1
|
Quintana TA, Brewer MT, Chelladurai JRJ. Transcriptional responses to in vitro macrocyclic lactone exposure in Toxocara canis larvae using RNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629602. [PMID: 39763735 PMCID: PMC11702694 DOI: 10.1101/2024.12.20.629602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Toxocara canis, the causative agent of zoonotic toxocariasis in humans, is a parasitic roundworm of canids with a complex lifecycle. While macrocyclic lactones (MLs) are successful at treating adult T. canis infections when used at FDA-approved doses in dogs, they fail to kill somatic third-stage larvae. In this study, we profiled the transcriptome of third-stage larvae derived from larvated eggs and treated in vitro with 10 μM of the MLs - ivermectin and moxidectin with Illumina sequencing. We analyzed transcriptional changes in comparison with untreated control larvae. In ivermectin-treated larvae, we identified 608 differentially expressed genes (DEGs), of which 453 were upregulated and 155 were downregulated. In moxidectin-treated larvae, we identified 1,413 DEGs, of which 902 were upregulated and 511 were downregulated. Notably, many DEGs were involved in critical biological processes and pathways including transcriptional regulation, energy metabolism, neuronal structure and function, physiological processes such as reproduction, excretory/secretory molecule production, host-parasite response mechanisms, and parasite elimination. We also assessed the expression of known ML targets and transporters, including glutamate-gated chloride channels (GluCls), and ATP-binding cassette (ABC) transporters, subfamily B, with a particular focus on P-glycoproteins (P-gps). We present gene names for previously uncharacterized T. canis GluCl genes using phylogenetic analysis of nematode orthologs to provide uniform gene nomenclature. Our study revealed that the expression of Tca-glc-3 and six ABCB genes, particularly four P-gps, were significantly altered in response to ML treatment. Compared to controls, Tca-glc-3, Tca-Pgp-11.2, and Tca-Pgp-13.2 were downregulated in ivermectin-treated larvae, while Tca-abcb1, Tca-abcb7, Tca-Pgp-11.2, and Tca-Pgp-13.2 were downregulated in moxidectin-treated larvae. Conversely, Tca-abcb9.1 and Tca-Pgp-11.3 were upregulated in moxidectin-treated larvae. These findings suggest that MLs broadly impact transcriptional regulation in T. canis larvae.
Collapse
Affiliation(s)
- Theresa A Quintana
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Matthew T Brewer
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Jeba R Jesudoss Chelladurai
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| |
Collapse
|
2
|
Campos TL, Korhonen PK, Young ND, Chang BC, Gasser RB. Inference of essential genes in Brugia malayi and Onchocerca volvulus by machine learning and the implications for discovering new interventions. Comput Struct Biotechnol J 2024; 23:3081-3089. [PMID: 39185442 PMCID: PMC11342751 DOI: 10.1016/j.csbj.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
Detailed explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster (vinegar fly) have substantially improved our knowledge and understanding of biological processes and pathways in metazoan organisms. Extensive functional genomic and multi-omic data sets have enabled the discovery and characterisation of 'essential' genes that are critical for the survival of these organisms. Recently, we showed that a machine learning (ML)-based pipeline could be utilised to predict essential genes in both C. elegans and D. melanogaster using features from DNA, RNA, protein and/or cellular data or associated information. As these distantly-related species are within the Ecdysozoa, we hypothesised that this approach could be suited for non-model organisms within the same group (phylum) of protostome animals. In the present investigation, we cross-predicted essential genes within the phylum Nematoda - between C. elegans and the parasitic filarial nematodes Brugia malayi and Onchocerca volvulus, and then ranked and prioritised these genes. Highly ranked genes were linked to key biological pathways or processes, such as ribosome biogenesis, translation and RNA processing, and were expressed at relatively high levels in the germline, gonad, hypodermis and/or nerves. The present in silico workflow is hoped to expedite the identification of drug targets in parasitic organisms for subsequent experimental validation in the laboratory.
Collapse
Affiliation(s)
- Túlio L. Campos
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fiocruz., Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE CEP 50740–465, Brazil
| | - Pasi K. Korhonen
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Bouvarel L, Liu D, Zheng C. Visualizing genomic evolution in Caenorhabditis through WormSynteny. BMC Genomics 2024; 25:1009. [PMID: 39468698 PMCID: PMC11520455 DOI: 10.1186/s12864-024-10919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Understanding the syntenic relationships among genomes is crucial to elucidate the genomic mechanisms that drive the evolution of species. The nematode Caenorhabditis is a good model for studying genomic evolution due to the well-established biology of Caenorhabditis elegans and the availability of > 50 genomes in the genus. However, effective alignment of more than ten species in Caenorhabditis has not been conducted before, and there is currently no tool to visualize the synteny of more than two species. In this study, we used Progressive Cactus, a recently developed multigenome aligner, to align the genomes of eleven Caenorhabditis species. Through the progressive alignment, we reconstructed nine ancestral genomes, analyzed the mutational types that cause genomic rearrangement during speciation, and found that insertion and duplication are the major driving forces for genome expansion. Dioecious species appear to expand their genomes more than androdioecious species. We then built an online interactive app called WormSynteny to visualize the syntenic relationship among the eleven species. Users can search the alignment dataset using C. elegans query sequences, construct synteny plots at different genomic scales, and use a set of options to control alignment output and plot presentation. We showcased the use of WormSynteny to visualize the syntenic conservation of one-to-one orthologues among species, tandem and dispersed gene duplication in C. elegans, and the evolution of exon and intron structures. Importantly, the integration of orthogroup information with synteny linkage in WormSynteny allows the easy visualization of conserved genomic blocks and disruptive rearrangement. In conclusion, WormSynteny provides immediate access to the syntenic relationships among the most widely used Caenorhabditis species and can facilitate numerous comparative genomics studies. This pilot study with eleven species also serves as a proof-of-concept to a more comprehensive larger-scale analysis using hundreds of nematode genomes, which is expected to reveal mechanisms that drive genomic evolution in the Nematoda phylum. Finally, the WormSynteny software provides a generalizable solution for visualizing the output of Progressive Cactus with interactive graphics, which would be useful for a broad community of genome researchers.
Collapse
Affiliation(s)
- Lilly Bouvarel
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Dongyao Liu
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Golinelli L, Geens E, Irvine A, McCoy CJ, Vandewyer E, Atkinson LE, Mousley A, Temmerman L, Beets I. Global analysis of neuropeptide receptor conservation across phylum Nematoda. BMC Biol 2024; 22:223. [PMID: 39379997 PMCID: PMC11462694 DOI: 10.1186/s12915-024-02017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The phylum Nematoda is incredibly diverse and includes many parasites of humans, livestock, and plants. Peptide-activated G protein-coupled receptors (GPCRs) are central to the regulation of physiology and numerous behaviors, and they represent appealing pharmacological targets for parasite control. Efforts are ongoing to characterize the functions and define the ligands of nematode GPCRs, with already most peptide GPCRs known or predicted in Caenorhabditis elegans. However, comparative analyses of peptide GPCR conservation between C. elegans and other nematode species are limited, and many nematode GPCRs remain orphan. A phylum-wide perspective on peptide GPCR profiles will benefit functional and applied studies of nematode peptide GPCRs. RESULTS We constructed a pan-phylum resource of C. elegans peptide GPCR orthologs in 125 nematode species using a semi-automated pipeline for analysis of predicted proteome datasets. The peptide GPCR profile varies between nematode species of different phylogenetic clades and multiple C. elegans peptide GPCRs have orthologs across the phylum Nematoda. We identified peptide ligands for two highly conserved orphan receptors, NPR-9 and NPR-16, that belong to the bilaterian galanin/allatostatin A (Gal/AstA) and somatostatin/allatostatin C (SST/AstC) receptor families. The AstA-like NLP-1 peptides activate NPR-9 in cultured cells and are cognate ligands of this receptor in vivo. In addition, we discovered an AstC-type peptide, NLP-99, that activates the AstC-type receptor NPR-16. In our pan-phylum resource, the phylum-wide representation of NPR-9 and NPR-16 resembles that of their cognate ligands more than those of allatostatin-like peptides that do not activate these receptors. CONCLUSIONS The repertoire of C. elegans peptide GPCR orthologs varies across phylogenetic clades and several peptide GPCRs show broad conservation in the phylum Nematoda. Our work functionally characterizes the conserved receptors NPR-9 and NPR-16 as the respective GPCRs for the AstA-like NLP-1 peptides and the AstC-related peptide NLP-99. NLP-1 and NLP-99 are widely conserved in nematodes and their representation matches that of their receptor in most species. These findings demonstrate the conservation of a functional Gal/AstA and SST/AstC signaling system in nematodes. Our dataset of C. elegans peptide GPCR orthologs also lays a foundation for further functional studies of peptide GPCRs in the widely diverse nematode phylum.
Collapse
Affiliation(s)
- Luca Golinelli
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Allister Irvine
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Ciaran J McCoy
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Elke Vandewyer
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Louise E Atkinson
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Du Z, Tong D, Chen X, Wu F, Jiang S, Zhang J, Yang Y, Wang R, Gantuya S, Davaajargal T, Lkhagvatseren S, Batsukh Z, Du A, Ma G. Genome-wide RNA interference of the nhr gene family in barber's pole worm identified members crucial for larval viability in vitro. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105609. [PMID: 38806077 DOI: 10.1016/j.meegid.2024.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Nuclear hormone receptors (NHRs) are emerging target candidates against nematode infection and resistance. However, there is a lack of comprehensive information on NHR-coding genes in parasitic nematodes. In this study, we curated the nhr gene family for 60 major parasitic nematodes from humans and animals. Compared with the free-living model organism Caenorhabditis elegans, a remarkable contraction of the nhr family was revealed in parasitic species, with genetic diversification and conservation unveiled among nematode Clades I (10-13), III (16-42), IV (33-35) and V (25-64). Using an in vitro biosystem, we demonstrated that 40 nhr genes in a blood-feeding nematode Haemonchus contortus (clade V; barber's pole worm) were responsive to host serum and one nhr gene (i.e., nhr-64) was consistently stimulated by anthelmintics (i.e., ivermectin, thiabendazole and levamisole); Using a high-throughput RNA interference platform, we knocked down 43 nhr genes of H. contortus and identified at least two genes that are required for the viability (i.e., nhr-105) and development (i.e., nhr-17) of the infective larvae of this parasitic nematode in vitro. Harnessing this preliminary functional atlas of nhr genes for H. contortus will prime the biological studies of this gene family in nematode genetics, infection, and anthelmintic metabolism within host animals, as well as the promising discovery of novel intervention targets.
Collapse
Affiliation(s)
- Zhendong Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Danni Tong
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Shengjun Jiang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jingju Zhang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Sambuu Gantuya
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Tserennyam Davaajargal
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Sukhbaatar Lkhagvatseren
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia.
| | - Zayat Batsukh
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia.
