1
|
Liang H, Zhou B, Li P, Zhang X, Zhang S, Zhang Y, Yao S, Qu S, Chen J. Stemness regulation in prostate cancer: prostate cancer stem cells and targeted therapy. Ann Med 2025; 57:2442067. [PMID: 39711287 DOI: 10.1080/07853890.2024.2442067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that cancer stem cells (CSCs) and cancer stem-like cells form a special subpopulation of cells that are ubiquitous in tumors. These cells exhibit similar characteristics to those of normal stem cells in tissues; moreover, they are capable of self-renewal and differentiation, as well as high tumorigenicity and drug resistance. In prostate cancer (PCa), it is difficult to kill these cells using androgen signaling inhibitors and chemotherapy drugs. Consequently, the residual prostate cancer stem cells (PCSCs) mediate tumor recurrence and progression. OBJECTIVE This review aims to provide a comprehensive and up-to-date overview of PCSCs, with a particular emphasis on potential therapeutic strategies targeting these cells. METHODS After searching in PubMed and Embase databases using 'prostate cancer' and 'cancer stem cells' as keywords, studies related were compiled and examined. RESULTS In this review, we detail the origin and characteristics of PCSCs, introduce the regulatory pathways closely related to CSC survival and stemness maintenance, and discuss the link between epithelial-mesenchymal transition, tumor microenvironment and tumor stemness. Furthermore, we introduce the currently available therapeutic strategies targeting CSCs, including signaling pathway inhibitors, anti-apoptotic protein inhibitors, microRNAs, nanomedicine, and immunotherapy. Lastly, we summarize the limitations of current CSC research and mention future research directions. CONCLUSION A deeper understanding of the regulatory network and molecular markers of PCSCs could facilitate the development of novel therapeutic strategies targeting these cells. Previous preclinical studies have demonstrated the potential of this treatment approach. In the future, this may offer alternative treatment options for PCa patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Bin Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Peixin Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyi Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shijie Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaozhong Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengwen Yao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Sifeng Qu
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jun Chen
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
2
|
Comini G, Dowd E. A systematic review of progenitor survival and maturation in Parkinsonian models. Neural Regen Res 2025; 20:3172-3178. [PMID: 39589166 PMCID: PMC11881725 DOI: 10.4103/nrr.nrr-d-24-00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024] Open
Abstract
Stem cell-based brain repair is a promising emergent therapy for Parkinson's disease based on years of foundational research using human fetal donors as a cell source. Unlike current therapeutic options for patients, this approach has the potential to provide long-term stem cell-derived reconstruction and restoration of the dopaminergic input to denervated regions of the brain allowing for restoration of certain functions to patients. The ultimate clinical success of stem cell-derived brain repair will depend on both the safety and efficacy of the approach and the latter is dependent on the ability of the transplanted cells to survive and differentiate into functional dopaminergic neurons in the Parkinsonian brain. Because the pre-clinical literature suggests that there is considerable variability in survival and differentiation between studies, the aim of this systematic review was to assess these parameters in human stem cell-derived dopaminergic progenitor transplant studies in animal models of Parkinson's disease. A defined systematic search of the PubMed database was completed to identify relevant studies published up to March 2024. After screening, 76 articles were included in the analysis from which 178 separate transplant studies were identified. From these, graft survival could be assessed in 52 studies and differentiation in 129 studies. Overall, we found that graft survival ranged from < 1% to 500% of cells transplanted, with a median of 51% of transplanted cells surviving in the brain; while dopaminergic differentiation of the cells ranged from 0% to 46% of cells transplanted with a median of 3%. This systematic review suggests that there is considerable scope for improvement in the differentiation of stem cell-derived dopaminergic progenitors to maximize the therapeutic potential of this approach for patients.
Collapse
Affiliation(s)
- Giulia Comini
- Pharmacology & Therapeutics and Galway Neuroscience Center, University of Galway, Galway, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Center, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Yi LX, Woon HR, Saw G, Zeng L, Tan EK, Zhou ZD. Induced pluripotent stem cell-related approaches to generate dopaminergic neurons for Parkinson's disease. Neural Regen Res 2025; 20:3193-3206. [PMID: 39665833 PMCID: PMC11881713 DOI: 10.4103/nrr.nrr-d-24-00771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024] Open
Abstract
The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease, the second most common human neurodegenerative disease. Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear, the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy. The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons, which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies. The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells. The benefits of induced pluripotent stem cell-based research are highlighted. Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared. The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated. Finally, limitations, challenges, and future directions of induced pluripotent stem cell-based approaches are analyzed and proposed, which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Li Zeng
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Eng King Tan
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
4
|
Izadi E, Mohammad SS, Hakemi MG, Eshghi S, Saremi L, Saltanatpour Z, Hamidieh AA. Current biological, chemical and physical gene delivery approaches for producing induced pluripotent stem cells (iPSCs). Eur J Pharmacol 2025:177786. [PMID: 40513933 DOI: 10.1016/j.ejphar.2025.177786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 05/19/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025]
Abstract
The discovery of induced pluripotent stem cells (iPSCs) has revolutionized the research platform for disease modeling, drug discovery, cell therapy and regenerative medicine. Due to the importance of iPSCs over the past decade, various studies have focused on finding a safe and efficient gene delivery system to introduce reprogramming factors (RFs) into somatic cells, particularly for clinical applications. However, generated iPSCs from any source must undergo genomic, epigenomic, and functional characterizations to ensure they are free of somatic memories and safe for clinical application. In this review, almost all the employed cargos for delivering RFs into somatic cells were investigated, focusing on biological, chemical, and physical approaches to promote reprogramming efficiency and reduce exogenous factors. Moreover, the advantages and disadvantages of each approach were highlighted and cutting-edge technologies in iPSCs technology were also discussed. This review aims to provide a comprehensive overview discussing how to improve the efficiency and quality of iPSCs production.
Collapse
Affiliation(s)
- Elahe Izadi
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Shima Mohammad
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazdak Ganjalikhani Hakemi
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Shirin Eshghi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Saremi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Saltanatpour
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Ali Hamidieh
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Duan J, Saini P, Fong YW. Insights into noncanonical and diversified functions of ABCF1: from health to disease. J Mol Biol 2025:169286. [PMID: 40513648 DOI: 10.1016/j.jmb.2025.169286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 06/03/2025] [Accepted: 06/04/2025] [Indexed: 06/16/2025]
Abstract
The ATP-binding cassette (ABC) family is one of the largest and most ancient classes of transporters found in nearly all living organisms. However, ABCF1 lacks a transmembrane domain and therefore does not function as a transporter. Recent studies point to an unexpectedly diverse role of ABCF1 in regulating cell-essential processes from mRNA translation, innate immune response, and phagocytosis in somatic cells, to transcriptional regulation in embryonic stem cells. ABCF1's functional plasticity is in part mediated by its disordered low-complexity domain (LCD) to enable dynamic biomolecular interactions. In this review, we discuss how ABCF1 takes advantage of the LCD to expand its functional repertoire and highlight fundamental principles of biomolecular assembly driving biological reactions. We also discuss the functions and mechanisms of ABCF1 in development and tissue homeostasis, and how dysregulation of ABCF1 contributes to diseases such as inflammatory disease and cancer.
Collapse
Affiliation(s)
- Junyi Duan
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Prince Saini
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Yick W Fong
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Gilglioni EH, Bansal M, St-Pierre-Wijckmans W, Talamantes S, Kasarinaite A, Hay DC, Gurzov EN. Therapeutic potential of stem cell-derived somatic cells to treat metabolic dysfunction-associated steatotic liver disease and diabetes. Obes Rev 2025; 26:e13899. [PMID: 39861937 DOI: 10.1111/obr.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/22/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025]
Abstract
Developments in basic stem cell biology have paved the way for technology translation in human medicine. An exciting prospective use of stem cells is the ex vivo generation of hepatic and pancreatic endocrine cells for biomedical applications. This includes creating novel models 'in a dish' and developing therapeutic strategies for complex diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetes. In this review, we explore recent advances in the generation of stem cell-derived hepatocyte-like cells and insulin-producing β-like cells. We cover the different differentiation strategies, new discoveries, and the caveats that still exist regarding their routine use. Finally, we discuss the challenges and limitations of stem cell-derived therapies as a clinical strategy to manage metabolic diseases in humans.
Collapse
Affiliation(s)
- Eduardo H Gilglioni
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Mayank Bansal
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | | | - Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Alvile Kasarinaite
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - David C Hay
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
7
|
Scapin G, Cillis JL, Goulard MC, Patch TC, Gomez Limia CE, Ding Y, Du W, Dharampuriya PR, Hagedorn EJ, Anderson H, Musso GA, Curley CR, Teets EM, MacRae CA, Sehgal L, Hsiai TK, Blaser BW, Shah DI. PIEZO1 Activation-Mediated Generation of Transgene-Free Long-Term Hematopoietic Stem Cells. Am J Hematol 2025; 100:963-979. [PMID: 40320799 DOI: 10.1002/ajh.27689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 05/14/2025]
Abstract
The development of engraftable, long-term reconstituting hematopoietic stem cells (LT-HSC) from human pluripotent stem cells (hPSC) has been a long-sought goal. Since HSCs are formed by a subset of endothelial cells in the ventral part of the dorsal aorta, we analyzed heartbeat-mediated pulsatile displacement experienced by the walls of the dorsal aorta in zebrafish embryos. We found that pulsation-mediated circumferential stretch was restricted to the ventral part of the dorsal aorta and activated Piezo1 to stimulate LT-HSC formation. Stimulation of pulsation or Yoda1-mediated Piezo1 activation promoted the formation of de novo LT-HSCs from hemogenic endothelial cells derived from murine embryos or human pluripotent stem cells. These HSCs gave long-term multilineage reconstitution of hematopoietic cells upon transplantation into immunocompromised mice. The formation of transgene-free human LT-HSCs that can engraft and reconstitute the hematopoietic system will facilitate the generation of off-the-shelf HSCs from hPSCs for use in cellular therapies.
