1
|
Krushkal J, Jensen TL, Wright G, Zhao Y. Allelic expression patterns of imprinted and non-imprinted genes in cancer cell lines from multiple histologies. Clin Epigenetics 2025; 17:83. [PMID: 40414875 DOI: 10.1186/s13148-025-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/11/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Imprinted genes are epigenetically regulated in normal tissues to follow monoallelic expression according to the parent of origin of each allele. Some of these patterns are dysregulated in cancer. RESULTS We developed a novel computational multi-omic pipeline to evaluate monoallelic and biallelic expression patterns based on matched RNA-seq expression data, whole-exome sequencing information, and copy number data. We analyzed allelic expression of the entire genes, individual isoforms, and each exon of 59,283 autosomal protein-coding and ncRNA genes, with a focus on 94 genes previously reported to be imprinted. We analyzed 108 cell lines from 9 different tumor histologies using molecular data from the DepMap Portal for the Cancer Cell Line Encyclopedia. Allelic expression patterns of imprinted genes and isoforms in tumor cells were variable. We also identified additional genes and isoforms with predominantly monoallelic expression due to a variety of potential mechanisms. We provide a novel public dataset of transcriptome-wide allelic expression patterns in cell lines from diverse tumor categories, which can serve as a resource for future cancer studies. We examined associations of in vitro cell line response to antitumor agents and repurposed drugs with allelic patterns and overall levels of isoform expression of imprinted genes and of additional genes with predominantly monoallelic expression. Drug response was associated with isoform expression patterns of multiple imprinted genes including CPA4, DGCR6, DNMT1, GNAS, GRB10, H19, NAA60, OSBPL5, PHACTR2, and ZFAT, predominantly monoallelically expressed MAP2K5 and BCLAF1, and additional predominantly monoallelically expressed genes. Multiple associations may be related to mechanisms of drug activity, including associations between the response to the DNA damaging agents and allelic expression of ZFAT, CDC27, and BCLAF1 isoforms, and the response to inhibitors of multiple signaling pathways with expression patterns of GNAS isoforms. CONCLUSIONS Tumor cells have a range of monoallelic and biallelic expression patterns in both imprinted and non-imprinted genes and are likely affected by the complex interplay among changes in allelic expression, sequence variants, copy number changes, and expression changes of biologically important genes. Multiple isoform-specific patterns of allelic expression were associated with drug response, indicating complex mechanisms of cancer chemoresistance.
Collapse
Affiliation(s)
- Julia Krushkal
- Division of Cancer Treatment and Diagnosis, Biometric Research Program, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA.
| | | | - George Wright
- Division of Cancer Treatment and Diagnosis, Biometric Research Program, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Division of Cancer Treatment and Diagnosis, Biometric Research Program, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| |
Collapse
|
2
|
Hruby AJ, Garcia G, Thorwald MA, Finch CE, Johnson J, Higuchi-Sanabria R. Beyond genes and environment: mapping biological stochasticity in aging. GeroScience 2025:10.1007/s11357-025-01673-y. [PMID: 40301228 DOI: 10.1007/s11357-025-01673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Aging is characterized by extensive variability in the onset of morbidity and mortality, even in genetically identical populations with carefully controlled environments. This points to the important role stochasticity plays in shaping the divergent aging process between individual organisms. Here, we survey how stochastic factors at the level of molecules, cells, tissues, and organisms manifest in and impact the aging process, with a focus on the nematode Caenorhabditis elegans. Findings of stochasticity in C. elegans give additional insights for aspects of aging in the more complex settings of mammals with parallels drawn between organisms when appropriate. The emerging understanding of the stochastic contributors to longevity will enhance research strategies and medical interventions for personalized medicine.
Collapse
Affiliation(s)
- Adam J Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado-Anschutz Medical Campus, Denver, CO, USA
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
3
|
Li YJ, Liu H, Zhang YD, Li A, Pu LX, Gao Y, Zhang SR, Otecko NO, Liu L, Liu YY, Peng MS, Irwin DM, Yi C, Xie W, Qin Y, Wang Z, Wei HJ, Zhou ZY, Zhang YP. Genome wide analysis of allele-specific circular RNAs in mammals and their role in cell proliferation. Gene 2025; 946:149317. [PMID: 39921049 DOI: 10.1016/j.gene.2025.149317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Circular RNAs (circRNAs) are a large class of widely expressed RNAs with covalently closed continuous structures. However, it is currently unknown if circRNAs shows allele-specific expression, as are the consequences of genetic variation on their circularization efficiency and subsequent biological function. Here, we propose a novel pipeline, ASE-circRNA, to accurately quantify both circRNA and their related linear RNA for each allele, and then assess the allele-specificity of the expression of a circular RNA. We identified and analyzed allele-specific circRNAs from human tissue, as well as brains from reciprocal crosses between pairs of highly divergent strains of both mice and pigs by next generation sequencing. Droplet digital PCR (ddPCR) was used to confirm the circularization efficiency measured by next generation sequencing. We found that variation in intron sequences affect the circularization efficiency of circRNAs. Furthermore, we demonstrate that a circRNA, circHK1, regulates the expression of POLR2A to influence the rate of cell proliferation. Our study provides new insight into the molecular mechanisms impacted by variation in genome sequence in the origin of human disease and phenotype.
Collapse
Affiliation(s)
- Ying-Ju Li
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming 650091, Yunnan, China; School of Life Science, Yunnan University, Kunming 650091, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Hang Liu
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Yue-Dong Zhang
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming 650091, Yunnan, China; School of Life Science, Yunnan University, Kunming 650091, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Aimin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Li-Xia Pu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Yun Gao
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Shu-Run Zhang
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Lu Liu
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Yu-Yan Liu
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming 650091, Yunnan, China; School of Life Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Chungen Yi
- Beijing Geneway Technology Co., Ltd, Beijing 100007, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Qin
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Zefeng Wang
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650251, China; College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650251, China.
| | - Zhong-Yin Zhou
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
4
|
Edwards ES, van Zelm MC. A potential role for monoallelic expression in penetrance of autosomal dominant inborn errors of immunity. Immunol Cell Biol 2025; 103:333-336. [PMID: 39909075 DOI: 10.1111/imcb.12856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
In this article, we discuss a recent study, where autosomal monoallelic expression of genes underlying Inborn Errors of Immunity were investigated. About 2-10% of genes are predominantly transcribed from a single allele leading to autosomal random monoallelic expression (I). If this is skewed in a cell population from an individual with an autosomal dominant inborn error of immunity, this can lead to a mild to no phenotype (incomplete penetrance) if the wildtype allele is favored (II), or to more severe disease presentation if the variant allele is favored (III).
Collapse
Affiliation(s)
- Emily Sj Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University and Alfred Health, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University and Alfred Health, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Stewart O, Gruber C, Randolph HE, Patel R, Ramba M, Calzoni E, Huang LH, Levy J, Buta S, Lee A, Sazeides C, Prue Z, Hoytema van Konijnenburg DP, Chinn IK, Pedroza LA, Lupski JR, Schmitt EG, Cooper MA, Puel A, Peng X, Boisson-Dupuis S, Bustamante J, Okada S, Martin-Fernandez M, Orange JS, Casanova JL, Milner JD, Bogunovic D. Monoallelic expression can govern penetrance of inborn errors of immunity. Nature 2025; 637:1186-1197. [PMID: 39743591 PMCID: PMC11804961 DOI: 10.1038/s41586-024-08346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Inborn errors of immunity (IEIs) are genetic disorders that underlie susceptibility to infection, autoimmunity, autoinflammation, allergy and/or malignancy1. Incomplete penetrance is common among IEIs despite their monogenic basis2. Here we investigate the contribution of autosomal random monoallelic expression (aRMAE), a somatic commitment to the expression of one allele3,4, to phenotypic variability observed in families with IEIs. Using a clonal primary T cell system to assess aRMAE status of genes in healthy individuals, we find that 4.30% of IEI genes and 5.20% of all genes undergo aRMAE. Perturbing H3K27me3 and DNA methylation alters allele expression commitment, in support of two proposed mechanisms5,6 for the regulation of aRMAE. We tested peripheral blood mononuclear cells from individuals with IEIs with shared genetic lesions but discordant clinical phenotypes for aRMAE. Among two relatives who were heterozygous for a mutation in PLCG2 (delEx19), an antibody deficiency phenotype corresponds to selective mutant allele expression in B cells. By contrast, among relatives who were heterozygous for a mutation in JAK1 (c.2099G>A; p.S700N), the unaffected carrier T cells predominantly expressed the wild-type JAK1 allele, whereas the affected carrier T cells exhibited biallelic expression. Allelic expression bias was also documented in phenotypically discordant family members with mutations in STAT1 and CARD11. This study highlights the importance of considering both the genotype and the 'transcriptotype' in analyses of the penetrance and expressivity of monogenic disorders.
Collapse
Affiliation(s)
- O'Jay Stewart
- Columbia Center for Genetic Errors of Immunity, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Conor Gruber
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haley E Randolph
- Columbia Center for Genetic Errors of Immunity, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Roosheel Patel
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meredith Ramba
- Columbia Center for Genetic Errors of Immunity, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Enrica Calzoni
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lei Haley Huang
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Jay Levy
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Sofija Buta
- Columbia Center for Genetic Errors of Immunity, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Angelica Lee
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christos Sazeides
- Columbia Center for Genetic Errors of Immunity, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zoe Prue
- Columbia Center for Genetic Errors of Immunity, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
| | - Luis A Pedroza
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Erica G Schmitt
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, MO, USA
| | - Megan A Cooper
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, MO, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Xiao Peng
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Marta Martin-Fernandez
- Columbia Center for Genetic Errors of Immunity, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Rare Diseases Research Institute (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordan S Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Joshua D Milner
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Dusan Bogunovic
- Columbia Center for Genetic Errors of Immunity, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University, New York, NY, USA.