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
6
|
Choi YJ, Fischer K, Méité A, Koudou BG, Fischer PU, Mitreva M. Distinguishing recrudescence from reinfection in lymphatic filariasis. EBioMedicine 2024; 105:105188. [PMID: 38848649 PMCID: PMC11200287 DOI: 10.1016/j.ebiom.2024.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The Global Program to Eliminate Lymphatic Filariasis (GPELF) is the largest public health program based on mass drug administration (MDA). Despite decades of MDA, ongoing transmission in some countries remains a challenge. To optimise interventions, it is critical to differentiate between recrudescence and new infections. Since adult filariae are inaccessible in humans, deriving a method that relies on the offspring microfilariae (mf) is necessary. METHODS We developed a genome amplification and kinship analysis-based approach using Brugia malayi samples from gerbils, and applied it to analyse Wuchereria bancrofti mf from humans in Côte d'Ivoire. We examined the pre-treatment genetic diversity in 269 mf collected from 18 participants, and further analysed 1-year post-treatment samples of 74 mf from 4 participants. Hemizygosity of the male X-chromosome allowed for direct inference of haplotypes, facilitating robust maternal parentage inference. To enrich parasite DNA from samples contaminated with host DNA, a whole-exome capture panel was created for W. bancrofti. FINDINGS By reconstructing and temporally tracking sibling relationships across pre- and post-treatment samples, we differentiated between new and established maternal families, suggesting reinfection in one participant and recrudescence in three participants. The estimated number of reproductively active adult females ranged between 3 and 11 in the studied participants. Population structure analysis revealed genetically distinct parasites in Côte d'Ivoire compared to samples from other countries. Exome capture identified protein-coding variants with ∼95% genotype concordance rate. INTERPRETATION We have generated resources to facilitate the development of molecular genetic tools that can estimate adult worm burdens and monitor parasite populations, thus providing essential information for the successful implementation of GPELF. FUNDING This work was financially supported by the Bill and Melinda Gates Foundation (https://www.gatesfoundation.org) under grant OPP1201530 (Co-PIs PUF & Gary J. Weil). B. malayi parasite material was generated with support of the Foundation for Barnes Jewish Hospital (PUF). In addition, the development of computational methods was supported by the National Institutes of Health under grants AI144161 (MM) and AI146353 (MM). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Young-Jun Choi
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kerstin Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aboulaye Méité
- Programme National de la Lutte Contre la Schistosomiase, Les Geohelminthiases et la Filariose Lymphatique, Abidjan, Côte d'Ivoire
| | - Benjamin G Koudou
- Centre Suisse de Recherche Scientifique en Côte d'Ivoire, Abidjan, Côte d'Ivoire; Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Peter U Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
Watson KJ, Bromley RE, Sparklin BC, Gasser MT, Bhattacharya T, Lebov JF, Tyson T, Dai N, Teigen LE, Graf KT, Foster JM, Michalski M, Bruno VM, Lindsey AR, Corrêa IR, Hardy RW, Newton IL, Dunning Hotopp JC. Common analysis of direct RNA sequencinG CUrrently leads to misidentification of m 5C at GCU motifs. Life Sci Alliance 2024; 7:e202302201. [PMID: 38030223 PMCID: PMC10687253 DOI: 10.26508/lsa.202302201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
RNA modifications, such as methylation, can be detected with Oxford Nanopore Technologies direct RNA sequencing. One commonly used tool for detecting 5-methylcytosine (m5C) modifications is Tombo, which uses an "Alternative Model" to detect putative modifications from a single sample. We examined direct RNA sequencing data from diverse taxa including viruses, bacteria, fungi, and animals. The algorithm consistently identified a m5C at the central position of a GCU motif. However, it also identified a m5C in the same motif in fully unmodified in vitro transcribed RNA, suggesting that this is a frequent false prediction. In the absence of further validation, several published predictions of m5C in a GCU context should be reconsidered, including those from human coronavirus and human cerebral organoid samples.
Collapse
Affiliation(s)
- Kaylee J Watson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robin E Bromley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Benjamin C Sparklin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark T Gasser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jarrett F Lebov
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tyonna Tyson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nan Dai
- New England Biolabs, Ipswich, MA, USA
| | - Laura E Teigen
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Karen T Graf
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Michelle Michalski
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Richard W Hardy
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Irene Lg Newton
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
9
|
Mitra I, Bhattacharya A, Paul J, Anisuzzaman. Present status with impacts and roles of miRNA on Soil Transmitted Helminthiosis control: A review. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100162. [PMID: 37520661 PMCID: PMC10371793 DOI: 10.1016/j.crphar.2023.100162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Soil-Transmitted Helminthiasis (STH) is one of the most widespread Neglected Tropical Diseases (NTDs), and almost 1.5 billion of the global population is affected, mostly in the indigent, countryside sectors of tropics/subtropics. STH, commonly caused by various nematodes, adversely affects the hosts' growth, cognatic development, and immunity. Albendazole is most commonly used against STH (Soil-Transmitted Helminths) but resistance has already been reported in different countries. To date, no effective vaccine is present against STH. miRNAs are a unique class of small non-coding RNA, regulating various biological activities indulging host immune responses in host-pathogen interaction of STH. Dysregulation of miRNAs are being considered as one of the most important aspect of host-parasite interactions. Thus, it is the prime importance to identify and characterize parasite-specific as well as host-derived miRNAs to understand the STH infection at the molecular level. Systematic bibliometric analysis reveals a huge knowledge gap in understanding the disease by using both host and parasitic miRNAs as a potential biomarker. In this study, we addressed the present status of the STH prevalence, and therapy under the light of miRNAs. This would further help in designing new inhibitors and therapeutic strategies to control STH.
Collapse
Affiliation(s)
- Imon Mitra
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Arijit Bhattacharya
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Joydeep Paul
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Anisuzzaman
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
10
|
Loghry HJ, Kwon H, Smith RC, Sondjaja NA, Minkler SJ, Young S, Wheeler NJ, Zamanian M, Bartholomay LC, Kimber MJ. Extracellular vesicles secreted by Brugia malayi microfilariae modulate the melanization pathway in the mosquito host. Sci Rep 2023; 13:8778. [PMID: 37258694 PMCID: PMC10232515 DOI: 10.1038/s41598-023-35940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Vector-borne, filarial nematode diseases cause significant disease burdens in humans and domestic animals worldwide. Although there is strong direct evidence of parasite-driven immunomodulation of mammalian host responses, there is less evidence of parasite immunomodulation of the vector host. We have previously reported that all life stages of Brugia malayi, a filarial nematode and causative agent of Lymphatic filariasis, secrete extracellular vesicles (EVs). Here we investigate the immunomodulatory effects of microfilariae-derived EVs on the vector host Aedes aegypti. RNA-seq analysis of an Ae. aegypti cell line treated with B. malayi microfilariae EVs showed differential expression of both mRNAs and miRNAs. AAEL002590, an Ae. aegypti gene encoding a serine protease, was shown to be downregulated when cells were treated with biologically relevant EV concentrations in vitro. Injection of adult female mosquitoes with biologically relevant concentrations of EVs validated these results in vivo, recapitulating the downregulation of AAEL002590 transcript. This gene was predicted to be involved in the mosquito phenoloxidase (PO) cascade leading to the canonical melanization response and correspondingly, both suppression of this gene using RNAi and parasite EV treatment reduced PO activity in vivo. Our data indicate that parasite-derived EVs interfere with critical immune responses in the vector host, including melanization.
Collapse
Affiliation(s)
- Hannah J Loghry
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Hyeogsun Kwon
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Ryan C Smith
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Noelle A Sondjaja
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sarah J Minkler
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sophie Young
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Nicolas J Wheeler
- Department of Biology, College of Arts and Sciences, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
11
|
Johnson LC, Vo AA, Clancy JC, Myles KM, Pooranachithra M, Aguilera J, Levenson MT, Wohlenberg C, Rechtsteiner A, Ragle JM, Chisholm AD, Ward JD. NHR-23 activity is necessary for C. elegans developmental progression and apical extracellular matrix structure and function. Development 2023; 150:dev201085. [PMID: 37129010 PMCID: PMC10233720 DOI: 10.1242/dev.201085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.
Collapse
Affiliation(s)
- Londen C. Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John C. Clancy
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Krista M. Myles
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Aguilera
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max T. Levenson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chloe Wohlenberg
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
12
|
Watson KJ, Bromley RE, Sparklin BC, Gasser MT, Bhattacharya T, Lebov JF, Tyson T, Teigen LE, Graf KT, Michalski M, Bruno VM, Lindsey ARI, Hardy RW, Newton ILG, Hotopp JCD. Common Analysis of Direct RNA SequencinG CUrrently Leads to Misidentification of 5-Methylcytosine Modifications at GCU Motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539298. [PMID: 37205495 PMCID: PMC10187288 DOI: 10.1101/2023.05.03.539298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
RNA modifications, such as méthylation, can be detected with Oxford Nanopore Technologies direct RNA sequencing. One commonly used tool for detecting 5-methylcytosine (m5C) modifications is Tombo, which uses an "Alternative Model" to detect putative modifications from a single sample. We examined direct RNA sequencing data from diverse taxa including virus, bacteria, fungi, and animals. The algorithm consistently identified a 5-methylcytosine at the central position of a GCU motif. However, it also identified a 5-methylcytosine in the same motif in fully unmodified in vitro transcribed RNA, suggesting that this a frequent false prediction. In the absence of further validation, several published predictions of 5-methylcytosine in human coronavirus and human cerebral organoid RNA in a GCU context should be reconsidered.
Collapse
Affiliation(s)
- Kaylee J. Watson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Robin E. Bromley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Benjamin C. Sparklin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mark T. Gasser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Jarrett F. Lebov
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tyonna Tyson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laura E. Teigen
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Karen T. Graf
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michelle Michalski
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Vincent M. Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Biney C, Graham GE, Asiedu E, Sakyi SA, Kwarteng A. Wolbachia Ferrochelatase as a potential drug target against filarial infections. J Mol Graph Model 2023; 122:108490. [PMID: 37121168 DOI: 10.1016/j.jmgm.2023.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
Filarial infections are among the world's most disturbing diseases caused by 3 major parasitic worms; Onchocerca volvulus, Wuchereria bancrofti, and Brugia malayi, affecting more than 500 million people worldwide. Currently used drugs for mass drug administration (MDA) have been met with several challenges including the development of complications in individuals with filaria co-infections and parasitic drug resistance. The filarial endosymbiont, Wolbachia, has emerged as an attractive therapeutic target for filariasis elimination, due to the dependence of the filaria on this endosymbiont for survival. Here, we target an important enzyme in the Wolbachia heme biosynthetic pathway (ferrochelatase), using high-throughput virtual screening and molecular dynamics with MM-PBSA calculations. We identified four drug candidates; Nilotinib, Ledipasvir, 3-benzhydryloxy-8-methyl-8-azabicyclo[3.2.1]octane, and 2-(4-Amino-piperidin-1-yl)-ethanol as potential small molecules inhibitors as they could compete with the enzyme's natural substrate (Protoporphyrin IX) for active pocket binding. This prevents the worm from receiving the heme molecule from Wolbachia for their growth and survival, resulting in their death. This study which involved targeting enzymes in biosynthetic pathways of the parasitic worms' endosymbiont (Wolbachia), has proven to be an alternative therapeutic option leading to the discovery of new drugs, which will help facilitate the elimination of parasitic infections.
