1
|
Lei M, Yeung YT, Nie W, Yang R, Li J, Chen H, Zhao R, Liu K, Dong Z. AHCYL1 mediates the tumor-promoting effect of PREX2 in non-small cell lung carcinoma. Theranostics 2025; 15:5772-5789. [PMID: 40365293 PMCID: PMC12068309 DOI: 10.7150/thno.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: As the most common form of lung cancer, non-small cell lung cancer (NSCLC) is still a challenging disease. Even though molecular-targeted drugs have greatly benefited NSCLC patients, the limited number of effective targets and the emergence of drug resistance necessitate further research to identify new candidates and improve clinical outcomes. Phosphatidylinositol-3,4,5-triphosphate-dependent RAC exchange factor-2 (PREX2) is highly expressed in multiple cancer types and poses high mutation frequency in lung cancer. However, the study of PREX2 in lung cancer, especially NSCLC, is few and unclear, thus, the role of PREX2 and the regulatory mechanism of PREX2 in NSCLC is worthy of further investigation. Methods: To determine the tumor-promoting effects of PREX2 in NSCLC, we established PREX2 knockdown NSCLC cells, then assessed cell growth in vitro and in cell-derived xenograft (CDX) mouse model. Furtherly, we used the urethane-induced lung carcinogenesis mouse model to confirm the significance of PREX2 in vivo. Additionally, we identified AHCYL1 as a novel PREX2-interacting protein through pull-down assay and liquid chromatography with tandem mass spectrometry (LC-MS/MS) and investigated the mechanisms of PREX2 GEF activity regulated by AHCYL1 using various molecular biology assays, including western blotting, in vitro GEF assay and active RAC1 pull-down assay. Results: Our study suggests that PREX2 and AHCYL1 both promote NSCLC cell growth and proves that AHCYL1 enhances the GEF activity of PREX2 by alleviating the mutual inhibition between PREX2 and PTEN. Consequently, AHCYL1 intensifies the tumor-promoting effects of PREX2 in NSCLC. Conclusion: Overall, our results indicate that PREX2 and AHCYL1 promote lung cancer development and reveal a novel regulatory mechanism of PREX2 GEF activity by AHCYL1, which will contribute to the understanding of NSCLC pathogenesis and offer new targets and strategies for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Mingjuan Lei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Yiu To Yeung
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Ran Yang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, MN, USA
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Xu H, Yang Y, Zhou Q, Huo R, Zhao S, Sun Y, Wang J, He Q, Yu Q, Tang J, Jiao Y, Wang J, Cao Y. Map3k3 I441M Knock-In Mouse Model of Cerebral Cavernous Malformations. Stroke 2025; 56:1010-1025. [PMID: 40127145 DOI: 10.1161/strokeaha.124.049935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/31/2024] [Accepted: 01/30/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) refer to vascular dysplasia primarily found in the brain, affecting ≈0.5% of the population. A somatic Map3k3I441M mutation has been found in ≈40% of patients with sporadic CCMs, which were typically accompanied by somatic gain-of-function mutations in PIK3CA. Although mouse models of adeno-associated virus-BR1-mediated mutant overexpression have been reported, these models have limitations in representing clinical specimens of CCMs, which typically harbor single allele mutation in Map3k3. A Map3k3I441M knock-in murine model of CCMs has not yet been established. METHODS The Map3k3I441M knock-in mice were crossed with Cdh5-creERT2 mice to induce mutant gene expression specifically in endothelial cells. Subsequently, Map3k3I441M mice were bred with Ptenfl/fl mice to generate Map3k3I441M; Ptenfl/fl mice. In both murine models, CCM lesions were examined using magnetic resonance imaging, while single-cell RNA sequencing and immunostaining were utilized to investigate the pathomechanism of the mutation. Finally, we administered an mTOR (mechanistic target of rapamycin) inhibitor to explore its therapeutic effect on lesions of both murine models. RESULTS Both endothelial Map3k3I441M mutant juvenile mice and Map3k3I441M; Ptenfl/fl mice developed abnormal lesions with human CCM characteristics. In Map3k3I441M mice, the mutant promoted endothelial apoptosis, while activation of the PI3K (phosphatidylinositol 3-kinase) pathway was able to activate the downstream AKT (protein kinase B)/mTOR/p-S6 (phosphorylated S6 ribosomal protein) pathway and upregulate VEGFA (vascular endothelial growth factor A) expression, counteracting apoptosis, and facilitating lesion progression. The activation of PI3K signaling is required for Map3k3I441M to generate CCM-like lesions in adult mice. Finally, we demonstrated that rapamycin effectively inhibited the formation of lesions in the Map3k3I441M mice and Map3k3I441M; Ptenfl/fl mice. CONCLUSIONS Map3k3I441M heterozygous is sufficient to induce lesions in juvenile mice, while the additional activation of PI3K signaling is required for the effective formation of CCMs at the adult stage. The Map3k3I441M murine model provides a preclinical model for further mechanistic and therapeutic studies of CCMs.
Collapse
MESH Headings
- Animals
- Mice
- Disease Models, Animal
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hemangioma, Cavernous, Central Nervous System/diagnostic imaging
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Gene Knock-In Techniques
- MAP Kinase Kinase Kinase 3/genetics
- Mice, Transgenic
- TOR Serine-Threonine Kinases/metabolism
- Mutation
- PTEN Phosphohydrolase/genetics
Collapse
Affiliation(s)
- Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Yingxi Yang
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China (Y.Y., Q.Z., Jiguang Wang)
| | - Qiuxia Zhou
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China (Y.Y., Q.Z., Jiguang Wang)
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Shaozhi Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Yingfan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Qifeng Yu
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Jinyi Tang
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China (Y.Y., Q.Z., Jiguang Wang)
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen-Hong Kong Collaborative Innovation Research Institute, China (Jiguang Wang)
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- Beijing Neurosurgical Institute (Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| |
Collapse
|
3
|
Ford CA, Koludrovic D, Centeno PP, Foth M, Tsonou E, Vlahov N, Sphyris N, Gilroy K, Bull C, Nixon C, Serrels B, Munro AF, Dawson JC, Carragher NO, Pavet V, Hornigold DC, Dunne PD, Downward J, Welch HC, Barry ST, Sansom OJ, Campbell AD. Targeting the PREX2/RAC1/PI3Kβ Signaling Axis Confers Sensitivity to Clinically Relevant Therapeutic Approaches in Melanoma. Cancer Res 2025; 85:808-824. [PMID: 39636745 PMCID: PMC11831108 DOI: 10.1158/0008-5472.can-23-2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Metastatic melanoma remains a major clinical challenge. Large-scale genomic sequencing of melanoma has identified bona fide activating mutations in RAC1, which are associated with resistance to BRAF-targeting therapies. Targeting the RAC1-GTPase pathway, including the upstream activator PREX2 and the downstream effector PI3Kβ, could be a potential strategy for overcoming therapeutic resistance, limiting melanoma recurrence, and suppressing metastatic progression. Here, we used genetically engineered mouse models and patient-derived BRAFV600E-driven melanoma cell lines to dissect the role of PREX2 in melanomagenesis and response to therapy. Although PREX2 was dispensable for the initiation and progression of melanoma, its loss conferred sensitivity to clinically relevant therapeutics targeting the MAPK pathway. Importantly, genetic and pharmacologic targeting of PI3Kβ phenocopied PREX2 deficiency, sensitizing model systems to therapy. These data reveal a druggable PREX2/RAC1/PI3Kβ signaling axis in BRAF-mutant melanoma that could be exploited clinically. Significance: Cotargeting the MAPK and the PREX2/RAC1/PI3Kβ pathways has remarkable efficacy and outperforms monotherapy MAPK inhibition in BRAF-mutant melanoma, supporting the potential of this combination therapy for treating metastatic melanoma.
Collapse
Affiliation(s)
| | - Dana Koludrovic
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Mona Foth
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Elpida Tsonou
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
- Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Nikola Vlahov
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Kathryn Gilroy
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Courtney Bull
- The Patrick G. Johnston Centre for Cancer Research, Queen’s University, Belfast, United Kingdom
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Bryan Serrels
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison F. Munro
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - John C. Dawson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Valeria Pavet
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Philip D. Dunne
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- The Patrick G. Johnston Centre for Cancer Research, Queen’s University, Belfast, United Kingdom
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Heidi C.E. Welch
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Owen J. Sansom
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, United Kingdom
| | | |
Collapse
|
4
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
5
|
Jones GD, Ellisdon AM. Understanding P-Rex regulation: structural breakthroughs and emerging perspectives. Biochem Soc Trans 2024; 52:1849-1860. [PMID: 39023851 PMCID: PMC11668296 DOI: 10.1042/bst20231546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Rho GTPases are a family of highly conserved G proteins that regulate numerous cellular processes, including cytoskeleton organisation, migration, and proliferation. The 20 canonical Rho GTPases are regulated by ∼85 guanine nucleotide exchange factors (GEFs), with the largest family being the 71 Diffuse B-cell Lymphoma (Dbl) GEFs. Dbl GEFs promote GTPase activity through the highly conserved Dbl homology domain. The specificity of GEF activity, and consequently GTPase activity, lies in the regulation and structures of the GEFs themselves. Dbl GEFs contain various accessory domains that regulate GEF activity by controlling subcellular localisation, protein interactions, and often autoinhibition. This review focuses on the two phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)-dependent Rac exchangers (P-Rex), particularly the structural basis of P-Rex1 autoinhibition and synergistic activation. First, we discuss structures that highlight the conservation of P-Rex catalytic and phosphoinositide binding activities. We then explore recent breakthroughs in uncovering the structural basis for P-Rex1 autoinhibition and detail the proposed minimal two-step model of how PI(3,4,5)P3 and Gβγ synergistically activate P-Rex1 at the membrane. Additionally, we discuss the further layers of P-Rex regulation provided by phosphorylation and P-Rex2-PTEN coinhibitory complex formation, although these mechanisms remain incompletely understood. Finally, we leverage the available data to infer how cancer-associated mutations in P-Rex2 destabilise autoinhibition and evade PTEN coinhibitory complex formation, leading to increased P-Rex2 GEF activity and driving cancer progression and metastasis.
Collapse
Affiliation(s)
- Gareth D. Jones
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Andrew M. Ellisdon
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
6
|
Huang CF, Awad MH, Gal-Tanamy M, Yu ML. Unmet needs in the post-direct-acting antivirals era: The risk and molecular mechanisms of hepatocellular carcinoma after hepatitis C virus eradication. Clin Mol Hepatol 2024; 30:326-344. [PMID: 38665034 PMCID: PMC11261227 DOI: 10.3350/cmh.2024.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 07/20/2024] Open
Abstract
Hepatitis C virus (HCV) infection is one of the major etiologies of hepatocellular carcinoma (HCC) with approximately 30% of HCC being due to HCV infection worldwide. HCV eradication by antivirals greatly reduces the risk of HCC; nevertheless, HCC remains to occur in chronic hepatitis C (CHC) patients who have achieved a sustained virological response (SVR). The proportion of post-SVR HCC among newly diagnosed HCC patients is increasing in the direct-acting antiviral (DAA) era and might be due to preexisting inflammatory and fibrotic liver backgrounds, immune dysregulation between host and virus interactions, as well as host epigenetic scars, genetic predispositions and alternations. By means of applying surrogate markers and adopting risk stratification, HCC surveillance should be consistently performed in high-risk populations. In this review, we discuss the possible molecular mechanism, risk factors, and HCC surveillance strategy for HCC development after HCV eradication in CHC patients.
