1
|
Pi H, Fu Q, Liu J, Zhou H, Wang Y. Excessive apoptosis, glycolysis, and abnormal levels of gluconeogenase in rheumatoid arthritis involves in the dysregulation of glucose metabolism: an animal model study. Autoimmunity 2025; 58:2499730. [PMID: 40366874 DOI: 10.1080/08916934.2025.2499730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 05/16/2025]
Abstract
Rheumatoid arthritis (RA) has been associated with an elevated risk of developing disorders related to glucose metabolism, including decreased insulin secretion, impaired glucose tolerance, and type 2 diabetes mellitus. The previse mechanisms underlying this association remain incompletely elucidated. In this study, we utilized a cohort of fifty Wistar female rats, establishing a type II collagen-induced arthritis (CIA) model (n = 30). Out observations indicated abnormal glucose and inulin levels in the CIA rats, accompanied by diminished β cell function. Additionally, we detected elevated cytokines levels and increased apoptosis within the pancreatic tissue of the CIA rats. It is hypothesized that the heightened apoptosis may be induced by cytokines, potentially leading to reduced insulin synthesis and dysregulated glucose metabolism. Through transcriptomic and proteomic analyses, we identified differential expression of genes and proteins involved in pathways that directly or indirectly regulate glycolysis in the CIA rats. Notably, we discovered novel differentially expressed enzymes implicated in the glycolysis pathway, such as hexokinase and fructose-bisphosphate aldolase, within the CIA rat model, which may serve as new markers for the diagnosis of RA or provide new perspectives to treat RA or RA-related glucose metabolism disorder.
Collapse
Affiliation(s)
- Hui Pi
- Department of Rheumatology, Jiangxi provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Rheumatology, Jiangxi provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Juan Liu
- Department of Rheumatology, Jiangxi provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Haotong Zhou
- Department of Rheumatology, Jiangxi provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Youlian Wang
- Department of Rheumatology, Jiangxi provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Kopeć M, Beton-Mysur K, Surmacki J, Brożek-Płuska B. Hypoxic conditions by Raman microspectroscopy - Reprogramming of fatty acids and glucose metabolism during colon cancer progression. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126275. [PMID: 40273771 DOI: 10.1016/j.saa.2025.126275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Cellular respiration is the primary metabolic process for producing the energy (ATP) needed for survival. Disruptions in this process can lead to various diseases, including colon cancer. This paper reviews the current understanding of how excess fatty acids (FAs) and glucose (Glc) alter metabolic pathways. We focused on the impact of unsaturated fatty acids (UFAs) (eicosapentaenoic acid (EPA), linoleic acid (LA)), saturated fatty acid (SFA) (palmitic acid (PA)), and glucose on healthy human colon cells (CCD-18 Co) and cancerous colon cells (Caco-2) using Raman microspectroscopy. Our study examined the metabolic abnormalities in mitochondria and lipid droplets caused by the external intake of FAs and glucose. The results indicate that the peaks at 750 cm-1, 1004 cm-1, 1256 cm-1, 1444 cm-1, and 1656 cm-1 can serve as Raman biomarkers for monitoring metabolic pathways in colon cancer. We proved that oxidative metabolism towards glycolysis allows maintaining redox homeostasis and enables the survival and proliferation of cancer cells in hypoxic conditions. Our findings show that comparing control cells with cells supplemented with UFAs, SFA, and glucose can help detect metabolic abnormalities. Specifically, supplementation with UFAs reduces the intensity of the bands at 750 cm-1 and 1004 cm-1, while SFA and glucose increase their intensity. For the bands at 1256 cm-1, 1444 cm-1, and 1656 cm-1, palmitic acid and glucose decrease the intensity, whereas linoleic acid increases it. This paper introduces new experimental techniques, such as Raman microspectroscopy and imaging, to track and understand the metabolic changes in colon cells caused by FAs and glucose under hypoxic conditions.
Collapse
Affiliation(s)
- Monika Kopeć
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Beata Brożek-Płuska
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
3
|
Li X, Wen X, Luo Z, Wang X, Zhang Y, Wei J, Tian Y, Ling R, Duan Y. Simultaneous detection of volatile and non-volatile metabolites in urine using UPLC-Q-Exactive Orbitrap-MS and HS-SPME/GC-HRMS: A promising strategy for improving the breast cancer diagnosis accuracy. Talanta 2025; 291:127812. [PMID: 40023122 DOI: 10.1016/j.talanta.2025.127812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer (BC) is the primary cause of cancer-related deaths in women. Currently, the discovery of biomarkers primarily relies on single platform, which might overlook other potential biomarkers and lead to inaccurate diagnoses. This study aims to: (1) expand the detection range of biomarkers through multiple analytical techniques, thereby improving the accuracy of BC diagnosis, and (2) analyze the metabolic pathways of the biomarkers to explore the metabolic mechanisms underlying BC. Urine samples from BC patients and healthy controls were analyzed using two techniques: Ultra-high performance liquid chromatography combined with Quadrupole-Exactive-Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS), and headspace solid-phase microextraction combined with gas chromatography-high resolution mass spectrometry (HS-SPME/GC-HRMS). Data from each platform was analyzed independently using both univariate and multivariate statistical approaches to identify candidate biomarkers. Subsequently, a mid-level data fusion approach was applied to integrate the candidate biomarkers identified by each platform. The fused data were used to construct orthogonal partial least squares discriminant analysis (OPLS-DA) models and random forest (RF) models, which were then compared against models based on individual platform. The fused RF and OPLS-DA models demonstrated enhanced diagnostic accuracy compared to the individual model. Integrating GC-HRMS and UPLC-Q-Exactive Orbitrap-MS achieved the best performance, with an AUC value of 0.967, sensitivity of 86.37 %, and specificity of 89.19 %. Metabolic pathway analysis revealed that 10 metabolic pathways exert an impact on BC. Four pathways-pyruvate metabolism, sulfur metabolism, taurine and hypotaurine metabolism, and tyrosine metabolism-were found to be associated with BC in both metabolomics and volatolomics studies, indicating that these pathways play pivotal roles in BC. This study confirmed the potential of merging multi-platforms to enhance the accuracy of BC diagnosis, offering new avenues for understanding the metabolic mechanisms of BC.
Collapse
Affiliation(s)
- Xian Li
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China; Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Xinxin Wen
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Xi'an, 710032, PR China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xuejun Wang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Yilin Zhang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Jing Wei
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Xi'an, 710032, PR China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China.
| |
Collapse
|
4
|
Tang ZF, Zhang M, Yang FR, Chen Y, Wang T, Chen ZP, Yu RQ. Mitochondria- and nucleus-targeted fluorescent probe for chemometrics-enhanced detection of cysteine. Talanta 2025; 291:127870. [PMID: 40043376 DOI: 10.1016/j.talanta.2025.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
The detection and imaging of cysteine (Cys) are vital for clinical applications, given its critical role as a biomarker in various diseases. In this study, a cationic fluorescent probe (probe T) was synthesized, featuring benzothiazole as a fluorescent group and acrylate as a Cys recognition site. Compared to other biothiols, probe T specifically detects Cys while targeting mitochondria and nuclei. In addition, probe T has low cytotoxicity and successfully imaged mitochondria and nuclei in MCF-7 cells. The fluorescence intensity ratio (F560 nm/F500 nm) of probe T was linearly correlated with the Cys concentration under 360 nm excitation, and the limit of detection was 60.4 nM. When quantifying Cys in complex biological samples, background interferences often lead to biased quantitative results. To mitigate this, chemometric method based on spectral shape deformation (SSD) theory was used to correct the spectral shape and intensity changes caused by background signals. By combining the SSD model with the ratiometric fluorescence sensing method, it was able to accurately quantify Cys in cell lysate, and the quantitative results were consistent with the kit. Therefore, this method not only provides a new diagnostic tool for the study of Cys-related diseases, but also provides an effective solution for background interference correction.
Collapse
Affiliation(s)
- Zhang-Feng Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Min Zhang
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, PR China
| | - Feng-Rui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Yao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, PR China.
| | - Tong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China.
| | - Zeng-Ping Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| |
Collapse
|
5
|
Rogalewicz B, Czylkowska A. Recent advances in the discovery of copper(II) complexes as potential anticancer drugs. Eur J Med Chem 2025; 292:117702. [PMID: 40328033 DOI: 10.1016/j.ejmech.2025.117702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/13/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
This review article offers a literature search of the most active, new copper (II) anticancer complexes based on nitrogen-containing ligands, reported in the literature over the past 5 years: from the beginning of 2019, until mid-2024. In the modern world, cancer remains one of the deadliest diseases of all. Although years of the ongoing research allowed us to better understand its nature, and thus aim more precisely at specific molecular targets and pathways, many of its aspects remain unclear. Today, chemotherapy still remains at the forefront of cancer treatment. With the ever-growing struggles to overcome chemoresistance and occurrence of serious side effects, the discovery of new, more selective and active drugs is a task of an utmost importance. At the same time, copper (II)-based compounds offer a wide array of biological activities and valuable biochemical properties. This review article provides the update on the recent advances in the discovery of new potential anticancer drugs among copper (II)-based compounds in the recent five years.
Collapse
Affiliation(s)
- Bartłomiej Rogalewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
6
|
Zhang S, Hu W, Zhao Y, Liao Y, Zha K, Zhang W, Yu C, Liao J, Li H, Zhou W, Cao F, Mi B, Liu G. Bidirectional modulation of glycolysis using a multifunctional nanocomposite hydrogel promotes bone fracture healing in type 2 diabetes mellitus. Bioact Mater 2025; 50:152-170. [PMID: 40256330 PMCID: PMC12008547 DOI: 10.1016/j.bioactmat.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
Fracture healing in patients with type 2 diabetes mellitus (T2D) is markedly impaired, characterized by a prolonged inflammation phase and defective osteoblast differentiation at the fracture site. In this study, we identified aberrant cellular glycolysis at T2D fracture sites, with bone marrow mesenchymal stem cells (BMSCs) exhibiting suppressed glycolysis and macrophages displaying enhanced glycolysis, mediated by the dysregulation of hypoxia-inducible factor-1α (HIF-1α). To rectify these metabolic imbalances, we developed a multifunctional nanocomposite PN@MHV hydrogel. Myricitrin, a flavonoid glycoside, forms the MHV hydrogel by cross-linking with HA-PBA and PVA via hydrogen bonds, and upregulates glycolysis through HIF-1α, thus promoting osteoblast differentiation under high glucose environment. To further regulate the inflammatory microenvironment, we incorporated nanoparticles loaded with PX-478, a HIF-1α specific inhibitor, into the hydrogel, with folic acid covalently modified to target proinflammatory M1 macrophages. This PN@MHV hydrogel bidirectionally regulated glycolysis via HIF-1α, enhancing osteoblast differentiation while attenuating macrophage-mediated inflammation. Comprehensive in vitro and in vivo experiments in a T2D fracture mouse model confirmed the hydrogel's ability to improve the inflammatory microenvironment and accelerate bone healing. Our findings underscore the therapeutic potential of targeting cellular glycolysis as a promising approach for enhancing fracture healing in diabetic patients.