Collapse
Affiliation(s)
- Cephas Biney
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Grazia Edumaba Graham
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology, Ghana
| | - Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.
| |
Collapse
|
14
|
Sinha A, Li Z, Poole CB, Morgan RD, Ettwiller L, Lima NF, Ferreira MU, Fombad FF, Wanji S, Carlow CKS. Genomes of the human filarial parasites Mansonella perstans and Mansonella ozzardi. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1139343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The filarial parasites Mansonella ozzardi and Mansonella perstans, causative agents of mansonellosis, infect hundreds of millions of people worldwide, yet remain among the most understudied of the human filarial pathogens. M. ozzardi is highly prevalent in Latin American countries and Caribbean Islands, while M. perstans is predominantly found in sub-Saharan Africa as well as in a few areas in South America. In addition to the differences in their geographical distribution, the two parasites are transmitted by different insect vectors, as well as exhibit differences in their responses to commonly used anthelminthic drugs. The lack of genome information has hindered investigations into the biology and evolution of Mansonella parasites and understanding the molecular basis of the clinical differences between species. In the current study, high quality genomes of two independent clinical isolates of M. perstans from Cameroon and two M. ozzardi isolates one from Brazil and one from Venezuela are reported. The genomes are approximately 76 Mb in size, encode about 10,000 genes each, and are largely complete based on BUSCO scores of about 90%, similar to other completed filarial genomes. These sequences represent the first genomes from Mansonella parasites and enabled a comparative genomic analysis of the similarities and differences between Mansonella and other filarial parasites. Horizontal DNA transfers (HDT) from mitochondria (nuMTs) as well as transfers from genomes of endosymbiotic Wolbachia bacteria (nuWTs) to the host nuclear genome were identified and analyzed. Sequence comparisons and phylogenetic analysis of known targets of anti-filarial drugs diethylcarbamazine (DEC), ivermectin and mebendazole revealed that all known target genes were present in both species, except for the DEC target encoded by gon-2 gene, which is fragmented in genome assemblies from both M. ozzardi isolates. These new reference genome sequences will provide a valuable resource for further studies on biology, symbiosis, evolution and drug discovery.
Collapse
|
15
|
Karpova EK, Bobrovskikh MA, Deryuzhenko MA, Shishkina OD, Gruntenko NE. Wolbachia Effect on Drosophila melanogaster Lipid and Carbohydrate Metabolism. INSECTS 2023; 14:357. [PMID: 37103172 PMCID: PMC10143037 DOI: 10.3390/insects14040357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The effect of maternally inherited endosymbiotic bacteria Wolbachia on triglyceride and carbohydrate metabolism, starvation resistance and feeding behavior of Drosophila melanogaster females was studied. Eight D. melanogaster lines of the same nuclear background were investigated; one had no infection and served as the control, and seven others were infected with different Wolbachia strains pertaining to wMel and wMelCS groups of genotypes. Most of the infected lines had a higher overall lipid content and triglyceride level than the control line and their expression of the bmm gene regulating triglyceride catabolism was reduced. The glucose content was higher in the infected lines compared to that in the control, while their trehalose levels were similar. It was also found that the Wolbachia infection reduced the level of tps1 gene expression (coding for enzyme for trehalose synthesis from glucose) and had no effect on treh gene expression (coding for trehalose degradation enzyme). The infected lines exhibited lower appetite but higher survival under starvation compared to the control. The data obtained may indicate that Wolbachia foster their hosts' energy exchange through increasing its lipid storage and glucose content to ensure the host's competitive advantage over uninfected individuals. The scheme of carbohydrate and lipid metabolism regulation under Wolbachia's influence was suggested.
Collapse
|
16
|
He L, Zhang HR, Di WD, Li FF, Wang CQ, Yang X, Liu XF, Hu M. A proteasomal β5 subunit of Haemonchus contortus with a role in the growth, development and life span. Parasit Vectors 2023; 16:100. [PMID: 36922877 PMCID: PMC10015785 DOI: 10.1186/s13071-023-05676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND The proteasome in eukaryotic cells can degrade a variety of proteins and plays an important role in regulating the cell cycle, cell survival and apoptosis. The proteasome receives much attention as a potential chemotherapeutic target for treatment of a variety of infectious parasitic diseases, but few studies of proteasomes have been done on parasitic nematodes. METHODS A proteasomal β5 subunit encoding gene (named Hc-pbs-5) and its inferred product (Hc-PBS-5) in Haemonchus contortus were identified and characterized in this study. Then, the transcriptional profiles and anatomical expression were studied using an integrated molecular approach. Finally, a specific proteasome inhibitor bortezomib (BTZ), together with RNA interference (RNAi), was employed to assess the function of Hc-PBS-5. RESULTS Bioinformatic analysis revealed that the coding sequence of Hc-pbs-5 was 855 bp long and encoded 284 amino acids (aa). The predicted protein (Hc-PBS-5) had core conservative sequences (65-250 aa) belonging to N-terminal nucleophile (Ntn) family of hydrolases. Real-time PCR results revealed that Hc-pbs-5 was continuously transcribed in eight developmental stages with higher levels at the infective third-stage larvae (L3s) and adult males of H. contortus. Immunohistochemical results revealed that Hc-PBS-5 was expressed in intestine, outer cuticle, muscle cells under the outer cuticle, cervical glands and seminal vesicles of male adults and also in intestine, outer cuticle, cervical glands, uterine wall, eggs and ovaries of female adults of H. contortus. BTZ could reduce proportions of egg hatching, and the fourth-stage larvae (L4s) developed from the exsheathed L3s (xL3s) of H. contortus. In addition, silencing Hc-pbs-5 by soaking the specific double-stranded RNA (dsRNA) could decrease the transcription of Hc-pbs-5 and result in fewer xL3s developing to L4s in vitro. CONCLUSIONS These results indicate that proteasomal β5 subunit plays an important role in the growth, development and life span of H. contortus.
Collapse
Affiliation(s)
- Li He
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.,Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Hong-Run Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Wen-Da Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Fang-Fang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Chun-Qun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xiao-Fang Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
17
|
Dai Q, Ding J, Cui X, Zhu Y, Chen H, Zhu L. Beyond bacteria: Reconstructing microorganism connections and deciphering the predicted mutualisms in mammalian gut metagenomes. Ecol Evol 2023; 13:e9829. [PMID: 36844675 PMCID: PMC9944162 DOI: 10.1002/ece3.9829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Numerous gut microbial studies have focused on bacteria. However, archaea, viruses, fungi, protists, and nematodes are also regular residents of the gut ecosystem. Little is known about the composition and potential interactions among these six kingdoms in the same samples. Here, we unraveled the complex connection among them using approximately 123 gut metagenomes from 42 mammalian species (including carnivores, omnivores, and herbivores). We observed high variation in bacterial and fungal families and relatively low variation in archaea, viruses, protists, and nematodes. We found that some fungi in the mammalian intestine might come from environmental sources (e.g., soil and dietary plants), and some might be native to the intestine (e.g., the occurrence of Neocallimastigomycetes). The Methanobacteriaceae and Plasmodiidae families (archaea and protozoa, respectively) were predominant in these metagenomes, whereas Onchocercidae and Trichuridae were the two most common nematodes, and Siphoviridae and Myoviridae the two most common virus families in these mammalian gut metagenomes. Interestingly, most of the pairwise co-occurrence patterns were significantly positive among these six kingdoms, and significantly negative networks mainly occurred between fungi and prokaryotes (both bacteria and archaea). Our study revealed some inconvenient characteristics in the mammalian gut microorganism ecosystem: (1) the community formed by members of the analyzed kingdoms reflects the life history of the host and the potential threat posed by pathogenic protists and nematodes in mammals; and (2) the networks suggest the existence of predicted mutualism among members of these six kingdoms and of the predicted competition, mainly among fungi and other kingdoms.
Collapse
Affiliation(s)
- Qinlong Dai
- Sichuan Liziping National Natural ReserveShimianChina
| | | | - Xinyuan Cui
- College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Yudong Zhu
- Sichuan Liziping National Natural ReserveShimianChina
| | - Hua Chen
- Mingke Biotechnology (Hangzhou) Co., Ltd.HangzhouChina
| | - Lifeng Zhu
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
18
|
Gallo KJ, Wheeler NJ, Elmi AM, Airs PM, Zamanian M. Pharmacological Profiling of a Brugia malayi Muscarinic Acetylcholine Receptor as a Putative Antiparasitic Target. Antimicrob Agents Chemother 2023; 67:e0118822. [PMID: 36602350 PMCID: PMC9872666 DOI: 10.1128/aac.01188-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
The diversification of anthelmintic targets and mechanisms of action will help ensure the sustainable control of nematode infections in response to the growing threat of drug resistance. G protein-coupled receptors (GPCRs) are established drug targets in human medicine but remain unexploited as anthelmintic substrates despite their important roles in nematode neuromuscular and physiological processes. Bottlenecks in exploring the druggability of parasitic nematode GPCRs include a limited helminth genetic toolkit and difficulties establishing functional heterologous expression. In an effort to address some of these challenges, we profile the function and pharmacology of muscarinic acetylcholine receptors in the human parasite Brugia malayi, an etiological agent of human lymphatic filariasis. While acetylcholine-gated ion channels are intensely studied as targets of existing anthelmintics, comparatively little is known about metabotropic receptor contributions to parasite cholinergic signaling. Using multivariate phenotypic assays in microfilariae and adults, we show that nicotinic and muscarinic compounds disparately affect parasite fitness traits. We identify a putative G protein-linked acetylcholine receptor of B. malayi (Bma-GAR-3) that is highly expressed across intramammalian life stages and adapt spatial RNA in situ hybridization to map receptor transcripts to critical parasite tissues. Tissue-specific expression of Bma-gar-3 in Caenorhabditis elegans (body wall muscle, sensory neurons, and pharynx) enabled receptor deorphanization and pharmacological profiling in a nematode physiological context. Finally, we developed an image-based feeding assay as a reporter of pharyngeal activity to facilitate GPCR screening in parasitized strains. We expect that these receptor characterization approaches and improved knowledge of GARs as putative drug targets will further advance the study of GPCR biology across medically important nematodes.