Collapse
Affiliation(s)
- Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Translational Medicine, College of Medicine, Kaohsiung Medical University and Academia Sinica, Kaohsiung, Taiwan
| | - Manar Hijaze Awad
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meital Gal-Tanamy
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Kahkesh S, Khoshnazar SM, Gholinezhad Y, Esmailzadeh S, Hosseini SA, Alimohammadi M, Mafi A. The potential role of circular RNAs -regulated PI3K signaling in non-small cell lung cancer: Molecular insights and clinical perspective. Pathol Res Pract 2024; 257:155316. [PMID: 38692125 DOI: 10.1016/j.prp.2024.155316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Non-small cell lung cancer (NSCLC), accounting for more than 80% of all cases, is the predominant form of lung cancer and the leading cause of cancer-related deaths worldwide. Significant progress has been made in diagnostic techniques, surgical interventions, chemotherapy protocols, and targeted therapies at the molecular level, leading to enhanced treatment outcomes in patients with NSCLC. Extensive evidence supports the use of circular RNAs (circRNAs), a specific category of naturally occurring non-coding small RNAs (ncRNAs), for the diagnosis, monitoring of treatment efficacy, and assessment of survival in NSCLC. CircRNAs have been identified to play significant roles in various aspects of cancer formation, either as tumor suppressors or tumor promoters, contributing to cancer development through several signaling pathways, including the phosphoinositide 3-kinases (PI3Ks) pathway. This pathway is well-established because of its regulatory role in essential cellular processes. CircRNAs regulate the PI3K/AKT pathway by targeting diverse cellular elements. This review aims to provide insight into the involvement of several circRNAs linked to the PI3K/AKT pathway in NSCLC.
Collapse
Affiliation(s)
- Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Hosseini
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Zhou Y, Mo S, Cui H, Sun R, Zhang W, Zhuang X, Xu E, Li H, Cheng Y, Meng Y, Liu M, Yan T, Liu H, Zhang L, Yang B, Xi Y, Wang S, Cheng X, Li S, Liu Z, Zhan Q, Hu Z, Cui Y. Immune-tumor interaction dictates spatially directed evolution of esophageal squamous cell carcinoma. Natl Sci Rev 2024; 11:nwae150. [PMID: 38803565 PMCID: PMC11129594 DOI: 10.1093/nsr/nwae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a poor-prognostic cancer type with extensive intra- and inter-patient heterogeneity in both genomic variations and tumor microenvironment (TME). However, the patterns and drivers of spatial genomic and microenvironmental heterogeneity of ESCC remain largely unknown. Here, we generated a spatial multi-omic atlas by whole-exome, transcriptome, and methylome sequencing of 507 tumor samples from 103 patients. We identified a novel tumor suppressor PREX2, accounting for 22% of ESCCs with frequent somatic mutations or hyper-methylation, which promoted migration and invasion of ESCC cells in vitro. Analysis of the TME and quantification of subclonal expansion indicated that ESCCs undergo spatially directed evolution, where subclones mostly originated from the tumor center but had a biased clonal expansion to the upper direction of the esophagus. Interestingly, we found upper regions of ESCCs often underwent stronger immunoediting with increased selective fitness, suggesting more stringent immune selection. In addition, distinct TMEs were associated with variable genomic and clinical outcomes. Among them, hot TME was associated with high immune evasion and subclonal heterogeneity. We also found that immunoediting, instead of CD8+ T cell abundance, acts as an independent prognostic factor of ESCCs. Importantly, we found significant heterogeneity in previously considered potential therapeutic targets, as well as BRCAness characteristics in a subset of patients, emphasizing the importance of focusing on heterogeneity in ESCC targeted therapy. Collectively, these findings provide novel insights into the mechanisms of the spatial evolution of ESCC and inform precision therapeutic strategies.
Collapse
Affiliation(s)
- Yong Zhou
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Shanlan Mo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Heyang Cui
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ruifang Sun
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Weimin Zhang
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofei Zhuang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Enwei Xu
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Hongyi Li
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Yikun Cheng
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- College of Letters & Science, University of California Berkeley, Berkeley, CA 94704, USA
| | - Yongsheng Meng
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Meilin Liu
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Ting Yan
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Huijuan Liu
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Ling Zhang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Bin Yang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Shubin Wang
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - ShuaiCheng Li
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qimin Zhan
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Yongping Cui
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
9
|
Li M, Xiao J, Song S, Han F, Liu H, Lin Y, Ni Y, Zeng S, Zou X, Wu J, Wang F, Xu S, Liang Y, Xu P, Hong H, Qiu J, Cao J, Zhu Q, Liang L. PREX2 contributes to radiation resistance by inhibiting radiotherapy-induced tumor immunogenicity via cGAS/STING/IFNs pathway in colorectal cancer. BMC Med 2024; 22:154. [PMID: 38609982 PMCID: PMC11015576 DOI: 10.1186/s12916-024-03375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) lacks established biomarkers or molecular targets for predicting or enhancing radiation response. Phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 2 (PREX2) exhibits intricate implications in tumorigenesis and progression. Nevertheless, the precise role and underlying mechanisms of PREX2 in CRC radioresistance remain unclear. METHODS RNA-seq was employed to identify differentially expressed genes between radioresistant CRC cell lines and their parental counterparts. PREX2 expression was scrutinized using Western blotting, real-time PCR, and immunohistochemistry. The radioresistant role of PREX2 was assessed through in vitro colony formation assay, apoptosis assay, comet assay, and in vivo xenograft tumor models. The mechanism of PREX2 was elucidated using RNA-seq and Western blotting. Finally, a PREX2 small-molecule inhibitor, designated PREX-in1, was utilized to enhance the efficacy of ionizing radiation (IR) therapy in CRC mouse models. RESULTS PREX2 emerged as the most significantly upregulated gene in radioresistant CRC cells. It augmented the radioresistant capacity of CRC cells and demonstrated potential as a marker for predicting radioresistance efficacy. Mechanistically, PREX2 facilitated DNA repair by upregulating DNA-PKcs, suppressing radiation-induced immunogenic cell death, and impeding CD8+ T cell infiltration through the cGAS/STING/IFNs pathway. In vivo, the blockade of PREX2 heightened the efficacy of IR therapy. CONCLUSIONS PREX2 assumes a pivotal role in CRC radiation resistance by inhibiting the cGAS/STING/IFNs pathway, presenting itself as a potential radioresistant biomarker and therapeutic target for effectively overcoming radioresistance in CRC.
Collapse
Affiliation(s)
- Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China
| | - Jianbiao Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China
| | - Shasha Song
- Department of Pathology, Yantai Fushan People's Hospital, Yantai, 265500, Shandong, People's Republic of China
| | - Fangyi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hongling Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Yang Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Yunfei Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Sisi Zeng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China
| | - Xin Zou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Jieqiong Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Feifei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Shaowan Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - You Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Peishuang Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Huirong Hong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Jianing Cao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Qin Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
10
|
Tibarewal P, Spinelli L, Maccario H, Leslie NR. Proteomic and yeast 2-hybrid screens to identify PTEN binding partners. Adv Biol Regul 2024; 91:100989. [PMID: 37839992 DOI: 10.1016/j.jbior.2023.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
PTEN is a phosphoinositide lipid phosphatase and an important tumour suppressor protein. PTEN function is reduced or lost in around a third of all human cancers through diverse mechanisms, from gene deletion to changes in the function of proteins which regulate PTEN through direct protein binding. Here we present data from SILAC (Stable Isotope Labelling by Amino acids in Cell culture) proteomic screens to identify proteins which bind to PTEN. These experiments using untransformed epithelial cells and glioma cells identified several novel candidate proteins in addition to many previously identified PTEN binding partners and many proteins which are recognised as common false positives using these methods. From subsequent co-expression pull-down experiments we provide further evidence supporting the physical interaction of PTEN with MMP1, Myosin 18A and SHROOM3. We also performed yeast two-hybrid screens which identify the previously recognised PTEN binding partner MSP58 in addition to the nuclear import export receptor TNPO3. These experiments identify several novel candidate binding partners of PTEN and provide further data addressing the set of proteins that interact with this important tumour suppressor.
Collapse
Affiliation(s)
- Priyanka Tibarewal
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, UK; School of Life Sciences, University of Dundee, Dundee, UK; UCL Cancer Centre, University College London, London, UK
| | - Laura Spinelli
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, UK; School of Life Sciences, University of Dundee, Dundee, UK
| | - Helene Maccario
- School of Life Sciences, University of Dundee, Dundee, UK; Aix-Marseille University, Marseille, UK
| | - Nick R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, UK.
| |
Collapse
|
11
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
12
|
Elshafei A, Al-Toubat M, Feibus AH, Koul K, Jazayeri SB, Lelani N, Henry V, Balaji KC. Genetic mutations in smoking-associated prostate cancer. Prostate 2023; 83:1229-1237. [PMID: 37455402 DOI: 10.1002/pros.24554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/04/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES Tobacco smoking is known to cause cancers potentially predisposed by genetic risks. We compared the frequency of gene mutations using a next generation sequencing database of smokers and nonsmokers with prostate cancer (PCa) to identify subsets of patients with potential genetic risks. MATERIALS AND METHODS Data from the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (GENIE) registry was analyzed. The GENIE registry contains clinically annotated sequenced tumor samples. We included 1832 men with PCa in our cohort, categorized as smokers and nonsmokers, and compared the frequency of mutations (point mutations, copy number variations, and structural variants) of 47 genes with more than 5% mutation rate between the two categories and correlated with overall survival using logistic regression analysis. RESULTS Overall, 1007 (55%) patients were nonsmokers, and 825 (45%) were smokers. The mutation frequency was significantly higher in smokers compared to nonsmokers, 47.6% and 41.3%, respectively (p = 0.02). The median tumor mutational burden was also significantly higher in the samples from smokers (3.59 mut/MB) compared to nonsmokers (1.87 mut/MB) (p < 0.001). Patients with a smoking history had a significantly higher frequency of PREX2, PTEN, AGO2, KMT2C, and a lower frequency of adenomatous polyposis coli (APC) and KMT2A mutations than compared to nonsmokers. The overall mortality rate (28.5% vs. 22.8%) was significantly higher among smokers (p = 0.006). On a multivariate logistic regression analysis, the presence of metastatic disease at the time of diagnosis (OR: 2.26, 95% CI: 1.78-2.89, p < 0.001), smoking history (OR: 1.32, 95% CI: 1.05-1.65, p = 0.02), and higher frequency of PTEN somatic gene mutation (OR: 1.89, 95% CI: 1.46-2.45, p < 0.001) were independent predictors of increased overall mortality among patients with PCa. Patients with PTEN mutation had poorer overall survival compared to men without PTEN mutations: 96.00 (95% CI: 65.36-113.98) and 120.00 (95% CI: 115.05-160.00) months, respectively (p < 0.001) irrespective of smoking history although the G129R PTEN mutation was characteristically detected in smokers. CONCLUSIONS PCa patients with a tobacco smoking history demonstrated a significantly higher frequency of somatic genetic mutations. Whereas mutations of PREX2, KMT2C, AGO2, and PTEN genes were higher in smokers, the APC and KMT2A mutations were higher in nonsmokers. The PTEN somatic gene mutation was associated with increased overall mortality among patients with PCa irrespective of smoking history. We found that G129R PTEN mutation known to reduce the PTEN phosphatase activity and K267Rfs*9 a frameshift deletion mutation in the C2 domain of PTEN associated with membrane binding exclusively detected in smokers and nonsmokers, respectively. These findings may be used to further our understanding of PCa associated with smoking.