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
6
|
Neis M, Groß T, Schneider H, Schneider PM, Courts C. Comprehensive body fluid identification and contributor assignment by combining targeted sequencing of mRNA and coding region SNPs. Forensic Sci Int Genet 2024; 73:103125. [PMID: 39182373 DOI: 10.1016/j.fsigen.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Forensic genetic analyses aim to retrieve as much information as possible from biological trace material recovered from crime scenes. While standard short tandem repeat (STR) profiling is essential to individualize biological traces, its significance is diminished in crime scenarios where the presence of a suspect's DNA is acknowledged by all parties. In such cases, forensic (m)RNA analysis can provide crucial contextualizing information on the source level about a trace's composition, i.e., body fluids/tissues, and has therefore emerged as a powerful tool for modern forensic investigations. However, the question which of several suspects contributed a specific component (body fluid) to a mixed trace cannot be answered by RNA analysis using conventional methods. This individualizing information is stored within the sequence of the mRNA transcripts. Massively parallel sequencing (MPS) represents a promising alternative, offering not only higher multiplex capacity, but also the typing of individual coding region SNPs (cSNPs) to enable the assignment of contributors to mixture components, thereby reducing the risk of association fallacies. Herein, we describe the development of an extensive mRNA/cSNP panel for targeted sequencing on the IonTorrent S5 platform. Our panel comprises 30 markers for the detection of six body fluids/tissues (blood, saliva, semen, skin, vaginal and menstrual secretion), along with 70 linkage-controlled cSNPs for contributor assignment. It exhibited high reliable detection sensitivity with RNA inputs down to 0.75 ng and a conservatively calculated probability of identity of 0.03 - 6 % for individual body fluid-specific cSNP profiles. Limitations and areas for future work include RNA-related allele imbalances, inclusion of markers to correctly identify rectal mucosa and the optimization of specific markers. In summary, our new panel is intended to be a major step forward to interpret biological evidence at sub-source and source level based on cSNP attribution of a body fluid component to a suspect and victim, respectively.
Collapse
Affiliation(s)
- Maximilian Neis
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.
| | - Theresa Groß
- Hessian State Office of Criminal Investigation, Wiesbaden, Germany
| | - Harald Schneider
- Hessian State Office of Criminal Investigation, Wiesbaden, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Cornelius Courts
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Xavier JM, Magno R, Russell R, de Almeida BP, Jacinta-Fernandes A, Besouro-Duarte A, Dunning M, Samarajiwa S, O'Reilly M, Maia AM, Rocha CL, Rosli N, Ponder BAJ, Maia AT. Identification of candidate causal variants and target genes at 41 breast cancer risk loci through differential allelic expression analysis. Sci Rep 2024; 14:22526. [PMID: 39341862 PMCID: PMC11438911 DOI: 10.1038/s41598-024-72163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Understanding breast cancer genetic risk relies on identifying causal variants and candidate target genes in risk loci identified by genome-wide association studies (GWAS), which remains challenging. Since most loci fall in active gene regulatory regions, we developed a novel approach facilitated by pinpointing the variants with greater regulatory potential in the disease's tissue of origin. Through genome-wide differential allelic expression (DAE) analysis, using microarray data from 64 normal breast tissue samples, we mapped the variants associated with DAE (daeQTLs). Then, we intersected these with GWAS data to reveal candidate risk regulatory variants and analysed their cis-acting regulatory potential. Finally, we validated our approach by extensive functional analysis of the 5q14.1 breast cancer risk locus. We observed widespread gene expression regulation by cis-acting variants in breast tissue, with 65% of coding and noncoding expressed genes displaying DAE (daeGenes). We identified over 54 K daeQTLs for 6761 (26%) daeGenes, including 385 daeGenes harbouring variants previously associated with BC risk. We found 1431 daeQTLs mapped to 93 different loci in strong linkage disequilibrium with risk-associated variants (risk-daeQTLs), suggesting a link between risk-causing variants and cis-regulation. There were 122 risk-daeQTL with stronger cis-acting potential in active regulatory regions with protein binding evidence. These variants mapped to 41 risk loci, of which 29 had no previous report of target genes and were candidates for regulating the expression levels of 65 genes. As validation, we identified and functionally characterised five candidate causal variants at the 5q14.1 risk locus targeting the ATG10 and ATP6AP1L genes, likely acting via modulation of alternative transcription and transcription factor binding. Our study demonstrates the power of DAE analysis and daeQTL mapping to identify causal regulatory variants and target genes at breast cancer risk loci, including those with complex regulatory landscapes. It additionally provides a genome-wide resource of variants associated with DAE for future functional studies.
Collapse
Affiliation(s)
- Joana M Xavier
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal.
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal.
| | - Ramiro Magno
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal
- Pattern Institute PT, Faro, Portugal
| | - Roslin Russell
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Bernardo P de Almeida
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
- InstaDeep, Paris, France
| | - Ana Jacinta-Fernandes
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
| | | | - Mark Dunning
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
- Sheffield Bioinformatics Core, The School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Shamith Samarajiwa
- Medical Research Council (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- Genetics and Genomics Section, Imperial College London, London, UK
| | - Martin O'Reilly
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
| | | | - Cátia L Rocha
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Faculty of Medicine, Instituto de Saúde Ambiental (ISAMB), University of Lisbon, Lisbon, Portugal
| | - Nordiana Rosli
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Training Division, Ministry of Health Malaysia, Putrajaya, Malaysia
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Bruce A J Ponder
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
| | - Ana-Teresa Maia
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal.
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
8
|
Zou LS, Cable DM, Barrera-Lopez IA, Zhao T, Murray E, Aryee MJ, Chen F, Irizarry RA. Detection of allele-specific expression in spatial transcriptomics with spASE. Genome Biol 2024; 25:180. [PMID: 38978101 PMCID: PMC11229351 DOI: 10.1186/s13059-024-03317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Spatial transcriptomics technologies permit the study of the spatial distribution of RNA at near-single-cell resolution genome-wide. However, the feasibility of studying spatial allele-specific expression (ASE) from these data remains uncharacterized. Here, we introduce spASE, a computational framework for detecting and estimating spatial ASE. To tackle the challenges presented by cell type mixtures and a low signal to noise ratio, we implement a hierarchical model involving additive mixtures of spatial smoothing splines. We apply our method to allele-resolved Visium and Slide-seq from the mouse cerebellum and hippocampus and report new insight into the landscape of spatial and cell type-specific ASE therein.
Collapse
Affiliation(s)
- Luli S Zou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Dylan M Cable
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 02139, USA
| | | | - Tongtong Zhao
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Martin J Aryee
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Rafael A Irizarry
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Saito S, Saito Y, Sato S, Aoki S, Fujita H, Ito Y, Ono N, Funakoshi T, Kawai T, Suzuki H, Sasaki T, Tanaka T, Inoie M, Hata K, Kataoka K, Kosaki K, Amagai M, Nakabayashi K, Kubo A. Gene-specific somatic epigenetic mosaicism of FDFT1 underlies a non-hereditary localized form of porokeratosis. Am J Hum Genet 2024; 111:896-912. [PMID: 38653249 PMCID: PMC11080608 DOI: 10.1016/j.ajhg.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Porokeratosis is a clonal keratinization disorder characterized by solitary, linearly arranged, or generally distributed multiple skin lesions. Previous studies showed that genetic alterations in MVK, PMVK, MVD, or FDPS-genes in the mevalonate pathway-cause hereditary porokeratosis, with skin lesions harboring germline and lesion-specific somatic variants on opposite alleles. Here, we identified non-hereditary porokeratosis associated with epigenetic silencing of FDFT1, another gene in the mevalonate pathway. Skin lesions of the generalized form had germline and lesion-specific somatic variants on opposite alleles in FDFT1, representing FDFT1-associated hereditary porokeratosis identified in this study. Conversely, lesions of the solitary or linearly arranged localized form had somatic bi-allelic promoter hypermethylation or mono-allelic promoter hypermethylation with somatic genetic alterations on opposite alleles in FDFT1, indicating non-hereditary porokeratosis. FDFT1 localization was uniformly diminished within the lesions, and lesion-derived keratinocytes showed cholesterol dependence for cell growth and altered expression of genes related to cell-cycle and epidermal development, confirming that lesions form by clonal expansion of FDFT1-deficient keratinocytes. In some individuals with the localized form, gene-specific promoter hypermethylation of FDFT1 was detected in morphologically normal epidermis adjacent to methylation-related lesions but not distal to these lesions, suggesting that asymptomatic somatic epigenetic mosaicism of FDFT1 predisposes certain skin areas to the disease. Finally, consistent with its genetic etiology, topical statin treatment ameliorated lesions in FDFT1-deficient porokeratosis. In conclusion, we identified bi-allelic genetic and/or epigenetic alterations of FDFT1 as a cause of porokeratosis and shed light on the pathogenesis of skin mosaicism involving clonal expansion of epigenetically altered cells.
Collapse
Affiliation(s)
- Sonoko Saito
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuki Saito
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Showbu Sato
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satomi Aoki
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Harumi Fujita
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Noriko Ono
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoyo Tanaka
- R&D department, Japan Tissue Engineering Co., Ltd., Aichi 443-0022, Japan
| | - Masukazu Inoie
- R&D department, Japan Tissue Engineering Co., Ltd., Aichi 443-0022, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo 157-8535, Japan; Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo 157-8535, Japan.
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan.
| |
Collapse
|
10
|
Rückert T, Romagnani C. Extrinsic and intrinsic drivers of natural killer cell clonality. Immunol Rev 2024; 323:80-106. [PMID: 38506411 DOI: 10.1111/imr.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clonal expansion of antigen-specific lymphocytes is the fundamental mechanism enabling potent adaptive immune responses and the generation of immune memory. Accompanied by pronounced epigenetic remodeling, the massive proliferation of individual cells generates a critical mass of effectors for the control of acute infections, as well as a pool of memory cells protecting against future pathogen encounters. Classically associated with the adaptive immune system, recent work has demonstrated that innate immune memory to human cytomegalovirus (CMV) infection is stably maintained as large clonal expansions of natural killer (NK) cells, raising questions on the mechanisms for clonal selection and expansion in the absence of re-arranged antigen receptors. Here, we discuss clonal NK cell memory in the context of the mechanisms underlying clonal competition of adaptive lymphocytes and propose alternative selection mechanisms that might decide on the clonal success of their innate counterparts. We propose that the integration of external cues with cell-intrinsic sources of heterogeneity, such as variegated receptor expression, transcriptional states, and somatic variants, compose a bottleneck for clonal selection, contributing to the large size of memory NK cell clones.