Collapse
Affiliation(s)
- Kendra J. Gallo
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Abdifatah M. Elmi
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Dube F, Hinas A, Delhomme N, Åbrink M, Svärd S, Tydén E. Transcriptomics of ivermectin response in Caenorhabditis elegans: Integrating abamectin quantitative trait loci and comparison to the Ivermectin-exposed DA1316 strain. PLoS One 2023; 18:e0285262. [PMID: 37141255 PMCID: PMC10159168 DOI: 10.1371/journal.pone.0285262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Parasitic nematodes pose a significant threat to human and animal health, as well as cause economic losses in the agricultural sector. The use of anthelmintic drugs, such as Ivermectin (IVM), to control these parasites has led to widespread drug resistance. Identifying genetic markers of resistance in parasitic nematodes can be challenging, but the free-living nematode Caenorhabditis elegans provides a suitable model. In this study, we aimed to analyze the transcriptomes of adult C. elegans worms of the N2 strain exposed to the anthelmintic drug Ivermectin (IVM), and compare them to those of the resistant strain DA1316 and the recently identified Abamectin Quantitative Trait Loci (QTL) on chromosome V. We exposed pools of 300 adult N2 worms to IVM (10-7 and 10-8 M) for 4 hours at 20°C, extracted total RNA and sequenced it on the Illumina NovaSeq6000 platform. Differentially expressed genes (DEGs) were determined using an in-house pipeline. The DEGs were compared to genes from a previous microarray study on IVM-resistant C. elegans and Abamectin-QTL. Our results revealed 615 DEGs (183 up-regulated and 432 down-regulated genes) from diverse gene families in the N2 C. elegans strain. Of these DEGs, 31 overlapped with genes from IVM-exposed adult worms of the DA1316 strain. We identified 19 genes, including the folate transporter (folt-2) and the transmembrane transporter (T22F3.11), which exhibited an opposite expression in N2 and the DA1316 strain and were deemed potential candidates. Additionally, we compiled a list of potential candidates for further research including T-type calcium channel (cca-1), potassium chloride cotransporter (kcc-2), as well as other genes such as glutamate-gated channel (glc-1) that mapped to the Abamectin-QTL.
Collapse
Affiliation(s)
- Faruk Dube
- Department of Biomedical Sciences and Veterinary Public Health, Division of Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Andrea Hinas
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Division of Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Reconstitution of an N-AChR from Brugia malayi an evolved change in acetylcholine receptor accessory protein requirements in filarial parasites. PLoS Pathog 2022; 18:e1010962. [DOI: 10.1371/journal.ppat.1010962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/01/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022] Open
Abstract
Neurotransmission is an important target for anthelmintic drugs, where receptor characteristics and response can be examined through reconstitution ex vivo in Xenopus laevis oocytes. The homomeric ACR-16 nicotine sensitive acetylcholine receptors (N-AChRs) of several helminth species have been characterized in this way. Our efforts to reconstitute the N-AChR from the clade III filarial parasite, Brugia malayi using similar conditions, initially produced no detectable response. A robust response to acetylcholine is obtained from the closely related clade III parasite Ascaris suum, suggesting that specific changes have occurred between Ascaris and Brugia. N-AChRs from three species intermediate between A. suum and B. malayi were characterized to provide information on the cause. Maximal response to acetylcholine did not change abruptly, consistent with a discrete event, but rather decreased progressively from A. suum through Dracunculus medinensis, Gonglylonema pulchrum and Thelazia callipaeda. Receptor responses to the characteristic nicotine, and other agonists were generally similar. The decrease in maximal current did correlate with a delayed time to reach larger response. Together, this suggested that the failure to reconstitute the B. malayi N-AChR was one extreme of a progressive decrease and that an issue with synthesis of the receptor in oocytes was responsible. Addition of accessory proteins EMC-6, NRA-2 and NRA-4, in addition to RIC-3, produced a small, but measurable B. malayi N-AChR response. Pharmacological properties of a chimeric B. malayi N-AChR were equivalent to the other species, confirming the receptor response remains unchanged while its production is increasingly dependent on accessory proteins. One possibility is that loss of many subunits for acetylcholine receptors from the filarial nematode genome is linked to new subunit combinations that lead to such a dependence. This novel phylogenetic approach allowed the first characterization of a B. malayi AChR ex vivo and in doing so, provides a framework for the successful characterization of other receptors that have yet to be reconstituted.
Collapse
|
21
|
Mitreva M. Parasite OMICS, the grand challenges ahead. FRONTIERS IN PARASITOLOGY 2022; 1:995302. [PMID: 39816466 PMCID: PMC11732041 DOI: 10.3389/fpara.2022.995302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2025]
Affiliation(s)
- Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
Cháves-González LE, Morales-Calvo F, Mora J, Solano-Barquero A, Verocai GG, Rojas A. What lies behind the curtain: Cryptic diversity in helminth parasites of human and veterinary importance. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100094. [PMID: 35800064 PMCID: PMC9253710 DOI: 10.1016/j.crpvbd.2022.100094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Parasite cryptic species are morphologically indistinguishable but genetically distinct organisms, leading to taxa with unclear species boundaries. Speciation mechanisms such as cospeciation, host colonization, taxon pulse, and oscillation may lead to the emergence of cryptic species, influencing host-parasite interactions, parasite ecology, distribution, and biodiversity. The study of cryptic species diversity in helminth parasites of human and veterinary importance has gained relevance, since their distribution may affect clinical and epidemiological features such as pathogenicity, virulence, drug resistance and susceptibility, mortality, and morbidity, ultimately affecting patient management, course, and outcome of treatment. At the same time, the need for recognition of cryptic species diversity has implied a transition from morphological to molecular diagnostic methods, which are becoming more available and accessible in parasitology. Here, we discuss the general approaches for cryptic species delineation and summarize some examples found in nematodes, trematodes and cestodes of medical and veterinary importance, along with the clinical implications of their taxonomic status. Lastly, we highlight the need for the correct interpretation of molecular information, and the correct use of definitions when reporting or describing new cryptic species in parasitology, since molecular and morphological data should be integrated whenever possible.
Collapse
Affiliation(s)
- Luis Enrique Cháves-González
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Fernando Morales-Calvo
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Javier Mora
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Alberto Solano-Barquero
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Guilherme G. Verocai
- Department of Veterinary Pathobiology, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
23
|
Zhang M, Fei S, Xia J, Wang Y, Wu H, Li X, Guo Y, Swevers L, Sun J, Feng M. Sirt5 Inhibits BmNPV Replication by Promoting a Relish-Mediated Antiviral Pathway in Bombyx mori. Front Immunol 2022; 13:906738. [PMID: 35693834 PMCID: PMC9186105 DOI: 10.3389/fimmu.2022.906738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Silent information regulators (Sirtuins) belong to the family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases (HDACs) that have diverse functions in cells. Mammalian Sirtuins have seven isoforms (Sirt1–7) which have been found to play a role in viral replication. However, Sirtuin members of insects are very different from mammals, and the function of insect Sirtuins in regulating virus replication is unclear. The silkworm, Bombyx mori, as a model species of Lepidoptera, is also an important economical insect. B. mori nucleopolyhedrovirus (BmNPV) is a major pathogen that specifically infects silkworms and causes serious losses in the sericulture industry. Here, we used the infection of the silkworm by BmNPV as a model to explore the effect of Sirtuins on virus replication. We initially knocked down all silkworm Sirtuins, and then infected with BmNPV to analyze its replication. Sirt2 and Sirt5 were found to have potential antiviral functions in the silkworm. We further confirmed the antiviral function of silkworm Sirt5 through its effects on viral titers during both knockdown and overexpression experiments. Additionally, Suramin, a Sirt5 inhibitor, was found to promote BmNPV replication. In terms of molecular mechanism, it was found that silkworm Sirt5 might promote the immune pathway mediated by Relish, thereby enhancing the host antiviral response. This study is the first to explore the role of Sirtuins in insect-virus interactions, providing new insights into the functional role of members of the insect Sirtuin family.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongyun Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xian Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiyao Guo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Jingchen Sun, ; Min Feng,
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Jingchen Sun, ; Min Feng,
| |
Collapse
|
24
|
Choudhary S, Kashyap SS, Martin RJ, Robertson AP. Advances in our understanding of nematode ion channels as potential anthelmintic targets. Int J Parasitol Drugs Drug Resist 2022; 18:52-86. [PMID: 35149380 PMCID: PMC8841521 DOI: 10.1016/j.ijpddr.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
25
|
Ehrens A, Hoerauf A, Hübner MP. Current perspective of new anti-Wolbachial and direct-acting macrofilaricidal drugs as treatment strategies for human filariasis. GMS INFECTIOUS DISEASES 2022; 10:Doc02. [PMID: 35463816 PMCID: PMC9006451 DOI: 10.3205/id000079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Filarial diseases like lymphatic filariasis and onchocerciasis belong to the Neglected Tropical Diseases and remain a public health problem in endemic countries. Lymphatic filariasis and onchocerciasis can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Current treatment recommendations by the WHO include mass drug administration with ivermectin for the treatment of onchocerciasis and a combination of ivermectin, albendazole and diethylcarbamazine (DEC) for the treatment of lymphatic filariasis in areas that are not co-endemic for onchocerciasis or loiasis. Limitations of these treatment strategies are due to potential severe adverse events in onchocerciasis and loiasis patients following DEC or ivermectin treatment, respectively, the lack of a macrofilaricidal efficacy of those drugs and the risk of drug resistance development. Thus, to achieve the elimination of transmission of onchocerciasis and the elimination of lymphatic filariasis as a public health problem by 2030, the WHO defined in its roadmap that new alternative treatment strategies with macrofilaricidal compounds are required. Within a collaboration of the non-profit organizations Drugs for Neglected Diseases initiative (DNDi), the Bill & Melinda Gates Foundation, and partners from academia and industry, several new promising macrofilaricidal drug candidates were identified, which will be discussed in this review.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
26
|
Quinzo MJ, Perteguer MJ, Brindley PJ, Loukas A, Sotillo J. Transgenesis in parasitic helminths: a brief history and prospects for the future. Parasit Vectors 2022; 15:110. [PMID: 35346328 PMCID: PMC8962113 DOI: 10.1186/s13071-022-05211-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Helminth infections impact the health of hundreds of millions of persons globally and also cause important economic losses in livestock farming. Methodological limitations as well as the low attention given to the study of helminths have impacted biological research and, thus, the procurement of accurate diagnosis and effective treatments. Understanding the biology of helminths using genomic and proteomic approaches could contribute to advances in understanding host-helminth interactions and lead to new vaccines, drugs and diagnostics. Despite the significant advances in genomics in the last decade, the lack of methodological adaptation of current transgenesis techniques has hampered the progression of post-genomic research in helminthology. However, the application of new techniques, such as CRISPR, to the study of trematodes and nematodes has opened new avenues for genome editing-powered functional genomics for these pathogens. This review summarises the historical advances in functional genomics in parasitic helminths and highlights pending limitations that will need to be overcome to deploy transgenesis tools.