Collapse
Affiliation(s)
- Ahmed Elshafei
- Department of Urology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Mohammed Al-Toubat
- Department of Urology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Allison H Feibus
- Department of Urology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Kashyap Koul
- Department of Urology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Seyed Behzad Jazayeri
- Department of Urology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Navid Lelani
- Department of Urology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Valencia Henry
- Department of Urology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - K C Balaji
- Department of Urology, University of Florida College of Medicine, Jacksonville, Florida, USA
| |
Collapse
|
13
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
14
|
Bommakanti K, Seist R, Kukutla P, Cetinbas M, Batts S, Sadreyev RI, Stemmer-Rachamimov A, Brenner GJ, Stankovic KM. Comparative Transcriptomic Analysis of Archival Human Vestibular Schwannoma Tissue from Patients with and without Tinnitus. J Clin Med 2023; 12:2642. [PMID: 37048724 PMCID: PMC10095534 DOI: 10.3390/jcm12072642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Vestibular schwannoma (VS) is an intracranial tumor that commonly presents with tinnitus and hearing loss. To uncover the molecular mechanisms underlying VS-associated tinnitus, we applied next-generation sequencing (Illumina HiSeq) to formalin-fixed paraffin-embedded archival VS samples from nine patients with tinnitus (VS-Tin) and seven patients without tinnitus (VS-NoTin). Bioinformatic analysis was used to detect differentially expressed genes (DEG; i.e., ≥two-fold change [FC]) while correcting for multiple comparisons. Using RNA-seq analysis, VS-Tin had significantly lower expression of GFAP (logFC = -3.04), APLNR (logFC = -2.95), PREX2 (logFC = -1.44), and PLVAP (logFC = -1.04; all p < 0.01) vs. VS-NoTin. These trends were validated by using real-time RT-qPCR. At the protein level, immunohistochemistry revealed a trend for less PREX2 and apelin expression and greater expression of NLRP3 inflammasome and CD68-positive macrophages in VS-Tin than in VS-NoTin, suggesting the activation of inflammatory processes in VS-Tin. Functional enrichment analysis revealed that the top three protein categories-glycoproteins, signal peptides, and secreted proteins-were significantly enriched in VS-Tin in comparison with VS-NoTin. In a gene set enrichment analysis, the top pathway was allograft rejection, an inflammatory pathway that includes the MMP9, CXCL9, IL16, PF4, ITK, and ACVR2A genes. Future studies are needed to examine the importance of these candidates and of inflammation in VS-associated tinnitus.
Collapse
Affiliation(s)
- Krishna Bommakanti
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Richard Seist
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Otorhinolaryngology–Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Phanidhar Kukutla
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shelley Batts
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Gary J. Brenner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Patil K, Kuttikrishnan S, Khan AQ, Ahmad F, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways. Semin Cancer Biol 2022; 86:382-399. [PMID: 34906723 DOI: 10.1016/j.semcancer.2021.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023]
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphoproliferative neoplasms that exhibit a wide spectrum of immune-phenotypical, clinical, and histopathological features. The biology of CTCL is complex and remains elusive. In recent years, the application of next-generation sequencing (NGS) has evolved our understanding of the pathogenetic mechanisms, including genetic aberrations and epigenetic abnormalities that shape the mutational landscape of CTCL and represent one of the important pro-tumorigenic principles in CTCL initiation and progression. Still, identification of the major pathophysiological pathways including genetic and epigenetic components that mediate malignant clonal T cell expansion has not been achieved. This is of prime importance given the role of malignant T cell clones in fostering T helper 2 (Th2)-bias tumor microenvironment and fueling progressive immune dysregulation and tumor cell growth in CTCL patients, manifested by the secretion of Th2-associated cytokines and chemokines. Alterations in malignant cytokine and chemokine expression patterns orchestrate the inflammatory milieu and influence the migration dynamics of malignant clonal T cells. Here, we highlight recent insights about the molecular mechanisms of CTCL pathogenesis, emphasizing the role of cytokines, chemokines, and associated downstream signaling networks in driving immune defects, malignant transformation, and disease progression. In-depth characterization of the CTCL immunophenotype and tumoral microenvironment offers a facile opportunity to expand the therapeutic armamentarium of CTCL, an intractable malignant skin disease with poor prognosis and in dire need of curative treatment approaches.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
16
|
Zhang Q, Wang Y. MiR-210-3p targets CELF2 to facilitate progression of lung squamous carcinoma through PI3K/AKT pathway. Med Oncol 2022; 39:161. [PMID: 35972577 DOI: 10.1007/s12032-022-01752-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
This study examined the internal mechanism of miR-210-3p/CELF2 in LUSC. Expression data of mRNAs and miRNAs in LUSC were acquired from TCGA and subjected to differential expression analysis. qRT-PCR was applied to examine miR-210-3p and CELF2 expression. Besides, western blot was utilized to evaluate protein expression of CELF2 and PI3K/AKT pathway-related proteins. Dual-luciferase reporter analysis was conducted to validate targeting relationship between miR-210-3p and CELF2. Additionally, CCK-8, colony formation, transwell and flow cytometry were employed to respectively test proliferation, migration, invasion abilities and cell cycle distribution. Xenograft tumor models were used to evaluate the influence of miR-210-3p and CELF2 on tumor growth. MiR-210-3p was highly expressed, while CELF2 was less expressed in LUSC cells. Besides, miR-210-3p could downregulate CELF2 expression. Cell functional assay verified that miR-210-3p accelerated aggressive behaviors of LUSC cells. Additionally, rescue assay suggested that miR-210-3p downregulated CELF2 level to stimulate LUSC cell phenotypes and cell cycle progression through PI3K/AKT pathway. Moreover, miR-210-3p/CELF2 stimulated the tumor growth in vivo. To sum up, miR-210-3p modulated CELF2 expression, thus affecting cell phenotypes and cell cycle distribution in LUSC through PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road 3, Hangzhou, 310016, China.
| | - Yunzhen Wang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road 3, Hangzhou, 310016, China
| |
Collapse
|
17
|
Structure of the metastatic factor P-Rex1 reveals a two-layered autoinhibitory mechanism. Nat Struct Mol Biol 2022; 29:767-773. [PMID: 35864164 PMCID: PMC9371973 DOI: 10.1038/s41594-022-00804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022]
Abstract
P-Rex (PI(3,4,5)P3-dependent Rac exchanger) guanine nucleotide exchange factors potently activate Rho GTPases. P-Rex guanine nucleotide exchange factors are autoinhibited, synergistically activated by Gβγ and PI(3,4,5)P3 binding and dysregulated in cancer. Here, we use X-ray crystallography, cryogenic electron microscopy and crosslinking mass spectrometry to determine the structural basis of human P-Rex1 autoinhibition. P-Rex1 has a bipartite structure of N- and C-terminal modules connected by a C-terminal four-helix bundle that binds the N-terminal Pleckstrin homology (PH) domain. In the N-terminal module, the Dbl homology (DH) domain catalytic surface is occluded by the compact arrangement of the DH-PH-DEP1 domains. Structural analysis reveals a remarkable conformational transition to release autoinhibition, requiring a 126° opening of the DH domain hinge helix. The off-axis position of Gβγ and PI(3,4,5)P3 binding sites further suggests a counter-rotation of the P-Rex1 halves by 90° facilitates PH domain uncoupling from the four-helix bundle, releasing the autoinhibited DH domain to drive Rho GTPase signaling. Cryo-EM, X-ray crystallography and crosslinking mass spectrometry are harnessed to solve the structure of the full-length Rho-GEF P-Rex1, uncovering a two-layered mechanism of autoinhibition released upon Gβγ and PI(3,4,5)P3 binding.
Collapse
|
18
|
Chai C, Wu HH, Abuetabh Y, Sergi C, Leng R. Regulation of the tumor suppressor PTEN in triple-negative breast cancer. Cancer Lett 2022; 527:41-48. [PMID: 34902523 DOI: 10.1016/j.canlet.2021.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BCa) in which estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) are not expressed. Although TNBC cases account for approximately 15% of all BCa cases, TNBC patients' prognosis is poor compared with that of other BCa subtypes. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays an important role in cell proliferation and migration by negatively regulating the PI3K/Akt pathway. PTEN is one of the most commonly inactivated tumor suppressors in BCa. PTEN inactivity is associated with larger tumor sizes, multiple lymph node metastases, and an aggressive triple-negative phenotype. This review primarily focuses on two key points: (1) PTEN and its function. (2) The regulation of tumor suppressor PTEN in TNBC. We provide a summary of genomic alterations of PTEN in BCa. We further discuss the transcriptional regulation of PTEN and how PTEN is regulated by posttranscription and posttranslational modification, as well as by protein interactions. Finally, we discuss the perspectives of the PTEN protein in TNBC.
Collapse
Affiliation(s)
- Chengsen Chai
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|
19
|
Imamura T, Okamura Y, Ohshima K, Uesaka K, Sugiura T, Ito T, Yamamoto Y, Ashida R, Ohgi K, Otsuka S, Ohnami S, Nagashima T, Hatakeyama K, Kakuda Y, Sugino T, Urakami K, Akiyama Y, Yamaguchi K. Hepatocellular carcinoma after a sustained virological response by direct-acting antivirals harbors TP53 inactivation. Cancer Med 2022; 11:1769-1786. [PMID: 35174643 PMCID: PMC9041076 DOI: 10.1002/cam4.4571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction The genomic characteristics of hepatocellular carcinoma (HCC) after a sustained virological response (SVR) and its differences according to whether an SVR was achieved by treatment with direct‐acting antivirals (DAA) or interferon (IFN) are still not fully understood. Methods Sixty‐nine surgically resected HCCs from patients with hepatitis C virus infection were analyzed by gene expression profiling and whole‐exome sequencing. Results Among the 69 HCC patients, 34 HCCs in which an SVR was not achieved at the time of surgery were classified as HCV‐positive, and 35 HCCs in which an SVR was achieved at the time of surgery were classified as HCV‐SVR. According to the HCV treatment, 35 HCV‐SVR HCCs were classified into two groups: eight tumors with DAA (HCV‐SVR‐DAA) and 24 tumors with interferon (HCV‐SVR‐IFN). The frequency of samples with ARID2 mutations was significantly lower in HCV‐SVR than in HCV‐positive tumors (p = 0.048). In contrast, the frequency of samples with PREX2 mutations was significantly higher in HCV‐SVR samples than in HCV‐positive samples (p = 0.048). Among the patients with HCV‐SVR, the frequency of samples with TP53 mutations was significantly higher in HCV‐SVR‐DAA tumors than in HCV‐SVR‐IFN tumors (p = 0.030). TP53 inactivation scores in HCV‐SVR‐DAA tumors were found to be significantly enhanced in comparison to HCV‐SVR‐IFN tumors (p = 0.022). In addition, chromosomal instability and PI3K/AKT/mTOR pathway signatures were enhanced in HCV‐SVR‐DAA tumors. HCV‐SVR‐DAA was significantly associated with portal vein invasion (p = 0.003) in comparison to HCV‐SVR‐IFN. Conclusion Our dataset potentially serves as a fundamental resource for the genomic characteristics of HCV‐SVR‐DAA tumors. Our comprehensive genetic profiling by WES revealed significant differences in the mutation rate of several driver genes between HCV‐positive tumors and HCV‐SVR tumors. Furthermore, it was revealed that the frequency of samples with mutations in TP53 was significantly higher in HCV‐SVR‐DAA tumors than in HCV‐SVR‐IFN tumors.