Collapse
Affiliation(s)
- Shengming Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanzhi Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuheng Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chenyan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiewen Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hui Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
7
|
Wang Y, Wu Q, Guo W, Chen Z, Tan L, Fu C, Ren X, Zhang J, Meng X, Gu B. Dual-upregulation of p53 for self-sensitized cuproptosis via microwave dynamic and NO gas therapy. J Colloid Interface Sci 2025; 691:137421. [PMID: 40154167 DOI: 10.1016/j.jcis.2025.137421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Cuproptosis-a novel cell death mechanism-is an innovative strategy for tumor therapy. However, the insufficient efficacy of cuproptosis, primarily owing to the low sensitivity of tumor cells to Cu ions, remains a major challenge. In this study, we design TiCuMOF@PEG@l-Arg@TPP (TCPAT) nanoparticles to facilitate self-sensitized cuproptosis for anti-tumor therapy through the dual upregulation of p53. TiMOF serves as a microwave sensitizer by generating reactive oxygen species (ROS). Notably, the uniformly distributed Cu ions within the MOF serve as co-catalysts to provide reactive sites that enhance ROS generation. Additionally, the ROS generated are utilized to oxidize l-arginine, thus resulting in the release of nitric oxide (NO), which has a long half-life and diffusion distance, thereby enabling it to penetrate deep into the tumor regions that are typically inaccessible to ROS. Furthermore, TCPAT not only induces cuproptosis but also leverages the efficiently generated ROS and cascade-released NO for the dual upregulation of p53. This upregulation subsequently inhibits glycolysis, increases cellular sensitivity to Cu ions, and facilitates self-sensitized cuproptosis. Consequently, the self-sensitized cuproptosis strategy, dependent on the efficient generation of ROS, presents a promising avenue for tumor therapy based on cuproptosis mechanisms.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiong Wu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wenna Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zengzhen Chen
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Longfei Tan
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Changhui Fu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangling Ren
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jiqing Zhang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - Xianwei Meng
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Bin Gu
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|
8
|
Jiang H, Ye J. The Warburg effect: The hacked mitochondrial-nuclear communication in cancer. Semin Cancer Biol 2025; 112:93-111. [PMID: 40147702 DOI: 10.1016/j.semcancer.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Wang H, Xu F, Wang C. Metabolic reprogramming of tumor microenviroment by engineered bacteria. Semin Cancer Biol 2025; 112:58-70. [PMID: 40157514 DOI: 10.1016/j.semcancer.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The tumor microenvironment (TME) is a complex ecosystem that plays a crucial role in tumor progression and response to therapy. The metabolic characteristics of the TME are fundamental to its function, influencing not only cancer cell proliferation and survival but also the behavior of immune cells within the tumor. Metabolic reprogramming-where cancer cells adapt their metabolic pathways to support rapid growth and immune evasion-has emerged as a key factor in cancer immunotherapy. Recently, the potential of engineered bacteria in cancer immunotherapy has gained increasing recognition, offering a novel strategy to modulate TME metabolism and enhance antitumor immunity. This review summarizes the metabolic properties and adaptations of tumor and immune cells within the TME and summarizes the strategies by which engineered bacteria regulate tumor metabolism. We discuss how engineered bacteria can overcome the immunosuppressive TME by reprogramming its metabolism to improve antitumor therapy. Furthermore, we examine the advantages, potential challenges, and future clinical translation of engineered bacteria in reshaping TME metabolism.
Collapse
Affiliation(s)
- Heng Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Fang Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
10
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
11
|
Li X, Zhang Y, Liu A, Li L, Yang X, Wang Y, Zhao Y, Zvyagin AV, Wang T, Lin Q. Nanozyme as tumor energy homeostasis disruptor mediated ferroptosis for high-efficiency radiotherapy. J Colloid Interface Sci 2025; 688:44-58. [PMID: 39987840 DOI: 10.1016/j.jcis.2025.02.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Radioresistance in tumors, driven by the insufficiency and rapid depletion of reactive oxygen species (ROS), limits the efficacy of radiotherapy (RT). This study introduces an Ir@Au nanozyme that enhances tumor radiosensitivity by disrupting energy homeostasis and inducing ferroptosis in tumor cells. The Ir@Au nanozyme mimics glucose oxidase to block the tumor's energy supply, continuously produces hydrogen peroxide (H2O2), and lowers the pH to optimize Fenton reactions. Acting as a peroxidase (POD), it generates additional ROS for chemodynamic therapy (CDT), depletes glutathione (GSH), and perturbs the tumor's antioxidant defenses. Upon exposure to ionizing radiation, the nanozyme absorbs photons and emits electrons, interacting with water to amplify ROS production. This ROS accumulation, combined with radiation, enhances DNA damage and lipid peroxidation, reversing radioresistance and promoting ferroptosis. Additionally, Ir@Au serves as a contrast agent for computed tomography, enabling precise RT through the delineation of tumor boundaries. In summary, the Ir@Au nanozyme effectively disrupts tumor energy homeostasis, initiating ROS-based cascades that inhibit tumor growth. It thus offers a promising strategy for overcoming radioresistance during cancer therapy.
Collapse
Affiliation(s)
- Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yuxuan Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lei Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun 130041, China
| | - Yuan Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yuechen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Andrei V Zvyagin
- School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Plata-Gómez AB, Ho PC. Age- and diet-instructed metabolic rewiring of the tumor-immune microenvironment. J Exp Med 2025; 222:e20241102. [PMID: 40214641 PMCID: PMC11987706 DOI: 10.1084/jem.20241102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
The tumor-immune microenvironment (TIME) plays a critical role in tumor development and metastasis, as it influences the evolution of tumor cells and fosters an immunosuppressive state by intervening the metabolic reprogramming of infiltrating immune cells. Aging and diet significantly impact the metabolic reprogramming of the TIME, contributing to cancer progression and immune evasion. With aging, immune cell function declines, leading to a proinflammatory state and metabolic alterations such as increased oxidative stress and mitochondrial dysfunction, which compromise antitumor immunity. Similarly, dietary factors, particularly high-fat and high-sugar diets, promote metabolic shifts, creating a permissive TIME by fostering tumor-supportive immune cell phenotypes while impairing the tumoricidal activity of immune cells. In contrast, dietary restrictions have been shown to restore immune function by modulating metabolism and enhancing antitumor immune responses. Here, we discuss the intricate interplay between aging, diet, and metabolic reprogramming in shaping the TIME, with a particular focus on T cells, and highlight therapeutic strategies targeting these pathways to empower antitumor immunity.
Collapse
Affiliation(s)
- Ana Belén Plata-Gómez
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Wei HJ, Tan HY, Cao JP, He J, Zhang QL, Jiang L, Zhou GJ, Xiao F. Therapeutic importance of hydrogen sulfide in cognitive impairment diseases. Brain Res 2025; 1856:149547. [PMID: 40120710 DOI: 10.1016/j.brainres.2025.149547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/02/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025]
Abstract
The brain naturally synthesizes hydrogen sulfide (H2S) via enzymes such as cystathionine-β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MST), cysteine aminotransferase (CAT), and cystathionine-γ-lyase (CSE). From a physiological point of view, H2S serves as a neuromodulator with antioxidant and neuroprotective properties. Recent research suggests that H2S is crucial in regulating learning and memory, as its downregulation is commonly observed in cognitive impairment diseases. Preclinical studies suggest that external supplementation, through donors like sodium hydrosulfide (NaHS), can improve cognitive impairment in various cognitive disorder models. Moreover, numerous molecular mechanisms have been proposed to explain the effects of these H2S donors. This review aims to detail the roles of H2S in various models of cognitive impairment and in human subjects, highlighting its potential mechanisms and providing experimental support for its use as a novel therapeutic approach in treating cognitive disorders. Overall, H2S plays a significant role in the treatment of cognitive impairment diseases, but further large-scale studies are still required to support the results of current research.
Collapse
Affiliation(s)
- Hai-Jun Wei
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421005 PR China
| | - Hui-Ying Tan
- The People's Hospital Dongkou, Shaoyang, Hunan 422300 PR China
| | - Jian-Ping Cao
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421005 PR China
| | - Juan He
- Hunan University of Medicine, Huaihua, Hunan 418000 PR China
| | - Qing-Li Zhang
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421005 PR China
| | - Li Jiang
- Department of Neurology, Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China
| | - Gui-Juan Zhou
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China
| | - Fan Xiao
- Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001 PR China.
| |
Collapse
|
14
|
Liu Y, Si L, Liu Y, Li S, Zhang X, Jiang S, Liu W, Li X, Zhang L, Zheng H, Liu Z, Hu J, Chen J. Construction of a programmed activation nanosystem based on intracellular hypoxia in cisplatin-resistant tumor cells for reversing cisplatin resistance. Mater Today Bio 2025; 32:101709. [PMID: 40230650 PMCID: PMC11995088 DOI: 10.1016/j.mtbio.2025.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Cancer poses a significant threat to human life and health. Cancers treated with cisplatin invariably develop drug resistance. This challenge can be overcome by identifying and exploiting the vulnerabilities acquired by drug-resistant cancer cells, paving the way for finding effective novel treatment options for cisplatin-resistant cancers. Our previous study revealed that cisplatin resistance in cancer cells comes at the cost of increased intracellular hypoxia. In this study, we used 2-nitroimidazole modified hyaluronic acid (HA-NI) as the carrier. The cisplatin-resistant tumor cell specific intracellular hypoxia programmed activation nanomedicine (T/C@HN NPs) was constructed by the hypoxic toxic drug tirapazamine (TPZ) and encapsulating chlorin e6 (Ce6) into HA-NI using polymer assembly technology. The amphiphilic carrier could release free Ce6 molecules under the stimulation of intracellular hypoxic environment, and exhibit specific "activated state" photodynamic properties in cisplatin-resistant tumor cells. Upon irradiation, Ce6-mediated photodynamic therapy further intensifies hypoxia, amplifying its cytotoxicity. This project systematically evaluated the effects of T/C@HN NPs on the identification and recognition of cisplatin-resistant tumors using drug-resistant patient-derived xenograft (PDX) models. This study provides a promising avenue for the development of novel treatment of cisplatin-resistant tumors.
Collapse
Affiliation(s)
- Yurong Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Longqing Si
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yunheng Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Song Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiaokang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Shaojing Jiang
- Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
| | - Wenjing Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiaolin Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lianguo Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Hongxia Zheng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhonghao Liu
- Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
| | - Jinghui Hu
- Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
| | - Jing Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
15
|
Zhang C, Zhang S, Wang G, Huang X, Xu S, Wang D, Guo C, Wang Y. Genomics and transcriptomics identify quantitative trait loci affecting growth-related traits in silver pomfret (Pampus argenteus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101414. [PMID: 39813916 DOI: 10.1016/j.cbd.2025.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Pampus argenteus, a species distributed throughout the Indo-West Pacific, plays a significant role in the yield of aquaculture species. However, cultured P. argenteus has always been characterised by unbalanced growth synchronisation among individuals, slow growth rate, and lack of excellent germplasm resources. Therefore, we conducted mass selection for fast-growing strain P. argenteus for several consecutive years. Various genetic improvement programs have modified its genome sequence through selective pressure, leaving nucleotide signals that can be detected at the genomic level. In the present study, we combined bulked segregant analysis and transcriptome sequencing to identify candidate single nucleotide polymorphisms (SNPs) and key genes for growth-related traits in P. argenteus. A total of 7,280,936 SNPs and 2,212,379 insertions/deletions were identified in the extreme phenotypes of the fast-growing and slow-growing groups. Based on the examination of SNP frequency differences and sliding-window analysis, 42 SNPs were identified as candidate markers. Moreover, 14 of the 42 SNPs linked to growth-related traits were confirmed to be credible SNPs, and eight growth-related genes were screened, namely myb-binding protein 1 A, insulin A/B chains, α-1B adrenoceptor, engulfment and cell motility protein 3, myosin light chain kinase family member 4, insulin receptor located, unconventional myosin-9b, and matrilin-1. An optimal three-factor model (SNP4&SNP12&SNP14) was constructed using the generalized multifactor dimensionality reduction method, and its accuracy was verified as 67.72 %. These results may benefit genetic studies and accelerate genetic improvement of fast-growing strains of P. argenteus.