Collapse
Affiliation(s)
- M J Quinzo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Escuela Internacional de Doctorado, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - M J Perteguer
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - P J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA
| | - A Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - J Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
27
|
From Extrapolation to Precision Chemical Hazard Assessment: The Ecdysone Receptor Case Study. TOXICS 2021; 10:toxics10010006. [PMID: 35051048 PMCID: PMC8778615 DOI: 10.3390/toxics10010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 10/29/2022]
Abstract
Hazard assessment strategies are often supported by extrapolation of damage probabilities, regarding chemical action and species susceptibilities. Yet, growing evidence suggests that an adequate sampling of physiological responses across a representative taxonomic scope is of paramount importance. This is particularly relevant for Nuclear Receptors (NR), a family of transcription factors, often triggered by ligands and thus, commonly exploited by environmental chemicals. Within NRs, the ligand-induced Ecdysone Receptor (EcR) provides a remarkable example. Long regarded as arthropod specific, this receptor has been extensively targeted by pesticides, seemingly innocuous to non-target organisms. Yet, current evidence clearly suggests a wider presence of EcR orthologues across metazoan lineages, with unknown physiological consequences. Here, we address the state-of-the-art regarding the phylogenetic distribution and functional characterization of metazoan EcRs and provide a critical analysis of the potential disruption of such EcRs by environmental chemical exposure. Using EcR as a case study, hazard assessment strategies are also discussed in view of the development of a novel "precision hazard assessment paradigm.
Collapse
|
28
|
Vieira P, Myers RY, Pellegrin C, Wram C, Hesse C, Maier TR, Shao J, Koutsovoulos GD, Zasada I, Matsumoto T, Danchin EGJ, Baum TJ, Eves-van den Akker S, Nemchinov LG. Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis. PLoS Pathog 2021; 17:e1010036. [PMID: 34748609 PMCID: PMC8601627 DOI: 10.1371/journal.ppat.1010036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/18/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
The burrowing nematode, Radopholus similis, is an economically important plant-parasitic nematode that inflicts damage and yield loss to a wide range of crops. This migratory endoparasite is widely distributed in warmer regions and causes extensive destruction to the root systems of important food crops (e.g., citrus, banana). Despite the economic importance of this nematode, little is known about the repertoire of effectors owned by this species. Here we combined spatially and temporally resolved next-generation sequencing datasets of R. similis to select a list of candidates for the identification of effector genes for this species. We confirmed spatial expression of transcripts of 30 new candidate effectors within the esophageal glands of R. similis by in situ hybridization, revealing a large number of pioneer genes specific to this nematode. We identify a gland promoter motif specifically associated with the subventral glands (named Rs-SUG box), a putative hallmark of spatial and concerted regulation of these effectors. Nematode transcriptome analyses confirmed the expression of these effectors during the interaction with the host, with a large number of pioneer genes being especially abundant. Our data revealed that R. similis holds a diverse and emergent repertoire of effectors, which has been shaped by various evolutionary events, including neofunctionalization, horizontal gene transfer, and possibly by de novo gene birth. In addition, we also report the first GH62 gene so far discovered for any metazoan and putatively acquired by lateral gene transfer from a bacterial donor. Considering the economic damage caused by R. similis, this information provides valuable data to elucidate the mode of parasitism of this nematode.
Collapse
Affiliation(s)
- Paulo Vieira
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Roxana Y. Myers
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA ARS, Hilo, Hawaii, United States of America
| | - Clement Pellegrin
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Wram
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Cedar Hesse
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Thomas R. Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan Shao
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | | | - Inga Zasada
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Tracie Matsumoto
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA ARS, Hilo, Hawaii, United States of America
| | - Etienne G. J. Danchin
- INRAE, Université Côte d’Azur, CNRS, Institute Sophia Agrobiotech, Sophia Antipolis, France
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | | | - Lev G. Nemchinov
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
29
|
Lightowlers MW, Gasser RB, Hemphill A, Romig T, Tamarozzi F, Deplazes P, Torgerson PR, Garcia HH, Kern P. Advances in the treatment, diagnosis, control and scientific understanding of taeniid cestode parasite infections over the past 50 years. Int J Parasitol 2021; 51:1167-1192. [PMID: 34757089 DOI: 10.1016/j.ijpara.2021.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023]
Abstract
In the past 50 years, enormous progress has been made in the diagnosis, treatment and control of taeniid cestode infections/diseases and in the scientific understanding thereof. Most interest in this group of parasites stems from the serious diseases that they cause in humans. It is through this lens that we summarize here the most important breakthroughs that have made a difference to the treatment of human diseases caused by these parasites, reduction in transmission of the taeniid species associated with human disease, or understanding of the parasites' biology likely to impact diagnosis or treatment in the foreseeable future. Key topics discussed are the introduction of anti-cestode drugs, including benzimidazoles and praziquantel, and the development of new imaging modalities that have transformed the diagnosis and post-treatment monitoring of human echinococcoses and neurocysticercosis. The availability of new anti-cestode drugs for use in dogs and a detailed understanding of the transmission dynamics of Echinococcus granulosus sensu lato have underpinned successful programs that have eliminated cystic echinococcosis in some areas of the world and greatly reduced the incidence of infection in others. Despite these successes, cystic and alveolar echinococcosis and neurocysticercosis continue to be prevalent in many parts of the world, requiring new or renewed efforts to prevent the associated taeniid infections. Major advances made in the development of practical vaccines against E. granulosus and Taenia solium will hopefully assist in this endeavour, as might the understanding of the parasites' biology that have come from an elucidation of the nuclear genomes of each of the most important taeniid species causing human diseases.
Collapse
Affiliation(s)
- Marshall W Lightowlers
- Department of Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia.
| | - Robin B Gasser
- Department of Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Thomas Romig
- University of Hohenheim, Parasitology Unit, Emil-Wolff-Strasse 34, 70599 Stuttgart, Germany
| | - Francesca Tamarozzi
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Verona, Italy
| | - Peter Deplazes
- Institute of Parasitology, Vetsuisse, and Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Paul R Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Hector H Garcia
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú; Cysticercosis Unit, Instituto Nacional de Ciencias Neurológicas, Lima, Perú
| | - Peter Kern
- Ulm University Hospital, Division of Infectious Diseases, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
30
|
Comparative mitogenomics of Spirocerca lupi from South Africa and China: Variation and possible heteroplasmy. Vet Parasitol 2021; 300:109595. [PMID: 34678674 DOI: 10.1016/j.vetpar.2021.109595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
The complete mitochondrial genome of Spirocerca lupi isolated from a dog in South Africa was sequenced using next generation sequencing (NGS) technology and the 12 protein coding genes along with the two rRNA genes were compared to 18 other nematode species as well as S. lupi from China. The mitochondrial genome of S. lupi South Africa had a mean genetic diversity of 6.1 % compared to S. lupi China with some variation in nucleotide composition, gene positioning and size. Pairwise distance results indicated slightly higher variation when compared to the pairwise distances of other closely related species, however, this variation was not high enough for it to be considered a cryptic species. Phylogenetic analysis indicated that S. lupi from the two continents are very similar. In addition, single nucleotide polymorphisms were detected in the nad2 gene with ten sequence variants identified from 10 clones from a single nematode, suggesting possible heteroplasmy. The origin of the heteroplasmy is currently unknown but it is speculated to have arisen from accumulated mutations in the mitochondria during somatic replication.
Collapse
|
31
|
Wittlin S, Mäser P. From Magic Bullet to Magic Bomb: Reductive Bioactivation of Antiparasitic Agents. ACS Infect Dis 2021; 7:2777-2786. [PMID: 34472830 DOI: 10.1021/acsinfecdis.1c00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paul Ehrlich coined the term "magic bullet" to describe how a drug kills the parasite inside its human host without harming the host itself. Ehrlich concluded that the drug must have a greater affinity to the parasite than to human cells. Today, the specificity of drug action is understood in terms of the drug target. An ideal target is a protein that is essential for the proliferation of the pathogen but absent in human cells. Examples are the enzymes of folate synthesis or of the nonmevalonate pathway in the malaria parasites. However, there are other ways how a drug can kill selectively. Of particular relevance is the specific activation of a prodrug inside the pathogen but not in the host, as this is how the current frontrunners of parasite chemotherapy work. Artemisinins for malaria, fexinidazole for human African trypanosomiasis, benznidazole for Chagas' disease, metronidazole for intestinal protozoa: these molecules are "magic bombs" that are triggered selectively. They are prodrugs that need to be activated by chemical reduction, i.e., the acquisition of an electron, which occurs in the parasite. Such a mode of action is shared by the novel antimalarial peroxides arterolane and artefenomel, which are activated by reduction of the endoperoxide bond with ferrous heme as the likely electron donor, a metabolic end-product of Plasmodium falciparum. Here we provide an overview on the molecular basis of selectivity of antiparasitic drug action with particular reference to the ozonides, the new generation of antimalarial peroxides designed by Jonathan Vennerstrom.
Collapse
Affiliation(s)
- Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
32
|
Mattick J, Libro S, Bromley R, Chaicumpa W, Chung M, Cook D, Khan MB, Kumar N, Lau YL, Misra-Bhattacharya S, Rao R, Sadzewicz L, Saeung A, Shahab M, Sparklin BC, Steven A, Turner JD, Tallon LJ, Taylor MJ, Moorhead AR, Michalski M, Foster JM, Dunning Hotopp JC. X-treme loss of sequence diversity linked to neo-X chromosomes in filarial nematodes. PLoS Negl Trop Dis 2021; 15:e0009838. [PMID: 34705823 PMCID: PMC8575316 DOI: 10.1371/journal.pntd.0009838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 11/08/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping in order to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.
Collapse
Affiliation(s)
- John Mattick
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Silvia Libro
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Robin Bromley
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Matthew Chung
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Darren Cook
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mohammad Behram Khan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nikhil Kumar
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Ramakrishna Rao
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lisa Sadzewicz
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mohd Shahab
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Benjamin C. Sparklin
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Andrew Steven
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D. Turner
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Luke J. Tallon
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Mark J. Taylor
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew R. Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Michalski
- University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Jeremy M. Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
33
|
Han L, Lan T, Li D, Li H, Deng L, Peng Z, He S, Zhou Y, Han R, Li L, Lu Y, Lu H, Wang Q, Yang S, Zhu Y, Huang Y, Cheng X, Yu J, Wang Y, Sun H, Chai H, Yang H, Xu X, Lisby M, Liu Q, Kristiansen K, Liu H, Hou Z. Chromosome-scale assembly and whole-genome sequencing of 266 giant panda roundworms provide insights into their evolution, adaptation and potential drug targets. Mol Ecol Resour 2021; 22:768-785. [PMID: 34549895 PMCID: PMC9298223 DOI: 10.1111/1755-0998.13504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022]
Abstract
Helminth diseases have long been a threat to the health of humans and animals. Roundworms are important organisms for studying parasitic mechanisms, disease transmission and prevention. The study of parasites in the giant panda is of importance for understanding how roundworms adapt to the host. Here, we report a high‐quality chromosome‐scale genome of Baylisascaris schroederi with a genome size of 253.60 Mb and 19,262 predicted protein‐coding genes. We found that gene families related to epidermal chitin synthesis and environmental information processes in the roundworm genome have expanded significantly. Furthermore, we demonstrated unique genes involved in essential amino acid metabolism in the B. schroederi genome, inferred to be essential for the adaptation to the giant panda‐specific diet. In addition, under different deworming pressures, we found that four resistance‐related genes (glc‐1, nrf‐6, bre‐4 and ced‐7) were under strong positive selection in a captive population. Finally, 23 known drug targets and 47 potential drug target proteins were identified. The genome provides a unique reference for inferring the early evolution of roundworms and their adaptation to the host. Population genetic analysis and drug sensitivity prediction provide insights revealing the impact of deworming history on population genetic structure of importance for disease prevention.