Collapse
Affiliation(s)
- Giorgia Scapin
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, Massachusetts, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jennifer L Cillis
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, Massachusetts, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Marie C Goulard
- Harvard Medical School, Boston, Massachusetts, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Taylor C Patch
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | | | - Yichen Ding
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Wenqiang Du
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Priyanka R Dharampuriya
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Elliott J Hagedorn
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Heidi Anderson
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriel A Musso
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlyn R Curley
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, Massachusetts, USA
| | - Emily M Teets
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Calum A MacRae
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lalit Sehgal
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Tzung K Hsiai
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Bradley W Blaser
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Dhvanit I Shah
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, Massachusetts, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
8
|
Kouzuki K, Umeda K, Hamabata T, Kamitori T, Mikami T, Honda Y, Saida S, Kato I, Baba S, Hiramatsu H, Yasumi T, Niwa A, Saito MK, Takita J. A pluripotent stem cell model of Emberger syndrome reveals reduced lymphatic endothelial differentiation. Int J Hematol 2025:10.1007/s12185-025-04004-1. [PMID: 40434572 DOI: 10.1007/s12185-025-04004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Emberger syndrome (ES), an autosomal dominant disorder characterized by congenital deafness, primary lymphedema, and predisposition to myeloid malignancies, is caused by mutations in the GATA2 gene. Although primary lymphedema is an important hallmark of ES, the pathophysiology remains unclear due to the lack of a suitable experimental model. In this study, we isolated induced pluripotent stem cells (iPSCs) from two patients with ES (i.e., ES-iPSCs) and analyzed their in vitro lymphatic differentiation potential via the mesodermal progenitor stage. KDR+ CD34+ early mesodermal progenitors generated from either ES-iPSCs or wild-type iPSCs during a 6-days serum- and feeder-free culture supplemented with bone morphogenetic protein 4 and vascular endothelial growth factor (VEGF) had almost equivalent developmental potential. However, upon co-culture with OP9 stromal cells, KDR+ CD34+ cells derived from ES-iPSCs developed into CD31+ lymphatic vessel endothelial hyaluronan receptor-1+ VEGF receptor 3+ lymphatic endothelial cells less efficiently than KDR+ CD34+ cells derived from wild-type iPSCs. Thus, patient-derived iPSCs recapitulate impairments at an early stage of lymphangiogenesis, making them a useful experimental tool for dissecting the pathophysiology of primary lymphedema in ES and developing potential therapeutic approaches.
Collapse
Affiliation(s)
- Kagehiro Kouzuki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Takayuki Hamabata
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuya Kamitori
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Mikami
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shiro Baba
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
9
|
Qian Y, Wu Q. The Multifaceted Roles of Zinc Finger Proteins in Pluripotency and Reprogramming. Int J Mol Sci 2025; 26:5106. [PMID: 40507915 PMCID: PMC12155391 DOI: 10.3390/ijms26115106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
Zinc finger proteins (ZFPs) play a crucial role in regulating gene expression. In recent years, there has been increasing evidence highlighting the importance of zinc finger proteins in pluripotent stem cells, which hold great promise in regenerative medicine. The general mechanism by which zinc finger proteins function in gene regulation of pluripotent stem cells involves their interaction with core transcriptional regulatory networks. ZFPs can either enhance key pluripotency genes to maintain pluripotency or promote differentiation of stem cells towards specific lineages by suppressing these key pluripotency genes. Hence, understanding the role of ZFPs in pluripotency and reprogramming is crucial for unraveling the complex regulatory network that governs cell fate decisions. Here we provide a comprehensive review of the current knowledge regarding the multifaceted role of ZFPs in pluripotency maintenance and reprogramming. We propose that more efforts should be focused on fully understanding the fascinating functions of ZFPs in stem cell fate decision.
Collapse
Affiliation(s)
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China;
| |
Collapse
|
10
|
Hsin J, Yazejian RM, Pajanoja C, Kerosuo L. Shared and individual expression patterns of pluripotency genes in the developing chick embryo during neurulation and beyond. Differentiation 2025; 144:100866. [PMID: 40449070 DOI: 10.1016/j.diff.2025.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 06/02/2025]
Abstract
The neural crest (NC) is a transient population of pluripotent-like, pleistopotent stem cells that emerges early in vertebrate development. These cells play a pivotal role in generating a diverse array of tissues, including the craniofacial bone and cartilage, the entire peripheral nervous system, melanocytes of the skin, certain cardiac structures, and chromaffin cells of the adrenal medulla, among others. The stem cell potential of neural crest cells (NCCs) has long intrigued developmental biologists, as the NC originates post-gastrulation in the ectoderm, yet NCCs also give rise to derivatives typically associated with mesodermal or endodermal origins. Recent work has shown that NCCs co-express factors known from the core pluripotency complex from the pre-gastrulation stages in the epiblast, which enables their exceptionally high stem cell potential. However, detailed spatiotemporal data on pluripotency factor expression in vertebrate embryos remain limited, and the distinction between the function of co-expression of pluripotency genes versus their individual expression in the developing embryo is not clear. In this study, to elucidate the NCC formation process across axial levels as well as the putative different roles of these stem cell genes during early embryogenesis, we used multi-channel fluorescent in situ hybridization to comprehensively examine the anterior-to-posterior expression of pluripotency factors PouV (Oct4), Nanog, Klf4 and Lin28A in chick embryos across key developmental stages, from Hamburger and Hamilton (HH) stage 5 to stage 14. From head to trunk, we find that while the early ectoderm, including the future epidermis and central nervous system (CNS) domains, in the neural fold stages broadly co-express these genes, their expression profiles differ significantly after neurulation. Nanog expression remains in the hindbrain and vagal migratory NCCs. Klf4 strongly marks the developing floor plate, and Klf4, PouV and Lin28A are expressed also in the neural tube that forms the CNS as well as in the developing somites, implying additional roles for these factors during embryogenesis.
Collapse
Affiliation(s)
- Jenny Hsin
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA; Biointerface Group, Department of Engineering, University of Cambridge, Cambridge, UK; UAB Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita M Yazejian
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA
| | - Ceren Pajanoja
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Kerosuo
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Begh MZA, Zehravi M, Bhuiyan MAK, Molla MR, Raman K, Emran TB, Ullah MH, Ahmad I, Osman H, Khandaker MU. Recent advances in stem cell approaches to neurodegeneration: A comprehensive review with mechanistic insight. Pathol Res Pract 2025; 271:156013. [PMID: 40381433 DOI: 10.1016/j.prp.2025.156013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
The progressive nature of neurodegenerative diseases (NDs), such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, presents substantial problems because current treatments are still obscure. Stem cell-based treatments are emerging as a viable solution to address the significant gaps in treating these severe diseases. This study provides a comprehensive analysis of the latest advancements in stem cell research, focusing on the treatment of NDs. Various types of stem cells, such as adult, induced pluripotent, and embryonic stem cells, and their potential applications in immunomodulation, neurotrophic factor release, and neuronal development are also discussed. Recent clinical studies reveal outcomes, challenges, and solutions, with advancements in disease-specific neural cell production, gene editing, and improved stem cell transplantation transport strategies. The review discussed future perspectives on developing more effective stem cell-based interventions. Biomaterials are being used for cell distribution and personalized medicine techniques to improve treatment outcomes, while exploring stem cell treatments for NDs and identifying areas for further research.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | | | - M Raju Molla
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka 1230, Bangladesh
| | - Kannan Raman
- Department of Pharmacology, St. John's College of Pharmaceutical Sciences & Research, Kattappana, Idukki, Kerala, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh
| | - Md Habib Ullah
- Department of Physics, American International University-Bangladesh (AIUB), 408/1, Kuratoli, Khilkhet, Dhaka 1229, Bangladesh
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, Faculty of Engineering and Technology, Sunway University, Bandar Sunway, 47500 Selangor, Malaysia; Department of Physics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
12
|
Matiukhova M, Ryapolova A, Andriianov V, Reshetnikov V, Zhuravleva S, Ivanov R, Karabelsky A, Minskaia E. A comprehensive analysis of induced pluripotent stem cell (iPSC) production and applications. Front Cell Dev Biol 2025; 13:1593207. [PMID: 40406420 PMCID: PMC12095295 DOI: 10.3389/fcell.2025.1593207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
The ability to reprogram mature, differentiated cells into induced pluripotent stem cells (iPSCs) using exogenous pluripotency factors opened up unprecedented opportunities for their application in biomedicine. iPSCs are already successfully used in cell and regenerative therapy, as various drug discovery platforms and for in vitro disease modeling. However, even though already 20 years have passed since their discovery, the production of iPSC-based therapies is still associated with a number of hurdles due to low reprogramming efficiency, the complexity of accurate characterization of the resulting colonies, and the concerns associated with the safety of this approach. However, significant progress in many areas of molecular biology facilitated the production, characterization, and thorough assessment of the safety profile of iPSCs. The number of iPSC-based studies has been steadily increasing in recent years, leading to the accumulation of significant knowledge in this area. In this review, we aimed to provide a comprehensive analysis of methods used for reprogramming and subsequent characterization of iPSCs, discussed barriers towards achieving these goals, and various approaches to improve the efficiency of reprogramming of different cell populations. In addition, we focused on the analysis of iPSC application in preclinical and clinical studies. The accumulated breadth of data helps to draw conclusions about the future of this technology in biomedicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ekaterina Minskaia
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
13
|
Kieffer TJ, Hoesli CA, Shapiro AMJ. Advances in Islet Transplantation and the Future of Stem Cell-Derived Islets to Treat Diabetes. Cold Spring Harb Perspect Med 2025; 15:a041624. [PMID: 39074874 PMCID: PMC12047745 DOI: 10.1101/cshperspect.a041624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
β-Cell replacement for type 1 diabetes (T1D) can restore normal glucose homeostasis, thereby eliminating the need for exogenous insulin and halting the progression of diabetes complications. Success in achieving insulin independence following transplantation of cadaveric islets fueled academic and industry efforts to develop techniques to mass produce β cells from human pluripotent stem cells, and these have now been clinically validated as an alternative source of regulated insulin production. Various encapsulation strategies are being pursued to contain implanted cells in a retrievable format, and different implant sites are being explored with some strategies reaching clinical studies. Stem cell lines, whether derived from embryonic sources or reprogrammed somatic cells, are being genetically modified for designer features, including immune evasiveness to enable implant without the use of chronic immunosuppression. Although hurdles remain in optimizing large-scale manufacturing, demonstrating efficacy, durability, and safety, products containing stem cell-derived β cells promise to provide a potent treatment for insulin-dependent diabetes.