Collapse
Affiliation(s)
- Cheng Zhang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shun Zhang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Guanlin Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Xiang Huang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shanliang Xu
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Danli Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Chunyang Guo
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China.
| | - Yajun Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China.
| |
Collapse
|
16
|
Wang Y, Wu H, Hu X. Quantification of the inputs and outputs of serine and glycine metabolism in cancer cells. Arch Biochem Biophys 2025; 768:110367. [PMID: 40032043 DOI: 10.1016/j.abb.2025.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/10/2024] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND The significance of serine and glycine metabolism in cancer cells is increasingly acknowledged, yet the quantification of their metabolic flux remains incomplete, impeding a comprehensive understanding. This study aimed to quantify the metabolic flux of serine and glycine in cancer cells, focusing on their inputs and outputs, by means of Combinations of C-13 Isotopes Tracing and mathematical delineation, alongside Isotopically Nonstationary Metabolic Flux Analysis. RESULTS In HeLa cells, serine uptake, the serine synthesis pathway (SSP), and other sources (e.g., protein degradation) contribute 71.2 %, 24.0 %, and 5.7 %, respectively, to serine inputs. Conversely, glycine inputs stem from uptake (45.6 %), conversion from serine (45.1 %), and other sources (9.4 %). Serine input flux surpasses glycine by 7.3-fold. Serine predominantly directs a major fraction (94.7 %) to phospholipid, sphingolipid, and protein synthesis, with only a minor fraction (5.3 %) directing towards one-carbon unit and glycine production. Glycine mainly supports protein and nucleotide synthesis (100 %), without conversion back to serine. Serine output rate exceeds glycine output rate by 7.3-fold. Serine deprivation mainly impairs output to synthesis of phospholipid and sphingolipid, crucial for cell growth, while other outputs unaffected. AGS cells exhibit comparable serine and glycine flux to HeLa cells, albeit lacking SSP activity. Serine deprivation in AGS cells halts output flux to phospholipid, sphingolipid, protein synthesis, completely inhibiting cell growth. CONCLUSIONS By providing quantitative insights into serine and glycine metabolism, this study delineates the association of serine flux to different metabolic pathway with cancer cell growth and offers potential targets for therapeutic intervention, highlighting the importance of serine flux to pathway for the synthesis of phospholipids and sphingolipids in cancer cells growth.
Collapse
Affiliation(s)
- Yuqi Wang
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, China; Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, China.
| |
Collapse
|
17
|
García-Giménez JL, Cánovas-Cervera I, Nacher-Sendra E, Dolz-Andrés E, Sánchez-Bernabéu Á, Agúndez AB, Hernández-Gil J, Mena-Mollá S, Pallardó FV. Oxidative stress and central metabolism pathways impact epigenetic modulation in inflammation and immune response. Free Radic Biol Med 2025; 233:378-399. [PMID: 40185167 DOI: 10.1016/j.freeradbiomed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Oxidative stress, metabolism, and epigenetics are deeply interconnected processes that collectively influence cellular function, health status, and contribute to disease progression. This review highlights the critical role of metabolic intermediates in epigenetic regulation, focusing on lactate, glutathione (GSH), and S-adenosylmethionine (SAM). Beyond its traditional role in energy metabolism, lactate modulates epigenetic mechanisms, influencing gene expression and cellular adaptation. Meanwhile, GSH and SAM serve as key regulators of DNA methylation and histone post-translational modifications, maintaining epigenetic homeostasis. These processes are tightly controlled by redox balance and oxidative stress, underscoring the intricate interplay between metabolism and epigenetic regulation. GSH depletion disrupts methylation homeostasis, while oxidative post-translational modifications (oxPTMs) on histones-including S-glutathionylation, carbonylation, and nitrosylation-alter chromatin architecture and transcriptional regulation. Additionally, we focus on histone lactylation, particularly its role in regulating innate and adaptive immune responses. We also explore how GSH and oxidative stress influence lactate levels, potentially inducing histone lactylation or S-glutathionylation through S,D-lactoylglutathione (LGSH), thereby impacting epigenetic regulation. By integrating insights into metabolic-epigenetic crosstalk, this review underscores the role of oxidative stress and central metabolic pathways in regulating epigenetic mechanisms, a concept known as "redox epigenetics." Understanding these intricate interactions offers new perspectives for therapeutic strategies aimed at restoring redox homeostasis and metabolic integrity to counteract disturbances in the epigenetic landscape.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Irene Cánovas-Cervera
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Elena Nacher-Sendra
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Enric Dolz-Andrés
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Álvaro Sánchez-Bernabéu
- EpiDisease S.L. Parc Científic de la Universitat de València, Paterna, 46980, Valencia, Spain
| | - Ana Belén Agúndez
- EpiDisease S.L. Parc Científic de la Universitat de València, Paterna, 46980, Valencia, Spain
| | - Javier Hernández-Gil
- INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Salvador Mena-Mollá
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Federico V Pallardó
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
18
|
Huang X, Hou S, Li Y, Xu G, Xia N, Duan Z, Luo K, Tian B. Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy. Biomaterials 2025; 317:123022. [PMID: 39754967 DOI: 10.1016/j.biomaterials.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025]
Abstract
Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice. The advent of nanotechnology offers new approaches to enhancing therapeutic effects, includingthe targeted delivery and integration of lipid metabolic reprogramming with chemotherapy, photodynamic therapy (PDT), and immunotherapy. The integrated nanoformulation, nanomedicine, could significantly advance the field of lipid metabolism therapy. In this review, we will briefly introduce the concept of cancer lipid metabolism reprogramming, then elaborate the latest advances in engineered nanomedicine for targeting lipid metabolism during cancer treatment, and finally provide our insights into future perspectives of nanomedicine for interference with lipid metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
- Xing Huang
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shengzhong Hou
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Ning Xia
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Kui Luo
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Bole Tian
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Xu N, Lin H, Ding X, Wang P, Lin JM. Isotope tracing-assisted chip-based solid-phase extraction mass spectrometry for monitoring metabolic changes and vitamin D3 regulation in cells. Talanta 2025; 288:127754. [PMID: 39970803 DOI: 10.1016/j.talanta.2025.127754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Cellular metabolism is a dynamic and essential process, with alterations in metabolic pathways serving as hallmark features of cancer. In this study, we developed a chip-based solid-phase extraction mass spectrometry (Chip-SPE-MS) platform for high-sensitivity, high-throughput analysis of cellular metabolites and real-time tracking of metabolic fluxes. The system achieved detection limits ranging from 0.10 to 9.43 μmol/mL for various amino acids and organic acids, with excellent linearity (r ≥ 0.992). By incorporating isotope tracing, the platform enabled derivatization-free, real-time monitoring of 13C-labeled metabolites, such as lactic acid. Our analysis revealed significant metabolic differences between normal (L02) and cancerous (HepG2, HCT116) cells, including enhanced glycolytic activity and elevated lactate production in cancer cells. Furthermore, treatment with 1,25-dihydroxyvitamin D3 was shown to suppress glucose uptake and modulate metabolic activity in HCT116 cells, highlighting the regulatory effects of vitamin D3 on cancer metabolism. This study not only provides novel insights into the metabolic reprogramming associated with cancer but also demonstrates the potential of the Chip-SPE-MS platform as a powerful tool for real-time monitoring of dynamic metabolic processes. The findings have broad implications for cancer therapy and the study of metabolic diseases.
Collapse
Affiliation(s)
- Ning Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haifeng Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaodan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
20
|
Hu R, Duan Z, Wang M, Liu M, Zhang Y, Lu Y, Qian Y, Wei E, Feng J, Guo P, Chen Y. Stable isotope tracing reveals glucose metabolism characteristics of drug-resistant B-cell acute lymphoblastic leukemia. Anal Chim Acta 2025; 1352:343884. [PMID: 40210293 DOI: 10.1016/j.aca.2025.343884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/26/2024] [Accepted: 03/02/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Adult B-cell acute lymphocytic leukemia (B-ALL) is a malignant hematologic tumor characterized by the uncontrolled proliferation of B-cell lymphoblasts in the bone marrow. Despite advances in treatment, including chemotherapy and consolidation therapy, many B-ALL patients experience unfavorable prognoses due to the development of drug resistance. The precise mechanisms governing chemotherapy resistance, particularly those related to metabolic reprogramming within tumors, remain inadequately elucidated. RESULTS Nalm6/DOX cells exhibited significantly elevated levels of glucose, pyruvate, alanine, glutamine, and glycine compared to Nalm6 cells. Conversely, reduced levels of citrate, acetate, and leucine were observed in Nalm6/DOX cells. Upon exposure to the culture medium supplemented with tracer 13C6-glucose, the Nalm6/DOX cells showed an increase in the abundance of 13C-alanine and a decrease in the levels of 13C-lactate, indicating impaired utilization of 13C-pyruvate. Combining β-chloro-alanine (ALTi) with DOX could decrease the drug resistance phenotype of Nalm6/DOX cells. The results demonstrated that glycolysis and tricarboxylic acid cycle were suppressed in Nalm6/DOX cells, while metabolic flux through the alanine and glutamine pathways was increased. Therefore, inhibition of alanine biosynthesis in Nalm6/DOX exhibits the potential to reverse drug resistance. SIGNIFICANCE A new insight into the impact of metabolism on chemotherapy resistance in B-ALL has been gained through the use of stable isotope resolved metabolomics based on nuclear magnetic resonance and ultra-performance liquid chromatography/tandem mass spectrometry. This provides promising ways for the development of innovative therapeutic strategies to alleviate drug resistance and relapse in affected patients.
Collapse
Affiliation(s)
- Rong Hu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fujian Medical University, Fuzhou, 350122, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Zhengwei Duan
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Mengyao Wang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fujian Medical University, Fuzhou, 350122, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Mengting Liu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Yaoxin Zhang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Yanxi Lu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Yuhan Qian
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Enjie Wei
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, China
| | - Yang Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fujian Medical University, Fuzhou, 350122, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
21
|
Filip R, Bélanger É, Chen X, Lefebvre D, Uguccioni SM, Pezacki JP. LYPLAL1 enzyme activity is linked to hepatic glucose metabolism. Biochem Biophys Res Commun 2025; 759:151656. [PMID: 40147354 DOI: 10.1016/j.bbrc.2025.151656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
The serine hydrolase LYPLAL1 is a poorly characterised enzyme with emerging roles in hepatic metabolism. A multitude of association studies have shown links between variants of this gene locus and metabolic conditions such as obesity and insulin resistance. However, the enzyme's function is still largely unknown. Recent biochemical studies have revealed that it may play a role in hepatic glucose metabolism and that its activity is allosterically regulated. Herein, we use a selective activity-based probe to delineate LYPLAL1's involvement in hepatic metabolism. We show that the enzyme's activity is modulated during metabolic stress, specifically pointing to a putative role in negatively regulating gluconeogenesis and upregulating glycolysis. We also determine that knock-out of the enzyme does not affect liver lipid profiles and bring forth evidence for insulin-mediated control of LYPLAL1 in HepG2 cells. Furthermore, LYPLAL1 activity appears to be largely post-translationally regulated as gene expression levels remain largely constant under insulin and glucagon treatments. Taken together these data point to an enzymatic role in regulating glucose metabolism that may be part of a feedback mechanism of signal transduction.