Collapse
Affiliation(s)
- Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Key Laboratory of Wildlife Conservation, China State Forestry Administration, Harbin, China
| | - Tianming Lan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Desheng Li
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in the Giant Panda National Park (CCRCGP), Sichuan, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Linhua Deng
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in the Giant Panda National Park (CCRCGP), Sichuan, China
| | - Zhiwei Peng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shaowen He
- Foping National Nature Reserve, Hanzhong, China
| | - Yanqiang Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lingling Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Haorong Lu
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Qing Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Shangchen Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yixin Zhu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yunting Huang
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | | | - Jieyao Yu
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yulong Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Heting Sun
- General Station for Surveillance of Wildlife Diseases, National Forestry and Grassland Administration, Harbin, China
| | - Hongliang Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Michael Lisby
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Quan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Key Laboratory of Wildlife Conservation, China State Forestry Administration, Harbin, China
| |
Collapse
|
34
|
Hertz MI, Hamlin I, Rush A, Budge PJ. Brugia malayi Glycoproteins Detected by the Filariasis Test Strip Antibody AD12.1. FRONTIERS IN TROPICAL DISEASES 2021; 2:729294. [PMID: 38962455 PMCID: PMC11220778 DOI: 10.3389/fitd.2021.729294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Background Rapid and accurate prevalence mapping of lymphatic filariasis (LF) is necessary to eliminate this disfiguring and disabling neglected tropical disease. Unfortunately, rapid tests such as the filariasis test strip (FTS) for Wuchereria bancrofti, the causative agent of LF in Africa, can cross-react with antigens circulating in some persons infected by the African eye worm, Loa loa, rendering the test unreliable in eleven co-endemic nations. The intended target of the FTS is a heavily glycosylated W. bancrofti circulating filarial antigen (Wb-CFA). Previously, we determined that the FTS monoclonal antibody, AD12.1, which detects a carbohydrate epitope on Wb-CFA, also detects multiple L. loa proteins in cross-reactive sera from persons with loiasis. Since the carbohydrate epitope recognized by AD12.1 is present on glycoproteins of other parasitic nematodes, including Brugia species, it is unclear why reactive glycoproteins are not detected in infections with other filarial parasites. Methods To gain a better understanding of the proteins recognized by the FTS diagnostic antibody, we used proteomics and lectin array technology to characterize filarial glycoproteins that are bound by the AD12.1 antibody using Brugia malayi as a model. Results Distinct but overlapping sets of AD12 glycoproteins were identified from somatic and excretory/secretory worm products. One of the identified proteins, Bm18019 was confirmed as a secreted AD12-reactive glycoprotein by in-gel proteomics and immunoassays. Based on lectin binding patterns, Brugia AD12-reactive glycoproteins express glycans including core fucose, galactose, N-acetylglucosamine and galactose (β1-3)N-acetylgalactosamine in addition to the epitope recognized by AD12.1. None of the lectins that bound B. malayi AD12 glycoproteins had affinity for the Wb-CFA, highlighting a key difference between it and other AD12 glycoproteins. Conclusions B. malayi somatic and excretory/secretory proteins are similar to L. loa antigens found in FTS-positive human sera, bolstering the hypothesis that circulating L. loa AD12 antigens result from worm tissue damage or death. The difference in glycan and protein composition between the Wb-CFA and other AD12 glycoproteins can be used to differentiate LF from cross-reactive loiasis.
Collapse
Affiliation(s)
- Marla I. Hertz
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Irene Hamlin
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Amy Rush
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Philip J. Budge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
35
|
Noack S, Harrington J, Carithers DS, Kaminsky R, Selzer PM. Heartworm disease - Overview, intervention, and industry perspective. Int J Parasitol Drugs Drug Resist 2021; 16:65-89. [PMID: 34030109 PMCID: PMC8163879 DOI: 10.1016/j.ijpddr.2021.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Dirofilaria immitis, also known as heartworm, is a major parasitic threat for dogs and cats around the world. Because of its impact on the health and welfare of companion animals, heartworm disease is of huge veterinary and economic importance especially in North America, Europe, Asia and Australia. Within the animal health market many different heartworm preventive products are available, all of which contain active components of the same drug class, the macrocyclic lactones. In addition to compliance issues, such as under-dosing or irregular treatment intervals, the occurrence of drug-resistant heartworms within the populations in the Mississippi River areas adds to the failure of preventive treatments. The objective of this review is to provide an overview of the disease, summarize the current disease control measures and highlight potential new avenues and best practices for treatment and prevention.
Collapse
Affiliation(s)
- Sandra Noack
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany
| | - John Harrington
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30601, Athens, GA, USA
| | - Douglas S Carithers
- Boehringer Ingelheim Animal Health, 3239 Satellite Blvd, 30096, Duluth, GA, USA
| | - Ronald Kaminsky
- paraC Consulting, Altenstein 13, 79685, Häg-Ehrsberg, Germany
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany.
| |
Collapse
|
36
|
Mani V, Assefa AD, Hahn BS. Transcriptome Analysis and miRNA Target Profiling at Various Stages of Root-Knot Nematode Meloidogyne incognita Development for Identification of Potential Regulatory Networks. Int J Mol Sci 2021; 22:ijms22147442. [PMID: 34299062 PMCID: PMC8307930 DOI: 10.3390/ijms22147442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Root-knot nematodes (RKNs) are a group of plant-parasitic nematodes that cause damage to various plant species and extensive economical losses. In this study, we performed integrated analysis of miRNA and mRNA expression data to explore the regulation of miRNA and mRNA in RKNs. In particular, we aimed to elucidate the mRNA targets of Meloidogyne incognita miRNAs and variations of the RKN transcriptome during five stages of its life cycle. Stage-wise RNA sequencing of M. incognita resulted in clean read numbers of 56,902,902, 50,762,456, 40,968,532, 47,309,223, and 51,730,234 for the egg, J2, J3, J4, and female stages, respectively. Overall, stage-dependent mRNA sequencing revealed that 17,423 genes were expressed in the transcriptome of M. incognita. The egg stage showed the maximum number of transcripts, and 12,803 gene transcripts were expressed in all stages. Functional Gene Ontology (GO) analysis resulted in three main GO classes: biological process, cellular components, and molecular function; the detected sequences were longer than sequences in the reference genome. Stage-wise selected fragments per kilobase of transcript per million mapped reads (FPKM) values of the top 10 stage-specific and common mRNAs were used to construct expression profiles, and 20 mRNAs were validated through quantitative real-time PCR (qRT-PCR). Next, we used three target prediction programs (miRanda, RNAhybrid, and PITA) to obtain 2431 potential target miRNA genes in RKNs, which regulate 8331 mRNAs. The predicted potential targets of miRNA were generally involved in cellular and metabolic processes, binding of molecules in the cell, membranes, and organelles. Stage-wise miRNA target analysis revealed that the egg stage contains heat shock proteins, transcriptional factors, and DNA repair proteins, whereas J2 includes DNA replication, heat shock, and ubiquitin-conjugating pathway-related proteins; the J3 and J4 stages are represented by the major sperm protein domain and translation-related proteins, respectively. In the female stage, we found proteins related to the maintenance of molybdopterin-binding domain-containing proteins and ubiquitin-mediated protein degradation. In total, 29 highly expressed stage-specific mRNA-targeting miRNAs were analyzed using qRT-PCR to validate the sequence analysis data. Overall, our findings provide new insights into the molecular mechanisms occurring at various developmental stages of the RKN life cycle, thus aiding in the identification of potential control strategies.
Collapse
Affiliation(s)
- Vimalraj Mani
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
| | - Awraris Derbie Assefa
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
| | - Bum-Soo Hahn
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
- Correspondence: ; Tel.: +82-63-238-4930
| |
Collapse
|
37
|
Mu Y, McManus DP, Gordon CA, Cai P. Parasitic Helminth-Derived microRNAs and Extracellular Vesicle Cargos as Biomarkers for Helminthic Infections. Front Cell Infect Microbiol 2021; 11:708952. [PMID: 34249784 PMCID: PMC8267863 DOI: 10.3389/fcimb.2021.708952] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
As an adaption to their complex lifecycles, helminth parasites garner a unique repertoire of genes at different developmental stages with subtle regulatory mechanisms. These parasitic worms release differential components such as microRNAs (miRNAs) and extracellular vesicles (EVs) as mediators which participate in the host-parasite interaction, immune regulation/evasion, and in governing processes associated with host infection. MiRNAs are small (~ 22-nucleotides) non-coding RNAs that regulate gene expression at the post-transcriptional level, and can exist in stable form in bodily fluids such as serum/plasma, urine, saliva and bile. In addition to reports focusing on the identification of miRNAs or in the probing of differentially expressed miRNA profiles in different development stages/sexes or in specific tissues, a number of studies have focused on the detection of helminth-derived miRNAs in the mammalian host circulatory system as diagnostic biomarkers. Extracellular vesicles (EVs), small membrane-surrounded structures secreted by a wide variety of cell types, contain rich cargos that are important in cell-cell communication. EVs have attracted wide attention due to their unique functional relevance in host-parasite interactions and for their potential value in translational applications such as biomarker discovery. In the current review, we discuss the status and potential of helminth parasite-derived circulating miRNAs and EV cargos as novel diagnostic tools.
Collapse
Affiliation(s)
- Yi Mu
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Catherine A Gordon
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Lanková S, Vejl P, Melounová M, Čílová D, Vadlejch J, Miklisová D, Jankovská I, Langrová I. Setaria cervi (Filarioidea, Onchocercidae) undressing in ungulates: altered morphology of developmental stages, their molecular detection and complete sequence cox1 gene. Parasitology 2021; 148:598-611. [PMID: 33407959 PMCID: PMC10950381 DOI: 10.1017/s0031182020002449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 11/06/2022]
Abstract
This work introduces new morphological and molecular information on the filaroid nematode Setaria cervi (Rudolphi, 1819) obtained from 13 infected game ungulates out of 96 dissected. The hosts comprised the following: a single moose (Alces alces), ten red deer (Cervus elaphus) and two sika deer (Cervus nippon) originating from the western and northern regions of the Czech Republic. Based on the complete sequences of the gene encoding mitochondrial cytochrome c oxidase subunit 1 (cox1), all 20 females and four males belonged to the species S. cervi. We detected three developmental female stages (adult fertile females, juvenile L5 females and L4 female larvae) differing in size and some morphological traits as the subtle structure of peribuccal crown and shape and features of tail knob. Such differences were described in detail for the first time. The phylogenetic relationships within the family Onchocercidae have been evaluated using new information on the cox1 sequence of S. cervi (maximum likelihood method, GTR + I + G model). In accordance with the latest phylogenetic studies, the present analysis confirmed the ancient separation of the subclass Setariinae from the remaining two onchocercid lineages Dirofilariinae and Onchocerinae.