Collapse
Affiliation(s)
- Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, School of Biomedical Engineering
- Department of Surgery, The University of British Columbia, Vancouver V6T1Z3, British Columbia, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, Department of Biomedical Engineering, McGill University, Montreal H3A 0C5, Québec, Canada
- Associate Member, Department of Biomedical Engineering, McGill University, Montreal H3A 0C5, Québec, Canada
| | - A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, Edmonton T6G2E1, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton T6G2E1, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton T6G2E1, Alberta, Canada
| |
Collapse
|
14
|
Ziętek MM, Bihorac A, Wenta-Muchalska E, Duszewska AM, Olech W, Sampino S, Bernat A. Wisent Somatic Cells Resist Reprogramming by the PiggyBac Transposon System: A Case Study Highlighting Methodological and Conservation Hurdles. Int J Mol Sci 2025; 26:4327. [PMID: 40362564 PMCID: PMC12072796 DOI: 10.3390/ijms26094327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/10/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
The European wisent (Bison bonasus), an iconic yet genetically vulnerable species, faces ongoing conservation challenges due to a restricted gene pool. Advances in induced pluripotent stem cell (iPSC) technology offer promising prospects for preserving and restoring genetic diversity in endangered species. In this study, we sought to reprogram wisent somatic cells into iPSCs using the PiggyBac transposon system, a non-viral method known for being successfully applied in bovine species. We applied a six-factor reprogramming cocktail (OCT4, SOX2, KLF4, LIN28, c-MYC, NANOG) alongside small-molecule enhancers to fibroblasts isolated from adult wisent tissue. While initial colony formation was observed, the reprogrammed cells exhibited limited proliferation and failed to maintain stable pluripotency, suggesting intrinsic barriers to complete reprogramming. Despite optimizing culture conditions, including hypoxia and extracellular matrix modifications, the reprogramming efficiency remained low. Our findings indicate that wisent somatic cells may require alternative reprogramming strategies, such as new-generation delivery systems and epigenetic modulators, to achieve stable iPSC lines. This study underscores the need for species-specific optimization of reprogramming protocols and highlights the potential of emerging cellular technologies for conservation efforts. Future research integrating advanced reprogramming tools may pave the way for genetic rescue strategies in wisent and other endangered species.
Collapse
Affiliation(s)
- Marta Marlena Ziętek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Ajna Bihorac
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Elżbieta Wenta-Muchalska
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Anna Maria Duszewska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warszawa, Poland
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Faculty of Animal Science, Warsaw University of Life Sciences, 02-787 Warszawa, Poland
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Agnieszka Bernat
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk & Medical University of Gdansk, 80-307 Gdansk, Poland
| |
Collapse
|
15
|
Verma I, Seshagiri PB. Current Applications of Human Pluripotent Stem Cells in Neuroscience Research and Cell Transplantation Therapy for Neurological Disorders. Stem Cell Rev Rep 2025; 21:964-987. [PMID: 40186708 DOI: 10.1007/s12015-025-10851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 04/07/2025]
Abstract
Many neurological diseases involving tissue damage cannot be treated with drug-based approaches, and the inaccessibility of human brain samples further hampers the study of these diseases. Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide an excellent model for studying neural development and function. PSCs can be differentiated into various neural cell types, providing a renewal source of functional human brain cells. Therefore, PSC-derived neural cells are increasingly used for multiple applications, including neurodevelopmental and neurotoxicological studies, neurological disease modeling, drug screening, and regenerative medicine. In addition, the neural cells generated from patient iPSCs can be used to study patient-specific disease signatures and progression. With the recent advances in genome editing technologies, it is possible to remove the disease-related mutations in the patient iPSCs to generate corrected iPSCs. The corrected iPSCs can differentiate into neural cells with normal physiological functions, which can be used for autologous transplantation. This review highlights the current progress in using PSCs to understand the fundamental principles of human neurodevelopment and dissect the molecular mechanisms of neurological diseases. This knowledge can be applied to develop better drugs and explore cell therapy options. We also discuss the basic requirements for developing cell transplantation therapies for neurological disorders and the current status of the ongoing clinical trials.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Neurology, University of Michigan, Ann Arbor, 48109, USA.
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
16
|
Wen S, Zheng R, Cai C, Jiang W. Chemical-based epigenetic reprogramming to advance pluripotency and totipotency. Nat Chem Biol 2025; 21:635-647. [PMID: 40251434 DOI: 10.1038/s41589-025-01874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/06/2025] [Indexed: 04/20/2025]
Abstract
Reprogramming technology, breaking the inherent limitations of cellular identity and turning somatic cells into pluripotent cells with more developmental potential, holds great promise for cell therapy and regenerative medicine. Compared with traditional methods based on overexpressing transcription factors, chemical reprogramming with small molecules exhibits substantial advantages in safety and convenience, thus being the leading edge. Over the past decade, a notable focus has been reshaping cellular pluripotency and totipotency using pure small-molecule systems. Here, we provide a concise Review comparing the chemical approaches that have emerged to date and discussing the epigenetic regulatory mechanisms involved in chemical reprogramming. This Review highlights the remarkable potential of small-molecule potions to reformulate cell fate through epigenetic reprogramming and newly discovered actions. We aim to offer insights into chemically controlled cell manipulation and key challenges and future application prospects of chemical reprogramming.
Collapse
Affiliation(s)
- Shanshan Wen
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ran Zheng
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, China
| | - Cheguo Cai
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, China.
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
17
|
Li Z, Su T, Yang Y, Zhao H. Construction of Multicellular Neural Tissue Using Three-Dimensional Printing Technology: Cell Interaction. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40256794 DOI: 10.1089/ten.teb.2024.0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The study of the human nervous system remains challenging due to its inherent complexity and difficulty in obtaining original samples. Three-dimensional (3D) bioprinting is a rapidly evolving technology in the field of tissue engineering that has made significant contributions to several disciplines, including neuroscience. In order to more accurately reflect the intricate multicellular milieu of the in vivo environment, an increasing number of studies have commenced experimentation with the coprinting of diverse cell types. This article provides an overview of technical details and the application of 3D bioprinting with multiple cell types in the field of neuroscience, focusing on the challenges of coprinting and the research conducted based on multicellular printing. This review discusses cell interactions in coprinting systems, stem cell applications, the construction of brain-like organoids, the establishment of disease models, and the potential for integrating 3D bioprinting with other 3D culture techniques.
Collapse
Affiliation(s)
- Zhixiang Li
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| | - Tong Su
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| | - Yujie Yang
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| | - Huan Zhao
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| |
Collapse
|
18
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 PMCID: PMC12025799 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
19
|
Weeratunga P, Harman RM, Jager MC, Van de Walle GR. Footprint-free induced pluripotent stem cells can be successfully differentiated into mesenchymal stromal cells in the feline model. Stem Cell Res Ther 2025; 16:195. [PMID: 40254569 PMCID: PMC12010622 DOI: 10.1186/s13287-025-04325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) can propagate indefinitely and give rise to every other cell type, rendering them invaluable for disease modelling, drug development research, and usage in regenerative medicine. While feline iPSCs have been described, there are currently no reports on generating genome integration (footprint)-free iPSCs from domestic cats. Therefore, the objective of this study was to generate feline iPSCs from fetal fibroblasts using non-integrative Sendai virus (SeV) vectors carrying human transcription factors. Moreover, these iPSCs were differentiated into mesenchymal stromal cells (MSCs), which can be used as an alternative to tissue-derived MSCs. METHODS Feline fetal fibroblasts were transduced with CytoTune-iPS 2.0 Sendai Reprogramming vectors at recommended multiplicity of infections (MOI) and cultured for about 6 days. At 7 days post transduction cells were dissociated, replated on inactivated feeder cells and maintained in iPSC medium for 28 days with daily medium change. Emerging iPSC colonies were mechanically passaged and transferred to fresh feeder cells and further passaged every 6-8 days. Four feline iPSC lines were generated, with two selected for further in-depth characterization. Feline iPSCs were then differentiated into MSCs using a serial plating strategy and an inhibitor of the transforming growth factor-β (TGF-β) type I receptor. RESULTS Feline iPSCs exhibited characteristic colony morphology, high nuclear-to-cytoplasmic ratio, positive alkaline phosphatase activity, and expressed feline OCT4, SOX2, and Nanog homeobox (NANOG) stem cell markers. Expression of SeV-derived transgenes decreased during passaging to be eventually lost from the host cells and feline iPSCs could be stably maintained for over 35 passages. Feline iPSCs differentiated into embryoid bodies in vitro and did not form fully differentiated teratomas; instead, they generated in vivo masses containing mesodermal tissue derivatives when injected into immunodeficient mice. Feline iPSC-derived MSCs were plastic adherent, displayed MSC-like morphology, expressed MSC-specific surface markers, and differentiated into cells from the mesodermal lineage in vitro. RNA deep sequencing identified 1,189 differentially expressed genes in feline iPSC-derived MSCs compared to feline iPSCs. CONCLUSION We demonstrated the generation of footprint-free iPSCs from domestic cats and their directed differentiation potential towards MSCs. These SeV-derived feline iPSCs and iPSC-derived MSCs will provide valuable models to study feline diseases and explore novel therapeutic strategies and can serve as translational models for human health, leading to increased knowledge on disease pathogenesis and improved therapeutic interventions.
Collapse
Affiliation(s)
- Prasanna Weeratunga
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA
| | - Mason C Jager
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
- Department of Veterinary Pathobiology, The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
20
|
Guo X, Wang X, Wang J, Ma M, Ren Q. Current Development of iPSC-Based Modeling in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:3774. [PMID: 40332425 PMCID: PMC12027653 DOI: 10.3390/ijms26083774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Over the past two decades, significant advancements have been made in the induced pluripotent stem cell (iPSC) technology. These developments have enabled the broader application of iPSCs in neuroscience, improved our understanding of disease pathogenesis, and advanced the investigation of therapeutic targets and methods. Specifically, optimizations in reprogramming protocols, coupled with improved neuronal differentiation and maturation techniques, have greatly facilitated the generation of iPSC-derived neural cells. The integration of the cerebral organoid technology and CRISPR/Cas9 genome editing has further propelled the application of iPSCs in neurodegenerative diseases to a new stage. Patient-derived or CRISPR-edited cerebral neurons and organoids now serve as ideal disease models, contributing to our understanding of disease pathophysiology and identifying novel therapeutic targets and candidates. In this review, we examine the development of iPSC-based models in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Xiangge Guo
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Xumeng Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Jiaxuan Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Min Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- Human Brain Bank, Hebei Medical University, Shijiazhuang 050017, China
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
21
|
Englich M, Arkudas A, Mengen L, Horch RE, Cai A. Selection of optimal human myoblasts based on patient related factors influencing proliferation and differentiation capacity. Sci Rep 2025; 15:11714. [PMID: 40188257 PMCID: PMC11972305 DOI: 10.1038/s41598-025-96108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Human myoblasts (hMb) are a promising source for engineering skeletal muscle tissue. But sample-specific variabilities make research with human cells challenging. For the purpose of selecting hMb with adequate proliferation and differentiation properties, the influence of various patient related factors, including age, gender, BMI, anatomical sampling site and previous radio-/chemotherapy on hMb behavior was investigated in this study. Immunofluorescence staining and proliferation periods were analysed for proliferation capacity, while creatine kinase and cell viability assay, immunofluorescence staining and PCR were used to determine differentiation capacity. Using desmin expression, a multiple linear regression (MLR) model was established based on the above-mentioned patient related factors. Higher age and BMI, female gender and chemotherapy had a negative impact on desmin expression. Muscle type specific differences could also be seen. Previous radiotherapy led to senescence of hMb in large parts. Differentiation was mainly influenced by gender in a time-dependent manner, as well as by the anatomical collecting site. We were able to demonstrate the importance of analyzing patient characteristics for the purpose of hMb isolation. Using MLR, these patient characteristics can be used to predict the proliferation capacity of hMb as a step further towards translational application of skeletal muscle engineering and regeneration.