Collapse
Affiliation(s)
- Roxana Filip
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Étienne Bélanger
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Xinhzu Chen
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - David Lefebvre
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Spencer M Uguccioni
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
22
|
Zeng R, Lin Z, Feng F, Li Y, Liu W, He W, Huang Y, Lin X, Mei Y, Wu H, Zhang Q. Metabolic alterations and immune heterogeneity in gastric cancer metastasis. iScience 2025; 28:112296. [PMID: 40276776 PMCID: PMC12018583 DOI: 10.1016/j.isci.2025.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Cellular metabolic reprogramming supports tumor proliferation, invasion, and metastasis by enhancing resistance to stress and immune clearance. Understanding these metabolic changes within the tumor microenvironment is vital to developing effective therapies. We conducted single-cell RNA sequencing on 11 gastric cancer (GC) samples and eight metastatic lesions, analyzing 92,842 cells across eight cell types, including cancer cells, stromal cells, and immune cells. Our findings highlight that the mitochondrial ATP synthase subunit ATP5MC2 uniquely alters during early GC metastasis. Experiments and clinical data confirmed that ATP5MC2 upregulation facilitates cancer cell proliferation, invasion, and metastasis. Constructing a single-cell atlas revealed significant immune cell heterogeneity associated with GC metastasis and its molecular subtypes. This study underscores the role of ATP5MC2-driven metabolic changes and diverse immune landscapes in promoting GC metastasis, offering new avenues for anti-metastatic treatment development.
Collapse
Affiliation(s)
- Rui Zeng
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhihao Lin
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Feiyan Feng
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yanyan Li
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weiwei Liu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wenting He
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yongjun Huang
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xingtao Lin
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yan Mei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Hongmei Wu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
Zhang Z, Zheng L, Chen Y, Chen Y, Hou J, Xiao C, Zhu X, Zhao SM, Xiong JW. AARS2 ameliorates myocardial ischemia via fine-tuning PKM2-mediated metabolism. eLife 2025; 13:RP99670. [PMID: 40371904 PMCID: PMC12080999 DOI: 10.7554/elife.99670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
AARS2, an alanyl-tRNA synthase, is essential for protein translation, but its function in mouse hearts is not fully addressed. Here, we found that cardiomyocyte-specific deletion of mouse AARS2 exhibited evident cardiomyopathy with impaired cardiac function, notable cardiac fibrosis, and cardiomyocyte apoptosis. Cardiomyocyte-specific AARS2 overexpression in mice improved cardiac function and reduced cardiac fibrosis after myocardial infarction (MI), without affecting cardiomyocyte proliferation and coronary angiogenesis. Mechanistically, AARS2 overexpression suppressed cardiomyocyte apoptosis and mitochondrial reactive oxide species production, and changed cellular metabolism from oxidative phosphorylation toward glycolysis in cardiomyocytes, thus leading to cardiomyocyte survival from ischemia and hypoxia stress. Ribo-Seq revealed that Aars2 overexpression increased pyruvate kinase M2 (PKM2) protein translation and the ratio of PKM2 dimers to tetramers that promote glycolysis. Additionally, PKM2 activator TEPP-46 reversed cardiomyocyte apoptosis and cardiac fibrosis caused by AARS2 deficiency. Thus, this study demonstrates that AARS2 plays an essential role in protecting cardiomyocytes from ischemic pressure via fine-tuning PKM2-mediated energy metabolism, and presents a novel cardiac protective AARS2-PKM2 signaling during the pathogenesis of MI.
Collapse
Affiliation(s)
- Zongwang Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
| | - Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
| | - Yang Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
| | - Yuanyuan Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
| | - Junjie Hou
- School of Basic Medical Sciences and The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Chenglu Xiao
- School of Basic Medical Sciences and The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
| | - Shi-Min Zhao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan UniversityShanghaiChina
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
- School of Basic Medical Sciences and The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| |
Collapse
|
24
|
MacDonald E, Johannes L, Wunder C. Acidification on the plasma membrane. Curr Opin Cell Biol 2025; 95:102531. [PMID: 40378645 DOI: 10.1016/j.ceb.2025.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/19/2025]
Abstract
The pH balance between extracellular and intracellular space is crucial for a multitude of cellular processes. Real-time observation of pH fluctuations in the range 4-9 in live cells and tissues in a sensitive, non-invasive manner has become feasible with advances in pH quantification by organic dyes, genetically encoded fluorescent proteins, and DNA-based probes. We discuss mechanisms through which pH affects cell cycle, transcription, senescence, neurotransmission, glycolipid-lectin driven endocytosis, tissue remodelling, immune responses, and GPCR signalling. Growth factor-stimulated acidification of the extracellular space notably triggers enzymatic reactions like desialylation at the plasma membrane that control processes involving cell migration and bone resorption. Research into the role of pH in cellular physiology continues to be a fertile ground for discovery that underscores its fundamental importance.
Collapse
Affiliation(s)
- Ewan MacDonald
- Montpellier Cell Biology Research Center, CRBM, Université 40 Montpellier, CNRS, Montpellier, France.
| | - Ludger Johannes
- Institut Curie, PSL Research University, U1339 INSERM, UMR3666 CNRS, Chemical Biology of Cancer Unit, Paris, France; Inria Center at University of Rennes, SAIRPICO Team, U1339 INSERM, Institut Curie, Chemical Biology of Cancer Unit, Paris, France.
| | - Christian Wunder
- Institut Curie, PSL Research University, U1339 INSERM, UMR3666 CNRS, Chemical Biology of Cancer Unit, Paris, France; Inria Center at University of Rennes, SAIRPICO Team, U1339 INSERM, Institut Curie, Chemical Biology of Cancer Unit, Paris, France.
| |
Collapse
|
25
|
Shan D, Zheng Q, Chen Z. Downregulation of MPC1 promotes HCC cell proliferation and metastasis via the STAT3 pathway. J Mol Histol 2025; 56:155. [PMID: 40366472 DOI: 10.1007/s10735-025-10435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/20/2025] [Indexed: 05/15/2025]
Abstract
Hepatocellular carcinoma (HCC) is prevalent globally, and the discovery of new targets is vital for the treatment of HCC. Mitochondrial pyruvate carrier 1 (MPC1) has been found to exhibit reduced expression and promote tumour progression in some cancers, although its role in HCC needs to be explored. Using GEO datasets and Kaplan‒Meier plotter, the clinicopathological features and patient prognosis were analysed by assessing the expression levels of MPC1 in HCC tissues. After MPC1-knockdown and MPC1-overexpressing cell lines were constructed, the effects of modulating MPC1 expression on the malignant phenotype of HCC cells were tested via CCK8, colony formation, and scratch assays and flow cytometry. The effects of MPC1 on HCC cells and mitochondria were examined via MitoTracker Red CMXRos staining, cytoskeleton staining and cellular energy metabolism assays. MPC1 expression was found to be reduced in HCC patients and correlated with prognosis and clinicopathological features. It was found that low expression of MPC1 promotes the malignant phenotype of HCC cells and affects the mitochondrial energy metabolism of HCC cells to support the tumour microenvironment, and that MPC1 may act through signal transducer and activator of transcription 3 (STAT3). MPC1 might play a tumor-suppressing role in HCC through its interaction with STAT3, and this discovery could offer novel perspectives for HCC treatment.
Collapse
Affiliation(s)
- Dandan Shan
- Department of Infectious Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.
| |
Collapse
|
26
|
Caiazzo S, Watt MJ, Dodd GT, Bayliss J, Thomas H, Smith LK, Mitchell CB, Phillips WA. Ubiquitous expression of an activating mutation in the Pik3ca gene reprograms glucose and lipid metabolism in mice. PLoS One 2025; 20:e0322544. [PMID: 40354343 PMCID: PMC12068571 DOI: 10.1371/journal.pone.0322544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of PI3K, are among the most common mutations in human cancers and overgrowth syndromes. The ubiquitous expression of the activating Pik3caH1047R mutation results in reduced survival, organomegaly, hypoglycaemia and hypoinsulinemia in mice. Here we demonstrate that in vivo expression of Pik3caH1047R attenuates the rise in blood glucose in response to oral glucose administration, stimulates glucose uptake in peripheral tissues, inhibits hepatic gluconeogenesis and pancreatic insulin secretion, and increases adipose lipolysis and white adipose tissue browning. Together, our data reveal that the systemic activation of the PI3K pathway in mice disrupts glucose homeostasis through the regulation of hepatic gluconeogenesis, and leads to increased lipolysis of adipose tissue.
Collapse
Affiliation(s)
- Sabrina Caiazzo
- Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew J. Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences; The University of Melbourne, Parkville, Victoria, Australia
| | - Garron T. Dodd
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences; The University of Melbourne, Parkville, Victoria, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences; The University of Melbourne, Parkville, Victoria, Australia
| | - Helen Thomas
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Lorey K. Smith
- Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Camilla B. Mitchell
- Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Wayne A. Phillips
- Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Song K, Ming J, Tao B, Zhao F, Huang S, Wu W, Jiang C, Li X. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J Control Release 2025; 381:113580. [PMID: 40024341 DOI: 10.1016/j.jconrel.2025.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Abnormalities in glucose metabolism have been shown to characterize malignant tumors. Glucose depletion by glucose oxidase (GOD) has shown great potential in tumor therapy by causing tumor starvation. Since 2017, nanomedicines have been designed and utilized to deliver GOD for more precise and effective glucose modulation, which can overcome intrinsic limitations of different cancer therapeutic modalities by remodeling the tumor microenvironment to enhance antitumor therapy. To date, the topic of GOD-delivering nanomedicines for enhancing tumor therapy has not been comprehensively summarized. Herein, this review aims to provide an overview and discuss in detail recent advances in GOD delivery and directly involved starvation therapy strategies, GOD-sensitized various tumor therapy strategies, and GOD-mediated multimodal antitumor strategies. Finally, the challenges and outlooks for the future progress of the emerging tumor therapeutic nanomedicines are discussed. This review provides intuitive and specific insights to a broad audience in the fields of nanomedicines, biomaterials, and cancer therapy.
