1
|
Yang Y, Dashi A, Soong PL, Lin KH, Tan WLW, Pan B, Autio MI, Tiang Z, Hartman RJG, Wei H, Ackers-Johnson MA, Lim B, Walentinsson A, Iyer VV, Jonsson MKB, Foo RS. Long noncoding RNA VENTHEART is required for ventricular cardiomyocyte specification and function. J Mol Cell Cardiol 2024; 197:90-102. [PMID: 39490643 DOI: 10.1016/j.yjmcc.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
RATIONALE Cardiac-expressed long noncoding RNAs (lncRNAs) are important for cardiomyocyte (CM) differentiation and function. Several lncRNAs have been identified and characterized for early CM lineage commitment, however those in later CM lineage specification and maturation remain less well studied. Moreover, unique atrial / ventricular lncRNA expression has never been studied in detail. OBJECTIVES Here, we characterized a novel ventricular myocyte-restricted lncRNA, not expressed in atrial myocytes, and conserved only in primates. METHODS AND RESULTS First, we performed single cell RNA-seq on human pluripotent stem cell derived cardiomyocytes (hPSC-CM) at the late stages of 2, 6 and 12 weeks of differentiation. Weighted correlation network analysis identified core gene modules, including a set of lncRNAs highly abundant and predominantly expressed in the human heart. A lncRNA (we call VENTHEART, VHRT) co-expressed with cardiac maturation and ventricular-specific genes MYL2 and MYH7, and was expressed in fetal and adult human ventricles, but not atria. CRISPR-mediated deletion of the VHRT gene led to impaired CM sarcomere formation and significant disruption of the ventricular CM gene program. Indeed, a similar disruption was not observed in VHRT KO hPSC-derived atrial CM, suggesting that VHRT exhibits only ventricular myocyte subtype-specific effects. Optical recordings validated that loss of VHRT significantly prolonged action potential duration at 90 % repolarization (APD90) for ventricular-like, but not atrial-like, CMs. CONCLUSION This reports the first lncRNA that is exclusively required for proper ventricular, and not atrial, CM specification and function.
Collapse
Affiliation(s)
- Yiqing Yang
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; NUS Graduate School, National University of Singapore, Singapore
| | - Albert Dashi
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Poh Loong Soong
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; Ternion Biosciences, Singapore
| | | | - Wilson L W Tan
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Bangfen Pan
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Matias I Autio
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Zenia Tiang
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Robin J G Hartman
- University of Utrecht, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands; Translational Science & Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Heming Wei
- National Heart Research Institute Singapore (NHRIS), National Heart Centre, Singapore
| | - Matthew Andrew Ackers-Johnson
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Bing Lim
- Sana Biotechnology, 300 Technology Square, Cambridge, MA 02139, United States of America
| | - Anna Walentinsson
- Translational Science & Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Vidhya Vardharajan Iyer
- Bioscience Cardiovascular, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Uppsala University, Uppsala, Sweden
| | - Malin K B Jonsson
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Bioscience Cardiovascular, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roger S Foo
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
2
|
Wang Y, Hou Y, Hao T, Garcia-Contreras M, Li G, Cretoiu D, Xiao J. Model construction and clinical therapeutic potential of engineered cardiac organoids for cardiovascular diseases. BIOMATERIALS TRANSLATIONAL 2024; 5:337-354. [PMID: 39872935 PMCID: PMC11764187 DOI: 10.12336/biomatertransl.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 01/30/2025]
Abstract
Cardiovascular diseases cause significant morbidity and mortality worldwide. Engineered cardiac organoids are being developed and used to replicate cardiac tissues supporting cardiac morphogenesis and development. These organoids have applications in drug screening, cardiac disease models and regenerative medicine. Therefore, a thorough understanding of cardiac organoids and a comprehensive overview of their development are essential for cardiac tissue engineering. This review summarises different types of cardiac organoids used to explore cardiac function, including those based on co-culture, aggregation, scaffolds, and geometries. The self-assembly of monolayers, multilayers and aggravated cardiomyocytes forms biofunctional cell aggregates in cardiac organoids, elucidating the formation mechanism of scaffold-free cardiac organoids. In contrast, scaffolds such as decellularised extracellular matrices, three-dimensional hydrogels and bioprinting techniques provide a supportive framework for cardiac organoids, playing a crucial role in cardiac development. Different geometries are engineered to create cardiac organoids, facilitating the investigation of intrinsic communication between cardiac organoids and biomechanical pathways. Additionally, this review emphasises the relationship between cardiac organoids and the cardiac system, and evaluates their clinical applications. This review aims to provide valuable insights into the study of three-dimensional cardiac organoids and their clinical potential.