Collapse
Affiliation(s)
- Moritz Englich
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Lilly Mengen
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Aijia Cai
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany.
| |
Collapse
|
22
|
Yang G, Xin Q, Dean J. ZNHIT3 Regulates Translation to Ensure Cell Lineage Differentiation in Mouse Preimplantation Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413599. [PMID: 40178020 DOI: 10.1002/advs.202413599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Upon fertilization, the mouse zygotic genome is activated and maternal RNAs as well as proteins are degraded. Early developmental programs are built on proteins encoded by zygotic mouse genes that are needed to guide early cell fate commitment. The box C/D snoRNA ribonucleoprotein (snoRNP) complex is required for rRNA biogenesis, ribosome assembly and pre-mRNA splicing essential for protein translation. Zinc finger, HIT type 3 (encoded by Znhit3) is previously identified as a component in the assembly of the box C/D snoRNP complex. Using gene-edited mice, it identifies Znhit3 as an early embryonic gene whose ablation reduces protein translation and prevents mouse embryos development beyond the morula stage. The absence of ZNHIT3 leads to decreased snoRNA and rRNA abundance which causes defects of ribosomes and mRNA splicing. Microinjection of Znhit3 cRNA partially rescues the phenotype and confirms that ZNHIT3 is required for mRNA translation during preimplantation development.
Collapse
Affiliation(s)
- Guanghui Yang
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qiliang Xin
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
van Sprang JF, Aarts JGM, Arts B, Brouns JEP, Komil MI, Bartels PAA, Dankers PYW. Supramolecular Additive Screening to Engineer Microfibrous Rafts for Expansion of Pluripotent Stem Cells in Dynamic Suspension. Adv Healthc Mater 2025; 14:e2404186. [PMID: 40059619 PMCID: PMC12023819 DOI: 10.1002/adhm.202404186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/02/2025] [Indexed: 04/26/2025]
Abstract
Human induced pluripotent stem cells (hiPSCs) hold the potential to generate any human tissue for transplantation in regenerative therapies. These complex cell therapies require billions of cells, which is challenging to acquire in planar adherent cultures. Transitioning hiPSCs to 3D suspension culture on microcarrier materials, often bead-shaped, improves the total surface area accessible to cells, thereby enabling culture scale-up. However, bead-shaped microcarriers do not have the optimal shape configuration, because it is the lowest surface-to-volume ratio of all geometrical shapes, and it also induces uncontrolled cell clumping. Application of synthetic, microfibrous rafts as a replacement for bead-shaped microcarriers potentially solves these issues. Here, microfibrous rafts are engineered by first screening a supramolecular biomaterial library composed of bisurea (BU)-peptide conjugate additives for its ability to induce hiPSC adhesion and maintenance of its pluripotent state, followed by electrospinning the screening-hit into raft-like structures. The resulting rafts contain cylinder-like microfibers, which have a higher surface-to-volume ratio compared to conventional bead-shaped microcarriers, and the flat configuration of the rafts prevents clumping.
Collapse
Affiliation(s)
- Johnick F. van Sprang
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Jasper G. M. Aarts
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Boris Arts
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Joyce E. P. Brouns
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Muhabbat I. Komil
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Paul A. A. Bartels
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| |
Collapse
|
24
|
Yang Z, Lin Q, Niu Y, Sun M, Zhou F, Lin J, Xing D. Visualizing Trends and Bibliometric Study in Tissue Engineering for Rotator Cuff Injuries. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:190-207. [PMID: 39001836 DOI: 10.1089/ten.teb.2024.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
This research is dedicated to uncovering the evolving trends, progressive developments, and principal research themes in tissue engineering and regenerative medicine for rotator cuff injuries, which spans the past two decades. This article leverages visualization methodology to provide a clear and comprehensive portrayal of the dynamic landscape within the field. We compiled 758 research entries centered on the application of tissue engineering and regenerative medicine in treating rotator cuff injuries, drawing from the Web of Science Core Collection database and covering the period from 2003 to 2023. Analytical tools such as VOSviewer, CiteSpace, and GraphPad Prism were used. We conducted comprehensive analyses to discern the general characteristics, historical evolution, key literature, and pivotal keywords within this research field. This comprehensive analysis enabled us to identify emerging focal points and current trends in the application of tissue engineering and regenerative medicine for addressing rotator cuff injuries. The compilation of 758 articles in this study indicates a consistent upward trajectory in publications concerning tissue engineering and regenerative medicine for rotator cuff injuries. The scholarly contributions from the United States, China, and South Korea have notable influence on the progression of this research area. The analysis delineated ten specific research subdomains, including fatty infiltration, tears, tissue engineering, shoulder pain, tendon repair, extracellular matrix (ECM), and platelet-rich plasma growth factors. Noteworthy is the recurrent mention of keywords such as "mesenchymal stem cells," "repair," and "platelet-rich plasma" throughout past two decades, highlighting their critical role in the evolution of the relevant field. This bibliometric analysis meticulously examines 758 publications, offering an in-depth exploration of the developments in tissue engineering and regenerative medicine for rotator cuff injuries between 2003 and 2023. The study effectively constructs a knowledge map, delineating the progressive contours of research in this domain. By pinpointing prevailing trends and emerging hotspots, the study furnishes crucial insights, setting a direction for forthcoming explorations and providing guidance for future researchers in this evolving field.
Collapse
Affiliation(s)
- Zhen Yang
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Qiyuan Lin
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Mengze Sun
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fanfan Zhou
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Jianhao Lin
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Dan Xing
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| |
Collapse
|
25
|
Felix RB, Shabazz A, Holeman WP, Han S, Wyble M, Uzoukwu M, Gomes LA, Nho L, Litman MZ, Hu P, Fisher JP. From Promise to Practice: Recent Growth in 30 Years of Tissue Engineering Commercialization. Tissue Eng Part A 2025; 31:285-302. [PMID: 38818800 DOI: 10.1089/ten.tea.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
This perspective, marking the 30th anniversary of the Tissue Engineering journal, discusses the exciting trends in the global commercialization of tissue engineering technology. Within a historical context, we present an evolution of challenges and a discussion of the last 5 years of global commercial successes and emerging market trends, highlighting the continued expansion of the field in the northeastern United States. This leads to an overview of the last 5 years' progress in clinical trials for tissue-engineered therapeutics, including an analysis of trends in success and failure. Finally, we provide a broad overview of preclinical research and a perspective on where the state-of-the-art lies on the horizon.
Collapse
Affiliation(s)
- Ryan B Felix
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amal Shabazz
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - William Pieper Holeman
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Sarang Han
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Matthew Wyble
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Marylyn Uzoukwu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Lauren Audrey Gomes
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Laena Nho
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Mark Zachary Litman
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Peter Hu
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
26
|
Cheng L, Wang Y, Guan J, Deng H. Decoding human chemical reprogramming: mechanisms and principles. Trends Biochem Sci 2025:S0968-0004(25)00053-2. [PMID: 40169299 DOI: 10.1016/j.tibs.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025]
Abstract
Pluripotent stem cells hold great promise as an unlimited resource for regenerative medicine due to their capacity to self-renew and differentiate into various cell types. Chemical reprogramming using small molecules precisely regulates cell signaling pathways and epigenetic states, providing a novel approach for generating human pluripotent stem cells. Since its successful establishment in 2022, human chemical reprogramming has rapidly achieved significant progress, demonstrating its significant potential in regenerative medicine. Mechanistic analyses have revealed distinct molecular pathways and regulatory mechanisms unique to chemical reprogramming, differing from traditional transcription-factor-driven methods. In this review we highlight recent advancements in our understanding of the mechanisms of human chemical reprogramming, with the goal of enhancing insights into the principles of cell fate control and advancing regenerative medicine.
Collapse
Affiliation(s)
- Lin Cheng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanglu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jingyang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Hongkui Deng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, Beijing, China.
| |
Collapse
|
27
|
Zhu F, Nie G. Cell reprogramming: methods, mechanisms and applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:12. [PMID: 40140235 PMCID: PMC11947411 DOI: 10.1186/s13619-025-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Zhu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Kulhánková J, Hobbs CJ, Holubová BN, Erben J, Rysová M, Musílková J, Svobodová L, Romanyuk N, Máková V. Hybrid fibres: a new path in tissue regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:29. [PMID: 40138044 PMCID: PMC11946956 DOI: 10.1007/s10856-025-06875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Nowadays, various forms of organosilane materials are well established in the field of regenerative medicine, but interestingly, fibrous organosilanes have yet to be described. So far, technological obstacles prevent the preparation of such fibrous materials without any presence of spinnability-supporting organic polymers, various types of surfactants, or non-polar organic solvents, which are in many cases highly toxic and economically inconvenient. Recently, these obstacles were overcome by a complex, yet simple, technology combining different science perspectives from supramolecular chemistry through material science to tissue engineering. This paper suggests a synthesis of two biomedically promising monomeric organosilane precursors, N,N´-bis(3-(triethoxysilyl)propyl)terephthalamide (BTT) and N,N´-bis(3-(triethoxysilyl)propyl)pyridine-2,6-dicarboxamide (BTP), which are submitted to a sol-gel process combined with subsequent electrospinning technology. Such a unique procedure not only allows the preparation of toxic-free organosilane fibrous mats by suitable adjustment of sol-gel and electrospinning parameters but also simplifies material production via a one-pot synthesis approach further tuneable with appropriate organosilane precursors. The BTT and BTP fibrous materials prepared displayed not only a promising interface among the materials and 3T3 fibroblast cell lines but moreover, the interaction of nanofibrous materials with stem cells has yielded encouraging outcomes. Stem cell adhesion, proliferation, and differentiation were notably enhanced in the presence of these materials, suggesting a supportive microenvironment conducive to regenerative responses. The ability of the material to modulate the cellular behaviour of stem cells holds promising implications for the development of targeted and effective regenerative therapies.