Collapse
Affiliation(s)
- Timo Rückert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Chiara Romagnani
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| |
Collapse
|
11
|
Akalu YT, Bogunovic D. Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nat Rev Genet 2024; 25:184-195. [PMID: 37863939 DOI: 10.1038/s41576-023-00656-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Sands B, Yun SR, Oshima J, Mendenhall AR. Maternal histone methyltransferases antagonistically regulate monoallelic expression in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576748. [PMID: 38328214 PMCID: PMC10849558 DOI: 10.1101/2024.01.22.576748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Undefined epigenetic programs act to probabilistically silence individual autosomal alleles, generating unique individuals, even from genetic clones. This sort of random monoallelic expression can explain variation in traits and diseases that differences in genes and environments cannot. Here, we developed the nematode Caenorhabditis elegans to study monoallelic expression in whole tissues, and defined a developmental genetic regulation pathway. We found maternal H3K9 histone methyltransferase (HMT) SET-25/SUV39/G9a works with HPL-2/HP1 and LIN-61/L3MBTL2 to randomly silence alleles in the intestinal progenitor E-cell of 8-cell embryos to cause monoallelic expression. SET-25 was antagonized by another maternal H3K9 HMT, MET-2/SETDB1, which works with LIN-65/ATF7ZIP and ARLE-14/ARL14EP to prevent monoallelic expression. The HMT-catalytic SET domains of both MET-2 and SET-25 were required for regulating monoallelic expression. Our data support a model wherein SET-25 and MET-2 regulate histones during development to generate patterns of somatic monoallelic expression that are persistent but not heritable.
Collapse
|
13
|
Alexandre CM, Bubb KL, Schultz KM, Lempe J, Cuperus JT, Queitsch C. LTP2 hypomorphs show genotype-by-environment interaction in early seedling traits in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 241:253-266. [PMID: 37865885 PMCID: PMC10843042 DOI: 10.1111/nph.19334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the accuracy of genotype-to-phenotype predictions. The extent of this phenotypic variation depends in part on genetic background, raising questions about the genes involved in controlling stochastic phenotypic variation. Focusing on early seedling traits in Arabidopsis thaliana, we found that hypomorphs of the cuticle-related gene LIPID TRANSFER PROTEIN 2 (LTP2) greatly increased variation in seedling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Many ltp2 hypocotyls were significantly shorter than wild-type hypocotyls while others resembled the wild-type. Differences in epidermal properties and gene expression between ltp2 seedlings with long and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the observed phenotypic variation. We identified environmental conditions that reveal or mask the increased variation in ltp2 hypomorphs and found that increased expression of its closest paralog LTP1 is necessary for ltp2 phenotypes. Our results illustrate how decreased expression of a single gene can generate starkly increased phenotypic variation in isogenic individuals in response to an environmental challenge.
Collapse
Affiliation(s)
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Karla M Schultz
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Janne Lempe
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany 1099
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Lobanova YV, Zhenilo SV. Genomic Imprinting and Random Monoallelic Expression. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:84-96. [PMID: 38467547 DOI: 10.1134/s000629792401005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 03/13/2024]
Abstract
The review discusses the mechanisms of monoallelic expression, such as genomic imprinting, in which gene transcription depends on the parental origin of the allele, and random monoallelic transcription. Data on the regulation of gene activity in the imprinted regions are summarized with a particular focus on the areas controlling imprinting and factors influencing the variability of the imprintome. The prospects of studies of the monoallelic expression are discussed.
Collapse
Affiliation(s)
- Yaroslava V Lobanova
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Svetlana V Zhenilo
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
15
|
Richards CJ, Pulido JS. Random Allelic Expression in Inherited Retinal Disease Genes. Curr Issues Mol Biol 2023; 45:10018-10025. [PMID: 38132471 PMCID: PMC10742332 DOI: 10.3390/cimb45120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a significant contributor to visual loss in children and young adults, falling second only to diabetic retinopathy. Understanding the pathogenic mechanisms of IRDs remains paramount. Some autosomal genes exhibit random allelic expression (RAE), similar to X-chromosome inactivation. This study identifies RAE genes in IRDs. Genes in the Retinal Information Network were cross-referenced with the recent literature to identify expression profiles, RAE, or biallelic expression (BAE). Loss-of-function intolerance (LOFI) was determined by cross-referencing the existing literature. Molecular and biological pathways that are significantly enriched were evaluated using gene ontology. A total of 184 IRD-causing genes were evaluated. Of these, 31 (16.8%) genes exhibited RAE. LOFI was exhibited in 6/31 (19.4%) of the RAE genes and 18/153 (11.8%) of the BAE genes. Brain tissue exhibited BAE in 107/128 (83.6%) genes for both sexes. The molecular pathways significantly enriched among BAE genes were photoreceptor activity, tubulin binding, and nucleotide/ribonucleotide binding. The biologic pathways significantly enriched for RAE genes were equilibrioception, parallel actin filament bundle assembly, photoreceptor cell outer segment organization, and protein depalmitoylation. Allele-specific expression may be a mechanism underlying IRD phenotypic variability, with clonal populations of embryologic precursor cells exhibiting RAE. Brain tissue preferentially exhibited BAE, possibly due to selective pressures against RAE. Pathways critical for cellular and visual function were enriched in BAE, which may offer a survival benefit.
Collapse
|
16
|
Ballouz S, Kawaguchi RK, Pena MT, Fischer S, Crow M, French L, Knight FM, Adams LB, Gillis J. The transcriptional legacy of developmental stochasticity. Nat Commun 2023; 14:7226. [PMID: 37940702 PMCID: PMC10632366 DOI: 10.1038/s41467-023-43024-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Genetic and environmental variation are key contributors during organism development, but the influence of minor perturbations or noise is difficult to assess. This study focuses on the stochastic variation in allele-specific expression that persists through cell divisions in the nine-banded armadillo (Dasypus novemcinctus). We investigated the blood transcriptome of five wild monozygotic quadruplets over time to explore the influence of developmental stochasticity on gene expression. We identify an enduring signal of autosomal allelic variability that distinguishes individuals within a quadruplet despite their genetic similarity. This stochastic allelic variation, akin to X-inactivation but broader, provides insight into non-genetic influences on phenotype. The presence of stochastically canalized allelic signatures represents a novel axis for characterizing organismal variability, complementing traditional approaches based on genetic and environmental factors. We also developed a model to explain the inconsistent penetrance associated with these stochastically canalized allelic expressions. By elucidating mechanisms underlying the persistence of allele-specific expression, we enhance understanding of development's role in shaping organismal diversity.
Collapse
Affiliation(s)
- Sara Ballouz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- School of Computer Science and Engineering, Faculty of Engineering, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Risa Karakida Kawaguchi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Maria T Pena
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare System Bureau, National Hansen's Disease Program, Baton Rouge, LA, 70803, USA
| | - Stephan Fischer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, F-75015, France
| | - Megan Crow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Genentech, Inc., South San Francisco, CA, USA
| | - Leon French
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | - Linda B Adams
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare System Bureau, National Hansen's Disease Program, Baton Rouge, LA, 70803, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Moyers BA, Loupe JM, Felker SA, Lawlor JM, Anderson AG, Rodriguez-Nunez I, Bunney WE, Bunney BG, Cartagena PM, Sequeira A, Watson SJ, Akil H, Mendenhall EM, Cooper GM, Myers RM. Allele biased transcription factor binding across human brain regions gives mechanistic insight into eQTLs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561245. [PMID: 37873117 PMCID: PMC10592666 DOI: 10.1101/2023.10.06.561245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transcription Factors (TFs) influence gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Because genomic localization of TFs is in part driven by TF recognition of DNA sequence, variation in TF binding sites can disrupt TF-DNA associations and affect gene regulation. To identify variants that impact TF binding in human brain tissues, we quantified allele bias for 93 TFs analyzed with ChIP-seq experiments of multiple structural brain regions from two donors. Using graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signal between alleles at heterozygous variants within each tissue sample from each donor. Comparison of results from different brain regions within donors and the same regions between donors provided measures of allele bias reproducibility. We identified thousands of DNA variants that show reproducible bias in ChIP-seq for at least one TF. We found that alleles that are rarer in the general population were more likely than common alleles to exhibit large biases, and more frequently led to reduced TF binding. Combining ChIP-seq with RNA-seq, we identified TF-allele interaction biases with RNA bias in a phased allele linked to 6,709 eQTL variants identified in GTEx data, 3,309 of which were found in neural contexts. Our results provide insights into the effects of both common and rare variation on gene regulation in the brain. These findings can facilitate mechanistic understanding of cis-regulatory variation associated with biological traits, including disease.
Collapse
Affiliation(s)
| | - Jacob M. Loupe
- HudsonAlpha Institute for Biotechnology, Huntsville AL, USA
| | | | | | | | | | - William E. Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine CA, USA
| | - Blynn G. Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine CA, USA
| | - Preston M. Cartagena
- Department of Psychiatry and Human Behavior, University of California, Irvine CA, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California, Irvine CA, USA
| | - Stanley J. Watson
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, USA
| | - Huda Akil
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, USA
| | | | | | | |
Collapse
|
18
|
Alexandre CM, Bubb KL, Schultz KM, Lempe J, Cuperus JT, Queitsch C. LTP2 hypomorphs show genotype-by-environment interaction in early seedling traits in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540469. [PMID: 37214854 PMCID: PMC10197655 DOI: 10.1101/2023.05.11.540469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the accuracy of genotype-to-phenotype predictions. The extent of this phenotypic variation depends in part on genetic background, raising questions about the genes involved in controlling stochastic phenotypic variation. Focusing on early seedling traits in Arabidopsis thaliana, we found that hypomorphs of the cuticle-related gene LTP2 greatly increased variation in seedling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Many ltp2 hypocotyls were significantly shorter than wild-type hypocotyls while others resembled the wild type. Differences in epidermal properties and gene expression between ltp2 seedlings with long and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the observed phenotypic variation. We identified environmental conditions that reveal or mask the increased variation in ltp2 hypomorphs, and found that increased expression of its closest paralog LTP1 is necessary for ltp2 phenotypes. Our results illustrate how decreased expression of a single gene can generate starkly increased phenotypic variation in isogenic individuals in response to an environmental challenge.