Collapse
Affiliation(s)
- Kaiyue Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xianglong Li
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
28
|
Zhu S, Sun C, Cai Z, Wu J, Han X, Wang J, Wang C. Multifunctional nanoparticle-mediated targeting of metabolic reprogramming and DNA damage response pathways to treat drug-resistant triple-negative breast cancer. J Control Release 2025; 381:113601. [PMID: 40054629 DOI: 10.1016/j.jconrel.2025.113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
Multi-drug resistance and immunosuppressive triple-negative breast cancer (TNBC) is triggered by the Warburg effect, which promotes homologous recombination repair (HRR) and upregulates expression of P-glycoprotein (P-gp), in turn preventing DNA damage from chemotherapy and creating an immunosuppressive microenvironment. It is therefore of clinical relevance to develop an effective delivery system that targets metabolic reprogramming and DNA damage response pathways for the treatment of drug-resistant TNBC. Herein, a P-gp-inhibiting and GSH-responsive multifunctional drug carrier targeting integrin αvβ3 was synthesised for the delivery of Lonidamine-prodrug (M1, glycolysis inhibitor) and Senaparib (Se, Poly [ADP-ribose] polymerase inhibitor). The nanodrug delivery system (iPR@M1/Se nanoparticles) exhibit effective tumour penetration and P-gp inhibition, effectively inducing DNA damage and apoptosis in Olaparib-resistant TNBC cells in vitro, as well as a higher tumour inhibitory rate compared with that of Se (81.82 % ± 2.31 % vs 43.91 % ± 4.65 %) in vivo. Mechanistically, iPR@M1/Se nanoparticles not only reshaped the immunosuppressive microenvironment resulting from tumour glycolysis, but also downregulated the expression of HRR-related protein, fostering the cytoplasmic accumulation of DNA damage fragments, which induced activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway. Experimental results show that iPR@M1/Se nanoparticles effectively promote dendritic cell maturation and T lymphocyte activation, which elicits long-term immune memory responses, and prevents tumour recurrence and lung metastasis. Therefore, these multifunctional nanoparticles have great potential and provide a clinically relevant and valuable option for Olaparib-resistant TNBC.
Collapse
Affiliation(s)
- Sifeng Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Sun
- Institute of Medical Science, Central Research Laboratory, the Second Hospital of Shandong University, 250033, China
| | - Zimin Cai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jibin Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xu Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jue Wang
- Institute of Medical Sciences, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China.
| | - Cheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
29
|
Zhang D, Wang X, Xiao M, Ma S, Li S, Jia W. PLEKHA4 is transcriptionally regulated by HOXD9 and regulates glycolytic reprogramming and progression in glioblastoma via activation of the STAT3/SOCS-1 pathway. Oncogenesis 2025; 14:15. [PMID: 40346039 PMCID: PMC12064757 DOI: 10.1038/s41389-025-00559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 04/11/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
Recent studies have demonstrated that PLEKHA4 promotes tumor growth in some cancers, such as small-cell lung cancer, melanoma, and hepatic carcinomas; however, the underlying mechanism in glioblastoma remains ambiguous. Bioinformatic was used to analysis PLEKHA4 expression. In vitro and in vivo experiments were conducted to detect the effect of PLEKHA4 on glioblastoma cell glycolytic reprogramming and progression. GSEA was used to analyze the signal pathways related to PLEKHA4. Pharmacological methods further validated the role of activation pathways. We evaluated the effects of PLEKHA4 knockdown combined with temozolomide (TMZ) on glioblastoma cell proliferation and apoptosis in vitro and in vivo. We observed an overexpression of PLEKHA4 in GBM cell lines, resulting in enhanced cell proliferation, inhibited apoptosis, and promoted glycolysis. Mechanistically, our study demonstrated that PLEKHA4 mediates cell proliferation, apoptosis, and glycolysis via the STAT3/SOCS1 signaling pathway. Additionally, HOXD9 was predicted using Jasper, which is a transcription factor that binds to the PLEKHA4 promoter region. Knocking down PLEKHA4 combined with TMZ inhibited cell proliferation and promoted cell apoptosis in vitro and in vivo. Our results indicated that HOXD9-medicated PLEKHA4 regulates glioblastoma cell proliferation and glycolysis via activation of the STAT3/SOCS1 pathway.
Collapse
Affiliation(s)
- Dainan Zhang
- Department of Neurosurgery, Beijing Tian Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaoyin Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Meng Xiao
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
- Graduate School of Beijing University of Chinese Medical, Beijng, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tian Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaomin Li
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wang Jia
- Department of Neurosurgery, Beijing Tian Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
30
|
Xu S, Lin X, Jia F. NAT10-mediated N4-acetylcytosine modification promotes the progression of retinoblastoma by improving the HK1 mRNA stability to enhance glycolysis. Clinics (Sao Paulo) 2025; 80:100678. [PMID: 40344913 DOI: 10.1016/j.clinsp.2025.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/05/2025] [Accepted: 04/23/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVE Retinoblastoma (RB) is a type of intraocular tumor in childhood with a high lethality rate. N4-acetylcytosine (ac4C) modification is known to regulate multiple cancers, which is mediated by the only known ac4C writer N-Acetyltransferase 10 (NAT10). In this study, the authors aimed to reveal the mechanism of RB progression regulated by ac4C modification. METHOD Phenotypically, dot blot assay and quantitative real-time PCR were used to detect the ac4C levels and NAT10 expression in clinical samples and RB cell lines. Then, NAT10 was knocked down to assess its effect on glycolysis. Mechanically, RNA immunoprecipitation assay, immunofluorescence assay, and dual luciferase report were used to explore the mRNA modified by NAT10-mediated ac4C modification. Mice xenograft model was used to determine the effect of NAT10 on tumor growth in vivo. RESULTS The present results demonstrated that the levels of ac4C and NAT10 were increased in cancer tissues and RB cell lines. Furthermore, NAT10 knockdown inhibited the glycolysis in RB cell lines. Moreover, the authors revealed that NAT10 knockdown decreased the ac4C modification and mRNA stability of HK1, while the inhibition of glycolysis by NAT10 knockdown was reversed by HK1 overexpression. Finally, NAT10 knockdown relieved the growth of tumors in mice models. CONCLUSION The authors illustrated that NAT10 plays an important role in the progression of RB by regulating the ac4C modification on HK1 mRNA and affects its stability, which may provide a novel theoretical basis for the treatment of RB.
Collapse
Affiliation(s)
- Shan Xu
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, Shandong, China.
| | - Xuming Lin
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Fengling Jia
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
31
|
Qian Y, Liu Z, Liu Q, Tian X, Mo J, Leng L, Wang C, Xu G, Zhang S, Xie J. Transduction of Lentiviral Vectors and ADORA3 in HEK293T Cells Modulated in Gene Expression and Alternative Splicing. Int J Mol Sci 2025; 26:4431. [PMID: 40362672 PMCID: PMC12072217 DOI: 10.3390/ijms26094431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
For steady transgenic expression, lentiviral vector-mediated gene delivery is a commonly used technique. One question that needs to be explored is how external lentiviral vectors and overexpressed genes perturb cellular homeostasis, potentially altering transcriptional networks. In this study, two Human Embryonic Kidney 293T (HEK293T)-derived cell lines were established via lentiviral transduction, one overexpressing green fluorescent protein (GFP) and the other co-overexpressing GFP and ADORA3 following puromycin selection to ensure stable genomic integration. Genes with differentially transcript utilization (gDTUs) and differentially expressed genes (DEGs) across cell lines were identified after short-read and long-read RNA-seq. Only 31 genes were discovered to have changed in expression when GFP was expressed, although hundreds of genes showed variations in transcript use. In contrast, even when co-overexpression of GFP and ADORA3 alters the expression of more than 1000 genes, there are still less than 1000 gDTUs. Moreover, DEGs linked to ADORA3 overexpression play a major role in RNA splicing, whereas gDTUs are highly linked to a number of malignancies and the molecular mechanisms that underlie them. For the analysis of gene expression data from stable cell lines derived from HEK293T, our findings provide important insights into changes in gene expression and alternative splicing.
Collapse
Affiliation(s)
- Yongqi Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.Q.); (Q.L.); (X.T.)
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qingqing Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.Q.); (Q.L.); (X.T.)
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Xiaojuan Tian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.Q.); (Q.L.); (X.T.)
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Jing Mo
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Guoqing Xu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiang Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.Q.); (Q.L.); (X.T.)
| |
Collapse
|
32
|
Oh S, Sim HB, Kim H, Mun SK, Ji M, Choi B, Kim DY, Kim JJ, Paik MJ. Cellular metabolomics study in colorectal cancer cells and media following treatment with 5-fluorouracil by gas chromatography-tandem mass spectrometry. Metabolomics 2025; 21:62. [PMID: 40335841 DOI: 10.1007/s11306-025-02263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 04/18/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Metabolic reprogramming is a distinctive characteristic of colorectal cancer (CRC) which provides energy and nutrients for rapid proliferation. Although numerous studies have explored the rewired metabolism of CRC, the metabolic alterations occurring in CRC when the cell cycle is arrested by treatment with 5-fluorouracil (5-FU), an anticancer drug that arrests the S phase, remain unclear. METHODS A systematic profiling analysis was conducted as ethoxycarbonyl/methoxime/tert-butyldimethylsilyl derivatives using gas chromatography-tandem mass spectrometry in HT29 cells and media following 5-FU treatment in a concentration- and time-dependent manner. RESULTS In HT29 cells of 24 h after 5-FU treatment (3-100 μM) and 48 h after 5-FU treatment (1-10 μM), six amino acids, including valine, leucine, isoleucine, serine, glycine, and alanine and two organic acids, including pyruvic acid and lactic acid, were significantly increased compared to the DMSO-treated group. However, 48 h after 5-FU treatment (30-100 μM) in HT29 cells, the levels of these metabolites decreased along with an approximately 50% reduction in viability, an increase in the level of reactive oxygen species, induction of cycle arrest in the G1 phase, and the induction of apoptosis. On the other hand, the levels of fatty acids showed a continuous increase in HT29 cells 48 h after 5-FU treatment (1-100 μM). In the media, the decreased availabilities in the cellular uptake of nutrient metabolites, including valine, leucine, isoleucine, serine, and glutamine, were observed at 48 h after 5-FU treatment in a dose-dependent manner. CONCLUSION It is assumed that there is a possible shift in energy dependence from the tricarboxylic acid cycle to fatty acid metabolism. Thus, metabolic profiling analysis revealed altered energy metabolism in CRC cells following 5-FU treatment.
Collapse
Affiliation(s)
- Songjin Oh
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Hyun Bo Sim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Hyeongyeong Kim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Seul-Ki Mun
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Moongi Ji
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Byeongchan Choi
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Doo-Young Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
- New Drug Discovery Lab, Hyundai Pharm, Yongin, 17089, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
33
|
Chatzilygeroudi T, Karantanos T, Pappa V. Unraveling Venetoclax Resistance: Navigating the Future of HMA/Venetoclax-Refractory AML in the Molecular Era. Cancers (Basel) 2025; 17:1586. [PMID: 40361510 PMCID: PMC12071220 DOI: 10.3390/cancers17091586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Acute myeloid leukemia (AML) has traditionally been linked to a poor prognosis, particularly in older patients who are ineligible for intensive chemotherapy. The advent of Venetoclax, a powerful oral BH3 mimetic targeting anti-apoptotic protein BCL2, has significantly advanced AML treatment. Its combination with the hypomethylating agent azacitidine (AZA/VEN) has become a standard treatment for this group of AML patients, demonstrating a 65% overall response rate and a median overall survival of 14.7 months, compared to 22% and 8 months with azacitidine monotherapy, respectively. However, resistance and relapses remain common, representing a significant clinical challenge. Recent studies have identified molecular alterations, such as mutations in FLT3-ITD, NRAS/KRAS, TP53, and BAX, as major drivers of resistance. Additionally, other factors, including metabolic changes, anti-apoptotic protein expression, and monocytic or erythroid/megakaryocytic differentiation status, contribute to treatment failure. Clinical trials are exploring strategies to overcome venetoclax resistance, including doublet or triplet therapies targeting IDH and FLT3 mutations; novel epigenetic approaches; menin, XPO1, and MDM2 inhibitors; along with immunotherapies like monoclonal antibodies and antibody-drug conjugates. A deeper understanding of the molecular mechanisms of resistance through single-cell analysis will be crucial for developing future therapeutic strategies.