Collapse
Affiliation(s)
- Johana Kulhánková
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec, Czech Republic
| | - Christopher J Hobbs
- Department of Nanochemistry, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec, Czech Republic
| | - Barbora Nikendey Holubová
- Department of Nanochemistry, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec, Czech Republic
| | - Jakub Erben
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Miroslava Rysová
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec, Czech Republic
| | - Jana Musílková
- Institute of Physiology, Czech Academy of Science, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Lucie Svobodová
- Institute of Physiology, Czech Academy of Science, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Science, 142 20, Prague, Czech Republic
| | - Veronika Máková
- Department of Nanochemistry, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec, Czech Republic.
| |
Collapse
|
29
|
Attia YM, Tadros SA, Fahim SA, Badr DM. Role of noncoding RNA as a pacemaker in cancer stem cell regulation: a review article. J Egypt Natl Canc Inst 2025; 37:9. [PMID: 40122959 DOI: 10.1186/s43046-025-00266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Accumulated evidence supported the crucial role of a tiny population of cells within the tumor called cancer stem cells (CSCs) in cancer origination, and proliferation. Additionally, these cells are distinguished by their self-renewal, differentiation, and therapeutic resistance capabilities. Interestingly, many studies recorded dysregulation of different types of noncoding RNAs, such as microRNA (miRNA) and long non-coding RNA (LncRNA), in cancer cells as well as CSCs. Moreover, several studies also supported the regulation of the transcription factors and signaling pathways required for CSC progression by these noncoding RNAs. However, the exact biological functions of all these noncoding RNAs are not well understood yet. These findings are of great interest, implying usage of noncoding RNA as therapeutic tool to target these cells. In this review, we provide an insight into how noncoding RNAs regulate CSCs and how this correlation is manipulated to develop new therapies to eradicate cancer cells successfully.
Collapse
Affiliation(s)
- Yasmin M Attia
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| | - Samer A Tadros
- Department of Biochemistry, Faculty of Pharmacy, 110123october University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Sally A Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Giza, 12577, Egypt.
| | - Doaa M Badr
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| |
Collapse
|
30
|
Mboni-Johnston IM, Hartmann S, Kroll C, Berndt C, Adjaye J, Schupp N. Impact of nephrotoxins and oxidants on survival and transport function of hiPSC-derived renal proximal tubular cells. Arch Toxicol 2025:10.1007/s00204-025-04015-1. [PMID: 40119912 DOI: 10.1007/s00204-025-04015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Due to their role in excretion, renal proximal tubular cells are susceptible to damage by toxic metabolites and xenobiotics. The regenerative capacity of the kidney allows for the replacement of damaged cells, a process involving differentiation programs. However, kidney function tends to decline, suggesting that the replacement cells may not achieve full functionality. To understand possible causes of this decline, we investigated effects of nephrotoxins and oxidants on the differentiation of induced pluripotent stem cells (iPSC) into proximal tubular epithelial-like cells (PTELC). Proliferation, apoptosis, senescence, and expression of oxidative defense genes were analyzed in iPSC, differentiating and differentiated cells treated with cisplatin (CisPt, up to 45 µM), cyclosporin A (CycA, up to 12 µM), and the oxidants menadione (Mena, up to 50 µM) and tert-butylhydroquinone (tBHQ, up to 50 µM). We found that differentiating cells were most sensitive to oxidants and showed increased sensitivity to CisPt, whereas all differentiation stages showed similar sensitivity to CycA. Both oxidative stress and CisPt triggered apoptosis in all differentiation stages, whereas CycA mainly induced senescence. Treatment during differentiation resulted in long-term effects on gene expression in differentiated cells. While oxidants had no effect on transport function of differentiated cells, CisPt and CycA impaired albumin uptake. Our data suggest a substantial sensitivity of differentiating cells to nephrotoxins and oxidants, an aspect that could potentially interfere with regenerative processes.
Collapse
Affiliation(s)
- Isaac Musong Mboni-Johnston
- Institute of Toxicology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sören Hartmann
- Institute of Toxicology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christian Kroll
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, University Hospital Düsseldorf, University of Düsseldorf, 40225, Düsseldorf, Germany
- Zayed Centre for Research into Rare Diseases in Children (ZCR), EGA Institute for Women'S Health, University College London (UCL), 20 Guilford Street, London, WC1N 1DZ, UK
| | - Nicole Schupp
- Institute of Toxicology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
31
|
Zhu Q, Hu L, Cui C, Zang M, Dong H, Ma J. Decoding Hairpin Structure Stability in Lin28-Mediated Repression. Biochemistry 2025; 64:1276-1284. [PMID: 40020242 DOI: 10.1021/acs.biochem.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The Lin28 protein is well known for its role in inhibiting the biogenesis of microRNAs (miRNAs) that belong to the let-7 family. The Lin28 and let-7 axes are associated with several types of cancers. It is imperative to understand the underlying mechanism to treat these cancers in a more efficient way. In this study, we employed all-atom molecular dynamics simulation as a research tool to investigate the interaction formed between Lin28 and the precursor element of let-7d, one of the 12 members of the let-7 family. By constructing systems of an intact sequence length of preE-let-7d, our simulations suggest that both the loop region of the hairpin structure and the GGAG sequence can form stable interactions with the cold shock domain (CSD) and zinc knuckle domain (ZKD) regions of the protein, respectively. The system, by deleting the nucleotides GGAG at the 3' terminal, indicates that the loop region is more responsible for its ability in bypassing the binding and repression of Lin28. Additionally, using let-7c-2, which can bypass Lin28 regulation, as a template, we constructed systems with mutated loop region sequences in miRNAs and tested their stabilities. Our simulation results coincide well with experimental observations. Based on both simulation results and statistical analysis from two databases, we hypothesized that two factors, namely, the interaction between terminal nucleotides and the ring tension originating from the middle nucleotides, can significantly influence their stabilities. Systems combining strong and weak terminal interactions with large and small ring tensions were recruited to validate our hypothesis. Our findings offer a new perspective and shed light on strategies for designing sequences to regulate the interactions formed between proteins and hairpin structures.
Collapse
Affiliation(s)
- Qiang Zhu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Limu Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chang Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Min Zang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, P. R. China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), & Institute for Brain Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
32
|
Karmakar A, Augustine ABHR, Thummer RP. Genes as Genome Stabilizers in Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095244 DOI: 10.1007/5584_2025_853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pluripotent stem cells, comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are characterized by their self-renewal capacity and the ability to differentiate into cells of all three germ layers of an adult animal. Out of the two, iPSCs are generated through the reprogramming of somatic cells by inducing a pluripotency-specific transcriptional program. This process requires a resetting of the somatic cell genome to a pluripotent cell-specific genome, resulting in cellular stress at genomic, epigenetic, and transcriptional levels. Notably, in contrast to the predominant compact and inactive organization of chromatin in somatic cells, the chromatin in ESCs and iPSCs is open. Furthermore, maintaining a pluripotent state needs a plethora of changes in the genetic landscape of the cells. Here, we attempt to elucidate how certain genes safeguard genomic stability in ESCs and iPSCs, aiding in the complex cellular mechanisms that regulate self-renewal, pluripotency, and somatic reprogramming.
Collapse
Affiliation(s)
- Asmita Karmakar
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Allan Blessing Harison Raj Augustine
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
33
|
Zhang J, Tabima DM, Vereide D, Zeng W, Albano NJ, Lyon S, Nicksic PJ, Shaffrey EC, George RE, Probasco MD, Perrin ES, Xu Y, Brown ME, Stewart R, Chesler NC, Turng LS, Poore SO, Slukvin II, Thomson JA, Maufort JP. Small-diameter artery grafts engineered from pluripotent stem cells maintain 100% patency in an allogeneic rhesus macaque model. Cell Rep Med 2025; 6:102002. [PMID: 40068684 PMCID: PMC11970380 DOI: 10.1016/j.xcrm.2025.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/18/2024] [Accepted: 02/12/2025] [Indexed: 03/21/2025]
Abstract
Autologous vascular grafts, the only clinically approved option for small-diameter (<6 mm) revascularizations, require invasive harvesting and have limited availability and variable quality. To address these challenges, we develop a 3-mm-diameter artery graft by using arterial endothelial cells (AECs) derived from pluripotent stem cells (PSCs). After establishing technologies for pure AEC generation and expanded polytetrafluoroethylene (ePTFE) graft coating, we engineer artery grafts by seeding the inner lumen of ePTFE vascular grafts with either major histocompatibility complex (MHC) mismatched unmodified-wild-type (MHC-WT) AECs or MHC class I/II double knockout (MHC-DKO) AECs. Their function is evaluated in a rhesus arterial interposition grafting model. MHC-WT grafts maintained 100% patency for 6 months, significantly better than naked and MHC-DKO grafts. Additionally, the endothelium of MHC-WT grafts is repopulated with host cells, supporting long-term patency. Collectively, our study demonstrates that PSC-derived MHC-WT artery grafts provide an unlimited homogenous resource for allogeneic arterial revascularization.