Collapse
Affiliation(s)
- Yongtao Wang
- Cardiac Regeneration and Ageing Lab, School of Medicine, Shanghai University, Shanghai, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, China
| | - Yan Hou
- Cardiac Regeneration and Ageing Lab, School of Medicine, Shanghai University, Shanghai, China
| | - Tian Hao
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marta Garcia-Contreras
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, School of Medicine, Shanghai University, Shanghai, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Yao ZF, Kuang Y, Wu HT, Lundqvist E, Fu X, Celt N, Pei J, Yee A, Ardoña HAM. Selective Induction of Molecular Assembly to Tissue-Level Anisotropy on Peptide-Based Optoelectronic Cardiac Biointerfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312231. [PMID: 38335948 PMCID: PMC11126358 DOI: 10.1002/adma.202312231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The conduction efficiency of ions in excitable tissues and of charged species in organic conjugated materials both benefit from having ordered domains and anisotropic pathways. In this study, a photocurrent-generating cardiac biointerface is presented, particularly for investigating the sensitivity of cardiomyocytes to geometrically comply to biomacromolecular cues differentially assembled on a conductive nanogrooved substrate. Through a polymeric surface-templated approach, photoconductive substrates with symmetric peptide-quaterthiophene (4T)-peptide units assembled as 1D nanostructures on nanoimprinted polyalkylthiophene (P3HT) surface are developed. The 4T-based peptides studied here can form 1D nanostructures on prepatterned polyalkylthiophene substrates, as directed by hydrogen bonding, aromatic interactions between 4T and P3HT, and physical confinement on the nanogrooves. It is observed that smaller 4T-peptide units that can achieve a higher degree of assembly order within the polymeric templates serve as a more efficient driver of cardiac cytoskeletal anisotropy than merely presenting aligned -RGD bioadhesive epitopes on a nanotopographic surface. These results unravel some insights on how cardiomyocytes perceive submicrometer dimensionality, local molecular order, and characteristics of surface cues in their immediate environment. Overall, the work offers a cardiac patterning platform that presents the possibility of a gene modification-free cardiac photostimulation approach while controlling the conduction directionality of the biotic and abiotic components.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Hao-Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Emil Lundqvist
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Xin Fu
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Natalie Celt
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Albert Yee
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Dai G, Li M, Xu H, Quan N. Status of Research on Sestrin2 and Prospects for its Application in Therapeutic Strategies Targeting Myocardial Aging. Curr Probl Cardiol 2023; 48:101910. [PMID: 37422038 DOI: 10.1016/j.cpcardiol.2023.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Cardiac aging is accompanied by changes in the heart at the cellular and molecular levels, leading to alterations in cardiac structure and function. Given today's increasingly aging population, the decline in cardiac function caused by cardiac aging has a significant impact on quality of life. Antiaging therapies to slow the aging process and attenuate changes in cardiac structure and function have become an important research topic. Treatment with drugs, including metformin, spermidine, rapamycin, resveratrol, astaxanthin, Huolisu oral liquid, and sulforaphane, has been demonstrated be effective in delaying cardiac aging by stimulating autophagy, delaying ventricular remodeling, and reducing oxidative stress and the inflammatory response. Furthermore, caloric restriction has been shown to play an important role in delaying aging of the heart. Many studies in cardiac aging and cardiac aging-related models have demonstrated that Sestrin2 has antioxidant and anti-inflammatory effects, stimulates autophagy, delays aging, regulates mitochondrial function, and inhibits myocardial remodeling by regulation of relevant signaling pathways. Therefore, Sestrin2 is likely to become an important target for antimyocardial aging therapy.