Collapse
Affiliation(s)
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Karla M Schultz
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Janne Lempe
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Similuk M, Kuijpers T. Nature and nurture: understanding phenotypic variation in inborn errors of immunity. Front Cell Infect Microbiol 2023; 13:1183142. [PMID: 37780853 PMCID: PMC10538643 DOI: 10.3389/fcimb.2023.1183142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
The overall disease burden of pediatric infection is high, with widely varying clinical outcomes including death. Among the most vulnerable children, those with inborn errors of immunity, reduced penetrance and variable expressivity are common but poorly understood. There are several genetic mechanisms that influence phenotypic variation in inborn errors of immunity, as well as a body of knowledge on environmental influences and specific pathogen triggers. Critically, recent advances are illuminating novel nuances for fundamental concepts on disease penetrance, as well as raising new areas of inquiry. The last few decades have seen the identification of almost 500 causes of inborn errors of immunity, as well as major advancements in our ability to characterize somatic events, the microbiome, and genotypes across large populations. The progress has not been linear, and yet, these developments have accumulated into an enhanced ability to diagnose and treat inborn errors of immunity, in some cases with precision therapy. Nonetheless, many questions remain regarding the genetic and environmental contributions to phenotypic variation both within and among families. The purpose of this review is to provide an updated summary of key concepts in genetic and environmental contributions to phenotypic variation within inborn errors of immunity, conceptualized as including dynamic, reciprocal interplay among factors unfolding across the key dimension of time. The associated findings, potential gaps, and implications for research are discussed in turn for each major influencing factor. The substantial challenge ahead will be to organize and integrate information in such a way that accommodates the heterogeneity within inborn errors of immunity to arrive at a more comprehensive and accurate understanding of how the immune system operates in health and disease. And, crucially, to translate this understanding into improved patient care for the millions at risk for serious infection and other immune-related morbidity.
Collapse
Affiliation(s)
- Morgan Similuk
- Centralized Sequencing Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Mendelevich A, Gupta S, Pakharev A, Teodosiadis A, Mironov AA, Gimelbrant AA. Foreign RNA spike-ins enable accurate allele-specific expression analysis at scale. Bioinformatics 2023; 39:i431-i439. [PMID: 37387154 DOI: 10.1093/bioinformatics/btad254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Analysis of allele-specific expression is strongly affected by the technical noise present in RNA-seq experiments. Previously, we showed that technical replicates can be used for precise estimates of this noise, and we provided a tool for correction of technical noise in allele-specific expression analysis. This approach is very accurate but costly due to the need for two or more replicates of each library. Here, we develop a spike-in approach which is highly accurate at only a small fraction of the cost. RESULTS We show that a distinct RNA added as a spike-in before library preparation reflects technical noise of the whole library and can be used in large batches of samples. We experimentally demonstrate the effectiveness of this approach using combinations of RNA from species distinguishable by alignment, namely, mouse, human, and Caenorhabditis elegans. Our new approach, controlFreq, enables highly accurate and computationally efficient analysis of allele-specific expression in (and between) arbitrarily large studies at an overall cost increase of ∼5%. AVAILABILITY AND IMPLEMENTATION Analysis pipeline for this approach is available at GitHub as R package controlFreq (github.com/gimelbrantlab/controlFreq).
Collapse
Affiliation(s)
- Asia Mendelevich
- Altius Institute for Biomedical Sciences, 2211 Elliott Ave, Seattle, WA 98121, United States
| | - Saumya Gupta
- Stem Cell Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, United States
| | | | - Athanasios Teodosiadis
- Altius Institute for Biomedical Sciences, 2211 Elliott Ave, Seattle, WA 98121, United States
| | - Andrey A Mironov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Vorobiovy Gory, Lab. Bldg B, Moscow 119992, Russia
- Institute of Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoi Karetny per., Moscow 127994, Russia
| | - Alexander A Gimelbrant
- Altius Institute for Biomedical Sciences, 2211 Elliott Ave, Seattle, WA 98121, United States
| |
Collapse
|
21
|
Bresnahan ST, Lee E, Clark L, Ma R, Markey M, Rangel J, Grozinger CM, Li-Byarlay H. Examining parent-of-origin effects on transcription and RNA methylation in mediating aggressive behavior in honey bees (Apis mellifera). BMC Genomics 2023; 24:315. [PMID: 37308882 PMCID: PMC10258952 DOI: 10.1186/s12864-023-09411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Conflict between genes inherited from the mother (matrigenes) and the father (patrigenes) is predicted to arise during social interactions among offspring if these genes are not evenly distributed among offspring genotypes. This intragenomic conflict drives parent-specific transcription patterns in offspring resulting from parent-specific epigenetic modifications. Previous tests of the kinship theory of intragenomic conflict in honey bees (Apis mellifera) provided evidence in support of theoretical predictions for variation in worker reproduction, which is associated with extreme variation in morphology and behavior. However, more subtle behaviors - such as aggression - have not been extensively studied. Additionally, the canonical epigenetic mark (DNA methylation) associated with parent-specific transcription in plant and mammalian model species does not appear to play the same role as in honey bees, and thus the molecular mechanisms underlying intragenomic conflict in this species is an open area of investigation. Here, we examined the role of intragenomic conflict in shaping aggression in honey bee workers through a reciprocal cross design and Oxford Nanopore direct RNA sequencing. We attempted to probe the underlying regulatory basis of this conflict through analyses of parent-specific RNA m6A and alternative splicing patterns. We report evidence that intragenomic conflict occurs in the context of honey bee aggression, with increased paternal and maternal allele-biased transcription in aggressive compared to non-aggressive bees, and higher paternal allele-biased transcription overall. However, we found no evidence to suggest that RNA m6A or alternative splicing mediate intragenomic conflict in this species.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA.
| | - Ellen Lee
- Agricultural Research and Development Program, Central State University, Wilberforce, USA
- Department of Biological Sciences, Wright State University, Dayton, USA
| | - Lindsay Clark
- HPCBio, University of Illinois at Urbana-Champaign, Champaign, USA
- Research Scientific Computing Group, Seattle Children's Research Institute, Seattle, USA
| | - Rong Ma
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Michael Markey
- Department of Biological Sciences, Wright State University, Dayton, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, USA
| | - Christina M Grozinger
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Central State University, Wilberforce, USA.
- Department of Agricultural and Life Science, Central State University, Wilberforce, USA.
| |
Collapse
|
22
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Cao X, Chen F, Xue J, Zhao Y, Bai M, Zhao Y. Hierarchical DNA branch assembly-encoded fluorescent nanoladders for single-cell transcripts imaging. Nucleic Acids Res 2023; 51:e13. [PMID: 36478047 PMCID: PMC9943671 DOI: 10.1093/nar/gkac1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Spatial visualization of single-cell transcripts is limited by signal specificity and multiplexing. Here, we report hierarchical DNA branch assembly-encoded fluorescent nanoladders, which achieve denoised and highly multiplexed signal amplification for single-molecule transcript imaging. This method first offers independent RNA-primed rolling circle amplification without nonspecific amplification based on circular DNAzyme. It then executes programmable DNA branch assembly on these amplicons to encode virtual signals for visualizing numbers of targets by FISH. In theory, more virtual signals can be encoded via the increase of detection spectral channels and repeats of the same sequences on barcode. Our method almost eliminates nonspecific amplification in fixed cells (reducing nonspecific spots of single cells from 16 to nearly zero), and achieves simultaneous quantitation of nine transcripts by using only two detection spectral channels. We demonstrate accurate RNA profiling in different cancer cells, and reveal diverse localization patterns for spatial regulation of transcripts.
Collapse
Affiliation(s)
- Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| |
Collapse
|
24
|
Mendelevich A, Gupta S, Pakharev A, Teodosiadis A, Mironov AA, Gimelbrant AA. Foreign RNA spike-ins enable accurate allele-specific expression analysis at scale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528027. [PMID: 36798258 PMCID: PMC9934692 DOI: 10.1101/2023.02.11.528027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Motivation Analysis of allele-specific expression is strongly affected by the technical noise present in RNA-seq experiments. Previously, we showed that technical replicates can be used for precise estimates of this noise, and we provided a tool for correction of technical noise in allele-specific expression analysis. This approach is very accurate but costly due to the need for two or more replicates of each library. Here, we develop a spike-in approach that is highly accurate at only a small fraction of the cost. Results We show that a distinct RNA added as a spike-in before library preparation reflects technical noise of the whole library and can be used in large batches of samples. We experimentally demonstrate the effectiveness of this approach using combinations of RNA from species distinguishable by alignment, namely, mouse, human, and C.elegans . Our new approach, controlFreq , enables highly accurate and computationally efficient analysis of allele-specific expression in (and between) arbitrarily large studies at an overall cost increase of ~ 5%. Availability Analysis pipeline for this approach is available at GitHub as R package controlFreq ( github.com/gimelbrantlab/controlFreq ). Contact agimelbrant@altius.org.
Collapse
Affiliation(s)
| | - Saumya Gupta
- Stem Cell Program, Boston Children’s Hospital, Boston, MA, USA,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | | | - Andrey A. Mironov
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, Russia,Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Gimelbrant
- Altius Institute for Biomedical Sciences, Seattle, WA, USA,To whom correspondence should be addressed. Contact:
| |
Collapse
|
25
|
Kravitz SN, Ferris E, Love MI, Thomas A, Quinlan AR, Gregg C. Random allelic expression in the adult human body. Cell Rep 2023; 42:111945. [PMID: 36640362 PMCID: PMC10484211 DOI: 10.1016/j.celrep.2022.111945] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Genes are typically assumed to express both parental alleles similarly, yet cell lines show random allelic expression (RAE) for many autosomal genes that could shape genetic effects. Thus, understanding RAE in human tissues could improve our understanding of phenotypic variation. Here, we develop a methodology to perform genome-wide profiling of RAE and biallelic expression in GTEx datasets for 832 people and 54 tissues. We report 2,762 autosomal genes with some RAE properties similar to randomly inactivated X-linked genes. We found that RAE is associated with rapidly evolving regions in the human genome, adaptive signaling processes, and genes linked to age-related diseases such as neurodegeneration and cancer. We define putative mechanistic subtypes of RAE distinguished by gene overlaps on sense and antisense DNA strands, aggregation in clusters near telomeres, and increased regulatory complexity and inputs compared with biallelic genes. We provide foundations to study RAE in human phenotypes, evolution, and disease.