Collapse
Affiliation(s)
- Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA.
| | - Diana Marcela Tabima
- Morgridge Institute for Research, Madison, WI 53715, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - David Vereide
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Weifeng Zeng
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Nicholas J Albano
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Sarah Lyon
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Peter J Nicksic
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ellen C Shaffrey
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Robert E George
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Elizabeth S Perrin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yiyang Xu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Matthew E Brown
- School of Medicine and Public Health, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, Irvine, CA 92617, USA
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel O Poore
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - John P Maufort
- Morgridge Institute for Research, Madison, WI 53715, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
34
|
Ashander LM, Lidgerwood GE, Lumsden AL, Furtado JM, Pébay A, Smith JR. Human Retinal Organoid Model of Ocular Toxoplasmosis. Pathogens 2025; 14:286. [PMID: 40137771 PMCID: PMC11945118 DOI: 10.3390/pathogens14030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
The health burden of ocular toxoplasmosis is substantial, and there is an unmet need for safe and curative anti-microbial drugs. One major barrier to research on new therapeutics is the lack of in vitro human-based models beyond two-dimensional cultured cells and tissue explants. We aimed to address this research gap by establishing a human retinal organoid model of ocular toxoplasmosis. Retinal organoids, generated from human induced pluripotent stem cells and grown to two stages of organization, were incubated with a suspension of live or heat-killed GT-1 strain T. gondii tachyzoites, or medium without tachyzoites. Both developing (1 month post-isolation) and matured (6 months post-isolation) organoids were susceptible to infection. Spread of live parasites from the margin to the entire organoid over 1 week was indicated by immunolabelling for T. gondii surface antigen 1. This progression was accompanied by changes in the levels of selected tachyzoite transcripts-SAG1, GRA6, and ROP16-and human cytokine transcripts-CCL2, CXCL8, CXCL10, and IL6-in infected versus control conditions. Our human retinal organoid model of ocular toxoplasmosis offers the opportunity for many future lines of study, including tachyzoite interactions with retinal cell populations and leukocyte subsets, parasite stage progression, and disease processes of different T. gondii strains, as well as drug testing.
Collapse
Affiliation(s)
- Liam M. Ashander
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.M.A.); (A.L.L.)
| | - Grace E. Lidgerwood
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (G.E.L.); (A.P.)
| | - Amanda L. Lumsden
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.M.A.); (A.L.L.)
| | - João M. Furtado
- Division of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil;
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (G.E.L.); (A.P.)
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Justine R. Smith
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.M.A.); (A.L.L.)
| |
Collapse
|
35
|
Fukunaga I, Takebe T. In vitro liver models for toxicological research. Drug Metab Pharmacokinet 2025; 62:101478. [PMID: 40203632 DOI: 10.1016/j.dmpk.2025.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Drug-induced liver injury (DILI) presents a major challenge not only in new drug development but also in post-marketing withdrawals and the safety of food, cosmetics, and chemicals. Experimental model organisms such as the rodents have been widely used for preclinical toxicological testing. However, the tension exists associated with the ethical and sustainable use of animals in part because animals do not necessarily inform the human-specific ADME (adsorption, dynamics, metabolism and elimination) profiling. To establish alternative models in humans, in vitro hepatic tissue models have been proposed, ranging from primary hepatocytes, immortal hepatocytes, to the development of new cell resources such as stem cell-derived hepatocytes. Given the evolving number of novel alternative methods, understanding possible combinations of cell sources and culture methods will be crucial to develop the context-of-use assays. This review primarily focuses on 3D liver organoid models for conducting. We will review the relevant cell sources, bioengineering methods, selection of training compounds, and biomarkers towards the rationale design of in vitro toxicology testing.
Collapse
Affiliation(s)
- Ichiro Fukunaga
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Takanori Takebe
- Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan; Divisions of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
36
|
Snabel RR, Cofiño-Fabrés C, Baltissen M, Schwach V, Passier R, Veenstra GJC. Cardiac differentiation roadmap for analysis of plasticity and balanced lineage commitment. Stem Cell Reports 2025; 20:102422. [PMID: 40020683 PMCID: PMC11960529 DOI: 10.1016/j.stemcr.2025.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/03/2025] Open
Abstract
Stem cell-based models of human heart tissue and cardiac differentiation employ monolayer and 3D organoid cultures with different properties, cell type composition, and maturity. Here we show how cardiac monolayer, embryoid body, and engineered heart tissue trajectories compare in a single-cell roadmap of atrial and ventricular differentiation conditions. Using a multiomic approach and gene-regulatory network inference, we identified regulators of the epicardial, atrial, and ventricular cardiomyocyte lineages. We identified ZNF711 as a regulatory switch and safeguard for cardiomyocyte commitment. We show that ZNF711 ablation prevents cardiomyocyte differentiation in the absence of retinoic acid, causing progenitors to be diverted more prominently to epicardial and other lineages. Retinoic acid rescues this shift in lineage commitment and promotes atrial cardiomyocyte differentiation by regulation of shared and complementary target genes, showing interplay between ZNF711 and retinoic acid in cardiac lineage commitment.
Collapse
Affiliation(s)
- Rebecca R Snabel
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Carla Cofiño-Fabrés
- Department of Bioengineering Technologies, Applied Stem Cell Technologies Group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Marijke Baltissen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Verena Schwach
- Department of Bioengineering Technologies, Applied Stem Cell Technologies Group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Robert Passier
- Department of Bioengineering Technologies, Applied Stem Cell Technologies Group, TechMed Centre, University of Twente, Enschede, the Netherlands.
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
37
|
Li M, Suzuki K, Wang M, Benner C, Ku M, Ma L, Kobari L, Kim NY, Montserrat N, Chang CJ, Liu G, Qu J, Xu J, Zhang Y, Aizawa E, Wu J, Douay L, Esteban CR, Belmonte JCI. Dynamic WNT signaling controls differentiation of hematopoietic progenitor cells from human pluripotent stem cells. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2816-0. [PMID: 40080269 DOI: 10.1007/s11427-024-2816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/11/2024] [Indexed: 03/15/2025]
Abstract
Human pluripotent stem cells (hPSCs) can in theory give rise to any hematopoietic lineages, thereby offering opportunities for disease modeling, drug screening and cell therapies. However, gaps in our knowledge of the signaling requirements for the specification of human hematopoietic stem/progenitor cells (HSPCs), which lie at the apex of all hematopoietic lineages, greatly limit the potential of hPSC in hematological research and application. Transcriptomic analysis reveals aberrant regulation of WNT signaling during maturation of hPSC-derived hematopoietic progenitor cells (hPSC-HPCs), which results in higher mitochondria activity, misregulation of HOX genes, loss of self-renewal and precocious differentiation. These defects are partly due to the activation of the WNT target gene CDX2. Late-stage WNT inhibition improves the yield, self-renewal, multilineage differentiation, and transcriptional and metabolic profiles of hPSC-HPCs. Genome-wide mapping of transcription factor (TF) accessible chromatin reveals a significant overrepresentation of myeloid TF binding motifs in hPSC-HPCs, which could underlie their myeloid-biased lineage potential. Together our findings uncover a previously unappreciated dynamic requirement of the WNT signaling pathway during the specification of human HSPCs. Modulating the WNT pathway with small molecules normalizes the molecular differences between hPSC-HPCs and endogenous hematopoietic stem cells (HSCs), thereby representing a promising approach to improve the differentiation and function of hPSC-HPCs.
Collapse
Affiliation(s)
- Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.
| | - Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 560-8531, Japan
| | - Mengge Wang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher Benner
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Manching Ku
- Next Generation Sequencing Core, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Li Ma
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Ladan Kobari
- Prolifération et Différentiation des Cellules Souches, UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Paris, F-75012, France
- Prolifération et Différentiation des Cellules Souches, INSERM, UMR_S938, Paris, F-75012, France
| | - Na Young Kim
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Nuria Montserrat
- Center for Regenerative Medicine in Barcelona, Barcelona, 08003, Spain
| | - Chan-Jung Chang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Guanghui Liu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Qu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinna Xu
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Yingzi Zhang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Emi Aizawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Luc Douay
- Prolifération et Différentiation des Cellules Souches, UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Paris, F-75012, France
- Unité d'Ingénierie et de Thérapie Cellulaire, EFS Ile de France, Créteil, F-94017, France
- Service d'Hématologie et immunologie biologique, AP-HP Hôpital Saint Antoine/Armand Trousseau, Paris, F-75012, France
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Altos Labs, San Diego, 92122, USA
| | - Juan Carlos Izpisua Belmonte
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.
- Altos Labs, San Diego, 92122, USA.
| |
Collapse
|
38
|
Tang P, Wei F, Qiao W, Chen X, Ji C, Yang W, Zhang X, Chen S, Wu Y, Jiang M, Ma C, Shen W, Dong Q, Cao H, Xie M, Cai Z, Xu L, Shi J, Dong N, Chen J, Wang N. Engineering aortic valves via transdifferentiating fibroblasts into valvular endothelial cells without using viruses or iPS cells. Bioact Mater 2025; 45:181-200. [PMID: 39651397 PMCID: PMC11625219 DOI: 10.1016/j.bioactmat.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The technology of induced pluripotent stem cells (iPSCs) has enabled the conversion of somatic cells into primitive undifferentiated cells via reprogramming. This approach provides possibilities for cell replacement therapies and drug screening, but the potential risk of tumorigenesis hampers its further development and in vivo application. How to generate differentiated cells such as valvular endothelial cells (VECs) has remained a major challenge. Utilizing a combinatorial strategy of selective soluble chemicals, cytokines and substrate stiffness modulation, mouse embryonic fibroblasts are directly and efficiently transdifferentiated into induced aortic endothelial cell-like cells (iAECs), or human primary adult fibroblasts are transdifferentiated into induced valvular endothelial cell-like cells (hiVECs), without expressing pluripotency stem cell markers. These iAECs and hiVECs express VEC-associated genes and proteins and VEC-specific marker NFATC1 and are functional in culture and on decellularized porcine aortic valves, like mouse aortic endothelial cells or human primary aortic valvular endothelial cells. The iAECs and hiVECs seeded on decellularized porcine aortic valves stay intact and express VEC-associated proteins for 60 days after grafting into abdominal aorta of immune-compromised rats. In contrast, induced pluripotent stem cells (iPSCs) are less efficient in differentiating into VEC-like cells and pluripotency marker Nanog is expressed in a small subpopulation of iPSC-derived VEC-like cells that generate teratomas in SCID mice whereas hiVECs derived from transdifferentiation do not generate teratomas in vivo. Our findings highlight an approach to efficiently convert fibroblasts into iAECs and hiVECs and seed them onto decellularized aortic valves for safely generating autologous tissue-engineered aortic valves without using viruses or first reprogramming the cells into pluripotent stem cells.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenyang Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wanzhi Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Sihan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yanyan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mingxing Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Chenyu Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weiqiang Shen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qi Dong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ning Wang
- Institute for Mechanobiology, Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
39
|
Habib P, Steinberg GK. Clinical state and future directions of stem cell therapy in stroke rehabilitation. Exp Neurol 2025; 385:115132. [PMID: 39743037 DOI: 10.1016/j.expneurol.2024.115132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Despite substantial advances in the acute management of stroke, it remains a leading cause of adult disability and mortality worldwide. Currently, the reperfusion modalities thrombolysis and thrombectomy benefit only a fraction of patients in the hyperacute phase of ischemic stroke. Thus, with the exception of vagal nerve stimulation combined with intensive physical therapy, there are no approved neuroprotective/neurorestorative therapies for stroke survivors. Stem cell therapy is a promising treatment for stroke patients and has been the focus of an increasing number of clinical trials over the past two decades. We provide a comprehensive overview of stem cell therapies available to stroke patients, focusing on the different types and doses of stem cells, timing and route of administration, patient selection, clinical outcomes, translational challenges, and future directions for the field. Information on ongoing and completed studies was retrieved from ClinicalTrials.gov, PubMed, Google Scholar, ICTRP, and Scopus. Autologous bone marrow-derived mononuclear cells (BMMNCs) are the most used, followed by autologous bone marrow stromal cells. IV therapy is typically applied in acute to subacute phases, while IT or IC routes are utilized in chronic phases. Although early-phase trials (Phase I/II) indicate strong safety and tolerability, definitive clinical effectiveness has yet to be unequivocally proven. Cochrane meta-analyses show NIH Stroke Scale improvements, though studies often have high bias and small sample sizes. Larger randomized, double-blind, placebo-controlled trials are ongoing to refine stem cell transplantation protocols, addressing cell type and source, dosage, timing, patient selection, the potential for combination therapies, and clinical efficacy.