Collapse
Affiliation(s)
- Gaoying Dai
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Zhu L, Liu K, Feng Q, Liao Y. Cardiac Organoids: A 3D Technology for Modeling Heart Development and Disease. Stem Cell Rev Rep 2022; 18:2593-2605. [PMID: 35525908 DOI: 10.1007/s12015-022-10385-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Cardiac organoids (COs) are miniaturized and simplified organ structures that can be used in heart development biology, drug screening, disease modeling, and regenerative medicine. This cardiac organoid (CO) model is revolutionizing our perspective on answering major cardiac physiology and pathology issues. Recently, many research groups have reported various methods for modeling the heart in vitro. However, there are differences in methodologies and concepts. In this review, we discuss the recent advances in cardiac organoid technologies derived from human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), with a focus on the summary of methods for organoid generation. In addition, we introduce CO applications in modeling heart development and cardiovascular diseases and discuss the prospects for and common challenges of CO that still need to be addressed. A detailed understanding of the development of CO will help us design better methods, explore and expand its application in the cardiovascular field.
Collapse
Affiliation(s)
- Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Kui Liu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qi Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Deciphering Cardiac Biology and Disease by Single-Cell Transcriptomic Profiling. Biomolecules 2022; 12:biom12040566. [PMID: 35454155 PMCID: PMC9032111 DOI: 10.3390/biom12040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
By detecting minute molecular changes in hundreds to millions of single cells, single-cell RNA sequencing allows for the comprehensive characterization of the diversity and dynamics of cells in the heart. Our understanding of the heart has been transformed through the recognition of cellular heterogeneity, the construction of regulatory networks, the building of lineage trajectories, and the mapping of intercellular crosstalk. In this review, we introduce cardiac progenitors and their transcriptional regulation during embryonic development, highlight cellular heterogeneity and cell subtype functions in cardiac health and disease, and discuss insights gained from the study of pluripotent stem-cell-derived cardiomyocytes.
Collapse
|
7
|
Jiang L, Liang J, Huang W, Ma J, Park KH, Wu Z, Chen P, Zhu H, Ma JJ, Cai W, Paul C, Niu L, Fan GC, Wang HS, Kanisicak O, Xu M, Wang Y. CRISPR activation of endogenous genes reprograms fibroblasts into cardiovascular progenitor cells for myocardial infarction therapy. Mol Ther 2022; 30:54-74. [PMID: 34678511 PMCID: PMC8753567 DOI: 10.1016/j.ymthe.2021.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Fibroblasts can be reprogrammed into cardiovascular progenitor cells (CPCs) using transgenic approaches, although the underlying mechanism remains unclear. We determined whether activation of endogenous genes such as Gata4, Nkx2.5, and Tbx5 can rapidly establish autoregulatory loops and initiate CPC generation in adult extracardiac fibroblasts using a CRISPR activation system. The induced fibroblasts (>80%) showed phenotypic changes as indicated by an Nkx2.5 cardiac enhancer reporter. The progenitor characteristics were confirmed by colony formation and expression of cardiovascular genes. Cardiac sphere induction segregated the early and late reprogrammed cells that can generate functional cardiomyocytes and vascular cells in vitro. Therefore, they were termed CRISPR-induced CPCs (ciCPCs). Transcriptomic analysis showed that cell cycle and heart development pathways were important to accelerate CPC formation during the early reprogramming stage. The CRISPR system opened the silenced chromatin locus, thereby allowing transcriptional factors to access their own promoters and eventually forming a positive feedback loop. The regenerative potential of ciCPCs was assessed after implantation in mouse myocardial infarction models. The engrafted ciCPCs differentiated into cardiovascular cells in vivo but also significantly improved contractile function and scar formation. In conclusion, multiplex gene activation was sufficient to drive CPC reprogramming, providing a new cell source for regenerative therapeutics.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ki Ho Park
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Peng Chen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian-Jie Ma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wenfeng Cai
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Liang Niu