Collapse
Affiliation(s)
- Sylva Lanková
- Department of Zoology and Fisheries, Centre for Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha – Suchdol, Czech Republic
| | - Pavel Vejl
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha – Suchdol, Czech Republic
| | - Martina Melounová
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha – Suchdol, Czech Republic
| | - Daniela Čílová
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha – Suchdol, Czech Republic
| | - Jaroslav Vadlejch
- Department of Zoology and Fisheries, Centre for Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha – Suchdol, Czech Republic
| | - Dana Miklisová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| | - Ivana Jankovská
- Department of Zoology and Fisheries, Centre for Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha – Suchdol, Czech Republic
| | - Iva Langrová
- Department of Zoology and Fisheries, Centre for Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha – Suchdol, Czech Republic
| |
Collapse
|
39
|
Wang J. Genomics of the Parasitic Nematode Ascaris and Its Relatives. Genes (Basel) 2021; 12:493. [PMID: 33800545 PMCID: PMC8065839 DOI: 10.3390/genes12040493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Nematodes of the genus Ascaris are important parasites of humans and swine, and the phylogenetically related genera (Parascaris, Toxocara, and Baylisascaris) infect mammals of veterinary interest. Over the last decade, considerable genomic resources have been established for Ascaris, including complete germline and somatic genomes, comprehensive mRNA and small RNA transcriptomes, as well as genome-wide histone and chromatin data. These datasets provide a major resource for studies on the basic biology of these parasites and the host-parasite relationship. Ascaris and its relatives undergo programmed DNA elimination, a highly regulated process where chromosomes are fragmented and portions of the genome are lost in embryonic cells destined to adopt a somatic fate, whereas the genome remains intact in germ cells. Unlike many model organisms, Ascaris transcription drives early development beginning prior to pronuclear fusion. Studies on Ascaris demonstrated a complex small RNA network even in the absence of a piRNA pathway. Comparative genomics of these ascarids has provided perspectives on nematode sex chromosome evolution, programmed DNA elimination, and host-parasite coevolution. The genomic resources enable comparison of proteins across diverse species, revealing many new potential drug targets that could be used to control these parasitic nematodes.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
- UT-Oak Ridge National Laboratory Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
40
|
Baker EA, Gilbert SPR, Shimeld SM, Woollard A. Extensive non-redundancy in a recently duplicated developmental gene family. BMC Ecol Evol 2021; 21:33. [PMID: 33648446 PMCID: PMC7919330 DOI: 10.1186/s12862-020-01735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/13/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND It has been proposed that recently duplicated genes are more likely to be redundant with one another compared to ancient paralogues. The evolutionary logic underpinning this idea is simple, as the assumption is that recently derived paralogous genes are more similar in sequence compared to members of ancient gene families. We set out to test this idea by using molecular phylogenetics and exploiting the genetic tractability of the model nematode, Caenorhabditis elegans, in studying the nematode-specific family of Hedgehog-related genes, the Warthogs. Hedgehog is one of a handful of signal transduction pathways that underpins the development of bilaterian animals. While having lost a bona fide Hedgehog gene, most nematodes have evolved an expanded repertoire of Hedgehog-related genes, ten of which reside within the Warthog family. RESULTS We have characterised their evolutionary origin and their roles in C. elegans and found that these genes have adopted new functions in aspects of post-embryonic development, including left-right asymmetry and cell fate determination, akin to the functions of their vertebrate counterparts. Analysis of various double and triple mutants of the Warthog family reveals that more recently derived paralogues are not redundant with one another, while a pair of divergent Warthogs do display redundancy with respect to their function in cuticle biosynthesis. CONCLUSIONS We have shown that newer members of taxon-restricted gene families are not always functionally redundant despite their recent inception, whereas much older paralogues can be, which is considered paradoxical according to the current framework in gene evolution.
Collapse
Affiliation(s)
- E A Baker
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - S P R Gilbert
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - S M Shimeld
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - A Woollard
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
41
|
Qing X, Kulkeaw K, Wongkamchai S, Tsui SKW. Mitochondrial Genome of Brugia malayi Microfilariae Isolated From a Clinical Sample. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.637805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lymphatic filariasis is a neglected parasitic disease that is a leading cause of long-term disability. Information obtained from genome sequencing of filarial worm can help us identify systems in the worm that are likely to be useful for novel drug design. Brugia (B.) malayi is still the only lymphatic-dwelling filarial parasite with a nearly complete, fully annotated, and published genome. However, most previous studies were based on the FR3 strain of B. malayi, which originally was isolated from a human patient, and was adapted to the rodent model, then maintained in laboratories for more than 60 years. It is uncertain whether genetic variation exists, thus, sequencing of clinical isolates of lymphatic dwelling filarial parasites is a high priority. Here, we report for the first time the complete mitochondrial genome of B. malayi microfilariae from clinical isolate. Complete mitochondrial (mt) genome of the microfilariae isolated from a blood sample taken from a Thai subject living in Narathiwat Province, which is an endemic area of brugian filariasis, was assembled with sequencing reads obtained by Illumina sequencing. Gene annotation, phylogenetic analysis and single nucleotide polymorphism (SNP) were deployed. A complete 13,658-bp mt genome of B. malayi microfilaria was obtained, and it shows 68x coverage. Based on gene annotation, the mt genome consists of 12 protein-coding, two rRNA, and 23 tRNA genes. Phylogenetic analysis using all protein sequences of DNA sequences of mt genome or cytochrome c oxidase subunit I (COX1) revealed a close relationship among three lymphatic filariae (i.e., B. timori, zoonotic B. pahangi, and Wuchereria spp.). The SNPs in the COX1 gene can differentiate microfilariae of B. malayi in human from those found in canine. Furthermore, the number, order and transcription, and direction of B. malayi microfilariae mitochondrial genes were the same as those found in the FR3 strain of B. malayi. The comparison on mitochondrial genome of B. malayi could have important implications on the development of a new intervention or vaccine to treat or prevent this disease in endemic areas/regions around the world.
Collapse
|
42
|
Chevignon G, Foray V, Pérez-Jiménez MM, Libro S, Chung M, Foster JM, Landmann F. Dual RNAseq analyses at soma and germline levels reveal evolutionary innovations in the elephantiasis-agent Brugia malayi, and adaptation of its Wolbachia endosymbionts. PLoS Negl Trop Dis 2021; 15:e0008935. [PMID: 33406151 PMCID: PMC7787461 DOI: 10.1371/journal.pntd.0008935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/31/2020] [Indexed: 12/23/2022] Open
Abstract
Brugia malayi is a human filarial nematode responsible for elephantiasis, a debilitating condition that is part of a broader spectrum of diseases called filariasis, including lymphatic filariasis and river blindness. Almost all filarial nematode species infecting humans live in mutualism with Wolbachia endosymbionts, present in somatic hypodermal tissues but also in the female germline which ensures their vertical transmission to the nematode progeny. These α-proteobacteria potentially provision their host with essential metabolites and protect the parasite against the vertebrate immune response. In the absence of Wolbachia wBm, B. malayi females become sterile, and the filarial nematode lifespan is greatly reduced. In order to better comprehend this symbiosis, we investigated the adaptation of wBm to the host nematode soma and germline, and we characterized these cellular environments to highlight their specificities. Dual RNAseq experiments were performed at the tissue-specific and ovarian developmental stage levels, reaching the resolution of the germline mitotic proliferation and meiotic differentiation stages. We found that most wBm genes, including putative effectors, are not differentially regulated between infected tissues. However, two wBm genes involved in stress responses are upregulated in the hypodermal chords compared to the germline, indicating that this somatic tissue represents a harsh environment to which wBm have adapted. A comparison of the B. malayi and C. elegans germline transcriptomes reveals a poor conservation of genes involved in the production of oocytes, with the filarial germline proliferative zone relying on a majority of genes absent from C. elegans. The first orthology map of the B. malayi genome presented here, together with tissue-specific expression enrichment analyses, indicate that the early steps of oogenesis are a developmental process involving genes specific to filarial nematodes, that likely result from evolutionary innovations supporting the filarial parasitic lifestyle.
Collapse
Affiliation(s)
- Germain Chevignon
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Vincent Foray
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, Tours, France
| | - Mercedes Maria Pérez-Jiménez
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Centro Andaluz de Biología del Desarrollo (CABD)–Universidad Pablo de Olavide (UPO), Departamento de Biología Molecular e Ingeniería Bioquímica, UPO/CSIC/JA, Sevilla, Spain
| | - Silvia Libro
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeremy M. Foster
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, Massachusetts, United States of America
| | | |
Collapse
|
43
|
Wenzel M, Johnston C, Müller B, Pettitt J, Connolly B. Resolution of polycistronic RNA by SL2 trans-splicing is a widely conserved nematode trait. RNA (NEW YORK, N.Y.) 2020; 26:1891-1904. [PMID: 32887788 PMCID: PMC7668243 DOI: 10.1261/rna.076414.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Spliced leader trans-splicing is essential for the processing and translation of polycistronic RNAs generated by eukaryotic operons. In C. elegans, a specialized spliced leader, SL2, provides the 5' end for uncapped pre-mRNAs derived from polycistronic RNAs. Studies of other nematodes suggested that SL2-type trans-splicing is a relatively recent innovation, confined to Rhabditina, the clade containing C. elegans and its close relatives. Here we conduct a survey of transcriptome-wide spliced leader trans-splicing in Trichinella spiralis, a distant relative of C. elegans with a particularly diverse repertoire of 15 spliced leaders. By systematically comparing the genomic context of trans-splicing events for each spliced leader, we identified a subset of T. spiralis spliced leaders that are specifically used to process polycistronic RNAs-the first examples of SL2-type spliced leaders outside of Rhabditina. These T. spiralis spliced leader RNAs possess a perfectly conserved stem-loop motif previously shown to be essential for SL2-type trans-splicing in C. elegans We show that genes trans-spliced to these SL2-type spliced leaders are organized in operonic fashion, with short intercistronic distances. A subset of T. spiralis operons show conservation of synteny with C. elegans operons. Our work substantially revises our understanding of nematode spliced leader trans-splicing, showing that SL2 trans-splicing is a major mechanism for nematode polycistronic RNA processing, which may have evolved prior to the radiation of the Nematoda. This work has important implications for the improvement of genome annotation pipelines in nematodes and other eukaryotes with operonic gene organization.