Collapse
Affiliation(s)
- Taisuke Imamura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yukiyasu Okamura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan.,Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takaaki Ito
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yusuke Yamamoto
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Ryo Ashida
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Katsuhisa Ohgi
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Shimpei Otsuka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,SRL, Inc., Tokyo, Japan
| | - Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuko Kakuda
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|
20
|
Lawson CD, Hornigold K, Pan D, Niewczas I, Andrews S, Clark J, Welch HCE. Small-molecule inhibitors of P-Rex guanine-nucleotide exchange factors. Small GTPases 2022; 13:307-326. [PMID: 36342857 PMCID: PMC9645260 DOI: 10.1080/21541248.2022.2131313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
P-Rex1 and P-Rex2 are guanine-nucleotide exchange factors (GEFs) that activate Rac small GTPases in response to the stimulation of G protein-coupled receptors and phosphoinositide 3-kinase. P-Rex Rac-GEFs regulate the morphology, adhesion and migration of various cell types, as well as reactive oxygen species production and cell cycle progression. P-Rex Rac-GEFs also have pathogenic roles in the initiation, progression or metastasis of several types of cancer. With one exception, all P-Rex functions are known or assumed to be mediated through their catalytic Rac-GEF activity. Thus, inhibitors of P-Rex Rac-GEF activity would be valuable research tools. We have generated a panel of small-molecule P-Rex inhibitors that target the interface between the catalytic DH domain of P-Rex Rac-GEFs and Rac. Our best-characterized compound, P-Rex inhibitor 1 (PREX-in1), blocks the Rac-GEF activity of full-length P-Rex1 and P-Rex2, and of their isolated catalytic domains, in vitro at low-micromolar concentration, without affecting the activities of several other Rho-GEFs. PREX-in1 blocks the P-Rex1 dependent spreading of PDGF-stimulated endothelial cells and the production of reactive oxygen species in fMLP-stimulated mouse neutrophils. Structure-function analysis revealed critical structural elements of PREX-in1, allowing us to develop derivatives with increased efficacy, the best with an IC50 of 2 µM. In summary, we have developed PREX-in1 and derivative small-molecule compounds that will be useful laboratory research tools for the study of P-Rex function. These compounds may also be a good starting point for the future development of more sophisticated drug-like inhibitors aimed at targeting P-Rex Rac-GEFs in cancer.
Collapse
Affiliation(s)
- CD Lawson
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - K Hornigold
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - D Pan
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - I Niewczas
- Biological Chemistry Facility, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - S Andrews
- Bioinformatics Facility, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - J Clark
- Biological Chemistry Facility, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - HCE Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK,CONTACT HCE Welch Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3ATUK
| |
Collapse
|
21
|
Mirzaei G, Petreaca RC. Distribution of copy number variations and rearrangement endpoints in human cancers with a review of literature. Mutat Res 2022; 824:111773. [PMID: 35091282 PMCID: PMC11301607 DOI: 10.1016/j.mrfmmm.2021.111773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Copy number variations (CNVs) which include deletions, duplications, inversions, translocations, and other forms of chromosomal re-arrangements are common to human cancers. In this report we investigated the pattern of these variations with the goal of understanding whether there exist specific cancer signatures. We used re-arrangement endpoint data deposited on the Catalogue of Somatic Mutations in Cancers (COSMIC) for our analysis. Indeed, we find that human cancers are characterized by specific patterns of chromosome rearrangements endpoints which in turn result in cancer specific CNVs. A review of the literature reveals tissue specific mutations which either drive these CNVs or appear as a consequence of CNVs because they confer an advantage to the cancer cell. We also identify several rearrangement endpoints hotspots that were not previously reported. Our analysis suggests that in addition to local chromosomal architecture, CNVs are driven by the internal cellular or nuclear physiology of each cancer tissue.
Collapse
Affiliation(s)
- Golrokh Mirzaei
- Department of Computer Science and Engineering, The Ohio State University at Marion, Marion, OH, 43302, USA
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University at Marion, Marion, OH, 43302, USA; Cancer Biology Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
22
|
Heimhalt M, Berndt A, Wagstaff J, Anandapadamanaban M, Perisic O, Maslen S, McLaughlin S, Yu CWH, Masson GR, Boland A, Ni X, Yamashita K, Murshudov GN, Skehel M, Freund SM, Williams RL. Bipartite binding and partial inhibition links DEPTOR and mTOR in a mutually antagonistic embrace. eLife 2021; 10:e68799. [PMID: 34519269 PMCID: PMC8439657 DOI: 10.7554/elife.68799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022] Open
Abstract
The mTORC1 kinase complex regulates cell growth, proliferation, and survival. Because mis-regulation of DEPTOR, an endogenous mTORC1 inhibitor, is associated with some cancers, we reconstituted mTORC1 with DEPTOR to understand its function. We find that DEPTOR is a unique partial mTORC1 inhibitor that may have evolved to preserve feedback inhibition of PI3K. Counterintuitively, mTORC1 activated by RHEB or oncogenic mutation is much more potently inhibited by DEPTOR. Although DEPTOR partially inhibits mTORC1, mTORC1 prevents this inhibition by phosphorylating DEPTOR, a mutual antagonism that requires no exogenous factors. Structural analyses of the mTORC1/DEPTOR complex showed DEPTOR's PDZ domain interacting with the mTOR FAT region, and the unstructured linker preceding the PDZ binding to the mTOR FRB domain. The linker and PDZ form the minimal inhibitory unit, but the N-terminal tandem DEP domains also significantly contribute to inhibition.
Collapse
Affiliation(s)
- Maren Heimhalt
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Alex Berndt
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Jane Wagstaff
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Olga Perisic
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Sarah Maslen
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | | | - Glenn R Masson
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Andreas Boland
- Department of Molecular Biology, University of GenevaGenevaSwitzerland
| | - Xiaodan Ni
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | | | - Mark Skehel
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | | |
Collapse
|
23
|
Lv L, Yi Q, Yan Y, Chao F, Li M. SPNS2 Downregulation Induces EMT and Promotes Colorectal Cancer Metastasis via Activating AKT Signaling Pathway. Front Oncol 2021; 11:682773. [PMID: 34249729 PMCID: PMC8264774 DOI: 10.3389/fonc.2021.682773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Spinster homologue 2 (SPNS2), a transporter of S1P (sphingosine-1-phosphate), has been reported to mediate immune response, vascular development, and pathologic processes of diseases such as cancer via S1P signaling pathways. However, its biological functions and expression profile in colorectal cancer (CRC) is elusive. In this study, we disclosed that SPNS2 expression, which was regulated by copy number variation and DNA methylation of its promoter, was dramatically upregulated in colon adenoma and CRC compared to normal tissues. However, its expression was lower in CRC than in colon adenoma, and low expression of SPN2 correlated with advanced T/M/N stage and poor prognosis in CRC. Ectopic expression of SPNS2 inhibited cell proliferation, migration, epithelial–mesenchymal transition (EMT), invasion, and metastasis in CRC cell lines, while silencing SPNS2 had the opposite effects. Meanwhile, measuring the intracellular and extracellular level of S1P after overexpression of SPNS2 pinpointed a S1P-independent model of SPNS2. Mechanically, SPNS2 led to PTEN upregulation and inactivation of Akt. Moreover, AKT inhibitor (MK2206) abrogated SPNS2 knockdown-induced promoting effects on the migration and invasion, while AKT activator (SC79) reversed the repression of migration and invasion by SPNS2 overexpression in CRC cells, confirming the pivotal role of AKT for SPNS2’s function. Collectively, our study demonstrated the suppressor role of SPNS2 during CRC metastasis, providing new insights into the pathology and molecular mechanisms of CRC progression.
Collapse
Affiliation(s)
- Lei Lv
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ying Yan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
24
|
Li X, Mao W, Chen J, Goding CR, Cui R, Xu ZX, Miao X. The protective role of MC1R in chromosome stability and centromeric integrity in melanocytes. Cell Death Discov 2021; 7:111. [PMID: 34001865 PMCID: PMC8128912 DOI: 10.1038/s41420-021-00499-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022] Open
Abstract
Variants in the melanocortin-1 receptor (MC1R) gene, encoding a trimeric G-protein-coupled receptor and activated by α-melanocyte-stimulating hormone (α-MSH), are frequently associated with red or blonde hair, fair skin, freckling, and skin sensitivity to ultraviolet (UV) light. Several red hair color variants of MC1R are also associated with increased melanoma risk. MC1R variants affect melanoma risk independent of phenotype. Here, we demonstrated that MC1R is a critical factor in chromosome stability and centromere integrity in melanocytes. α-MSH/MC1R stimulation prevents melanocytes from UV radiation-induced damage of chromosome stability and centromere integrity. Mechanistic studies indicated that α-MSH/MC1R-controlled chromosome stability and centromeric integrity are mediated by microphthalmia-associated transcription factor (Mitf), a transcript factor needed for the α-MSH/MC1R signaling and a regulator in melanocyte development, viability, and pigment production. Mitf directly interacts with centromere proteins A in melanocytes. Given the connection among MC1R variants, red hair/fair skin phenotype, and melanoma development, these studies will help answer a question with clinical relevance “why red-haired individuals are so prone to developing melanoma”, and will lead to the identification of novel preventive and therapeutic strategies for melanomas, especially those with redheads.