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
8
|
Miyamoto M, Nam L, Kannan S, Kwon C. Heart organoids and tissue models for modeling development and disease. Semin Cell Dev Biol 2021; 118:119-128. [PMID: 33775518 PMCID: PMC8513373 DOI: 10.1016/j.semcdb.2021.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Organoids, or miniaturized organs formed in vitro, hold potential to revolutionize how researchers approach and answer fundamental biological and pathological questions. In the context of cardiac biology, development of a bona fide cardiac organoid enables study of heart development, function, and pathogenesis in a dish, providing insight into the nature of congenital heart disease and offering the opportunity for high-throughput probing of adult heart disease and drug discovery. Recently, multiple groups have reported novel methods for generating in vitro models of the heart; however, there are substantial conceptual and methodological differences. In this review we will evaluate recent cardiac organoid studies through the lens of the core principles of organoid technology: patterned self-organization of multiple cell types resembling the in vivo organ. Based on this, we will classify systems into the following related types of tissues: developmental cardiac organoids, chamber cardiac organoids, microtissues, and engineered heart tissues. Furthermore, we highlight the interventions which allow for organoid formation, such as modulation of highly conserved cardiogenic signaling pathways mediated by developmental morphogens. We expect that consolidation and categorization of existing organoid models will help eliminate confusion in the field and facilitate progress towards creation of an ideal cardiac organoid.
Collapse
Affiliation(s)
- Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Lucy Nam
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
9
|
Amnion signals are essential for mesoderm formation in primates. Nat Commun 2021; 12:5126. [PMID: 34446705 PMCID: PMC8390679 DOI: 10.1038/s41467-021-25186-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/22/2021] [Indexed: 11/26/2022] Open
Abstract
Embryonic development is largely conserved among mammals. However, certain genes show divergent functions. By generating a transcriptional atlas containing >30,000 cells from post-implantation non-human primate embryos, we uncover that ISL1, a gene with a well-established role in cardiogenesis, controls a gene regulatory network in primate amnion. CRISPR/Cas9-targeting of ISL1 results in non-human primate embryos which do not yield viable offspring, demonstrating that ISL1 is critically required in primate embryogenesis. On a cellular level, mutant ISL1 embryos display a failure in mesoderm formation due to reduced BMP4 signaling from the amnion. Via loss of function and rescue studies in human embryonic stem cells we confirm a similar role of ISL1 in human in vitro derived amnion. This study highlights the importance of the amnion as a signaling center during primate mesoderm formation and demonstrates the potential of in vitro primate model systems to dissect the genetics of early human embryonic development. Human and murine embryonic development has disparities, highlighting the need for primate systems. Here, the authors construct a post-implantation transcriptional atlas from non-human primate embryos and show ISL1 controls a gene regulatory network in the amnion required for mesoderm formation.
Collapse
|
10
|
Zhou W, Ma T, Ding S. Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Semin Cell Dev Biol 2021; 122:28-36. [PMID: 34238675 DOI: 10.1016/j.semcdb.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
Heart disease is the leading cause of human deaths worldwide. Due to lacking cardiomyocytes with replicative capacity and cardiac progenitor cells with differentiation potential in adult hearts, massive loss of cardiomyocytes after ischemic events produces permanent damage, ultimately leading to heart failure. Cellular reprogramming is a promising strategy to regenerate heart by induction of cardiomyocytes from other cell types, such as cardiac fibroblasts. In contrast to conventional virus-based cardiac reprogramming, non-viral approaches greatly reduce the potential risk that includes disruption of genome integrity by integration of foreign DNAs, expression of exogenous genes with oncogenic potential, and appearance of partially reprogrammed cells harmful for the physiological functions of tissues/organs, which impedes their in-vivo applications. Here, we review the recent progress in development of non-viral approaches to directly reprogram somatic cells towards cardiomyocytes and their therapeutic application for heart regeneration.