Collapse
Affiliation(s)
- Pardes Habib
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
40
|
Park SH, Sun W. Toxicity assessment using neural organoids: innovative approaches and challenges. Toxicol Res 2025; 41:91-103. [PMID: 40013084 PMCID: PMC11850696 DOI: 10.1007/s43188-025-00279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 02/28/2025] Open
Abstract
Assessment of toxicity and efficacy in the nervous system is essential to ensure the safety of compounds and the efficacy of neurotherapeutics. Recently, technologies using neural organoids to mimic the structural and functional properties of human brain tissue have been developed to improve our understanding of human-specific brain development and to model neurodevelopmental disorders. This approach offers the potential for standardized toxicity testing and large-scale drug screening at the organ level. Here, we review recent advances in neural organoids and explore the possibility of establishing more accurate and efficient systems for toxicological screening applications. Our review provides insights into toxicity and efficacy assessment research using neural organoids.
Collapse
Affiliation(s)
- Si-Hyung Park
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
41
|
Nakatsukasa Y, Yamada Y, Yamada Y. Research of in vivo reprogramming toward clinical applications in regenerative medicine: A concise review. Regen Ther 2025; 28:12-19. [PMID: 39678397 PMCID: PMC11638634 DOI: 10.1016/j.reth.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024] Open
Abstract
The successful generation of induced pluripotent stem cells (iPSCs) has significantly impacted many scientific fields. In the field of regenerative medicine, iPSC-derived somatic cells are expected to recover impaired organ functions through cell transplantation therapy. Subsequent studies using genetically engineered mouse models showed that somatic cells are also reprogrammable in vivo. Notably, cyclic expression of reprogramming factors, so-called partial reprogramming in vivo ameliorates cellular and physiological hallmarks of aging without inducing teratoma formation or premature death of animals. Subsequent studies provided evidence supporting the beneficial effects of partial reprogramming in various organs. Although in vivo reprogramming appears to be a promising strategy for tissue regeneration and rejuvenation, there remain unsolved issues that hinder its clinical application, including concerns regarding its safety, controllability, and unexpected detrimental effects. Here, we review the pathway that research of in vivo reprogramming has followed and discuss the future perspective as we look toward its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yoshihiko Nakatsukasa
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Yamada
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Yamada
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Lv WQ, Gao J, Guo X. Molecular mechanism and therapeutic strategies for embryonal tumors with multilayered rosettes in children (Review). Mol Clin Oncol 2025; 22:30. [PMID: 39926370 PMCID: PMC11803348 DOI: 10.3892/mco.2025.2825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Embryonal tumors with multilayered rosettes (ETMR) are relatively rare but highly aggressive intracranial tumors that mainly occur in children under four years of age. Despite high-intensity and multi-modal treatment, the five-year overall survival rate of patients with ETMR remains <30%. Therefore, it is necessary to improve understanding of the molecular biological changes in ETMR. The present review presents an overview of the recent molecular and biological characteristics of ETMR in children, the current recommended treatments, and research into potential targeted strategies based on these findings. ETMR are molecularly characterized by distinct DNA methylation signatures and dysregulated expression of oncogenic miRNAs. Despite increased knowledge of the novel molecular characteristics of ETMR in children, treatment outcomes have only marginally improved. Thus, there is an urgent need to translate these new insights in ETMR biology into more effective treatment.
Collapse
Affiliation(s)
- Wen-Qiong Lv
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
43
|
Feng Y, Liu G, Li H, Cheng L. The landscape of cell lineage tracing. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2751-6. [PMID: 40035969 DOI: 10.1007/s11427-024-2751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 03/06/2025]
Abstract
Cell fate changes play a crucial role in the processes of natural development, disease progression, and the efficacy of therapeutic interventions. The definition of the various types of cell fate changes, including cell expansion, differentiation, transdifferentiation, dedifferentiation, reprogramming, and state transitions, represents a complex and evolving field of research known as cell lineage tracing. This review will systematically introduce the research history and progress in this field, which can be broadly divided into two parts: prospective tracing and retrospective tracing. The initial section encompasses an array of methodologies pertaining to isotope labeling, transient fluorescent tracers, non-fluorescent transient tracers, non-fluorescent genetic markers, fluorescent protein, genetic marker delivery, genetic recombination, exogenous DNA barcodes, CRISPR-Cas9 mediated DNA barcodes, and base editor-mediated DNA barcodes. The second part of the review covers genetic mosaicism, genomic DNA alteration, TCR/BCR, DNA methylation, and mitochondrial DNA mutation. In the final section, we will address the principal challenges and prospective avenues of enquiry in the field of cell lineage tracing, with a particular focus on the sequencing techniques and mathematical models pertinent to single-cell genetic lineage tracing, and the value of pursuing a more comprehensive investigation at both the spatial and temporal levels in the study of cell lineage tracing.
Collapse
Affiliation(s)
- Ye Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China.
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
44
|
Resar LMS, Luo LZ. High Mobility Group A1 Chromatin Keys: Unlocking the Genome During MPN Progression. Int J Mol Sci 2025; 26:2125. [PMID: 40076747 PMCID: PMC11899949 DOI: 10.3390/ijms26052125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Patients with chronic, indolent myeloproliferative neoplasms (MPNs) are at risk for transformation to highly lethal leukemia, although targetable mechanisms driving progression remain elusive. We discovered that the High Mobility Group A1 (HMGA1) gene is up-regulated with MPN progression in patients and required for evolution into myelofibrosis (MF) or acute myeloid leukemia (AML) in preclinical models. HMGA1 encodes the HMGA1 epigenetic regulators that modulate the chromatin state during embryogenesis and tissue regeneration. While HMGA1 is silenced in most differentiated cells, it becomes aberrantly re-expressed in JAK2 mutant (JAK2-V617F) MPN, with the highest levels after transformation to secondary MF or AML. Here, we review recent work highlighting HMGA1 function in MPN progression. Though underlying mechanisms continue to emerge, increasing evidence suggests that HMGA1 functions as a "chromatin key" required to "unlock" regions of the genome involved in clonal expansion and progression in MPN. Together, these findings illuminate HMGA1 as a driver of MPN progression and a promising therapeutic target.
Collapse
Affiliation(s)
- Linda M. S. Resar
- Departments of Medicine (Hematology), Oncology, Pathology and Institute for Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | |
Collapse
|
45
|
Muramatsu K, Maruyama K, Honda Y, Katagiri H, Takahashi Y, Takahashi N, Aoyagi K, Mori K, Takahashi M, Kameya T, Sugino T, Yamaguchi K. Subcellular localization of pro-gastrin releasing peptide in human Ewing sarcoma cell lines. Med Mol Morphol 2025:10.1007/s00795-025-00426-2. [PMID: 39966172 DOI: 10.1007/s00795-025-00426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Progastrin-releasing peptide (ProGRP), a neuropeptide, is a stable tumor marker for small cell lung carcinoma (SCLC) and other neuroendocrine tumors, such as medullary thyroid carcinoma. It has recently been reported as highly expressed in Ewing sarcoma (ES) and as a useful marker for this type of tumor. However, the mechanisms underlying ProGRP production remain unclear. This study aimed to elucidate its subcellular localization in human ES cell lines. Three ES cell lines (A-673, SK-N-MC, and SK-NEP-1) and one SCLC line (DMS 53) were transplanted into athymic mice. After 3-4 weeks, the tumors were excised, and the expression and localization of ProGRP were examined using immunohistochemistry and immunoelectron microscopy. Immunohistochemistry revealed that all three ES cell lines expressed ProGRP in a dot-like pattern in their cytoplasm, whereas SCLC cells showed a diffuse granular pattern. Immunoelectron microscopy revealed that ProGRP localized in neurosecretory granules (NSGs) in SCLC cells and in autolysosome-like structures in ES cells, with no NSGs observed in the ES cell lines. ES cells secrete high levels of ProGRP, similar to SCLC cells. However, in ES cells, ProGRP is localized in autolysosome-like structures, unlike the NSGs in SCLC, suggesting that ProGRP in ES can be transported and secreted without following the typical pathway for neuropeptides.