Collapse
Affiliation(s)
- Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Weiwei Mao
- Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Jie Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Colin R Goding
- Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Rutao Cui
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China.
| | - Xiao Miao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China. .,Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, 201203, Shanghai, China.
| |
Collapse
|
25
|
D'Andrea L, Lucato CM, Marquez EA, Chang YG, Civciristov S, Mastos C, Lupton CJ, Huang C, Elmlund H, Schittenhelm RB, Mitchell CA, Whisstock JC, Halls ML, Ellisdon AM. Structural analysis of the PTEN:P-Rex2 signaling complex reveals how cancer-associated mutations coordinate to hyperactivate Rac1. Sci Signal 2021; 14:14/681/eabc4078. [PMID: 33947796 DOI: 10.1126/scisignal.abc4078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dual-specificity phosphatase PTEN functions as a tumor suppressor by hydrolyzing PI(3,4,5)P3 to PI(4,5)P2 to inhibit PI3K-AKT signaling and cellular proliferation. P-Rex2 is a guanine nucleotide exchange factor for Rho GTPases and can be activated by Gβγ subunits downstream of G protein-coupled receptor signaling and by PI(3,4,5)P3 downstream of receptor tyrosine kinases. The PTEN:P-Rex2 complex is a commonly mutated signaling node in metastatic cancer. Assembly of the PTEN:P-Rex2 complex inhibits the activity of both proteins, and its dysregulation can drive PI3K-AKT signaling and cellular proliferation. Here, using cross-linking mass spectrometry and functional studies, we gained mechanistic insights into PTEN:P-Rex2 complex assembly and coinhibition. We found that PTEN was anchored to P-Rex2 by interactions between the PDZ-interacting motif in the PTEN C-terminal tail and the second PDZ domain of P-Rex2. This interaction bridged PTEN across the P-Rex2 surface, preventing PI(3,4,5)P3 hydrolysis. Conversely, PTEN both allosterically promoted an autoinhibited conformation of P-Rex2 and blocked its binding to Gβγ. In addition, we observed that the PTEN-deactivating mutations and P-Rex2 truncations combined to drive Rac1 activation to a greater extent than did either single variant alone. These insights enabled us to propose a class of gain-of-function, cancer-associated mutations within the PTEN:P-Rex2 interface that uncouple PTEN from the inhibition of Rac1 signaling.
Collapse
Affiliation(s)
- Laura D'Andrea
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Christina M Lucato
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Elsa A Marquez
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Yong-Gang Chang
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 Victoria, Australia
| | - Chantel Mastos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 Victoria, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Cheng Huang
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.,Monash Proteomics & Metabolomics Facility, Monash University, Clayton, 3800 Victoria, Australia
| | - Hans Elmlund
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Ralf B Schittenhelm
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.,Monash Proteomics & Metabolomics Facility, Monash University, Clayton, 3800 Victoria, Australia
| | - Christina A Mitchell
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, 3800 Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 Victoria, Australia.
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.
| |
Collapse
|
26
|
Zhao Y, Peng X, Baldwin H, Zhang C, Liu Z, Lu X. Anti-androgen therapy induces transcriptomic reprogramming in metastatic castration-resistant prostate cancer in a murine model. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166151. [PMID: 33892077 DOI: 10.1016/j.bbadis.2021.166151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Despite recent development of next-generation androgen receptor (AR) antagonists, metastatic castration-resistant prostate cancer (CRPC) remains incurable and requires deeper understanding through studies in suitable animal models. Prostate-specific deletion of Pten and Smad4 in mice recapitulated the disease progression of human prostate adenocarcinoma, including metastasis to lymph nodes and lung. Moreover, Pten/Smad4 tumors fostered an immunosuppressive microenvironment dominated by myeloid-derived suppressor cells (MDSCs). However, the response of Pten/Smad4 tumors to androgen deprivation and anti-androgen therapies has not been described. Here, we report that the combination of surgical castration and enzalutamide treatment in Pten/Smad4 mice slowed down the tumor growth and prolonged the median survival of the mice for 8 weeks. Treatment-naïve and castration-resistant primary tumors exhibited comparable levels of immune infiltrations with the exception of reduced monocytic MDSCs in CRPC. RNA profiling of treatment-naïve and castration-resistant primary tumors revealed largely preserved transcriptome with modest expressional alterations of collagen-related and immune-related genes, among which CC chemokine receptor type 2 (Ccr2) downregulation and predicted negative activation in CRPC was consistent with reduced monocytic MDSC infiltration. Importantly, significant transcriptomic reprograming was observed in lung metastatic CRPC compared with primary CRPC and enriched for immune-related and coagulation-related pathways. At the individual gene level, we validated the expression changes of some of the most upregulated (Cd36, Bmp5, Bmp6, Etv5, Prex2, Ptprb, Egfl6, Itga8 and Cxcl12) and downregulated genes (Cxcl9 and Adamts5). Together, this study uncovers the inherent activity of Pten/Smad4 tumors to progress to CRPC and highlights potentially targetable transcriptomic signatures associated with CRPC metastasis.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai 200092, China; Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiaoxia Peng
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hope Baldwin
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Zhongmin Liu
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai 200092, China.
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
27
|
Machin PA, Tsonou E, Hornigold DC, Welch HCE. Rho Family GTPases and Rho GEFs in Glucose Homeostasis. Cells 2021; 10:cells10040915. [PMID: 33923452 PMCID: PMC8074089 DOI: 10.3390/cells10040915] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4 were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX were found to control the glucose-stimulated release of insulin by pancreatic β cells. In vivo studies demonstrated the involvement of the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs either contributing to the development of metabolic syndrome or protecting from it. This research is in its infancy. Considering that over 80 Rho GEFs exist, it is likely that future research will identify more roles for Rho GEFs in glucose homeostasis.
Collapse
Affiliation(s)
- Polly A. Machin
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
| | - Elpida Tsonou
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - David C. Hornigold
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - Heidi C. E. Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Correspondence: ; Tel.: +44-(0)1223-496-596
| |
Collapse
|
28
|
Elefanti L, Zamuner C, Del Fiore P, Stagni C, Pellegrini S, Dall’Olmo L, Fabozzi A, Senetta R, Ribero S, Salmaso R, Mocellin S, Bassetto F, Cavallin F, Tosi AL, Galuppini F, Dei Tos AP, Menin C, Cappellesso R. The Molecular Landscape of Primary Acral Melanoma: A Multicenter Study of the Italian Melanoma Intergroup (IMI). Int J Mol Sci 2021; 22:3826. [PMID: 33917086 PMCID: PMC8067752 DOI: 10.3390/ijms22083826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Acral melanoma (AM) is a rare and aggressive subtype of melanoma affecting the palms, soles, and nail apparatus with similar incidence among different ethnicities. AM is unrelated to ultraviolet radiation and has a low mutation burden but frequent chromosomal rearrangements and gene amplifications. Next generation sequencing of 33 genes and somatic copy number variation (CNV) analysis with genome-wide single nucleotide polymorphism arrays were performed in order to molecularly characterize 48 primary AMs of Italian patients in association with clinicopathological and prognostic features. BRAF was the most commonly mutated gene, followed by NRAS and TP53, whereas TERT promoter, KIT, and ARID1A were less frequently mutated. Gains and losses were recurrently found in the 1q, 6p, 7, 8q, 20 and 22 chromosomes involving PREX2, RAC1, KMT2C, BRAF, CCND1, TERT, and AKT3 genes, and in the 6q, 9, 10, 11q and 16q chromosomes including CDKN2A, PTEN, and ADAMTS18 genes, respectively. This study confirmed the variety of gene mutations and the high load of CNV in primary AM. Some genomic alterations were associated with histologic prognostic features. BRAF mutations, found with a higher rate than previously reported, correlated with a low Breslow thickness, low mitotic count, low CNV of the AMs, and with early-stage of disease.
Collapse
Affiliation(s)
- Lisa Elefanti
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (L.E.); (S.P.)
| | - Carolina Zamuner
- Anatomy and Histology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (P.D.F.); (L.D.); (S.M.)
| | - Camilla Stagni
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy;
| | - Stefania Pellegrini
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (L.E.); (S.P.)
| | - Luigi Dall’Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (P.D.F.); (L.D.); (S.M.)
| | - Alessio Fabozzi
- Oncology Unit 3, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Rebecca Senetta
- Pathology Unit, Department of Oncology, University of Turin, 10124 Turin, Italy;
| | - Simone Ribero
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Roberto Salmaso
- Pathological Anatomy Unit, Padua University Hospital, 35128 Padua, Italy; (R.S.); (A.P.D.T.); (R.C.)
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (P.D.F.); (L.D.); (S.M.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy
| | - Franco Bassetto
- Plastic Surgery Unit, Padua University Hospital, 35128 Padua, Italy;
- Department of Neurosciences (DNS), University of Padua, 35128 Padua, Italy
| | | | - Anna Lisa Tosi
- Pathological Anatomy Unit, AULSS5, Santa Maria della Misericordia Hospital, 45100 Rovigo, Italy;
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy;
| | - Angelo Paolo Dei Tos
- Pathological Anatomy Unit, Padua University Hospital, 35128 Padua, Italy; (R.S.); (A.P.D.T.); (R.C.)
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy;
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (L.E.); (S.P.)
| | - Rocco Cappellesso
- Pathological Anatomy Unit, Padua University Hospital, 35128 Padua, Italy; (R.S.); (A.P.D.T.); (R.C.)
| |
Collapse
|
29
|
Nguyen Huu T, Park J, Zhang Y, Park I, Yoon HJ, Woo HA, Lee SR. Redox Regulation of PTEN by Peroxiredoxins. Antioxidants (Basel) 2021; 10:antiox10020302. [PMID: 33669370 PMCID: PMC7920247 DOI: 10.3390/antiox10020302] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is known as a tumor suppressor gene that is frequently mutated in numerous human cancers and inherited syndromes. PTEN functions as a negative regulator of PI3K/Akt signaling pathway by dephosphorylating phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3) to phosphatidylinositol (4, 5)-bisphosphate (PIP2), which leads to the inhibition of cell growth, proliferation, cell survival, and protein synthesis. PTEN contains a cysteine residue in the active site that can be oxidized by peroxides, forming an intramolecular disulfide bond between Cys124 and Cys71. Redox regulation of PTEN by reactive oxygen species (ROS) plays a crucial role in cellular signaling. Peroxiredoxins (Prxs) are a superfamily of peroxidase that catalyzes reduction of peroxides and maintains redox homeostasis. Mammalian Prxs have 6 isoforms (I-VI) and can scavenge cellular peroxides. It has been demonstrated that Prx I can preserve and promote the tumor-suppressive function of PTEN by preventing oxidation of PTEN under benign oxidative stress via direct interaction. Also, Prx II-deficient cells increased PTEN oxidation and insulin sensitivity. Furthermore, Prx III has been shown to protect PTEN from oxidation induced by 15s-HpETE and 12s-HpETE, these are potent inflammatory and pro-oxidant mediators. Understanding the tight connection between PTEN and Prxs is important for providing novel therapies. Herein, we summarized recent studies focusing on the relationship of Prxs and the redox regulation of PTEN.
Collapse
Affiliation(s)
- Thang Nguyen Huu
- Department of Biochemistry, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (T.N.H.); (I.P.); (H.J.Y.)
- Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea;
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China;
| | - Iha Park
- Department of Biochemistry, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (T.N.H.); (I.P.); (H.J.Y.)
- Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea
| | - Hyun Joong Yoon
- Department of Biochemistry, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (T.N.H.); (I.P.); (H.J.Y.)
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea;
- Correspondence: (H.A.W.); (S.-R.L.); Tel.: +82-2-3277-4654 (H.A.W.); +82-61-379-2775 (S.-R.L.); Fax: +82-2-3277-3760 (H.A.W.); +82-61-379-2782 (S.-R.L.)
| | - Seung-Rock Lee
- Department of Biochemistry, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (T.N.H.); (I.P.); (H.J.Y.)
- Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea
- Correspondence: (H.A.W.); (S.-R.L.); Tel.: +82-2-3277-4654 (H.A.W.); +82-61-379-2775 (S.-R.L.); Fax: +82-2-3277-3760 (H.A.W.); +82-61-379-2782 (S.-R.L.)
| |
Collapse
|
30
|
Tian M, Jiang X, Li X, Yang J, Zhang C, Zhang W. LKB1IP promotes pathological cardiac hypertrophy by targeting PTEN/Akt signalling pathway. J Cell Mol Med 2021; 25:2517-2529. [PMID: 33486894 PMCID: PMC7933949 DOI: 10.1111/jcmm.16199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide. Liver kinase B1 interacting protein 1 (LKB1IP) was identified as the binding protein of tumour suppressor LKB1. However, the role of LKB1IP in the development of pathological cardiac hypertrophy has not been explored. The aim of this study was to investigate the function of LKB1IP in cardiac hypertrophy in response to hypertrophic stimuli. We investigated the cardiac level of LKB1IP in samples from patients with heart failure and mice with cardiac hypertrophy induced by isoproterenol (ISO) or transverse aortic constriction (TAC). LKB1IP knockout mice were generated and challenged with ISO injection or TAC surgery. Cardiac function, hypertrophy and fibrosis were then examined. LKB1IP expression was significantly up‐regulated on hypertrophic stimuli in both human and mouse cardiac samples. LKB1IP knockout markedly protected mouse hearts against ISO‐ or TAC‐induced cardiac hypertrophy and fibrosis. LKB1IP overexpression aggravated ISO‐induced cardiomyocyte hypertrophy, and its inhibition attenuated hypertrophy in vitro. Mechanistically, LKB1IP activated Akt signalling by directly targeting PTEN and then inhibiting its phosphatase activity. In conclusion, LKB1IP may be a potential target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Mi Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuxin Jiang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyun Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
31
|
Srijakotre N, Liu HJ, Nobis M, Man J, Yip HYK, Papa A, Abud HE, Anderson KI, Welch HCE, Tiganis T, Timpson P, McLean CA, Ooms LM, Mitchell CA. PtdIns(3,4,5)P 3-dependent Rac exchanger 1 (P-Rex1) promotes mammary tumor initiation and metastasis. Proc Natl Acad Sci U S A 2020; 117:28056-28067. [PMID: 33097662 PMCID: PMC7668035 DOI: 10.1073/pnas.2006445117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Rac-GEF, P-Rex1, activates Rac1 signaling downstream of G protein-coupled receptors and PI3K. Increased P-Rex1 expression promotes melanoma progression; however, its role in breast cancer is complex, with differing reports of the effect of its expression on disease outcome. To address this we analyzed human databases, undertook gene array expression analysis, and generated unique murine models of P-Rex1 gain or loss of function. Analysis of PREX1 mRNA expression in breast cancer cDNA arrays and a METABRIC cohort revealed that higher PREX1 mRNA in ER+ve/luminal tumors was associated with poor outcome in luminal B cancers. Prex1 deletion in MMTV-neu or MMTV-PyMT mice reduced Rac1 activation in vivo and improved survival. High level MMTV-driven transgenic PREX1 expression resulted in apicobasal polarity defects and increased mammary epithelial cell proliferation associated with hyperplasia and development of de novo mammary tumors. MMTV-PREX1 expression in MMTV-neu mice increased tumor initiation and enhanced metastasis in vivo, but had no effect on primary tumor growth. Pharmacological inhibition of Rac1 or MEK1/2 reduced P-Rex1-driven tumoroid formation and cell invasion. Therefore, P-Rex1 can act as an oncogene and cooperate with HER2/neu to enhance breast cancer initiation and metastasis, despite having no effect on primary tumor growth.
Collapse
Affiliation(s)
- Nuthasuda Srijakotre
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Heng-Jia Liu
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Max Nobis
- Garvan Institute of Medical Research, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Darlinghurst, NSW 2010, Australia
| | - Joey Man
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Hon Yan Kelvin Yip
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Helen E Abud
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kurt I Anderson
- Tumour Cell Migration, Cancer Research UK Beatson Institute, G611BD Glasgow, United Kingdom
- Crick Advanced Light Microscopy, Francis Crick Institute, NW11AT London, United Kingdom
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, CB22 3AT Cambridge, United Kingdom
| | - Tony Tiganis
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Darlinghurst, NSW 2010, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3181, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
32
|
Xia Q, Ali S, Liu L, Li Y, Liu X, Zhang L, Dong L. Role of Ubiquitination in PTEN Cellular Homeostasis and Its Implications in GB Drug Resistance. Front Oncol 2020; 10:1569. [PMID: 32984016 PMCID: PMC7492558 DOI: 10.3389/fonc.2020.01569] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most common and aggressive brain malignancy, characterized by heterogeneity and drug resistance. PTEN, a crucial tumor suppressor, exhibits phosphatase-dependent (PI3K-AKT-mTOR pathway)/independent (nucleus stability) activities to maintain the homeostatic regulation of numerous physiological processes. Premature and absolute loss of PTEN activity usually tends to cellular senescence. However, monoallelic loss of PTEN is frequently observed at tumor inception, and absolute loss of PTEN activity also occurs at the late stage of gliomagenesis. Consequently, aberrant PTEN homeostasis, mainly regulated at the post-translational level, renders cells susceptible to tumorigenesis and drug resistance. Ubiquitination-mediated degradation or deregulated intracellular localization of PTEN hijacks cell growth rheostat control for neoplastic remodeling. Functional inactivation of PTEN mediated by the overexpression of ubiquitin ligases (E3s) renders GB cells adaptive to PTEN loss, which confers resistance to EGFR tyrosine kinase inhibitors and immunotherapies. In this review, we discuss how glioma cells develop oncogenic addiction to the E3s-PTEN axis, promoting their growth and proliferation. Antitumor strategies involving PTEN-targeting E3 ligase inhibitors can restore the tumor-suppressive environment. E3 inhibitors collectively reactivate PTEN and may represent next-generation treatment against deadly malignancies such as GB.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
33
|
Zhang Q, Cao C, Gong W, Bao K, Wang Q, Wang Y, Bi L, Ma S, Zhao J, Liu L, Tian S, Zhang K, Yang J, Yao Z, Song N, Shi L. A feedforward circuit shaped by ECT2 and USP7 contributes to breast carcinogenesis. Am J Cancer Res 2020; 10:10769-10790. [PMID: 32929379 PMCID: PMC7482815 DOI: 10.7150/thno.46878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: A number of guanine nucleotide exchange factors (GEFs) including epithelial cell transforming factor ECT2 are believed to drive carcinogenesis through activating distinct oncogenic GTPases. Yet, whether GEF-independent activity of ECT2 also plays a role in tumorigenesis remains unclear. Methods: Immunohistochemical (IHC) staining, colony formation and xenograft assays were used to examine the role of ECT2 in breast carcinogenesis. Co-immunoprecipitation, immunofluorescent stainings, in vivo deubiquitination and in vitro deubiquitination experiments were performed to examine the physical and functional interaction between ECT2 and ubiquitin-specific protease USP7. High-throughput RNA sequencing, quantitative reverse transcription-PCR and Western blotting were employed to investigate the biological significance of the interplay between ECT2 and USP7. Results: We report that ECT2 plays a tumor-promoting role in breast cancer, and GEF activity-deficient ECT2 is able to alleviate ECT2 depletion associated growth defects in breast cancer cells. Mechanistically, we demonstrated that ECT2 physically interacts with ubiquitin-specific protease USP7 and functionally facilitates USP7 intermolecular self-association, -deubiquitination and -stabilization in a GEF activity-independent manner. USP7 in turn, deubiquitinates and stabilizes ECT2, resulting in a feedforward regulatory circuit that ultimately sustains the expression of oncogenic protein MDM2. Conclusion: Our study uncovers a GEF-independent role of ECT2 in promoting survival of breast cancer cells, provides a molecular insight for the reciprocal regulation of ECT2 and USP7, and supports the pursuit of ECT2/USP7 as potential targets for breast cancer intervention.
Collapse
|
34
|
Yeung YT, Fan S, Lu B, Yin S, Yang S, Nie W, Wang M, Zhou L, Li T, Li X, Bode AM, Dong Z. CELF2 suppresses non-small cell lung carcinoma growth by inhibiting the PREX2-PTEN interaction. Carcinogenesis 2020; 41:377-389. [PMID: 31241130 DOI: 10.1093/carcin/bgz113] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/03/2019] [Accepted: 06/20/2019] [Indexed: 12/31/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3-K)/Akt signaling pathway is important in the regulation of cell proliferation through its production of phosphatidylinositol 3,4,5-triphosphate (PIP3). Activation of this pathway is frequently observed in human cancers, including non-small cell lung carcinoma. The PI3-K/Akt pathway is negatively regulated by the dual-specificity phosphatase and tensin homolog (PTEN) protein. PTEN acts as a direct antagonist of PI3-K by dephosphorylating PIP3. Studies have shown that PTEN phosphatase activity is inhibited by PREX2, a guanine nucleotide exchanger factor (GEF). Multiple studies revealed that CELF2, an RNA binding protein, cooperates synergistically with PTEN as a tumor suppressor in multiple cancers. However, the underlying mechanism as to how CELF2 enhances PTEN activity remains unclear. Here, we report that CELF2 interacts with PREX2 and reduces the association of PREX2 with PTEN. Consistent with this observation, PTEN phosphatase activity is upregulated with CELF2 overexpression. In addition, overexpression of CELF2 represses both Akt phosphorylation and cell proliferation only in the presence of PTEN. In an ex vivo study, CELF2 gene delivery could significantly inhibit patient-derived xenografts (PDX) tumor growth. To further investigate the clinical relevance of this finding, we analyzed 87 paired clinical lung adenocarcinoma samples and the results showed that CELF2 protein expression is downregulated in tumor tissues and associated with poor prognosis. The CELF2 gene is located on the chromosome 10p arm, a region frequently lost in human cancers, including breast invasive carcinoma, low-grade glioma and glioblastoma. Analysis of TCGA datasets showed that CELF2 expression is also associated with shorter patient survival time in all these cancers. Overall, our work suggests that CELF2 plays a novel role in PI3-K signaling by antagonizing the oncogenic effect of PREX2.