Collapse
Affiliation(s)
- Stephanie N Kravitz
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Elliott Ferris
- Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alun Thomas
- Department of Internal Medicine, Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Christopher Gregg
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
26
|
Liang D, Aygün N, Matoba N, Ideraabdullah FY, Love MI, Stein JL. Inference of putative cell-type-specific imprinted regulatory elements and genes during human neuronal differentiation. Hum Mol Genet 2023; 32:402-416. [PMID: 35994039 PMCID: PMC9851749 DOI: 10.1093/hmg/ddac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
Genomic imprinting results in gene expression bias caused by parental chromosome of origin and occurs in genes with important roles during human brain development. However, the cell-type and temporal specificity of imprinting during human neurogenesis is generally unknown. By detecting within-donor allelic biases in chromatin accessibility and gene expression that are unrelated to cross-donor genotype, we inferred imprinting in both primary human neural progenitor cells and their differentiated neuronal progeny from up to 85 donors. We identified 43/20 putatively imprinted regulatory elements (IREs) in neurons/progenitors, and 133/79 putatively imprinted genes in neurons/progenitors. Although 10 IREs and 42 genes were shared between neurons and progenitors, most putative imprinting was only detected within specific cell types. In addition to well-known imprinted genes and their promoters, we inferred novel putative IREs and imprinted genes. Consistent with both DNA methylation-based and H3K27me3-based regulation of imprinted expression, some putative IREs also overlapped with differentially methylated or histone-marked regions. Finally, we identified a progenitor-specific putatively imprinted gene overlapping with copy number variation that is associated with uniparental disomy-like phenotypes. Our results can therefore be useful in interpreting the function of variants identified in future parent-of-origin association studies.
Collapse
Affiliation(s)
- Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Folami Y Ideraabdullah
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Hanson E, Dørum G, Zamborlin M, Wang S, Gysi M, Ingold S, Lagace R, Roth C, Haas C, Ballantyne J. Targeted S5 RNA sequencing assay for the identification and direct association of common body fluids with DNA donors in mixtures. Int J Legal Med 2023; 137:13-32. [PMID: 36333511 DOI: 10.1007/s00414-022-02908-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
The evidentiary value of DNA profiles varies depending upon the context in which the DNA was found. Linking a DNA profile to a particular cellular phenotype in mixtures may aid in assessing its evidentiary relevance and value. We report the development of two dual-function high-resolution messenger RNA (mRNA) sequencing assays that can each identify the presence of 6 body fluids/tissues (blood, semen, saliva, vaginal secretions, menstrual blood, skin) and, via coding region SNPs (cSNPs) present in the body fluid-specific mRNA transcripts, directly associate particular body fluids with their specific DNA donors in mixtures. The original blood, semen, and saliva (BSS) assay contains 23 cSNPs for blood, semen, and saliva, while the expanded 6F (all 6 fluids/tissues) assay encompasses the BSS assay and also contains 23 additional cSNPs for vaginal secretions, menstrual blood, and skin. Software tools were developed to infer the identity of the body fluids present as well as providing the corresponding cSNP genotypes. Concomitant genomic DNA assays (BSS-d and 6F-d), required to genotype the same cSNPs from persons of interest/inferred contributors to the body fluid mixture, were also developed. Body fluid specificity was demonstrated by the ability to identify the body fluid origin of single-source and two-fluid admixtures. The discriminatory power (European Caucasians) for all body fluids is 0.957-0.997, with linkage disequilibrium considered. Reciprocal body fluid admixtures (mixture pairs with the same two donors but reversed body fluid types) were used to demonstrate the ability to identify the body fluid source of origin as well as associate the donor of each of the two fluids.
Collapse
Affiliation(s)
- Erin Hanson
- Department of Chemistry, University of Central Florida, P.O. Box 162367, Orlando, FL, 32816-2367, USA.,National Center for Forensic Science, Orlando, FL, USA
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Manuel Zamborlin
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Shouyu Wang
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Mario Gysi
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Sabrina Ingold
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Robert Lagace
- Life Sciences/HID, Thermo Fisher Scientific, San Francisco, CA, USA
| | - Chantal Roth
- Life Sciences/HID, Thermo Fisher Scientific, San Francisco, CA, USA
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Jack Ballantyne
- Department of Chemistry, University of Central Florida, P.O. Box 162367, Orlando, FL, 32816-2367, USA. .,National Center for Forensic Science, Orlando, FL, USA.
| |
Collapse
|
28
|
Single-cell variations in the expression of codominant alleles A and B on RBC of AB blood group individuals. J Genet 2022. [DOI: 10.1007/s12041-022-01376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Heskett MB, Vouzas AE, Smith LG, Yates PA, Boniface C, Bouhassira EE, Spellman PT, Gilbert DM, Thayer MJ. Epigenetic control of chromosome-associated lncRNA genes essential for replication and stability. Nat Commun 2022; 13:6301. [PMID: 36273230 PMCID: PMC9588035 DOI: 10.1038/s41467-022-34099-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023] Open
Abstract
ASARs are long noncoding RNA genes that control replication timing of entire human chromosomes in cis. The three known ASAR genes are located on human chromosomes 6 and 15, and are essential for chromosome integrity. To identify ASARs on all human chromosomes we utilize a set of distinctive ASAR characteristics that allow for the identification of hundreds of autosomal loci with epigenetically controlled, allele-restricted behavior in expression and replication timing of coding and noncoding genes, and is distinct from genomic imprinting. Disruption of noncoding RNA genes at five of five tested loci result in chromosome-wide delayed replication and chromosomal instability, validating their ASAR activity. In addition to the three known essential cis-acting chromosomal loci, origins, centromeres, and telomeres, we propose that all mammalian chromosomes also contain "Inactivation/Stability Centers" that display allele-restricted epigenetic regulation of protein coding and noncoding ASAR genes that are essential for replication and stability of each chromosome.
Collapse
Affiliation(s)
- Michael B Heskett
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Molecular and Medical Genetics Oregon Health & Science University, Portland, OR, 97239, USA
| | - Athanasios E Vouzas
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Leslie G Smith
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, Portland, OR, 97239, USA
| | - Phillip A Yates
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, Portland, OR, 97239, USA
| | - Christopher Boniface
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute Oregon Health & Science University, Portland, OR, 97239, USA
| | - Eric E Bouhassira
- Department of Cell Biology and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Paul T Spellman
- Department of Molecular and Medical Genetics Oregon Health & Science University, Portland, OR, 97239, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute Oregon Health & Science University, Portland, OR, 97239, USA
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Mathew J Thayer
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
30
|
Balasooriya GI, Spector DL. Allele-specific differential regulation of monoallelically expressed autosomal genes in the cardiac lineage. Nat Commun 2022; 13:5984. [PMID: 36216821 PMCID: PMC9550772 DOI: 10.1038/s41467-022-33722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Each mammalian autosomal gene is represented by two alleles in diploid cells. To our knowledge, no insights have been made in regard to allele-specific regulatory mechanisms of autosomes. Here we use allele-specific single cell transcriptomic analysis to elucidate the establishment of monoallelic gene expression in the cardiac lineage. We find that monoallelically expressed autosomal genes in mESCs and mouse blastocyst cells are differentially regulated based on the genetic background of the parental alleles. However, the genetic background of the allele does not affect the establishment of monoallelic genes in differentiated cardiomyocytes. Additionally, we observe epigenetic differences between deterministic and random autosomal monoallelic genes. Moreover, we also find a greater contribution of the maternal versus paternal allele to the development and homeostasis of cardiac tissue and in cardiac health, highlighting the importance of maternal influence in male cardiac tissue homeostasis. Our findings emphasize the significance of allele-specific insights into gene regulation in development, homeostasis and disease.
Collapse
|
31
|
Meunier C, Darolti I, Reimegård J, Mank JE, Johannesson H. Nuclear-specific gene expression in heterokaryons of the filamentous ascomycete Neurospora tetrasperma. Proc Biol Sci 2022; 289:20220971. [PMID: 35946150 PMCID: PMC9363985 DOI: 10.1098/rspb.2022.0971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heterokaryosis is a system in which genetically distinct nuclei coexist within the same cytoplasm. While heterokaryosis dominates the life cycle of many fungal species, the transcriptomic changes associated with the transition from homokaryosis to heterokaryosis is not well understood. Here, we analyse gene expression profiles of homokaryons and heterokaryons from three phylogenetically and reproductively isolated lineages of the filamentous ascomycete Neurospora tetrasperma. We show that heterokaryons are transcriptionally distinct from homokaryons in the sexual stage of development, but not in the vegetative stage, suggesting that the phenotypic switch to fertility in heterokaryons is associated with major changes in gene expression. Heterokaryon expression is predominantly defined by additive effects of its two nuclear components. Furthermore, allele-specific expression analysis of heterokaryons with varying nuclear ratios show patterns of expression ratios strongly dependent on nuclear ratios in the vegetative stage. By contrast, in the sexual stage, strong deviations of expression ratios indicate a co-regulation of nuclear gene expression in all three lineages. Taken together, our results show two levels of expression control: additive effects suggest a nuclear level of expression, whereas co-regulation of gene expression indicate a heterokaryon level of control.
Collapse
Affiliation(s)
- Cécile Meunier
- Department ECOBIO, UMR CNRS 6553, Université Rennes 1, Rennes, France
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada,Centre for Ecology and Conservation, University of Exeter, Penryn Campus, UK
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden,The Royal Swedish Academy of Sciences and Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
32
|
Kubasova N, Alves-Pereira CF, Gupta S, Vinogradova S, Gimelbrant A, Barreto VM. In Vivo Clonal Analysis Reveals Random Monoallelic Expression in Lymphocytes That Traces Back to Hematopoietic Stem Cells. Front Cell Dev Biol 2022; 10:827774. [PMID: 36003148 PMCID: PMC9393635 DOI: 10.3389/fcell.2022.827774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Evaluating the epigenetic landscape in the stem cell compartment at the single-cell level is essential to assess the cells’ heterogeneity and predict their fate. Here, using a genome-wide transcriptomics approach in vivo, we evaluated the allelic expression imbalance in the progeny of single hematopoietic cells (HSCs) as a read-out of epigenetic marking. After 4 months of extensive proliferation and differentiation, we found that X-chromosome inactivation (XCI) is tightly maintained in all single-HSC derived hematopoietic cells. In contrast, the vast majority of the autosomal genes did not show clonal patterns of random monoallelic expression (RME). However, a persistent allele-specific autosomal transcription in HSCs and their progeny was found in a rare number of cases, none of which has been previously reported. These data show that: 1) XCI and RME in the autosomal chromosomes are driven by different mechanisms; 2) the previously reported high frequency of genes under RME in clones expanded in vitro (up to 15%) is not found in clones undergoing multiple differentiation steps in vivo; 3) prior to differentiation, HSCs have stable patterns of autosomal RME. We propose that most RME patterns in autosomal chromosomes are erased and established de novo during cell lineage differentiation.