Collapse
Affiliation(s)
- Wei Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Batalov I, Jallerat Q, Kim S, Bliley J, Feinberg AW. Engineering aligned human cardiac muscle using developmentally inspired fibronectin micropatterns. Sci Rep 2021; 11:11502. [PMID: 34075068 PMCID: PMC8169656 DOI: 10.1038/s41598-021-87550-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Cardiac two-dimensional tissues were engineered using biomimetic micropatterns based on the fibronectin-rich extracellular matrix (ECM) of the embryonic heart. The goal of this developmentally-inspired, in vitro approach was to identify cell-cell and cell-ECM interactions in the microenvironment of the early 4-chambered vertebrate heart that drive cardiomyocyte organization and alignment. To test this, biomimetic micropatterns based on confocal imaging of fibronectin in embryonic chick myocardium were created and compared to control micropatterns designed with 2 or 20 µm wide fibronectin lines. Results show that embryonic chick cardiomyocytes have a unique density-dependent alignment on the biomimetic micropattern that is mediated in part by N-cadherin, suggesting that both cell-cell and cell-ECM interactions play an important role in the formation of aligned myocardium. Human induced pluripotent stem cell-derived cardiomyocytes also showed density-dependent alignment on the biomimetic micropattern but were overall less well organized. Interestingly, the addition of human adult cardiac fibroblasts and conditioning with T3 hormone were both shown to increase human cardiomyocyte alignment. In total, these results show that cardiomyocyte maturation state, cardiomyocyte-cardiomyocyte and cardiomyocyte-fibroblast interactions, and cardiomyocyte-ECM interactions can all play a role when engineering anisotropic cardiac tissues in vitro and provides insight as to how these factors may influence cardiogenesis in vivo.
Collapse
Affiliation(s)
- Ivan Batalov
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Sean Kim
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Jacqueline Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Adam W Feinberg
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA. .,Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA.
| |
Collapse
|
12
|
Pushp P, Nogueira DES, Rodrigues CAV, Ferreira FC, Cabral JMS, Gupta MK. A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2021; 17:748-776. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2, Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerative medicine. It also discusses the current limitations and challenges in the application of iPSC-derived CMs. Graphical abstract.
Collapse
Affiliation(s)
- Pallavi Pushp
- Department of Biotechnology, Institute of Engineering and Technology (IET), Bundelkhand University, Jhansi, Uttar Pradesh, 284128, India
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Diogo E S Nogueira
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico C Ferreira
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
13
|
The Future of Direct Cardiac Reprogramming: Any GMT Cocktail Variety? Int J Mol Sci 2020; 21:ijms21217950. [PMID: 33114756 PMCID: PMC7663133 DOI: 10.3390/ijms21217950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Direct cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at least a combination of three transcription factors, GATA4, MEF2C and TBX5 (GMT cocktail), was required for the reprogramming into iCMs in vitro using mouse cells. However, this was later demonstrated to be insufficient for the reprogramming of human cells and additional factors were required. Thereafter, most studies have focused on implementing reprogramming efficiency and obtaining fully reprogrammed and functional iCMs, by the incorporation of other transcription factors, microRNAs or small molecules to the original GMT cocktail. In this respect, great advances have been made in recent years. However, there is still no consensus on which of these GMT-based varieties is best, and robust and highly reproducible protocols are still urgently required, especially in the case of human cells. On the other hand, apart from CMs, other cells such as endothelial and smooth muscle cells to form new blood vessels will be fundamental for the correct reconstruction of damaged cardiac tissue. With this aim, several studies have centered on the direct reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs) able to give rise to all myocardial cell lineages. Especially interesting are reports in which multipotent and highly expandable mouse iCPCs have been obtained, suggesting that clinically relevant amounts of these cells could be created. However, as of yet, this has not been achieved with human iCPCs, and exactly what stage of maturity is appropriate for a cell therapy product remains an open question. Nonetheless, the major concern in regenerative medicine is the poor retention, survival, and engraftment of transplanted cells in the cardiac tissue. To circumvent this issue, several cell pre-conditioning approaches are currently being explored. As an alternative to cell injection, in vivo reprogramming may face fewer barriers for its translation to the clinic. This approach has achieved better results in terms of efficiency and iCMs maturity in mouse models, indicating that the heart environment can favor this process. In this context, in recent years some studies have focused on the development of safer delivery systems such as Sendai virus, Adenovirus, chemical cocktails or nanoparticles. This article provides an in-depth review of the in vitro and in vivo cardiac reprograming technology used in mouse and human cells to obtain iCMs and iCPCs, and discusses what challenges still lie ahead and what hurdles are to be overcome before results from this field can be transferred to the clinical settings.