Collapse
Affiliation(s)
- Yiu To Yeung
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Suyu Fan
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Bingbing Lu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuying Yin
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Sen Yang
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Wenna Nie
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Meixian Wang
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Liting Zhou
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Tiepeng Li
- Department of Immunotherapy, The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of Cancer Chemoprevention of Henan, Zhengzhou, Henan, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zigang Dong
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,The Hormel Institute, University of Minnesota, Austin, MN, USA.,Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China.,Department of Immunotherapy, The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of Cancer Chemoprevention of Henan, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Ashrafizadeh M, Najafi M, Ang HL, Moghadam ER, Mahabady MK, Zabolian A, Jafaripour L, Bejandi AK, Hushmandi K, Saleki H, Zarrabi A, Kumar AP. PTEN, a Barrier for Proliferation and Metastasis of Gastric Cancer Cells: From Molecular Pathways to Targeting and Regulation. Biomedicines 2020; 8:E264. [PMID: 32756305 PMCID: PMC7460532 DOI: 10.3390/biomedicines8080264] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the life-threatening disorders that, in spite of excellent advances in medicine and technology, there is no effective cure for. Surgery, chemotherapy, and radiotherapy are extensively applied in cancer therapy, but their efficacy in eradication of cancer cells, suppressing metastasis, and improving overall survival of patients is low. This is due to uncontrolled proliferation of cancer cells and their high migratory ability. Finding molecular pathways involved in malignant behavior of cancer cells can pave the road to effective cancer therapy. In the present review, we focus on phosphatase and tensin homolog (PTEN) signaling as a tumor-suppressor molecular pathway in gastric cancer (GC). PTEN inhibits the PI3K/Akt pathway from interfering with the migration and growth of GC cells. Its activation leads to better survival of patients with GC. Different upstream mediators of PTEN in GC have been identified that can regulate PTEN in suppressing growth and invasion of GC cells, such as microRNAs, long non-coding RNAs, and circular RNAs. It seems that antitumor agents enhance the expression of PTEN in overcoming GC. This review focuses on aforementioned topics to provide a new insight into involvement of PTEN and its downstream and upstream mediators in GC. This will direct further studies for evaluation of novel signaling networks and their targeting for suppressing GC progression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 6461665145, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715988141, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful 3419759811, Iran;
| | - Atefe Kazemzade Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| |
Collapse
|
36
|
Vanni I, Tanda ET, Dalmasso B, Pastorino L, Andreotti V, Bruno W, Boutros A, Spagnolo F, Ghiorzo P. Non-BRAF Mutant Melanoma: Molecular Features and Therapeutical Implications. Front Mol Biosci 2020; 7:172. [PMID: 32850962 PMCID: PMC7396525 DOI: 10.3389/fmolb.2020.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive tumors of the skin, and its incidence is growing worldwide. Historically considered a drug resistant disease, since 2011 the therapeutic landscape of melanoma has radically changed. Indeed, the improved knowledge of the immune system and its interactions with the tumor, and the ever more thorough molecular characterization of the disease, has allowed the development of immunotherapy on the one hand, and molecular target therapies on the other. The increased availability of more performing technologies like Next-Generation Sequencing (NGS), and the availability of increasingly large genetic panels, allows the identification of several potential therapeutic targets. In light of this, numerous clinical and preclinical trials are ongoing, to identify new molecular targets. Here, we review the landscape of mutated non-BRAF skin melanoma, in light of recent data deriving from Whole-Exome Sequencing (WES) or Whole-Genome Sequencing (WGS) studies on melanoma cohorts for which information on the mutation rate of each gene was available, for a total of 10 NGS studies and 992 samples, focusing on available, or in experimentation, targeted therapies beyond those targeting mutated BRAF. Namely, we describe 33 established and candidate driver genes altered with frequency greater than 1.5%, and the current status of targeted therapy for each gene. Only 1.1% of the samples showed no coding mutations, whereas 30% showed at least one mutation in the RAS genes (mostly NRAS) and 70% showed mutations outside of the RAS genes, suggesting potential new roads for targeted therapy. Ongoing clinical trials are available for 33.3% of the most frequently altered genes.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | | | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
37
|
Posttranslational Regulation and Conformational Plasticity of PTEN. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036095. [PMID: 31932468 DOI: 10.1101/cshperspect.a036095] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor that is frequently down-modulated in human cancer. PTEN inhibits the phosphatidylinositol 3-phosphate kinase (PI3K)/AKT pathway through its lipid phosphatase activity. Multiple PI3K/AKT-independent actions of PTEN, protein-phosphatase activities and functions within the nucleus have also been described. PTEN, therefore, regulates many cellular processes including cell proliferation, survival, genomic integrity, polarity, migration, and invasion. Even a modest decrease in the functional dose of PTEN may promote cancer development. Understanding the molecular and cellular mechanisms that regulate PTEN protein levels and function, and how these may go awry in cancer contexts, is, therefore, key to fully understanding the role of PTEN in tumorigenesis. Here, we discuss current knowledge on posttranslational control and conformational plasticity of PTEN, as well as therapeutic possibilities toward reestablishment of PTEN tumor-suppressor activity in cancer.
Collapse
|
38
|
Vav2 pharmaco-mimetic mice reveal the therapeutic value and caveats of the catalytic inactivation of a Rho exchange factor. Oncogene 2020; 39:5098-5111. [PMID: 32528129 PMCID: PMC7610363 DOI: 10.1038/s41388-020-1353-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 11/20/2022]
Abstract
The current paradigm holds that the inhibition of Rho guanosine nucleotide exchange factors (GEFs), the enzymes that stimulate Rho GTPases, can be a valuable therapeutic strategy to treat Rho-dependent tumors. However, formal validation of this idea using in vivo models is still missing. In this context, it is worth remembering that many Rho GEFs can mediate both catalysis-dependent and independent responses, thus raising the possibility that the inhibition of their catalytic activities might not be sufficient per se to block tumorigenic processes. On the other hand, the inhibition of these enzymes can trigger collateral side effects that could preclude the practical implementation of anti-GEF therapies. To address those issues, we have generated mouse models to mimic the effect of the systemic application of an inhibitor for the catalytic activity of the Rho GEF Vav2 at the organismal level. Our results indicate that lowering the catalytic activity of Vav2 below specific thresholds is sufficient to block skin tumor initiation, promotion, and progression. They also reveal that the negative side effects typically induced by the loss of Vav2 can be bypassed depending on the overall level of Vav2 inhibition achieved in vivo. These data underscore the pros and cons of anti-Rho GEF therapies for cancer treatment. They also support the idea that Vav2 could represent a viable drug target.
Collapse
|
39
|
Hopkins BD, Goncalves MD, Cantley LC. Insulin-PI3K signalling: an evolutionarily insulated metabolic driver of cancer. Nat Rev Endocrinol 2020; 16:276-283. [PMID: 32127696 PMCID: PMC7286536 DOI: 10.1038/s41574-020-0329-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 12/17/2022]
Abstract
Cancer is driven by incremental changes that accumulate, eventually leading to oncogenic transformation. Although genetic alterations dominate the way cancer biologists think about oncogenesis, growing evidence suggests that systemic factors (for example, insulin, oestrogen and inflammatory cytokines) and their intracellular pathways activate oncogenic signals and contribute to targetable phenotypes. Systemic factors can have a critical role in both tumour initiation and therapeutic responses as increasingly targeted and personalized therapeutic regimens are used to treat patients with cancer. The endocrine system controls cell growth and metabolism by providing extracellular cues that integrate systemic nutrient status with cellular activities such as proliferation and survival via the production of metabolites and hormones such as insulin. When insulin binds to its receptor, it initiates a sequence of phosphorylation events that lead to activation of the catalytic activity of phosphoinositide 3-kinase (PI3K), a lipid kinase that coordinates the intake and utilization of glucose, and mTOR, a kinase downstream of PI3K that stimulates transcription and translation. When chronically activated, the PI3K pathway can drive malignant transformation. Here, we discuss the insulin-PI3K signalling cascade and emphasize its roles in normal cells (including coordinating cell metabolism and growth), highlighting the features of this network that make it ideal for co-option by cancer cells. Furthermore, we discuss how this signalling network can affect therapeutic responses and how novel metabolic-based strategies might enhance treatment efficacy for cancer.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Marcus D Goncalves
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
40
|
Humphries BA, Wang Z, Yang C. MicroRNA Regulation of the Small Rho GTPase Regulators-Complexities and Opportunities in Targeting Cancer Metastasis. Cancers (Basel) 2020; 12:E1092. [PMID: 32353968 PMCID: PMC7281527 DOI: 10.3390/cancers12051092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.
Collapse
Affiliation(s)
- Brock A. Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| |
Collapse
|
41
|
Zhang Y, Zheng Y, Zhu G. MiR-203a-3p targets PTEN to promote hepatocyte proliferation by regulating PI3K/Akt pathway in BRL-3A cells. Biosci Biotechnol Biochem 2019; 84:725-733. [PMID: 31814541 DOI: 10.1080/09168451.2019.1694860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study was designed to investigate the role of miR-203a-3p in hepatocyte proliferation. Data analysis showed that up-regulation of miR-203a-3p increased the cell viability and cell proliferation, and inhibited apoptosis. Further experiments demonstrated that PTEN was a target gene of miR-203a-3p, and miR-203a-3p targeted PTEN to regulate the above functions. Overexpression of PTEN partially reversed the inhibition of PTEN and the activation of p-Akt/Akt induced by miR-203a-3p mimic. Our study revealed that miR-203a-3p might activate PI3K/Akt signaling pathway by inhibiting PTEN expression, thereby promoting cell proliferation.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Pancreatic Vascular Surgery, Jingmen First People's Hospital, Jingmen City, China
| | - Yunping Zheng
- Department of Traumatic Hand and Foot Surgery, Jingmen First People's Hospital, Jingmen City, China
| | - Guanmei Zhu
- Department of Urology, Jingmen First People's Hospital, Jingmen City, China
| |
Collapse
|
42
|
Liao Z, Zheng Q, Wei T, Zhang Y, Ma J, Zhao Z, Sun H, Nan K. MicroRNA-561 Affects Proliferation and Cell Cycle Transition Through PTEN/AKT Signaling Pathway by Targeting P-REX2a in NSCLC. Oncol Res 2019; 28:147-159. [PMID: 31711559 PMCID: PMC7851535 DOI: 10.3727/096504019x15732109856009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in tumorigenesis and tumor progression. miR-561 has been reported to be downregulated in gastric cancer and affects cancer cell proliferation and metastasis. However, the role and underlying molecular mechanism of miR-561 in human non-small cell lung cancer (NSCLC) remain unknown and need to be further elucidated. In this study, we discovered that miR-561 expression was downregulated in human NSCLC tissues and cell lines. The overexpression of miR-561 inhibited NSCLC cell proliferation and cell cycle G1/S transition and induced apoptosis. The inhibition of miR-561 facilitated cell proliferation and G1/S transition and suppressed apoptosis. miR-561 expression was inversely correlated with P-REX2a expression in NSCLC tissues. P-REX2a was confirmed to be a direct target of miR-561 using a luciferase reporter assay. The overexpression of miR-561 decreased P-REX2a expression, and the suppression of miR-561 increased P-REX2a expression. Particularly, P-REX2a silencing recapitulated the cellular and molecular effects observed upon miR-561 overexpression, and P-REX2a overexpression counteracted the effects of miR-561 overexpression on NSCLC cells. Moreover, both exogenous expression of miR-561 and silencing of P-REX2a resulted in suppression of the PTEN/AKT signaling pathway. Our study demonstrates that miR-561 inhibits NSCLC cell proliferation and G1/S transition and induces apoptosis through suppression of the PTEN/AKT signaling pathway by targeting P-REX2a. These findings indicate that miR-561 plays a significant role in NSCLC progression and serves as a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- ZiJun Liao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an, Shaanxi ProvinceP.R. China
| | - Qi Zheng
- First Department of Medical Oncology, Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong UniversityShaanxi ProvinceP.R. China
| | - Ting Wei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an, Shaanxi ProvinceP.R. China
| | - YanBing Zhang
- First Department of Medical Oncology, Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong UniversityShaanxi ProvinceP.R. China
| | - JieQun Ma
- First Department of Medical Oncology, Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong UniversityShaanxi ProvinceP.R. China
| | - Zheng Zhao
- Third Department of Medical Oncology, Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong UniversityShaanxi ProvinceP.R. China
| | - HaiFeng Sun
- Third Department of Medical Oncology, Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong UniversityShaanxi ProvinceP.R. China
| | - KeJun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an, Shaanxi ProvinceP.R. China
| |
Collapse
|
43
|
Salvatore L, Calegari MA, Loupakis F, Fassan M, Di Stefano B, Bensi M, Bria E, Tortora G. PTEN in Colorectal Cancer: Shedding Light on Its Role as Predictor and Target. Cancers (Basel) 2019; 11:1765. [PMID: 31717544 PMCID: PMC6896095 DOI: 10.3390/cancers11111765] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular assessment of colorectal cancer (CRC) is receiving growing attention, beyond RAS and BRAF, because of its influence on prognosis and prediction in cancer treatment. PTEN (phosphatase and tensin homologue), a tumor suppressor, regulating cell division and apoptosis, has been explored, and significant evidence suggests a role in cetuximab and panitumumab resistance linked to the epidermal growth factor receptor (EGFR) signal transduction pathway. Factors influencing PTEN activity should be analyzed to develop strategies to maximize the tumor suppressor role and to improve tumor response to cancer treatment. Therefore, an in-depth knowledge of the PI3K-Akt pathway-one of the major cancer survival pathways-and the role of PTEN-a major brake of this pathway-is essential in the era of precision medicine. The purpose of this literature review is to summarize the role of PTEN as a predictive factor and possible therapeutic target in CRC, focusing on ongoing studies and the possible implications in clinical practice.