Collapse
Affiliation(s)
- Nadiya Kubasova
- Chronic Diseases Research Centre, Nova Medical School, CEDOC, Lisbon, Portugal
- Genetagus, Egas Moniz – Cooperativa de Ensino Superior, CRL, Monte de Caparica, Portugal
| | - Clara F. Alves-Pereira
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Saumya Gupta
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Svetlana Vinogradova
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Alexander Gimelbrant
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Vasco M. Barreto, ; Alexander Gimelbrant,
| | - Vasco M. Barreto
- Chronic Diseases Research Centre, Nova Medical School, CEDOC, Lisbon, Portugal
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
- *Correspondence: Vasco M. Barreto, ; Alexander Gimelbrant,
| |
Collapse
|
33
|
Kissiov DU, Ethell A, Chen S, Wolf NK, Zhang C, Dang SM, Jo Y, Madsen KN, Paranjpe I, Lee AY, Chim B, Muljo SA, Raulet DH. Binary outcomes of enhancer activity underlie stable random monoallelic expression. eLife 2022; 11:e74204. [PMID: 35617021 PMCID: PMC9135403 DOI: 10.7554/elife.74204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Mitotically stable random monoallelic gene expression (RME) is documented for a small percentage of autosomal genes. We developed an in vivo genetic model to study the role of enhancers in RME using high-resolution single-cell analysis of natural killer (NK) cell receptor gene expression and enhancer deletions in the mouse germline. Enhancers of the RME NK receptor genes were accessible and enriched in H3K27ac on silent and active alleles alike in cells sorted according to allelic expression status, suggesting enhancer activation and gene expression status can be decoupled. In genes with multiple enhancers, enhancer deletion reduced gene expression frequency, in one instance converting the universally expressed gene encoding NKG2D into an RME gene, recapitulating all aspects of natural RME including mitotic stability of both the active and silent states. The results support the binary model of enhancer action, and suggest that RME is a consequence of general properties of gene regulation by enhancers rather than an RME-specific epigenetic program. Therefore, many and perhaps all genes may be subject to some degree of RME. Surprisingly, this was borne out by analysis of several genes that define different major hematopoietic lineages, that were previously thought to be universally expressed within those lineages: the genes encoding NKG2D, CD45, CD8α, and Thy-1. We propose that intrinsically probabilistic gene allele regulation is a general property of enhancer-controlled gene expression, with previously documented RME representing an extreme on a broad continuum.
Collapse
Affiliation(s)
- Djem U Kissiov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Alexander Ethell
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Sean Chen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Natalie K Wolf
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Chenyu Zhang
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Susanna M Dang
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Yeara Jo
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Katrine N Madsen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ishan Paranjpe
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| | - Bryan Chim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Stefan A Muljo
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - David H Raulet
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
34
|
St Pierre CL, Macias-Velasco JF, Wayhart JP, Yin L, Semenkovich CF, Lawson HA. Genetic, epigenetic, and environmental mechanisms govern allele-specific gene expression. Genome Res 2022; 32:1042-1057. [PMID: 35501130 PMCID: PMC9248887 DOI: 10.1101/gr.276193.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
Allele-specific expression (ASE) is a phenomenon in which one allele is preferentially expressed over the other. Genetic and epigenetic factors cause ASE by altering the final composition of a gene's product, leading to expression imbalances that can have functional consequences on phenotypes. Environmental signals also impact allele-specific expression, but how they contribute to this cross talk remains understudied. Here, we explored how genotype, parent-of-origin, tissue, sex, and dietary fat simultaneously influence ASE biases. Male and female mice from a F1 reciprocal cross of the LG/J and SM/J strains were fed a high or low fat diet. We harnessed strain-specific variants to distinguish between two ASE classes: parent-of-origin-dependent (unequal expression based on parental origin) and sequence-dependent (unequal expression based on nucleotide identity). We present a comprehensive map of ASE patterns in 2853 genes across three tissues and nine environmental contexts. We found that both ASE classes are highly dependent on tissue and environmental context. They vary across metabolically relevant tissues, between males and females, and in response to dietary fat. We also found 45 genes with inconsistent ASE biases that switched direction across tissues and/or environments. Finally, we integrated ASE and QTL data from published intercrosses of the LG/J and SM/J strains. Our ASE genes are often enriched in QTLs for metabolic and musculoskeletal traits, highlighting how this orthogonal approach can prioritize candidate genes. Together, our results provide novel insights into how genetic, epigenetic, and environmental mechanisms govern allele-specific expression, which is an essential step toward deciphering the genotype-to-phenotype map.
Collapse
Affiliation(s)
| | | | | | - Li Yin
- Washington University in Saint Louis
| | | | | |
Collapse
|
35
|
Xu KK, Wegner DJ, Geurts LC, Heins HB, Yang P, Hamvas A, Eghtesady P, Sweet SC, Sessions Cole F, Wambach JA. Biologic characterization of ABCA3 variants in lung tissue from infants and children with ABCA3 deficiency. Pediatr Pulmonol 2022; 57:1325-1330. [PMID: 35170262 PMCID: PMC9148430 DOI: 10.1002/ppul.25862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/31/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022]
Abstract
ABCA3 is a phospholipid transporter protein required for surfactant assembly in lamellar bodies of alveolar type II cells. Biallelic pathogenic ABCA3 variants cause severe neonatal respiratory distress syndrome or childhood interstitial lung disease. However, ABCA3 genotype alone does not explain the diversity in disease presentation, severity, and progression. Additionally, monoallelic ABCA3 variants have been reported in infants and children with ABCA3-deficient phenotypes. The effects of most ABCA3 variants identified in patients have not been characterized at the RNA level. ABCA3 allele-specific expression occurs in some cell types due to epigenetic regulation. We obtained lung tissue at transplant or autopsy from 16 infants and children with ABCA3 deficiency due to compound heterozygous ABCA3 variants for biologic characterization of the predicted effects of ABCA3 variants at the RNA level and determination of ABCA3 allele expression. We extracted DNA and RNA from frozen lung tissue and reverse-transcribed cDNA from mRNA. We performed Sanger sequencing to assess allele-specific expression by comparing the heights of variant nucleotide peaks in amplicons from genomic DNA and cDNA. We found similar genomic and cDNA variant nucleotide peak heights and no evidence of allele-specific expression among explant or autopsy samples with biallelic missense ABCA3 variants (n = 6). We observed allele-specific expression of missense alleles in trans with frameshift (n = 4) or nonsense (n = 1) variants, attributable to nonsense-mediated decay. The missense variant c.53 A > G;p.Gln18Arg, located near an exon-intron junction, encoded abnormal splicing with skipping of exon 4. Biologic characterization of ABCA3 variants can inform discovery of variant-specific disease mechanisms.
Collapse
Affiliation(s)
- Kathryn K Xu
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Lucille C Geurts
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Hillary B Heins
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Ping Yang
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Aaron Hamvas
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Pirooz Eghtesady
- Department of Surgery, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Stuart C Sweet
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
36
|
Kozyraki R, Verroust P, Cases O. Cubilin, the intrinsic factor-vitamin B12 receptor. VITAMINS AND HORMONES 2022; 119:65-119. [PMID: 35337634 DOI: 10.1016/bs.vh.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cubilin (CUBN), the intrinsic factor-vitamin B12 receptor is a large endocytic protein involved in various physiological functions: vitamin B12 uptake in the gut; reabsorption of albumin and maturation of vitamin D in the kidney; nutrient delivery during embryonic development. Cubilin is an atypical receptor, peripherally associated to the plasma membrane. The transmembrane proteins amnionless (AMN) and Lrp2/Megalin are the currently known molecular partners contributing to plasma membrane transport and internalization of Cubilin. The role of Cubilin/Amn complex in the handling of vitamin B12 in health and disease has extensively been studied and so is the role of the Cubilin-Lrp2 tandem in renal pathophysiology. Accumulating evidence strongly supports a role of Cubilin in some developmental defects including impaired closure of the neural tube. Are these defects primarily caused by the dysfunction of a specific Cubilin ligand or are they secondary to impaired vitamin B12 or protein uptake? We will present the established Cubilin functions, discuss the developmental data and provide an overview of the emerging implications of Cubilin in the field of cardiovascular disease and cancer pathogenesis.
Collapse
Affiliation(s)
- Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France.
| | - Pierre Verroust
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| |
Collapse
|
37
|
Dørum G, Bleka Ø, Gill P, Haas C. Source level interpretation of mixed biological stains using coding region SNPs. Forensic Sci Int Genet 2022; 59:102685. [DOI: 10.1016/j.fsigen.2022.102685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
|
38
|
Gupta S, Lafontaine DL, Vigneau S, Mendelevich A, Vinogradova S, Igarashi KJ, Bortvin A, Alves-Pereira CF, Nag A, Gimelbrant AA. RNA sequencing-based screen for reactivation of silenced alleles of autosomal genes. G3 (BETHESDA, MD.) 2022; 12:6472352. [PMID: 35100361 PMCID: PMC9210281 DOI: 10.1093/g3journal/jkab428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022]
Abstract
In mammalian cells, maternal and paternal alleles usually have similar transcriptional activity. Epigenetic mechanisms such as X-chromosome inactivation (XCI) and imprinting were historically viewed as rare exceptions to this rule. Discovery of autosomal monoallelic autosomal expression (MAE) a decade ago revealed an additional allele-specific mode regulating thousands of mammalian genes. Despite MAE prevalence, its mechanistic basis remains unknown. Using an RNA sequencing-based screen for reactivation of silenced alleles, we identified DNA methylation as key mechanism of MAE mitotic maintenance. In contrast with the all-or-nothing allelic choice in XCI, allele-specific expression in MAE loci is tunable, with exact allelic imbalance dependent on the extent of DNA methylation. In a subset of MAE genes, allelic imbalance was insensitive to DNA demethylation, implicating additional mechanisms in MAE maintenance in these loci. Our findings identify a key mechanism of MAE maintenance and provide basis for understanding the biological role of MAE.