Collapse
Affiliation(s)
- Marius Wenzel
- Centre of Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3RY, United Kingdom
| | - Christopher Johnston
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Jonathan Pettitt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Bernadette Connolly
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
44
|
Easton A, Gao S, Lawton SP, Bennuru S, Khan A, Dahlstrom E, Oliveira RG, Kepha S, Porcella SF, Webster J, Anderson R, Grigg ME, Davis RE, Wang J, Nutman TB. Molecular evidence of hybridization between pig and human Ascaris indicates an interbred species complex infecting humans. eLife 2020; 9:e61562. [PMID: 33155980 PMCID: PMC7647404 DOI: 10.7554/elife.61562] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Human ascariasis is a major neglected tropical disease caused by the nematode Ascaris lumbricoides. We report a 296 megabase (Mb) reference-quality genome comprised of 17,902 protein-coding genes derived from a single, representative Ascaris worm. An additional 68 worms were collected from 60 human hosts in Kenyan villages where pig husbandry is rare. Notably, the majority of these worms (63/68) possessed mitochondrial genomes that clustered closer to the pig parasite Ascaris suum than to A. lumbricoides. Comparative phylogenomic analyses identified over 11 million nuclear-encoded SNPs but just two distinct genetic types that had recombined across the genomes analyzed. The nuclear genomes had extensive heterozygosity, and all samples existed as genetic mosaics with either A. suum-like or A. lumbricoides-like inheritance patterns supporting a highly interbred Ascaris species genetic complex. As no barriers appear to exist for anthroponotic transmission of these 'hybrid' worms, a one-health approach to control the spread of human ascariasis will be necessary.
Collapse
Affiliation(s)
- Alice Easton
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
- Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| | - Shenghan Gao
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Scott P Lawton
- Epidemiology Research Unit (ERU) Department of Veterinary and Animal Sciences, Northern Faculty, Scotland’s Rural College (SRUC)InvernessUnited Kingdom
| | - Sasisekhar Bennuru
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
| | - Asis Khan
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
| | - Eric Dahlstrom
- Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Rita G Oliveira
- Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| | - Stella Kepha
- London School of Tropical Medicine and HygieneLondonUnited Kingdom
| | - Stephen F Porcella
- Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Joanne Webster
- Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
- Royal Veterinary College, University of London, Department of Pathobiology and Population SciencesHertfordshireUnited Kingdom
| | - Roy Anderson
- Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
| | - Jianbin Wang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
- Department of Biochemistry and Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Thomas B Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
45
|
Du X, McManus DP, French JD, Jones MK, You H. CRISPR/Cas9: A new tool for the study and control of helminth parasites. Bioessays 2020; 43:e2000185. [PMID: 33145822 DOI: 10.1002/bies.202000185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Recent reports of CRISPR/Cas9 genome editing in parasitic helminths open up new avenues for research on these dangerous pathogens. However, the complex morphology and life cycles inherent to these parasites present obstacles for the efficient application of CRISPR/Cas9-targeted mutagenesis. This is especially true with the trematode flukes where only modest levels of gene mutation efficiency have been achieved. Current major challenges in the application of CRISPR/Cas9 for study of parasitic worms thus lie in enhancing gene mutation efficiency and overcoming issues involved in host passage so that mutated parasites survive. Strategies developed for CRISPR/Cas9 studies on Caenorhabditis elegans, protozoa and mammalian cells, including novel delivery methods, the choice of selectable markers, and refining mutation precision represent novel tactics whereby these impediments can be overcome. Furthermore, employing CRISPR/Cas9-mediated gene drive to interfere with vector transmission represents a novel approach for the control of parasitic worms that is worthy of further exploration.
Collapse
Affiliation(s)
- Xiaofeng Du
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Donald P McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Juliet D French
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Malcolm K Jones
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| |
Collapse
|
46
|
Expression and functionality of allergenic genes regulated by simulated gastric juice in Anisakis pegreffii. Parasitol Int 2020; 80:102223. [PMID: 33137497 DOI: 10.1016/j.parint.2020.102223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 11/24/2022]
Abstract
To better understand the molecular mechanisms underlying allergens and parasite immunity and discover the stage-enriched gene expression of fish-borne zoonotic nematodes in the stomach, we used RNA-seq to study the transcriptome profiles of Anisakis pegreffii (Nematoda: Anisakidae, AP) in simulated gastric juice. Mobile L3 larvae were incubated in simulated medium at 37 °C in 5% CO2 (AP-GJ) and the control group larvae were collected in PBS under the same conditions (AP-PBS). We found that the sequences of A. pegreffii were highly similar to Toxocara canis sequences. Among the transcripts, there would be 138 up-regulated putative genes and 251 down-regulated putative genes in AP-GJ group. Several lipid binging-related genes were more highly expressed in AP-GJ larvae. Moreover, 17 allergen genes were up-regulated and 29 were down-regulated in AP-GJ larvae. Eleven allergen genes belonged to one or more of the following three categories: biological process, cellular component, and molecular function. According to KEGG analysis, the main pathways that were represented included protein processing in transcription, immune system, cancer, and infectious disease. In particular, the most significant changes in the expression of parasite-derived allergen products occurred in AP-GJ larvae. This study helps us to extend our understanding of the biology of the fish-borne zoonotic parasite A. pegreffii and could be helpful for more precise risk assessment and providing guidelines for allergic consumers.
Collapse
|
47
|
Wang J, Veronezi GMB, Kang Y, Zagoskin M, O'Toole ET, Davis RE. Comprehensive Chromosome End Remodeling during Programmed DNA Elimination. Curr Biol 2020; 30:3397-3413.e4. [PMID: 32679104 PMCID: PMC7484210 DOI: 10.1016/j.cub.2020.06.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 01/14/2023]
Abstract
Germline and somatic genomes are in general the same in a multicellular organism. However, programmed DNA elimination leads to a reduced somatic genome compared to germline cells. Previous work on the parasitic nematode Ascaris demonstrated that programmed DNA elimination encompasses high-fidelity chromosomal breaks and loss of specific genome sequences including a major tandem repeat of 120 bp and ~1,000 germline-expressed genes. However, the precise chromosomal locations of these repeats, breaks regions, and eliminated genes remained unknown. We used PacBio long-read sequencing and chromosome conformation capture (Hi-C) to obtain fully assembled chromosomes of Ascaris germline and somatic genomes, enabling a complete chromosomal view of DNA elimination. We found that all 24 germline chromosomes undergo comprehensive chromosome end remodeling with DNA breaks in their subtelomeric regions and loss of distal sequences including the telomeres at both chromosome ends. All new Ascaris somatic chromosome ends are recapped by de novo telomere healing. We provide an ultrastructural analysis of Ascaris DNA elimination and show that eliminated DNA is incorporated into double membrane-bound structures, similar to micronuclei, during telophase of a DNA elimination mitosis. These micronuclei undergo dynamic changes including loss of active histone marks and localize to the cytoplasm following daughter nuclei formation and cytokinesis where they form autophagosomes. Comparative analysis of nematode chromosomes suggests that chromosome fusions occurred, forming Ascaris sex chromosomes that become independent chromosomes following DNA elimination breaks in somatic cells. These studies provide the first chromosomal view and define novel features and functions of metazoan programmed DNA elimination.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Giovana M B Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yuanyuan Kang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maxim Zagoskin
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eileen T O'Toole
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
48
|
Slos D, Yushin VV, Claeys M, Ivanova ES, Kosaka H, Bert W. Structure, development, and evolutive patterns of spermatozoa in rhabditid nematodes (Nematoda: Rhabditida). J Morphol 2020; 281:1411-1435. [PMID: 32845531 DOI: 10.1002/jmor.21255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022]
Abstract
Spermatogenesis of five rhabditid nematodes was studied using transmission electron microscopy and is described herein. Structure and development of nematode sperm in all available representatives of the extensive order Rhabditida have been analysed and the main characteristics of each infraorder are discussed. The ancestral sperm of the order Rhabditida was reconstructed using maximum likelihood and Bayesian methods based on 44 ultrastructural sperm characters. The hypothetical ancestral spermatogenesis of the order Rhabditida agrees with the previously suggested "rhabditid" pattern and appears to be conserved throughout the order Rhabditida. Despite the enormous variation of rhabditid nematodes, few groups deviate from the ancestral pattern. This conserved pattern can be informative within the phylum Nematoda at order level, but poses limitations when used in taxonomic and phylogenetic analysis within Rhabditida.
Collapse
Affiliation(s)
- Dieter Slos
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Vladimir V Yushin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Elena S Ivanova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Hajime Kosaka
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
49
|
Curran DM, Grote A, Nursimulu N, Geber A, Voronin D, Jones DR, Ghedin E, Parkinson J. Modeling the metabolic interplay between a parasitic worm and its bacterial endosymbiont allows the identification of novel drug targets. eLife 2020; 9:e51850. [PMID: 32779567 PMCID: PMC7419141 DOI: 10.7554/elife.51850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
The filarial nematode Brugia malayi represents a leading cause of disability in the developing world, causing lymphatic filariasis in nearly 40 million people. Currently available drugs are not well-suited to mass drug administration efforts, so new treatments are urgently required. One potential vulnerability is the endosymbiotic bacteria Wolbachia-present in many filariae-which is vital to the worm. Genome scale metabolic networks have been used to study prokaryotes and protists and have proven valuable in identifying therapeutic targets, but have only been applied to multicellular eukaryotic organisms more recently. Here, we present iDC625, the first compartmentalized metabolic model of a parasitic worm. We used this model to show how metabolic pathway usage allows the worm to adapt to different environments, and predict a set of 102 reactions essential to the survival of B. malayi. We validated three of those reactions with drug tests and demonstrated novel antifilarial properties for all three compounds.
Collapse
Affiliation(s)
- David M Curran
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
| | - Alexandra Grote
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Nirvana Nursimulu
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Computer Science, University of TorontoTorontoCanada
| | - Adam Geber
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | | | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
- Department of Epidemiology, School of Global Public Health, New York UniversityNew YorkUnited States
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Computer Science, University of TorontoTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
50
|
D’Amelio S, Lombardo F, Pizzarelli A, Bellini I, Cavallero S. Advances in Omic Studies Drive Discoveries in the Biology of Anisakid Nematodes. Genes (Basel) 2020; 11:E801. [PMID: 32679891 PMCID: PMC7397233 DOI: 10.3390/genes11070801] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/28/2023] Open
Abstract
Advancements in technologies employed in high-throughput next-generation sequencing (NGS) methods are supporting the spread of studies that, combined with advances in computational biology and bioinformatics, have greatly accelerated discoveries within basic and biomedical research for many parasitic diseases. Here, we review the most updated "omic" studies performed on anisakid nematodes, a family of marine parasites that are causative agents of the fish-borne zoonosis known as anisakiasis or anisakidosis. Few deposited data on Anisakis genomes are so far available, and this still hinders the deep and highly accurate characterization of biological aspects of interest, even as several transcriptomic and proteomic studies are becoming available. These have been aimed at discovering and characterizing molecules specific to peculiar developmental parasitic stages or tissues, as well as transcripts with pathogenic potential as toxins and allergens, with a broad relevance for a better understanding of host-pathogen relationships and for the development of reliable diagnostic tools.
Collapse
Affiliation(s)
| | | | | | | | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (S.D.); (F.L.); (A.P.); (I.B.)
| |
Collapse
|