Collapse
Affiliation(s)
- Lisa Salvatore
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Alessandra Calegari
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fotios Loupakis
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV – IRCCS, 35128 Padua, Italy;
| | - Matteo Fassan
- Unit of Surgical Pathology, Department of Medicine, University of Padua, 35122 Padua, Italy
| | - Brunella Di Stefano
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Bensi
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
44
|
Cash JN, Urata S, Li S, Ravala SK, Avramova LV, Shost MD, Gutkind JS, Tesmer JJG, Cianfrocco MA. Cryo-electron microscopy structure and analysis of the P-Rex1-Gβγ signaling scaffold. SCIENCE ADVANCES 2019; 5:eaax8855. [PMID: 31663027 PMCID: PMC6795519 DOI: 10.1126/sciadv.aax8855] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/22/2019] [Indexed: 05/29/2023]
Abstract
PIP3-dependent Rac exchanger 1 (P-Rex1) is activated downstream of G protein-coupled receptors to promote neutrophil migration and metastasis. The structure of more than half of the enzyme and its regulatory G protein binding site are unknown. Our 3.2 Å cryo-EM structure of the P-Rex1-Gβγ complex reveals that the carboxyl-terminal half of P-Rex1 adopts a complex fold most similar to those of Legionella phosphoinositide phosphatases. Although catalytically inert, the domain coalesces with a DEP domain and two PDZ domains to form an extensive docking site for Gβγ. Hydrogen-deuterium exchange mass spectrometry suggests that Gβγ binding induces allosteric changes in P-Rex1, but functional assays indicate that membrane localization is also required for full activation. Thus, a multidomain assembly is key to the regulation of P-Rex1 by Gβγ and the formation of a membrane-localized scaffold optimized for recruitment of other signaling proteins such as PKA and PTEN.
Collapse
Affiliation(s)
- Jennifer N. Cash
- Department of Biological Chemistry & Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Urata
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Sandeep K. Ravala
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Larisa V. Avramova
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Michael D. Shost
- Department of Biological Chemistry & Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - J. Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Michael A. Cianfrocco
- Department of Biological Chemistry & Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Zhong Y, Zhang J, Zhou Y, Mao F, Lin Y, Xu Y, Guan J, Shen S, Pan B, Wang C, Peng L, Huang X, Li Y, Cao X, Sun Q. Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1) is a Novel Predictor of Prognosis for Breast Cancer Patients: A Retrospective Case Series. Med Sci Monit 2019; 25:6554-6562. [PMID: 31473760 PMCID: PMC6738004 DOI: 10.12659/msm.915845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background In previous studies, higher expression of PREX1 (PtdIns (3,4,5)P3-dependent Rac exchanger 1) has been detected in some subsets of breast cancer, and activation of PREX1 has been associated with tumor progression in vivo. However, an association between PREX1 and breast cancer prognosis has not been examined. Material/Methods In this study, we investigated the expression and correlation of PREX1 with important clinical factors and prognosis of patients with breast cancer. Immunohistochemical staining was performed for 121 tumor tissue specimens obtained from primary breast cancer lesions. Results We found that 55 tissues exhibited positive staining for PREX1. Moreover, tumors positive for PREX1 were found to have significant association with recurrence rate (P=0.000) and metastasis rate (P=0.001). Univariate and multivariate regression analyses also identified PREX1 expression as an independent variable of disease-free survival. Our analyses indicate that high levels of PREX1 expression were related to longer disease-free survival in patients with breast cancer (P=0.013). Conclusions PREX1 is a favorable variable of prognosis for breast cancer patients, these study results need to be confirmed in larger research studies.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Jing Zhang
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yidong Zhou
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Feng Mao
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yan Lin
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yali Xu
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Jinghong Guan
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Songjie Shen
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Bo Pan
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Changjun Wang
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Li Peng
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Xin Huang
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yan Li
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Xi Cao
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Qiang Sun
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| |
Collapse
|
46
|
Huang JW, Chen CJ, Yen CH, Chen YMA, Liu YP. Loss of Glycine N-Methyltransferase Associates with Angiopoietin-Like Protein 8 Expression in High Fat-Diet-Fed Mice. Int J Mol Sci 2019; 20:ijms20174223. [PMID: 31470507 PMCID: PMC6747252 DOI: 10.3390/ijms20174223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022] Open
Abstract
Imbalance of lipid metabolism is a main cause of metabolic syndrome leading to life-threatening metabolic diseases. Angiopoietin-like protein 8 (Angptl8) was recently identified as a liver and adipose tissue-released hormone that is one of the molecules involved in triglyceride metabolism. However, the regulatory mechanism of Angptl8 is largely unknown. A high fat diet (HFD)-fed mouse model, which showed high cholesterol, high triglyceride, and high insulin in the blood, revealed the upregulation of hepatic and plasma Angptl8 and the downregulation of hepatic glycine N-methyltransferase (GNMT). The inverse correlation of hepatic Angptl8 and GNMT expression in the livers of HFD-fed mice was also confirmed in a publicly available microarray dataset. The mechanistic study using primary hepatocytes showed that the Angptl8 expression could be induced by insulin treatment in a dose- and time-dependent manner. Inhibition of PI3K/Akt pathway by the specific inhibitors or the dominant-negative Akt blocked the insulin-induced Angptl8 expression. Moreover, knockout of GNMT promoted the Akt activation as well as the Angptl8 expression. These results suggested that GNMT might be involved in insulin-induced Angptl8 expression in HFD-mediated metabolic syndrome.
Collapse
Affiliation(s)
- Jian-Wei Huang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chao-Ju Chen
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ming Arthur Chen
- Master Program of Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Peng Liu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
47
|
Steinbach N, Hasson D, Mathur D, Stratikopoulos EE, Sachidanandam R, Bernstein E, Parsons RE. PTEN interacts with the transcription machinery on chromatin and regulates RNA polymerase II-mediated transcription. Nucleic Acids Res 2019; 47:5573-5586. [PMID: 31169889 PMCID: PMC6582409 DOI: 10.1093/nar/gkz272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 03/11/2019] [Accepted: 04/18/2019] [Indexed: 11/22/2022] Open
Abstract
Regulation of RNA polymerase II (RNAPII)-mediated transcription controls cellular phenotypes such as cancer. Phosphatase and tensin homologue deleted on chromosome ten (PTEN), one of the most commonly altered tumor suppressors in cancer, affects transcription via its role in antagonizing the PI3K/AKT signaling pathway. Using co-immunoprecipitations and proximal ligation assays we provide evidence that PTEN interacts with AFF4, RNAPII, CDK9, cyclin T1, XPB and CDK7. Using ChIP-seq, we show that PTEN co-localizes with RNAPII and binds to chromatin in promoter and putative enhancer regions identified by histone modifications. Furthermore, we show that loss of PTEN affects RNAPII occupancy in gene bodies and further correlates with gene expression changes. Interestingly, PTEN binds to promoters and negatively regulates the expression of genes involved in transcription including AFF4 and POL2RA, which encodes a subunit of RNAPII. Loss of PTEN also increased cells' sensitivity to transcription inhibition via small molecules, which could provide a strategy to target PTEN-deficient cancers. Overall, our work describes a previously unappreciated role of nuclear PTEN, which by interacting with the transcription machinery in the context of chromatin exerts an additional layer of regulatory control on RNAPII-mediated transcription.
Collapse
Affiliation(s)
- Nicole Steinbach
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Deepti Mathur
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Elias E Stratikopoulos
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
48
|
Yang MH, Yen CH, Chen YF, Fang CC, Li CH, Lee KJ, Lin YH, Weng CH, Liu TT, Huang SF, Teh BT, Chen YMA. Somatic mutations of PREX2 gene in patients with hepatocellular carcinoma. Sci Rep 2019; 9:2552. [PMID: 30796242 PMCID: PMC6385191 DOI: 10.1038/s41598-018-36810-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Characterized with a high recurrence rate and low detection rate, prevention is the best approach to reduce mortality in hepatocellular carcinoma (HCC). The overexpression of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 2 (PREX2) is observed in various tumors, including HCC; and the frequent PREX2 mutations in melanoma are associated with invasiveness. We sought to identify somatic mutations and the functional changes in mutational signatures of PREX2. Genomic DNA sequencing was performed in 68 HCC samples with three types of hepatitis viral infection status: HBs Ag-positive, anti-HCV Ab-positive, and negative for any hepatitis B or C markers. Stabilities and interactions of proteins as well as cell proliferation and migration were evaluated. Fourteen non-silent point mutations in PREX2 were detected, with 16 of 68 HCC patients harboring at least one non-silent mutation. All mutant forms of PREX2, except for K400f, had an extended half-life compared with wild-type PREX2. Moreover, only the half-life of S1113R was twice that of the wild-type. PREX2 mutant-S1113R also promoted migration and activated the AKT pathway as well as impaired HectH9-mediated ubiquitination. Our study identified a gain-of-function mutation of PREX2 – S1113R in HCC. Such mutation enhanced PREX2 protein stability, promoted cell proliferation, and was associated with aggressiveness of HCC.
Collapse
Affiliation(s)
- Ming-Hui Yang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.,Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yen-Fu Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Cheng-Chieh Fang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chung-Hsien Li
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Kuo-Jui Lee
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yi-Hsiung Lin
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chien-Hui Weng
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tze-Tze Liu
- VYM Genome Research Center, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, Singapore, 169610, Singapore
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan. .,Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
49
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 779] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
50
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|