Collapse
|
14
|
Kiaie N, Gorabi AM, Ahmadi Tafti SH, Rabbani S. Pre-vascularization Approaches for Heart Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00172-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Li J, Parra-Cantu C, Wang Z, Zhang YS. Improving Bioprinted Volumetric Tumor Microenvironments In Vitro. Trends Cancer 2020; 6:745-756. [PMID: 32680649 PMCID: PMC7483398 DOI: 10.1016/j.trecan.2020.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023]
Abstract
Despite the great breakthroughs in the past few decades in illuminating the pathological mechanisms of cancer and in developing new anticancer drugs, it remains extremely challenging to cure most cancers. Therefore, it is imperative to develop more sophisticated and more biomimetic preclinical cancer models. 3D models combined with dynamic culture techniques show great potential to accurately emulate the volumetric tumor microenvironment (TME). Here we introduce advances in bioprinting technologies for in vitro cancer modeling and their applications. Finally, we look ahead to the remaining challenges associated with current bioprinting strategies for achieving faithful cancer modeling.
Collapse
Affiliation(s)
- Jun Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carolina Parra-Cantu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Zongyi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Abstract
Cardiovascular disease (CVD) is still a factor of mortality in the whole world. Through canonical and noncanonical pathways and with different receptors, the Wnt/β-catenin signaling pathway plays an essential role in response to heart injuries. Wnt regulates the mobilization and proliferation of cells in endothelium and epicardium in an infarcted heart. Therefore, with its profibrotic effects as well as its antagonism with other proteins, Wnt/β-catenin signaling pathway leads to beneficial effects on fibrosis and cardiac remodeling in myocardium. In addition, Wnt increases the proliferation and differentiation of cardiac progenitors in an ischemic heart. Complex interactions and dual activity of Wnt, the changes in its expression, and mutations that can change its activity during heart development have an adverse effect on cardiac myocardium after injury. However, targeting the Wnt in myocardium with cellular and molecular pathways can be suggested to improve and repair ischemic heart. Given these challenges, in this review article, we deal with the role of Wnt/β-catenin signaling pathway as well as its interactions with other cells and molecules in an ischemic myocardium.
Collapse
|
17
|
Xu J, Zhou C, Foo KS, Yang R, Xiao Y, Bylund K, Sahara M, Chien KR. Genome-wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors. Stem Cells 2020; 38:741-755. [PMID: 32129551 PMCID: PMC7891398 DOI: 10.1002/stem.3168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Cardiac progenitor formation is one of the earliest committed steps of human cardiogenesis and requires the cooperation of multiple gene sets governed by developmental signaling cascades. To determine the key regulators for cardiac progenitor formation, we have developed a two‐stage genome‐wide CRISPR‐knockout screen. We mimicked the progenitor formation process by differentiating human pluripotent stem cells (hPSCs) into cardiomyocytes, monitored by two distinct stage markers of early cardiac mesodermal formation and commitment to a multipotent heart progenitor cell fate: MESP1 and ISL1, respectively. From the screen output, we compiled a list of 15 candidate genes. After validating seven of them, we identified ZIC2 as an essential gene for cardiac progenitor formation. ZIC2 is known as a master regulator of neurogenesis. hPSCs with ZIC2 mutated still express pluripotency markers. However, their ability to differentiate into cardiomyocytes was greatly attenuated. RNA‐Seq profiling of the ZIC2‐mutant cells revealed that the mutants switched their cell fate alternatively to the noncardiac cell lineage. Further, single cell RNA‐seq analysis showed the ZIC2 mutants affected the apelin receptor‐related signaling pathway during mesoderm formation. Our results provide a new link between ZIC2 and human cardiogenesis and document the potential power of a genome‐wide unbiased CRISPR‐knockout screen to identify the key steps in human mesoderm precursor cell‐ and heart progenitor cell‐fate determination during in vitro hPSC cardiogenesis.