Collapse
Affiliation(s)
- Theodora Chatzilygeroudi
- Second Department of Internal Medicine and Research Unit, Hematology Unit, National and Kapodistrian University of Athens School of Medicine, Attikon University Hospital, 12462 Athens, Greece;
| | - Theodoros Karantanos
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, Hematology Unit, National and Kapodistrian University of Athens School of Medicine, Attikon University Hospital, 12462 Athens, Greece;
| |
Collapse
|
34
|
Saffar S, Ghiaseddin A, Irani S, Hamidieh AA. Optimization of In-Situ Exosome Enrichment Methodology On-a-Chip to Mimic Tumor Microenvironment Induces Cancer Stemness in Glioblastoma Tumor Model. Cells 2025; 14:676. [PMID: 40358200 PMCID: PMC12071966 DOI: 10.3390/cells14090676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Understanding cancer etiology requires replicating the tumor microenvironment (TME), which significantly differs from standard in vitro cultures due to nutrient limitations, acidic pH, and oxidative stress. To address this, a microfluidic bioreactor (µBR) with an expanded culture surface was designed to optimize exosome enrichment and glioblastoma cell behavior. Using response surface methodology (RSM), key parameters-including medium exchange volume and interval time-were optimized, leading to about a six-fold increase in exosome concentration without artificial inducers. Characterization techniques (SEM, AFM, DLS, RT-qPCR, and ELISA) confirmed significant alterations in exosome profiles, cancer stemness, and epithelial-mesenchymal transition (EMT)-related markers. Notably, EMT was induced in the µBR system, with a six-fold increase in HIF-1α protein despite normoxic conditions, suggesting activation of compensatory signaling pathways. Molecular analysis showed upregulation of SOX2, OCT4, and Notch1, with SOX2 protein reaching 28 ng/mL, while it was undetectable in traditional culture. Notch1 concentration tripled in the µBR system, correlating with enhanced stemness and phenotypic heterogeneity. Immunofluorescent microscopy confirmed nuclear SOX2 accumulation and co-expression of SOX2 and HIF-1α in dedifferentiated CSC-like cells, demonstrating tumor heterogeneity. These findings highlight the µBR's ability to enhance stemness and mimic glioblastoma's aggressive phenotype, establishing it as a valuable platform for tumor modeling and therapeutic development.
Collapse
Affiliation(s)
- Saleheh Saffar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (S.S.); (S.I.)
| | - Ali Ghiaseddin
- Department of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA
- Institute for Stem Cell Research and Regenerative Medicine, Tehran University of Medical Sciences, Tehran 1419733151, Iran
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (S.S.); (S.I.)
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 1419733151, Iran;
| |
Collapse
|
35
|
Zhang H, Yang X, Xue Y, Huang Y, Mo Y, Huang Y, Zhang H, Zhang X, Zhao W, Jia B, Li N, Gao N, Yang Y, Xiang D, Wang S, Qin Gao Y, Liao J. A basigin antibody modulates MCTs to impact tumor metabolism and immunity. Cell Discov 2025; 11:44. [PMID: 40324980 PMCID: PMC12053622 DOI: 10.1038/s41421-025-00777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/20/2025] [Indexed: 05/07/2025] Open
Abstract
Lactate metabolism and signaling intricately intertwine in the context of cancer and immunity. Basigin, working alongside monocarboxylate transporters MCT1 and MCT4, orchestrates the movement of lactate across cell membranes. Despite their potential in treating formidable tumors, the mechanisms by which basigin antibodies affect basigin and MCTs remain unclear. Our research demonstrated that basigin positively modulates MCT activity. We subsequently developed a basigin antibody that converts basigin into a negative modulator, thereby suppressing lactate transport and enhancing anti-tumor immunity. Additionally, the antibody alters metabolic profiles in NSCLC-PDOs and T cells. Cryo-EM structural analysis and molecular dynamics simulations reveal that the extracellular Ig2 domain and transmembrane domain of basigin regulate MCT1 activity through an allosteric mechanism. The antibody decreases MCT1 transition rate by reducing the flexibility of basigin's Ig2 domain and diminishing interactions between basigin's transmembrane domain and MCT1. These findings underscore the promise of basigin antibodies in combating tumors by modulating metabolism and immunity, and the value of a common therapeutic subunit shared by multiple transporter targets.
Collapse
Affiliation(s)
- Heng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuemei Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yingxi Mo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yurun Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Hong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaofei Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weixin Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Jia
- Lung Cancer Department, Tianjin Cancer Hospital, Tianjin, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yue Yang
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, and Department of Biliary-Pancreatic Surgery, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Shan Wang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Jun Liao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Alphelix Biosciences, Foshan, Guangdong, China.
| |
Collapse
|
36
|
Fang X, Ruan Y, Yin X, Wang J, Chen C, Hu Y, Wang H, Pi J, Xu Y. The role of SLC7A11 in arsenite-induced oncogenic phenotypes of human bronchial epithelial cells: A metabolic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126381. [PMID: 40334737 DOI: 10.1016/j.envpol.2025.126381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/14/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Chronic arsenic exposure enhances the probability of lung cancer with the underlying mechanisms remain unknown. Glutamine-driven synthetic metabolism, including nucleotide synthesis, amino acid production, TCA cycle replenishment, glutathione synthesis, and lipid biosynthesis, is crucial for both cancer initiation and progression. This study demonstrated that chronic exposure to 0.1 μM arsenite for as long as 36 weeks induced malignant transformation in human bronchial epithelial cells (BEAS-2B). Metabolomics were used to systematically disclose metabolic characteristics in arsenic-transformed malignant (As-TM) cells. Significantly changed metabolites were enriched in alanine, aspartate and glutamate metabolism, arginine biosynthesis, glutamine and glutamate metabolism, glutathione metabolism, butanoate metabolism, TCA cycle, and arginine and proline metabolism. It is worth noting that glutamate located at the intersection of the enriched metabolism pathways. Glutamine deprivation attenuated the oncogenic phenotypes, including capacity of wound healing and proliferation, in As-TM cells. And the expression levels of mRNA and proteins associated with glutamine metabolism-related transporters and enzymes, including SLC7A11, GCLM, and GCLC, were significantly increased, with SLC7A11 exhibiting the most substantial increase. Moreover, arsenite transformation progressively elevated SLC7A11 mRNA and protein levels over time. The SLC7A11 inhibitor sulfasalazine remarkably attenuated arsenite-induced oncogenic phenotypes. Collectively, our data suggest that chronic arsenite exposure enhances glutamine metabolism through upregulation of SLC7A11, thereby promoting cell proliferation and malignant transformation. These results provide new insights for preventive and therapeutic strategies for lung cancer linked to arsenic exposure.
Collapse
Affiliation(s)
- Xin Fang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yihui Ruan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Xianhang Yin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Junyi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Chen Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yuxin Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Huihui Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
37
|
Brisudova P, Stojanovic D, Novak J, Nahacka Z, Oliveira GL, Vanatko O, Dvorakova S, Endaya B, Truksa J, Kubiskova M, Foltynova A, Jirak D, Jirat-Ziolkowska N, Kucera L, Chalupsky K, Klima K, Prochazka J, Sedlacek R, Mengarelli F, Orlando P, Tiano L, Oliveira P, Grasso C, Berridge MV, Zobalova R, Anderova M, Neuzil J. Functional mitochondrial respiration is essential for glioblastoma tumour growth. Oncogene 2025:10.1038/s41388-025-03429-6. [PMID: 40325182 DOI: 10.1038/s41388-025-03429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Horizontal transfer of mitochondria from the tumour microenvironment to cancer cells to support proliferation and enhance tumour progression has been shown for various types of cancer in recent years. Glioblastoma, the most aggressive adult brain tumour, has proven to be no exception when it comes to dynamic intercellular mitochondrial movement, as shown in this study using an orthotopic tumour model of respiration-deficient glioblastoma cells. Although confirmed mitochondrial transfer was shown to facilitate tumour progression in glioblastoma, we decided to investigate whether the related electron transport chain recovery is necessary for tumour formation in the brain. Based on experiments using time-resolved analysis of tumour formation by glioblastoma cells depleted of their mitochondrial DNA, we conclude that functional mitochondrial respiration is essential for glioblastoma growth in vivo, because it is needed to support coenzyme Q redox cycling for de novo pyrimidine biosynthesis controlled by respiration-linked dihydroorotate dehydrogenase enzyme activity. We also demonstrate here that astrocytes are key mitochondrial donors in this model.
Collapse
Affiliation(s)
- Petra Brisudova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Czech Republic
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic
| | - Dana Stojanovic
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Czech Republic
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic
| | - Jaromir Novak
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Czech Republic
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic
| | - Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Czech Republic
| | - Gabriela Lopes Oliveira
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Czech Republic
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- CCIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197, Cantanhede, Portugal
- PPDBEB, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, 3060-197, Cantanhede, Portugal
| | - Ondrej Vanatko
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 00, Prague 4, Czech Republic
- Second Faculty of Medicine, Charles University, 150 06, Prague 5, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Czech Republic
| | - Berwini Endaya
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Czech Republic
| | - Monika Kubiskova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 00, Prague 4, Czech Republic
- Second Faculty of Medicine, Charles University, 150 06, Prague 5, Czech Republic
| | - Alice Foltynova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 00, Prague 4, Czech Republic
- Second Faculty of Medicine, Charles University, 150 06, Prague 5, Czech Republic
| | - Daniel Jirak
- Institute of Clinical and Experimental Medicine, 140 21, Prague 4, Czech Republic
| | - Natalia Jirat-Ziolkowska
- Institute of Clinical and Experimental Medicine, 140 21, Prague 4, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, 121 08, Prague 4, Czech Republic
| | - Lukas Kucera
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Krystof Klima
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Francesco Mengarelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Paulo Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- CCIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197, Cantanhede, Portugal
| | - Carole Grasso
- Malaghan Institute of Medical Research, Wellington, 6242, New Zealand
| | | | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Czech Republic.
| | - Miroslava Anderova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 00, Prague 4, Czech Republic.
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Czech Republic.
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic.
- First Faculty of Medicine, Charles University, 121 08, Prague 2, Czech Republic.