Collapse
Affiliation(s)
| | | | - Sebastien Vigneau
- Department of Cancer Biology and Center of Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Asia Mendelevich
- Department of Cancer Biology and Center of Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Svetlana Vinogradova
- Department of Cancer Biology and Center of Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA
| | - Kyomi J Igarashi
- Department of Cancer Biology and Center of Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA
| | - Andrew Bortvin
- Department of Cancer Biology and Center of Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA
| | - Clara F Alves-Pereira
- Department of Cancer Biology and Center of Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anwesha Nag
- Department of Cancer Biology and Center of Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA
| | | |
Collapse
|
39
|
Lim KS, Kim HC, Choi BH, Son JW, Lee KT, Choi TJ, Cho YM, Chai HH, Park JE, Park W, Lim C, Kim JM, Lim D. Identification of Monoallelically Expressed Genes Associated with Economic Traits in Hanwoo (Korean Native Cattle). Animals (Basel) 2021; 12:ani12010084. [PMID: 35011190 PMCID: PMC8749587 DOI: 10.3390/ani12010084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Hanwoo, an indigenous Korean cattle breed, has been genetically improved by selecting superior sires called Korean-proven bulls. However, cows still contribute half of the genetic stock of their offspring, and allelic-specific expressed genes have potential, as selective targets of cows, to enhance genetic gain. The aim of this study is to identify genes that have MAEs based on both the genome and transcriptome and to estimate their effects on breeding values (BVs) for economically important traits in Hanwoo. We generated resequencing data for the parents and RNA-sequencing data for the muscle, fat, and brain tissues of the offspring. A total of 3801 heterozygous single nucleotide polymorphisms (SNPs) in offspring were identified and they were located in 1569 genes. Only 14 genes showed MAE (seven expressing maternal alleles and seven expressing paternal alleles). Tissue-specific MAE was observed, and LANCL1 showed maternal allele expression across all tissues. MAE genes were enriched for the biological process of cell death and angiogenesis, which included ACKR3 and PDCL3 genes, whose SNPs were significantly associated with BVs of lean meat production-related traits, such as weight at 12 months of age, carcass weight, and loin eye area. In the current study, monoallelically expressed genes were identified in various adult tissues and these genes were associated with genetic capacity in Hanwoo.
Collapse
Affiliation(s)
- Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Hyung-Chul Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Ju-Whan Son
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Tae-Jeong Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Yong-Min Cho
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Chiwoong Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| |
Collapse
|
40
|
Lindsly S, Jia W, Chen H, Liu S, Ronquist S, Chen C, Wen X, Stansbury C, Dotson GA, Ryan C, Rehemtulla A, Omenn GS, Wicha M, Li SC, Muir L, Rajapakse I. Functional organization of the maternal and paternal human 4D Nucleome. iScience 2021; 24:103452. [PMID: 34877507 PMCID: PMC8633971 DOI: 10.1016/j.isci.2021.103452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/16/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Every human somatic cell inherits a maternal and a paternal genome, which work together to give rise to cellular phenotypes. However, the allele-specific relationship between gene expression and genome structure through the cell cycle is largely unknown. By integrating haplotype-resolved genome-wide chromosome conformation capture, mature and nascent mRNA, and protein binding data from a B lymphoblastoid cell line, we investigate this relationship both globally and locally. We introduce the maternal and paternal 4D Nucleome, enabling detailed analysis of the mechanisms and dynamics of genome structure and gene function for diploid organisms. Our analyses find significant coordination between allelic expression biases and local genome conformation, and notably absent expression bias in universally essential cell cycle and glycolysis genes. We propose a model in which coordinated biallelic expression reflects prioritized preservation of essential gene sets.
Collapse
Affiliation(s)
- Stephen Lindsly
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenlong Jia
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Haiming Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sijia Liu
- MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA 02142, USA
| | - Scott Ronquist
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Can Chen
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xingzhao Wen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Cooper Stansbury
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabrielle A. Dotson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles Ryan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alnawaz Rehemtulla
- Department of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Max Wicha
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Lindsey Muir
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding author
| |
Collapse
|
41
|
Sands B, Yun S, Mendenhall AR. Introns control stochastic allele expression bias. Nat Commun 2021; 12:6527. [PMID: 34764277 PMCID: PMC8585970 DOI: 10.1038/s41467-021-26798-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 10/19/2021] [Indexed: 01/26/2023] Open
Abstract
Monoallelic expression (MAE) or extreme allele bias can account for incomplete penetrance, missing heritability and non-Mendelian diseases. In cancer, MAE is associated with shorter patient survival times and higher tumor grade. Prior studies showed that stochastic MAE is caused by stochastic epigenetic silencing, in a gene and tissue-specific manner. Here, we used C. elegans to study stochastic MAE in vivo. We found allele bias/MAE to be widespread within C. elegans tissues, presenting as a continuum from fully biallelic to MAE. We discovered that the presence of introns within alleles robustly decreases MAE. We determined that introns control MAE at distinct loci, in distinct cell types, with distinct promoters, and within distinct coding sequences, using a 5'-intron position-dependent mechanism. Bioinformatic analysis showed human intronless genes are significantly enriched for MAE. Our experimental evidence demonstrates a role for introns in regulating MAE, possibly explaining why some mutations within introns result in disease.
Collapse
Affiliation(s)
- Bryan Sands
- grid.34477.330000000122986657Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA USA
| | - Soo Yun
- grid.34477.330000000122986657Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA USA
| | - Alexander R. Mendenhall
- grid.34477.330000000122986657Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA USA
| |
Collapse
|
42
|
Wang Z, Guo Y, Liu S, Meng Q. Genome-Wide Assessment Characteristics of Genes Overlapping Copy Number Variation Regions in Duroc Purebred Population. Front Genet 2021; 12:753748. [PMID: 34721540 PMCID: PMC8552909 DOI: 10.3389/fgene.2021.753748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Copy number variations (CNVs) are important structural variations that can cause significant phenotypic diversity. Reliable CNVs mapping can be achieved by identification of CNVs from different genetic backgrounds. Investigations on the characteristics of overlapping between CNV regions (CNVRs) and protein-coding genes (CNV genes) or miRNAs (CNV-miRNAs) can reveal the potential mechanisms of their regulation. In this study, we used 50 K SNP arrays to detect CNVs in Duroc purebred pig. A total number of 211 CNVRs were detected with a total length of 118.48 Mb, accounting for 5.23% of the autosomal genome sequence. Of these CNVRs, 32 were gains, 175 losses, and four contained both types (loss and gain within the same region). The CNVRs we detected were non-randomly distributed in the swine genome and were significantly enriched in the segmental duplication and gene density region. Additionally, these CNVRs were overlapping with 1,096 protein-coding genes (CNV-genes), and 39 miRNAs (CNV-miRNAs), respectively. The CNV-genes were enriched in terms of dosage-sensitive gene list. The expression of the CNV genes was significantly higher than that of the non-CNV genes in the adult Duroc prostate. Of all detected CNV genes, 22.99% genes were tissue-specific (TSI > 0.9). Strong negative selection had been underway in the CNV-genes as the ones that were located entirely within the loss CNVRs appeared to be evolving rapidly as determined by the median dN plus dS values. Non-CNV genes tended to be miRNA target than CNV-genes. Furthermore, CNV-miRNAs tended to target more genes compared to non-CNV-miRNAs, and a combination of two CNV-miRNAs preferentially synergistically regulated the same target genes. We also focused our efforts on examining CNV genes and CNV-miRNAs functions, which were also involved in the lipid metabolism, including DGAT1, DGAT2, MOGAT2, miR143, miR335, and miRLET7. Further molecular experiments and independent large studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Qingli Meng
- Beijing Breeding Swine Center, Beijing, China
| |
Collapse
|
43
|
Fu R, Qin P, Zou X, Hu Z, Hong N, Wang Y, Jin W. A Comprehensive Characterization of Monoallelic Expression During Hematopoiesis and Leukemogenesis via Single-Cell RNA-Sequencing. Front Cell Dev Biol 2021; 9:702897. [PMID: 34722498 PMCID: PMC8548578 DOI: 10.3389/fcell.2021.702897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) is becoming a powerful tool to investigate monoallelic expression (MAE) in various developmental and pathological processes. However, our knowledge of MAE during hematopoiesis and leukemogenesis is limited. In this study, we conducted a systematic interrogation of MAEs in bone marrow mononuclear cells (BMMCs) at single-cell resolution to construct a MAE atlas of BMMCs. We identified 1,020 constitutive MAEs in BMMCs, which included imprinted genes such as MEG8, NAP1L5, and IRAIN. We classified the BMMCs into six cell types and identified 74 cell type specific MAEs including MTSS1, MOB1A, and TCF12. We further identified 114 random MAEs (rMAEs) at single-cell level, with 78.1% single-allele rMAE and 21.9% biallelic mosaic rMAE. Many MAEs identified in BMMCs have not been reported and are potentially hematopoietic specific, supporting MAEs are functional relevance. Comparison of BMMC samples from a leukemia patient with multiple clinical stages showed the fractions of constitutive MAE were correlated with fractions of leukemia cells in BMMCs. Further separation of the BMMCs into leukemia cells and normal cells showed that leukemia cells have much higher constitutive MAE and rMAEs than normal cells. We identified the leukemia cell-specific MAEs and relapsed leukemia cell-specific MAEs, which were enriched in immune-related functions. These results indicate MAE is prevalent and is an important gene regulation mechanism during hematopoiesis and leukemogenesis. As the first systematical interrogation of constitutive MAEs, cell type specific MAEs, and rMAEs during hematopoiesis and leukemogenesis, the study significantly increased our knowledge about the features and functions of MAEs.
Collapse
Affiliation(s)
- Ruiqing Fu
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Pengfei Qin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xianghui Zou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ni Hong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yun Wang
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wenfei Jin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
44
|
Barreto VM, Kubasova N, Alves-Pereira CF, Gendrel AV. X-Chromosome Inactivation and Autosomal Random Monoallelic Expression as "Faux Amis". Front Cell Dev Biol 2021; 9:740937. [PMID: 34631717 PMCID: PMC8495168 DOI: 10.3389/fcell.2021.740937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation (XCI) and random monoallelic expression of autosomal genes (RMAE) are two paradigms of gene expression regulation where, at the single cell level, genes can be expressed from either the maternal or paternal alleles. X-chromosome inactivation takes place in female marsupial and placental mammals, while RMAE has been described in mammals and also other species. Although the outcome of both processes results in random monoallelic expression and mosaicism at the cellular level, there are many important differences. We provide here a brief sketch of the history behind the discovery of XCI and RMAE. Moreover, we review some of the distinctive features of these two phenomena, with respect to when in development they are established, their roles in dosage compensation and cellular phenotypic diversity, and the molecular mechanisms underlying their initiation and stability.