Collapse
Affiliation(s)
- Koji Muramatsu
- Division of Pathology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumicho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Kouji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Research Institute, Shizuoka, Japan
| | - Yosuke Honda
- Division of Orthopedic Oncology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hirohisa Katagiri
- Division of Orthopedic Oncology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yu Takahashi
- Experimental Animal Facility, Shizuoka Cancer Research Institute, Shizuoka, Japan
| | - Naoki Takahashi
- Experimental Animal Facility, Shizuoka Cancer Research Institute, Shizuoka, Japan
| | | | | | | | - Toru Kameya
- Division of Pathology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumicho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumicho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|
46
|
Sipola J, Munzur AD, Kwan EM, Seo CCY, Hauk BJ, Parekh K, Liao YJ(R, Bernales CQ, Donnellan G, Bloise I, Fung E, Ng SWS, Wang G, Vandekerkhove G, Nykter M, Annala M, Maurice-Dror C, Chi KN, Herberts C, Wyatt AW, Takeda DY. Plasma Cell-Free DNA Chromatin Immunoprecipitation Profiling Depicts Phenotypic and Clinical Heterogeneity in Advanced Prostate Cancer. Cancer Res 2025; 85:791-807. [PMID: 39652574 PMCID: PMC11832346 DOI: 10.1158/0008-5472.can-24-2052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
Cell phenotype underlies prostate cancer presentation and treatment resistance and can be regulated by epigenomic features. However, the osteotropic tendency of prostate cancer limits access to metastatic tissue, meaning most prior insights into prostate cancer chromatin biology are from preclinical models that do not fully represent disease complexity. Noninvasive chromatin immunoprecipitation of histones in plasma cell-free DNA (cfDNA) in humans may enable the capture of disparate prostate cancer phenotypes. In this study, we analyzed activating promoter- and enhancer-associated H3K4me2 from cfDNA in metastatic prostate cancer enriched for divergent patterns of metastasis and diverse clinical presentation. H3K4me2 density across prostate cancer genes, accessible chromatin, and lineage-defining transcription factor-binding sites correlated strongly with ctDNA fraction-demonstrating capture of prostate cancer-specific biology and informing the development of a statistical framework to adjust for ctDNA fraction. Chromatin hallmarks mirrored synchronously measured clinicogenomic features: bone- versus liver-predominant disease, serum PSA, biopsy-confirmed histopathologic subtype, and RB1 deletions convergently indicated phenotype segregation along an axis of differential androgen receptor activity and neuroendocrine identity. Detection of lineage switching after sequential progression on systemic therapy in select patients indicates potential use for individualized resistance monitoring. Epigenomic footprints of metastasis-induced normal tissue destruction were evident in bulk cfDNA from two patients. Finally, a public epigenomic resource was generated using a distinct chromatin marker that has not been widely investigated in prostate cancer. These results provide insights into the adaptive molecular landscape of aggressive prostate cancer and endorse plasma cfDNA chromatin profiling as a biomarker source and biological discovery tool. Significance: Plasma cell-free chromatin immunoprecipitation sequencing enables phenotypic dissection of lethal prostate cancer and is a practical tool for biomarker discovery while overcoming prior limitations of access to relevant tissue and reliance on model systems.
Collapse
Affiliation(s)
- Joonatan Sipola
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Asli D. Munzur
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Edmond M. Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medicine, School of Clinical Sciences; Monash University; Melbourne, Victoria, Australia
| | - Clara C. Y. Seo
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Benjamin J. Hauk
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karan Parekh
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Yi Jou (Ruby) Liao
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Cecily Q. Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Gráinne Donnellan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Ingrid Bloise
- Instituto Brasileiro de Controle ao Cancer, Sao Paulo, Brazil
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Emily Fung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Sarah W. S. Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Gang Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Gillian Vandekerkhove
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Annala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | | | - Kim N. Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - David Y. Takeda
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
47
|
Patel R, Cheng R, Cardona CL, Angeles E, Singh G, Miller S, Ashok A, Teich AF, Piriz A, Maldonado A, Jimenez-Velazquez IZ, Mayeux R, Lee JH, Sproul AA. Reduced SH3RF3 may protect against Alzheimer's disease by lowering microglial pro-inflammatory responses via modulation of JNK and NFkB signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.23.600281. [PMID: 38979369 PMCID: PMC11230201 DOI: 10.1101/2024.06.23.600281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Understanding how high-risk individuals are protected from Alzheimer's disease (AD) may illuminate potential therapeutic targets. We identified protective genetic variants in SH3RF3/POSH2 that delayed the onset of AD among individuals carrying the PSEN1 G206A mutation. SH3RF3 acts as a JNK pathway scaffold and activates NFκB signaling. While effects of SH3RF3 knockdown in human neurons were subtle, including decreased ptau S422, knockdown in human microglia significantly reduced inflammatory cytokines in response to either a viral mimic or oAβ42. This was associated with reduced activation of JNK and NFκB pathways in response to these stimuli. Pharmacological inhibition of JNK or NFκB signaling phenocopied SH3RF3 knockdown. We also found PSEN1 G206A microglia had reduced inflammatory response to oAβ42. Thus, further reduction of microglial inflammatory responses in PSEN1 G206A mutant carriers by protective variants in SH3RF3 might reduce the link between amyloid and neuroinflammation to subsequently delay the onset of AD.
Collapse
|
48
|
Sato K, Koyanagi-Aoi M, Uehara K, Yamashita Y, Shinohara M, Lee S, Reinhardt A, Woltjen K, Chiba K, Miyake H, Fujisawa M, Aoi T. Efficient differentiation of human iPSCs into Leydig-like cells capable of long-term stable secretion of testosterone. Stem Cell Reports 2025; 20:102392. [PMID: 39824187 PMCID: PMC11864132 DOI: 10.1016/j.stemcr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025] Open
Abstract
Late-onset hypogonadism (LOH) syndrome is characterized by age-related testosterone deficiency and negatively affects the quality of life of older men. A promising therapeutic approach for LOH syndrome is transplantation of testosterone-producing Leydig-like cells (LLCs) derived from human induced pluripotent stem cells (hiPSCs). However, previous studies have encountered obstacles, such as limited cell longevity, insufficient testosterone production, and inefficiency of differentiation. To address these issues, we developed a novel protocol that includes forced NR5A1 expression, a cytokine cocktail promoting mesoderm differentiation, and a transitional shift from 3D to 2D cultures. The resultant cells survived on culture dishes for over 16 weeks, produced 22-fold more testosterone than the conventional method, and constituted a homogeneous population of LLCs with a differentiation efficiency exceeding 99% without purification. Furthermore, these LLCs were successfully engrafted subcutaneously into mice, resulting in increased serum testosterone levels. Our study will facilitate innovative therapeutic strategies for LOH syndrome.
Collapse
Affiliation(s)
- Katsuya Sato
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Keiichiro Uehara
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Department of Diagnostic Pathology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yosuke Yamashita
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Molecular Epidemiology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Suji Lee
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Anika Reinhardt
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Koji Chiba
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hideaki Miyake
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Masato Fujisawa
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan; Division of Signal Pathways, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
49
|
Greșiță A, Hermann DM, Boboc IKS, Doeppner TR, Petcu E, Semida GF, Popa-Wagner A. Glial Cell Reprogramming in Ischemic Stroke: A Review of Recent Advancements and Translational Challenges. Transl Stroke Res 2025:10.1007/s12975-025-01331-7. [PMID: 39904845 DOI: 10.1007/s12975-025-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke, the second leading cause of death worldwide and the leading cause of long-term disabilities, presents a significant global health challenge, particularly in aging populations where the risk and severity of cerebrovascular events are significantly increased. The aftermath of stroke involves neuronal loss in the infarct core and reactive astrocyte proliferation, disrupting the neurovascular unit, especially in aged brains. Restoring the balance between neurons and non-neuronal cells within the perilesional area is crucial for post-stroke recovery. The aged post-stroke brain mounts a fulminant proliferative astroglial response, leading to gliotic scarring that prevents neural regeneration. While countless therapeutic techniques have been attempted for decades with limited success, alternative strategies aim to transform inhibitory gliotic tissue into an environment conducive to neuronal regeneration and axonal growth through genetic conversion of astrocytes into neurons. This concept gained momentum following discoveries that in vivo direct lineage reprogramming in the adult mammalian brain is a feasible strategy for reprogramming non-neuronal cells into neurons, circumventing the need for cell transplantation. Recent advancements in glial cell reprogramming, including transcription factor-based methods with factors like NeuroD1, Ascl1, and Neurogenin2, as well as small molecule-induced reprogramming and chemical induction, show promise in converting glial cells into functional neurons. These approaches leverage the brain's intrinsic plasticity for neuronal replacement and circuit restoration. However, applying these genetic conversion therapies in the aged, post-stroke brain faces significant challenges, such as the hostile inflammatory environment and compromised regenerative capacity. There is a critical need for safe and efficient delivery methods, including viral and non-viral vectors, to ensure targeted and sustained expression of reprogramming factors. Moreover, addressing the translational gap between preclinical successes and clinical applications is essential, emphasizing the necessity for robust stroke models that replicate human pathophysiology. Ethical considerations and biosafety concerns are critically evaluated, particularly regarding the long-term effects and potential risks of genetic reprogramming. By integrating recent research findings, this comprehensive review provides an in-depth understanding of the current landscape and future prospects of genetic conversion therapy for ischemic stroke rehabilitation, highlighting the potential to enhance personalized stroke management and regenerative strategies through innovative approaches.
Collapse
Affiliation(s)
- Andrei Greșiță
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Dirk M Hermann
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Ianis Kevyn Stefan Boboc
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Eugen Petcu
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Ghinea Flavia Semida
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany.
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| |
Collapse
|
50
|
Mohseni SO, Au KM, Issa W, Ruan L, Stuve O, Wang AZ. Multiple sclerosis treatments a review of current biomedical engineering approaches. Biomaterials 2025; 313:122807. [PMID: 39241553 DOI: 10.1016/j.biomaterials.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Multiple Sclerosis (MS) is an autoimmune condition targeting the central nervous system (CNS) characterized by focal demyelination with inflammation, causing neurodegeneration and gliosis. This is accompanied by a refractory period in relapsing MS or chronic progression in primary progressive MS. Current MS treatments target disease relapses and aim to reduce further demyelination and disability. These include the treatment of acute exacerbations through global immunomodulation upon corticosteroid administration, which are accompanied by adverse reactions. Disease modifying therapies (DMTs) which provide targeted immunosuppression of T and B cells, and sequestration of leukocytes out of CNS, have led to further improvements in demyelination prevention and disease burden reduction. Despite their efficacy, DMTs are ineffective in remyelination, pathology reversal and have minimal effects in progressive MS. The advent of modern biomedical engineering approaches in combination with a better understanding of MS pathology, has led to the development of novel, regenerative approaches to treatment. Such treatments utilize neural stem cells (NSCs) and can reduce disease relapses and reverse damage caused by the disease through localized tissue regeneration. While at initial stages, pre-clinical and clinical studies utilizing NSCs and immune modulation have shown promising outcomes in tissue regeneration, creating a potential new era in MS therapy.
Collapse
Affiliation(s)
- Sayyed Ourmazd Mohseni
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kin Man Au
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wadih Issa
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Lifu Ruan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew Z Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|