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, 4222, Australia.
| |
Collapse
|
38
|
Bakleh MZ, Al Haj Zen A. The Distinct Role of HIF-1α and HIF-2α in Hypoxia and Angiogenesis. Cells 2025; 14:673. [PMID: 40358197 PMCID: PMC12071368 DOI: 10.3390/cells14090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Hypoxia results in a wide range of adaptive physiological responses, including metabolic reprogramming, erythropoiesis, and angiogenesis. The response to hypoxia at the cellular level is mainly regulated by hypoxia-inducible factors (HIFs): HIF1α and HIF2α isoforms. Although structurally similar and overlapping gene targets, both isoforms can exhibit distinct expression patterns and functions in some conditions of hypoxia. The interaction between these isoforms, known as the "HIF switch", determines their coordinated function under varying oxygen levels and exposure time. In angiogenesis, HIF-1α is rapidly stabilized under acute hypoxia, prompting a metabolic shift from oxidative phosphorylation to glycolysis and initiating angiogenesis by activating endothelial cells and extracellular matrix remodeling. Conversely, HIF-2α regulates cell responses to chronic hypoxia by sustaining genes critical for vascular remodeling and maturation. The current review highlights the different roles and regulatory mechanisms of HIF-1α and HIF-2α isoforms, focusing on their involvement in cell metabolism and the multi-step process of angiogenesis. Tuning the specific targeting of HIF isoforms and finding the right therapeutic window is essential to obtaining the best therapeutic effect in diseases such as cancer and vascular ischemic diseases.
Collapse
Affiliation(s)
| | - Ayman Al Haj Zen
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
39
|
Shu Y, Tao Q, Xu Q, Chen Y, Xu Y, Ma T, Zhu Z, Wei X, Liu F, Wu Z, Zeng Y, Chen M, Shao M, Cao X, Zhou Y, Peng W, Li C, Shi Y. Loss of NUMB promotes hepatomegaly and hepatocellular carcinoma through the AKT/glycogen/hippo signaling. Oncogene 2025:10.1038/s41388-025-03430-z. [PMID: 40319143 DOI: 10.1038/s41388-025-03430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Excessive glycogen deposition is a common feature of liver enlargement, liver adenoma, and liver cancer, yet the underlying mechanisms remain poorly understood. In this study, we found that NUMB, a well-known cell fate determinant, is downregulated in glycogen-rich adenomas and hepatocellular carcinoma (HCC). NUMB-deficient livers developed excessive glycogen accumulation and adenoma formation particularly in aged mice. Surprisingly, the Alb-Cre:Trp53loxP/loxP liver displayed no similar defective morphology and function, although p53 is considered an important downstream target of NUMB and closely related to glucose metabolism. Instead, we observed a synergistic interaction between NUMB and p53 in regulating glycogen metabolism in HCC tissues and cell lines. Combined knockout of NUMB and p53 in mice significantly enhances glycogen accumulation and hepatomegaly, particularly when mice are subjected to a high sugar diet (HSD), leading to higher cancer incidence. Mechanistically, NUMB deficiency disrupts the PTEN-PI3K/AKT signaling pathway, promoting glycogen accumulation. Subsequently, successive glycogen deposition triggers hepatomegaly and tumorigenesis via the Hippo signaling pathway. Our results suggest that NUMB plays a crucial role in maintaining the homeostasis of glucose metabolism and suppressing the development of liver tumors associated with glycogen deposition.
Collapse
Affiliation(s)
- Yuke Shu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Tao
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Xu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuwei Chen
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yahong Xu
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingting Ma
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiqi Zhu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Wei
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenru Wu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Zeng
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Menglin Chen
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyang Shao
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Cao
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjie Zhou
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Peng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yujun Shi
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
40
|
Lei W, Zhou K, Lei Y, Li Q, Zhu H. Pathogenesis and Systemic Treatment of Hepatocellular Carcinoma: Current Status and Prospects. Mol Cancer Ther 2025; 24:692-708. [PMID: 39417575 DOI: 10.1158/1535-7163.mct-24-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the major threats to human health worldwide. The emergence of systemic therapeutic options has greatly improved the prognosis of patients with HCC, particularly those with advanced stages of the disease. In this review, we discussed the pathogenesis of HCC, genetic alterations associated with the development of HCC, and alterations in the tumor immune microenvironment. Then, important indicators and emerging technologies related to the diagnosis of HCC are summarized. Also, we reviewed the major advances in treatments for HCC, offering insights into future prospects for next-generation managements.
Collapse
Affiliation(s)
- Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Lei
- College of Liberal Arts, Neijiang Normal University, Neijiang, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Owida HA, Saleh RO, Mohammad SI, Vasudevan A, Roopashree R, Kashyap A, Nanda A, Ray S, Hussein A, Yasin HA. Deciphering the role of circular RNAs in cancer progression under hypoxic conditions. Med Oncol 2025; 42:191. [PMID: 40314834 DOI: 10.1007/s12032-025-02727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/14/2025] [Indexed: 05/03/2025]
Abstract
Hypoxia, characterized by reduced oxygen levels, plays a pivotal role in cancer progression, profoundly influencing tumor behavior and therapeutic responses. A hallmark of solid tumors, hypoxia drives significant metabolic adaptations in cancer cells, primarily mediated by hypoxia-inducible factor-1α (HIF-1α), a key transcription factor activated in low-oxygen conditions. This hypoxic environment promotes epithelial-mesenchymal transition (EMT), enhancing cancer cell migration, metastasis, and the development of cancer stem cell-like properties, which contribute to therapy resistance. Moreover, hypoxia modulates the expression of circular RNAs (circRNAs), leading to their accumulation in the tumor microenvironment. These hypoxia-responsive circRNAs regulate gene expression and cellular processes critical for cancer progression, making them promising candidates for diagnostic and prognostic biomarkers in various cancers. This review delves into the intricate interplay between hypoxic circRNAs, microRNAs, and RNA-binding proteins, emphasizing their role as molecular sponges that modulate gene expression and signaling pathways involved in cell proliferation, apoptosis, and metastasis. It also explores the relationship between circRNAs and the tumor microenvironment, particularly how hypoxia influences their expression and functional dynamics. Additionally, the review highlights the potential of circRNAs as diagnostic and prognostic tools, as well as their therapeutic applications in innovative cancer treatments. By consolidating current knowledge, this review underscores the critical role of circRNAs in cancer biology and paves the way for future research aimed at harnessing their unique properties for clinical advancements. Specifically, this review examines the biogenesis, expression patterns, and mechanistic actions of hypoxic circRNAs, focusing on their ability to act as molecular sponges for microRNAs and their interactions with RNA-binding proteins. These interactions impact key signaling pathways related to tumor growth, metastasis, and drug resistance, offering new insights into the complex regulatory networks governed by circRNAs under hypoxic stress.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Department of Medical Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman, Jordan
| | - Raed Obaid Saleh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, University of Al Maarif, Al Anbar, 31001, Iraq.
| | - Suleiman Ibrahim Mohammad
- Research Follower, INTI International University, 71800, Negeri Sembilan, Malaysia.
- Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Zarqa, Jordan.
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ahmed Hussein
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
42
|
Zhou JM, Dai WX, Wang RJ, Xu WQ, Xiang Z, Wang YX, Zhang T, Zhao YM, Wang L, Mao AR. Organoid modeling identifies USP3-AS1 as a novel promoter in colorectal cancer liver metastasis through increasing glucose-driven histone lactylation. Acta Pharmacol Sin 2025; 46:1404-1418. [PMID: 39837984 PMCID: PMC12032002 DOI: 10.1038/s41401-024-01465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) is common in colorectal cancer liver metastasis (CRLM). Emerging evidence links lncRNAs to multiple stages of metastasis from initial migration to colonization of distant organs. In this study we investigated the role of lncRNAs in metabolic reprogramming during CRLM using patient-derived organoid (PDO) models. We established five pairs of PDOs from primary tumors and matched liver metastatic lesions, followed by microarray analysis. We found that USP3-AS1 was significantly upregulated in CRLM-derived PDOs compared to primary tumors. High level of USP3-AS1 was positively associated with postoperative liver metastasis and negatively correlated with the prognosis of colorectal cancer (CRC) patients. Overexpression of USP3-AS1 significantly enhanced both sphere formation efficiency and liver metastasis in PDOs. Gene set enrichment analysis revealed that USP3-AS1 upregulation significantly enriched glycolysis and MYC signaling pathways. Metabolomics analysis confirmed that USP3-AS1 promoted glycolysis in PDOs, whereas glycolysis inhibition partially attenuated the effects of USP3-AS1 overexpression on PDO growth and liver metastasis. We revealed that USP3-AS1 stabilized MYC via post-translational deubiquitination, thereby promoting glycolysis. We demonstrated that USP3-AS1 increased the stability of USP3 mRNA, resulting in higher USP3 protein expression. The elevated USP3 protein then interacted with MYC and promoted its stability by deubiquitination. The USP3-AS1-MYC-glycolysis regulatory axis modulated liver metastasis by promoting H3K18 lactylation and CDC27 expression in CRC. In conclusion, USP3-AS1 is a novel promoter of CRLM by inducing histone lactylation.
Collapse
Affiliation(s)
- Jia-Min Zhou
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei-Xing Dai
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Colorectal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Ren-Jie Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Colorectal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Wei-Qi Xu
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen Xiang
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Xiu Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ti Zhang
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Ming Zhao
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lu Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - An-Rong Mao
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
43
|
Wang C, Wan S, Li K, Chen S, Shu Y, Liu S, Yang L. TPI1 promotes p53 ubiquitination in bladder cancer by recruiting AKT to enhance MDM2 phosphorylation. Pharmacol Res 2025; 215:107695. [PMID: 40097123 DOI: 10.1016/j.phrs.2025.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
Bladder cancer (BCa) is an aggressive malignancy with limited effective treatment options, and its poor outcomes largely result from delayed detection and therapeutic resistance. Triosephosphate isomerase 1 (TPI1) has been associated with tumor progression in various cancers, but its specific function in BCa remains poorly characterized. This study evaluated cancer-related markers and identified glycolysis as a key factor negatively impacting survival in BCa. Additionally, TPI1 was recognized as a potential prognostic marker, with its expression significantly elevated in BCa tissues compared to normal counterparts. Higher TPI1 levels were strongly linked to unfavorable clinical outcomes. Functional assays demonstrated that TPI1 overexpression significantly promoted BCa cell growth, migration, and invasive capabilities in vitro and in vivo. Mechanistically, TPI1 interacted with serine/threonine kinase B (AKT) and murine double minute 2 (MDM2) to form a protein complex, which enhanced the AKT-driven phosphorylation of MDM2 at serine 166 site, thereby promoting tumor protein p53 (p53) ubiquitination degradation. Furthermore, the truncated MDM2-F2 mutant (spanning 181-360) bound to TPI1, with amino acid 317 playing a critical role in this interaction. Notably, reducing AKT expression counteracted the p53 ubiquitination triggered by elevated TPI1.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Kunpeng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Siyu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yuncong Shu
- School of life science, Lanzhou university, Lanzhou, China
| | - Shanhui Liu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China.
