%) patients required surgery. Cure were achieved in 83 (61.9%) cases treated medically and 26 (19.4%) had successful surgical outcome. CONCLUSION Scleroma begins in the nose and when not arrested, extends causing obstruction to the airway and cosmetic deformity which requires surgical intervention.
Collapse
Affiliation(s)
- Charles P Molumi
- Department of Ear, Nose and Throat, Port Moresby General Hospital, Boroko, Papua New Guinea
| | - Siba P Dubey
- Department of Ear, Nose and Throat, Port Moresby General Hospital, Boroko, Papua New Guinea.,School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| |
Collapse
|
46
|
Moutsopoulos NM, Lionakis MS, Hajishengallis G. Inborn errors in immunity: unique natural models to dissect oral immunity. J Dent Res 2015; 94:753-8. [PMID: 25900229 DOI: 10.1177/0022034515583533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years, the study of genetic defects arising from inborn errors in immunity has resulted in the discovery of new genes involved in the function of the immune system and in the elucidation of the roles of known genes whose importance was previously unappreciated. With the recent explosion in the field of genomics and the increasing number of genetic defects identified, the study of naturally occurring mutations has become a powerful tool for gaining mechanistic insight into the functions of the human immune system. In this concise perspective, we discuss emerging evidence that inborn errors in immunity constitute real-life models that are indispensable both for the in-depth understanding of human biology and for obtaining critical insights into common diseases, such as those affecting oral health. In the field of oral mucosal immunity, through the study of patients with select gene disruptions, the interleukin-17 (IL-17) pathway has emerged as a critical element in oral immune surveillance and susceptibility to inflammatory disease, with disruptions in the IL-17 axis now strongly linked to mucosal fungal susceptibility, whereas overactivation of the same pathways is linked to inflammatory periodontitis.
Collapse
Affiliation(s)
- N M Moutsopoulos
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - M S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - G Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
47
|
Frecha C, Chevalier SA, van Uden P, Rubio I, Siouda M, Saidj D, Cohen C, Lomonte P, Accardi R, Tommasino M. Expression of the epidermodysplasia verruciformis-associated genes EVER1 and EVER2 is activated by exogenous DNA and inhibited by LMP1 oncoprotein from Epstein-Barr virus. J Virol 2015; 89:1461-7. [PMID: 25378492 PMCID: PMC4300658 DOI: 10.1128/jvi.02936-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/29/2014] [Indexed: 12/31/2022] Open
Abstract
EVER1 and EVER2 are mutated in epidermodysplasia verruciformis patients, who are susceptible to human betapapillomavirus (HPV) infection. It is unknown whether their products control the infection of other viruses. Here, we show that the expression of both genes in B cells is activated immediately after Epstein-Barr virus (EBV) infection, whereas at later stages, it is strongly repressed via activation of the NF-κB signaling pathway by latent membrane protein 1 (LMP1). Ectopic expression of EVER1 impairs the ability of EBV to infect B cells.
Collapse
Affiliation(s)
- Cecilia Frecha
- Section of Infections, Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Sébastien A Chevalier
- Section of Infections, Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Patrick van Uden
- Section of Infections, Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Ivonne Rubio
- Section of Infections, Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Maha Siouda
- Section of Infections, Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Djamel Saidj
- Section of Infections, Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Camille Cohen
- Virus & Centromère Team, Centre de Génétique et Physiologie Moléculaire et Cellulaire, CNRS, UMR5534, Lyon, France Université de Lyon 1, Lyon, France Laboratoire d'Excellence, LabEX DEVweCAN, Lyon, France
| | - Patrick Lomonte
- Virus & Centromère Team, Centre de Génétique et Physiologie Moléculaire et Cellulaire, CNRS, UMR5534, Lyon, France Université de Lyon 1, Lyon, France Laboratoire d'Excellence, LabEX DEVweCAN, Lyon, France
| | - Rosita Accardi
- Section of Infections, Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Massimo Tommasino
- Section of Infections, Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW This review highlights the recent identification of human interleukin-21 (IL-21) and interleukin-21 receptor (IL-21R) deficiencies as novel entities of primary immunodeficiency. RECENT FINDINGS We recently described the first patients with IL-21R deficiency who had cryptosporidial infections associated with chronic cholangitis and liver disease. All IL-21R-deficient patients suffered from recurrent respiratory tract infections. Immunological work-up revealed impaired B cell proliferation and immunoglobulin class-switch, reduced T cell effector functions, and variable natural killer cell dysfunctions. Recently, these findings have been extended by the discovery of one patient with a mutation in the IL21 gene. This patient predominantly manifested with very early onset inflammatory bowel disease and recurrent respiratory infections. Laboratory examination showed reduced circulating B cells and impaired B cell class-switch. SUMMARY Human IL-21 and IL-21R deficiencies cause severe, primary immunodeficiency reminiscent of common variable immunodeficiency. Early diagnosis is critical to prevent life-threatening complications, such as secondary liver failure. In view of the critical role of IL-21 in controlling immune homeostasis, early hematopoietic stem cell transplantation might be considered as therapeutic intervention in affected children.