Collapse
Affiliation(s)
- Vasco M Barreto
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Nadiya Kubasova
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Clara F Alves-Pereira
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
45
|
Semicoordinated allelic-bursting shape dynamic random monoallelic expression in pregastrulation embryos. iScience 2021; 24:102954. [PMID: 34458702 PMCID: PMC8379509 DOI: 10.1016/j.isci.2021.102954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/14/2023] Open
Abstract
Recently, allele-specific single-cell RNA-seq analysis has demonstrated widespread dynamic random monoallelic expression of autosomal genes (aRME) in different cell types. However, the prevalence of dynamic aRME during pregastrulation remains unknown. Here, we show that dynamic aRME is widespread in different lineages of pregastrulation embryos. Additionally, the origin of dynamic aRME remains elusive. It is believed that independent transcriptional bursting from each allele leads to dynamic aRME. Here, we show that allelic burst is not perfectly independent; instead it happens in a semicoordinated fashion. Importantly, we show that semicoordinated allelic bursting of genes, particularly with low burst frequency, leads to frequent asynchronous allelic bursting, thereby contributing to dynamic aRME. Furthermore, we found that coordination of allelic bursting is lineage specific and genes regulating the development have a higher degree of coordination. Altogether, our study provides significant insights into the prevalence and origin of dynamic aRME and their developmental relevance during early development. Dynamic aRME is widespread in different lineages of pregastrulation embryos Semicoordinated bursting of genes with low burst frequency leads to dynamic aRME Degree of coordination of allelic bursting is lineage specific Developmental genes have higher degree of coordination of allelic bursting
Collapse
|
46
|
Du Q, Smith GC, Luu PL, Ferguson JM, Armstrong NJ, Caldon CE, Campbell EM, Nair SS, Zotenko E, Gould CM, Buckley M, Chia KM, Portman N, Lim E, Kaczorowski D, Chan CL, Barton K, Deveson IW, Smith MA, Powell JE, Skvortsova K, Stirzaker C, Achinger-Kawecka J, Clark SJ. DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity. Cell Rep 2021; 36:109722. [PMID: 34551299 DOI: 10.1016/j.celrep.2021.109722] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epigenome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably, we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is maintained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome regulation.
Collapse
Affiliation(s)
- Qian Du
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Grady C Smith
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Phuc Loi Luu
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - James M Ferguson
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, Murdoch, WA 6150, Australia
| | - C Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | | | - Shalima S Nair
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Elena Zotenko
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Cathryn M Gould
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Michael Buckley
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kee-Ming Chia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Dominik Kaczorowski
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Chia-Ling Chan
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kirston Barton
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Ira W Deveson
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia; The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Martin A Smith
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia; The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Cellular Genomics Futures Institute, School of Medical Sciences, UNSW Sydney, NSW 2010, Australia
| | - Ksenia Skvortsova
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Clare Stirzaker
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Joanna Achinger-Kawecka
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Susan J Clark
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
47
|
Marion-Poll L, Forêt B, Zielinski D, Massip F, Attia M, Carter AC, Syx L, Chang HY, Gendrel AV, Heard E. Locus specific epigenetic modalities of random allelic expression imbalance. Nat Commun 2021; 12:5330. [PMID: 34504093 PMCID: PMC8429725 DOI: 10.1038/s41467-021-25630-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
Most autosomal genes are thought to be expressed from both alleles, with some notable exceptions, including imprinted genes and genes showing random monoallelic expression (RME). The extent and nature of RME has been the subject of debate. Here we investigate the expression of several candidate RME genes in F1 hybrid mouse cells before and after differentiation, to define how they become persistently, monoallelically expressed. Clonal monoallelic expression is not present in embryonic stem cells, but we observe high frequencies of monoallelism in neuronal progenitor cells by assessing expression status in more than 200 clones. We uncover unforeseen modes of allelic expression that appear to be gene-specific and epigenetically regulated. This non-canonical allelic regulation has important implications for development and disease, including autosomal dominant disorders and opens up therapeutic perspectives.
Collapse
Affiliation(s)
- Lucile Marion-Poll
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.
- Directors' research, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Benjamin Forêt
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Dina Zielinski
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, Paris, France
| | - Florian Massip
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mikael Attia
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Ava C Carter
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Laurène Syx
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, Paris, France
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Anne-Valerie Gendrel
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.
| | - Edith Heard
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.
- Directors' research, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Collège de France, Paris, France.
| |
Collapse
|
48
|
Marotte L, Simon S, Vignard V, Dupre E, Gantier M, Cruard J, Alberge JB, Hussong M, Deleine C, Heslan JM, Shaffer J, Beauvais T, Gaschet J, Scotet E, Fradin D, Jarry A, Nguyen T, Labarriere N. Increased antitumor efficacy of PD-1-deficient melanoma-specific human lymphocytes. J Immunother Cancer 2021; 8:jitc-2019-000311. [PMID: 32001504 PMCID: PMC7057432 DOI: 10.1136/jitc-2019-000311] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2020] [Indexed: 01/08/2023] Open
Abstract
Background Genome editing offers unique perspectives for optimizing the functional properties of T cells for adoptive cell transfer purposes. So far, PDCD1 editing has been successfully tested mainly in chimeric antigen receptor T (CAR-T) cells and human primary T cells. Nonetheless, for patients with solid tumors, the adoptive transfer of effector memory T cells specific for tumor antigens remains a relevant option, and the use of high avidity T cells deficient for programmed cell death-1 (PD-1) expression is susceptible to improve the therapeutic benefit of these treatments. Methods Here we used the transfection of CAS9/sgRNA ribonucleoproteic complexes to edit PDCD1 gene in human effector memory CD8+ T cells specific for the melanoma antigen Melan-A. We cloned edited T cell populations and validated PDCD1 editing through sequencing and cytometry in each T cell clone, together with T-cell receptor (TCR) chain’s sequencing. We also performed whole transcriptomic analyses on wild-type (WT) and edited T cell clones. Finally, we documented in vitro and in vivo through adoptive transfer in NOD scid gamma (NSG) mice, the antitumor properties of WT and PD-1KO T cell clones, expressing the same TCR. Results Here we demonstrated the feasibility to edit PDCD1 gene in human effector memory melanoma-specific T lymphocytes. We showed that PD-1 expression was dramatically reduced or totally absent on PDCD1-edited T cell clones. Extensive characterization of a panel of T cell clones expressing the same TCR and exhibiting similar functional avidity demonstrated superior antitumor reactivity against a PD-L1 expressing melanoma cell line. Transcriptomic analysis revealed a downregulation of genes involved in proliferation and DNA replication in PD-1-deficient T cell clones, whereas genes involved in metabolism and cell signaling were upregulated. Finally, we documented the superior ability of PD-1-deficient T cells to significantly delay the growth of a PD-L1 expressing human melanoma tumor in an NSG mouse model. Conclusion The use of such lymphocytes for adoptive cell transfer purposes, associated with other approaches modulating the tumor microenvironment, would be a promising alternative to improve immunotherapy efficacy in solid tumors.
Collapse
Affiliation(s)
- Lucine Marotte
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Sylvain Simon
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Virginie Vignard
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Emilie Dupre
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Malika Gantier
- LabEx IGO, Université de Nantes, Nantes, France.,Université de Nantes, Inserm, CRTI, F-44000 Nantes, France
| | - Jonathan Cruard
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | | | - Melanie Hussong
- NGS Assay Research & Development, Qiagen Sciences, Frederick, Maryland, United States
| | - Cecile Deleine
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Jean-Marie Heslan
- LabEx IGO, Université de Nantes, Nantes, France.,Université de Nantes, Inserm, CRTI, F-44000 Nantes, France
| | - Jonathan Shaffer
- NGS Assay Research & Development, Qiagen Sciences, Frederick, Maryland, United States
| | - Tiffany Beauvais
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Joelle Gaschet
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Emmanuel Scotet
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Delphine Fradin
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Anne Jarry
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Tuan Nguyen
- Université de Nantes, Inserm, CRTI, F-44000 Nantes, France
| | - Nathalie Labarriere
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France .,LabEx IGO, Université de Nantes, Nantes, France
| |
Collapse
|
49
|
Hagen SH, Hennesen J, Altfeld M. Assessment of escape from X chromosome inactivation and gene expression in single human immune cells. STAR Protoc 2021; 2:100641. [PMID: 34355200 PMCID: PMC8319808 DOI: 10.1016/j.xpro.2021.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
X-chromosomal genes escaping from X chromosome inactivation (XCI) in immune cells can contribute to sex-specific differences in immune responses. This protocol describes the specific steps to determine escape from XCI and to simultaneously quantify mRNA expression of multiple genes at the single immune cell level using a single-nucleotide polymorphism approach. The protocol furthermore allows the analysis of allele-specific expression of X-chromosomal genes. For complete details on the use and execution of this protocol, please refer to Hagen et al. (2020). Approach to investigate escape from XCI and gene expression in single cells Simultaneous gene expression measurement of over 100 genes in one cell Assessment of allele-specific expression of genes with monoallelic expression pattern
Collapse
Affiliation(s)
- Sven Hendrik Hagen
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| | - Jana Hennesen
- Technology Platform Flow Cytometry / FACS, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| |
Collapse
|
50
|
Abstract
Diploidy has profound implications for population genetics and susceptibility to genetic diseases. Although two copies are present for most genes in the human genome, they are not necessarily both active or active at the same level in a given individual. Genomic imprinting, resulting in exclusive or biased expression in favor of the allele of paternal or maternal origin, is now believed to affect hundreds of human genes. A far greater number of genes display unequal expression of gene copies due to cis-acting genetic variants that perturb gene expression. The availability of data generated by RNA sequencing applied to large numbers of individuals and tissue types has generated unprecedented opportunities to assess the contribution of genetic variation to allelic imbalance in gene expression. Here we review the insights gained through the analysis of these data about the extent of the genetic contribution to allelic expression imbalance, the tools and statistical models for gene expression imbalance, and what the results obtained reveal about the contribution of genetic variants that alter gene expression to complex human diseases and phenotypes.
Collapse
Affiliation(s)
- Siobhan Cleary
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| |
Collapse
|