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
44
|
Hyun H, Sun B, Yazdimamaghani M, Wielgus A, Wang Y, Montgomery SA, Zhang T, Cheng J, Serody JS, Wang AZ. Tumor-specific surface marker-independent targeting of tumors through nanotechnology and bioorthogonal glycochemistry. J Clin Invest 2025; 135:e184964. [PMID: 40067370 PMCID: PMC12043094 DOI: 10.1172/jci184964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Biological targeting is crucial for effective cancer treatment with reduced toxicity but is limited by the availability of tumor surface markers. To overcome this, we developed a nanoparticle-based (NP-based), tumor-specific surface marker-independent (TRACER) targeting approach. Utilizing the unique biodistribution properties of NPs, we encapsulated Ac4ManNAz (Maz) to selectively label tumors with azide-reactive groups. Surprisingly, while NP-delivered Maz was cleared by the liver, it did not label macrophages, potentially reducing off-target effects. To exploit this tumor-specific labeling, we functionalized anti-4-1BB Abs with dibenzocyclooctyne to target azide-labeled tumor cells and activate the immune response. In syngeneic B16F10 melanoma and orthotopic 4T1 breast cancer models, TRACER enhanced the therapeutic efficacy of anti-4-1BB, increasing the median survival time. Immunofluorescence analyses revealed increased tumor infiltration of CD8+ T and NK cells with TRACER. Importantly, TRACER reduced the hepatotoxicity associated with anti-4-1BB, resulting in normal serum ALT and AST levels and decreased CD8+ T cell infiltration into the liver. Quantitative analysis confirmed a 4.5-fold higher tumor-to-liver ratio of anti-4-1BB accumulation with TRACER compared with conventional anti-4-1BB Abs. Our work provides a promising approach for developing targeted cancer therapies that circumvent limitations imposed by the paucity of tumor-specific markers, potentially improving efficacy and reducing off-target effects to overcome the liver toxicity associated with anti-4-1BB.
Collapse
Affiliation(s)
- Hyesun Hyun
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
| | - Bo Sun
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, University of Arizona, Tucson, Arizona, USA
| | - Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
| | - Albert Wielgus
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
| | | | - Stephanie Ann Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, and
- Division of Comparative Medicine, UNC, Chapel Hill, North Carolina, USA
| | - Tian Zhang
- Department of Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jianjun Cheng
- School of Engineering, Westlake University; Hangzhou, Zhejiang, China
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
- Department of Medicine and
- Department of Immunology and Microbiology, UNC, Chapel Hill, North Carolina, USA
| | - Andrew Z. Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
45
|
Aquino A, Franzese O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers (Basel) 2025; 17:1547. [PMID: 40361472 PMCID: PMC12072109 DOI: 10.3390/cancers17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulated cell movement is a hallmark of cancer progression and metastasis, the leading cause of cancer-related mortality. The metastatic cascade involves tumour cell migration, invasion, intravasation, dissemination, and colonisation of distant organs. These processes are influenced by reciprocal interactions between cancer cells and the tumour microenvironment (TME), including immune cells, stromal components, and extracellular matrix proteins. The epithelial-mesenchymal transition (EMT) plays a crucial role in providing cancer cells with invasive and stem-like properties, promoting dissemination and resistance to apoptosis. Conversely, the mesenchymal-epithelial transition (MET) facilitates metastatic colonisation and tumour re-initiation. Immune cells within the TME contribute to either anti-tumour response or immune evasion. These cells secrete cytokines, chemokines, and growth factors that shape the immune landscape and influence responses to immunotherapy. Notably, immune checkpoint blockade (ICB) has transformed cancer treatment, yet its efficacy is often dictated by the immune composition of the tumour site. Elucidating the molecular cross-talk between immune and cancer cells, identifying predictive biomarkers for ICB response, and developing strategies to convert cold tumours into immune-active environments is critical to overcoming resistance to immunotherapy and improving patient survival.
Collapse
Affiliation(s)
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| |
Collapse
|
46
|
Wang J, Gao X, Ren J, Song B, Zhang W, Yuan J. A novel ratiometric luminescent probe based on a ruthenium(II) complex-rhodamine scaffold for ATP detection in cancer cells. Talanta 2025; 286:127538. [PMID: 39778491 DOI: 10.1016/j.talanta.2025.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Adenosine 5'-triphosphate (ATP) plays a pivotal role as an essential intermediate in energy metabolism, influencing nearly all biological metabolic processes. Cancer cells predominantly rely on glycolysis for ATP production, differing significantly from normal cells. Real-time in situ monitoring and rapid response to intracellular ATP levels offers more valuable insights into cancer cell physiology. Herein, we report a novel ratiometric luminescent probe, Ru-Rho, comprised of a ruthenium(II)-based complex and rhodamine 6G (Rho 6G) with excellent water solubility and photostability. Notably, Ru-Rho selectively responds to ATP at acidic conditions, matching the need of monitoring ATP under the acidic intracellular environment of cancer cells. Moreover, the fast ratiometric detection and imaging of ATP under single wavelength excitation improve the detection accuracy. Ru-Rho has been effectively utilized not only for ratio imaging ATP in cells and zebrafish, but also for assessing the efficacy of glycolysis-inhibiting anticancer drugs in intracellular levels, which accelerates the screening process for anticancer drugs and supports the development of new therapeutic agents. The design strategy based on transition metal ruthenium(II) complexes opens a new pathway for constructing ATP luminescent probes, allowing for better adaptation to complex detection requirements.
Collapse
Affiliation(s)
- Jiacheng Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Junyu Ren
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
47
|
Wang J, Cheng W, Yang R. Nervous system-gut microbiota-immune system axis: future directions for preventing tumor. Front Immunol 2025; 16:1535955. [PMID: 40376000 PMCID: PMC12078214 DOI: 10.3389/fimmu.2025.1535955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/01/2025] [Indexed: 05/18/2025] Open
Abstract
Tumor is one of the leading causes of death worldwide. The occurrence and development of tumors are related to multiple systems and factors such as the immune system, gut microbiota, and nervous system. The immune system plays a critical role in tumor development. Studies have also found that the gut microbiota can directly or indirectly affect tumorigenesis and tumor development. With increasing attention on the tumor microenvironment in recent years, the nervous system has emerged as a novel regulator of tumor development. Some tumor therapies based on the nervous system have also been tested in clinical trials. However, the nervous system can not only directly interact with tumor cells but also indirectly affect tumor development through the gut microbiota. The nervous system-mediated gut microbiota can regulate tumorigenesis, growth, invasion, and metastasis through the immune system. Here, we mainly explore the potential effects of the nervous system-gut microbiota-immune system axis on tumorigenesis and tumor development. The effects of the nervous system-gut microbiota-immune system axis on tumors involve the nervous system regulating immune cells through the gut microbiota, which can prevent tumor development. Meanwhile, the direct effects of the gut microbiota on tumors and the regulation of the immune system by the nervous system, which can affect tumor development, are also reviewed.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
| |
Collapse
|
48
|
Wu Y, Zhao J, Zhao S, Li J, Luo J, Wang Y. PFKFB4 promotes endometrial cancer by regulating glycolysis through SRC‑3 phosphorylation. Oncol Rep 2025; 53:53. [PMID: 40116122 PMCID: PMC11948970 DOI: 10.3892/or.2025.8886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/06/2025] [Indexed: 03/23/2025] Open
Abstract
The present study aimed to investigate the role of 6‑phosphofructo‑2‑kinase/fructose‑2,6‑biphosphatase 4 (PFKFB4) in endometrial cancer cells and to explore its potential molecular mechanisms. PFKFB4 expression in endometrial cancer tissues was detected by immunohistochemistry. Cell Counting Kit‑8, Transwell assays and flow cytometry were used to detect cell proliferation, invasion and apoptosis in endometrial cancer cells after PFKFB4 knockdown. An enzyme‑linked immunosorbent assay was used to detect the glucose and lactic acid contents. Western blotting was performed to detect the levels of glycolysis‑related enzymes, steroid receptor coactivator‑3 (SRC‑3), and phosphorylated SRC‑3. In vivo experiments were performed to investigate the tumorigenic potential of PFKFB4. PFKFB4 expression was upregulated in endometrial cancer tissues compared with that in normal controls, and its upregulation was positively correlated with the depth of myometrial invasion, lymph node metastasis, surgical pathological stage and vascular invasion. PFKFB4 knockdown significantly inhibited proliferation and invasion, increased apoptosis, and decreased oxygen consumption and lactic acid production in endometrial cancer cells. PFKFB4 knockdown decreased SRC‑3 phosphorylation. After simultaneous PFKFB4 knockdown and SRC‑3 overexpression in cancer cells, oxygen consumption, lactic acid production, and glycolysis‑related protein expression were increased compared with those in control cells. PFKFB4 knockdown inhibited tumor proliferation, apoptosis and the expression of Ki‑67. PFKFB4 may regulate glycolysis in endometrial cancer cells by targeting SRC‑3, thus promoting endometrial cancer progression.
Collapse
Affiliation(s)
- Yaling Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Department of Gynecology and Obstetrics, People's Hospital of Shanxi, Taiyuan, Shanxi 030012, P.R. China
| | - Jianzhen Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jianfang Li
- Department of Gynecology and Obstetrics, People's Hospital of Shanxi, Taiyuan, Shanxi 030012, P.R. China
| | - Jin Luo
- Department of Pathology, People's Hospital of Shanxi, Taiyuan, Shanxi 030012, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
49
|
Gracie CJ, Mitchell R, Johnstone JC, Clarke AJ. The unusual metabolism of germinal center B cells. Trends Immunol 2025; 46:416-428. [PMID: 40221291 DOI: 10.1016/j.it.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025]
Abstract
In the germinal center (GC), B cells undergo rounds of somatic hypermutation (SHM), proliferation, and positive selection to develop into high-affinity, long-lived plasma cells and memory B cells. It is well established that, upon activation, B cells significantly alter their metabolism, but until recently little was understood about their metabolism within the GC. In this review we discuss novel in vivo models in which GC B cell (GCBC) metabolism is disrupted; these have greatly increased our understanding of B cell metabolic phenotype. GCBCs are unusual in that, unlike almost all other rapidly proliferating immune cells, they use little glycolysis but prefer fatty acid oxidation (FAO) to fuel ATP synthesis, whilst preferentially utilizing glucose and amino acids as carbon and nitrogen sources for biosynthetic pathways.
Collapse
Affiliation(s)
- Caitlin J Gracie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Robert Mitchell
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
50
|
Sakurai Y, Yanagimachi M, Ito M, Hirose A, Miyagawa N, Keino D, Yokosuka T, Iwasaki F, Hamanoue S, Shiomi M, Goto S, Goto T, Goto H. A case of acute promyelocytic leukemia complicated by mitochondrial disease. Int J Hematol 2025:10.1007/s12185-025-03992-4. [PMID: 40310574 DOI: 10.1007/s12185-025-03992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
A 15-year-old boy with congenital mitochondrial disease was diagnosed with acute promyelocytic leukemia. He was treated with all-trans retinoic acid, and his anthracycline dose was reduced in response to his underlying condition. He successfully achieved molecular remission and maintained this state for 4 years. In vitro drug sensitivity testing in peripheral mononuclear cells suggests that samples from patients in remission show higher sensitivity to various anticancer drugs than samples from healthy volunteers. Reduced-dose chemotherapy could be a valid treatment option for patients with mitochondrial diseases because exposure to elevated oxidative stress may contribute to increased drug sensitivity in these patients.
Collapse
Affiliation(s)
- Yukari Sakurai
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan.
| | - Masakatsu Yanagimachi
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Mieko Ito
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Ayana Hirose
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Naoyuki Miyagawa
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Dai Keino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Tomoko Yokosuka
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Fuminori Iwasaki
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Satoshi Hamanoue
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Masae Shiomi
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Shoko Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Tomohide Goto
- Division of Pediatric Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 138-4 Mutsukawa-2 Chome, Minami-Ku, Yokohama, Kanagawa, 232-8555, Japan
| |
Collapse
|