Collapse
|
49
|
Abstract
Primary immunodeficiencies (PID) are a group of rare inherited disorders that manifest as heightened susceptibility to infection, autoimmunity and/or malignancy. By exploring their genetic and cellular aetiology, we can learn much about the basis of pathogen-specific immunity in humans. This is exemplified by mycobacterial susceptibility, which occurs across several types of PID, either as an isolated problem or as part of a broader pattern of susceptibility to infection. These experiments of nature have contributed to our understanding of the central role of T cells in activating infected macrophages to eliminate phagosomal mycobacteria through mutually activating, cytokine-dependent interactions. In recent years, the discovery of novel forms of PID has emphasised the important role of dendritic cells and monocytes in mycobacterial defence in humans. Here, we provide a brief overview of these new disorders alongside other genetic causes of susceptibility to mycobacterial disease.
Collapse
Affiliation(s)
- Christopher J A Duncan
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK, and Great North Children's Hospital, Newcastle-upon-Tyne, UK
| | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK, and Department of Infection and Tropical Medicine Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| |
Collapse
|
50
|
Torres JM, Martinez-Barricarte R, García-Gómez S, Mazariegos MS, Itan Y, Boisson B, Rholvarez R, Jiménez-Reinoso A, del Pino L, Rodríguez-Pena R, Ferreira A, Hernández-Jiménez E, Toledano V, Cubillos-Zapata C, Díaz-Almirón M, López-Collazo E, Unzueta-Roch JL, Sánchez-Ramón S, Regueiro JR, López-Granados E, Casanova JL, Pérez de Diego R. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J Clin Invest 2014; 124:5239-48. [PMID: 25365219 DOI: 10.1172/jci77493] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022] Open
Abstract
Heterotrimers composed of B cell CLL/lymphoma 10 (BCL10), mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), and caspase recruitment domain-containing (CARD) family adaptors play a role in NF-κB activation and have been shown to be involved in both the innate and the adaptive arms of immunity in murine models. Moreover, individuals with inherited defects of MALT1, CARD9, and CARD11 present with immunological and clinical phenotypes. Here, we characterized a case of autosomal-recessive, complete BCL10 deficiency in a child with a broad immunodeficiency, including defects of both hematopoietic and nonhematopoietic immunity. The patient died at 3 years of age and was homozygous for a loss-of-expression, loss-of-function BCL10 mutation. The effect of BCL10 deficiency was dependent on the signaling pathway, and, for some pathways, the cell type affected. Despite the noted similarities to BCL10 deficiency in mice, including a deficient adaptive immune response, human BCL10 deficiency in this patient resulted in a number of specific features within cell populations. Treatment of the patient's myeloid cells with a variety of pathogen-associated molecular pattern molecules (PAMPs) elicited a normal response; however, NF-κB-mediated fibroblast functions were dramatically impaired. The results of this study indicate that inherited BCL10 deficiency should be considered in patients with combined immunodeficiency with B cell, T cell, and fibroblast defects.
Collapse
|