Collapse
Affiliation(s)
- Jiejia Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kylie S Foo
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Ran Yang
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yao Xiao
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristine Bylund
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
18
|
Yamak A, Hu D, Mittal N, Buikema JW, Ditta S, Lutz PG, Moog-Lutz C, Ellinor PT, Domian IJ. Loss of Asb2 Impairs Cardiomyocyte Differentiation and Leads to Congenital Double Outlet Right Ventricle. iScience 2020; 23:100959. [PMID: 32179481 PMCID: PMC7078385 DOI: 10.1016/j.isci.2020.100959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/17/2019] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
Defining the pathways that control cardiac development facilitates understanding the pathogenesis of congenital heart disease. Herein, we identify enrichment of a Cullin5 Ub ligase key subunit, Asb2, in myocardial progenitors and differentiated cardiomyocytes. Using two conditional murine knockouts, Nkx+/Cre.Asb2fl/fl and AHF-Cre.Asb2fl/fl, and tissue clarifying technique, we reveal Asb2 requirement for embryonic survival and complete heart looping. Deletion of Asb2 results in upregulation of its target Filamin A (Flna), and concurrent Flna deletion partially rescues embryonic lethality. Conditional AHF-Cre.Asb2 knockouts harboring one Flna allele have double outlet right ventricle (DORV), which is rescued by biallelic Flna excision. Transcriptomic and immunofluorescence analyses identify Tgfβ/Smad as downstream targets of Asb2/Flna. Finally, using CRISPR/Cas9 genome editing, we demonstrate Asb2 requirement for human cardiomyocyte differentiation suggesting a conserved mechanism between mice and humans. Collectively, our study provides deeper mechanistic understanding of the role of the ubiquitin proteasome system in cardiac development and suggests a previously unidentified murine model for DORV. Flna removal partially rescues embryonic lethality of Asb2-heart-specific knockout AHF-Asb2 knockouts harboring one Flna allele have double outlet right ventricle Asb2-Flna regulate TGFβ-Smad2 signaling in the heart Conserved role of Asb2 in heart morphogenesis between mice and humans
Collapse
Affiliation(s)
- Abir Yamak
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Dongjian Hu
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Nikhil Mittal
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA
| | - Jan W Buikema
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Sheraz Ditta
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Department of Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, Netherlands
| | - Pierre G Lutz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christel Moog-Lutz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patrick T Ellinor
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ibrahim J Domian
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
19
|
Randolph LN, Lian XL. Beyond Purple Hearts: A Colorful Approach to Isolate Distinct Heart Cells from Human iPSCs. Cell Stem Cell 2020; 24:675-677. [PMID: 31051127 DOI: 10.1016/j.stem.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this issue of Cell Stem Cell, Zhang et al. (2019) describe a double-reporter iPSC line based on the expression of key cardiac transcription factors, TBX5 and NKX2.5, that delineates cardiac lineage specification in vitro and enables isolation of relatively pure chamber-specific cardiomyocytes, which are critical for drug screening, tissue engineering, and disease modeling.
Collapse
Affiliation(s)
- Lauren N Randolph
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
20
|
Jallerat Q, Feinberg AW. Extracellular Matrix Structure and Composition in the Early Four-Chambered Embryonic Heart. Cells 2020; 9:cells9020285. [PMID: 31991580 PMCID: PMC7072588 DOI: 10.3390/cells9020285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/30/2023] Open
Abstract
During embryonic development, the heart undergoes complex morphogenesis from a liner tube into the four chambers consisting of ventricles, atria and valves. At the same time, the cardiomyocytes compact into a dense, aligned, and highly vascularized myocardium. The extracellular matrix (ECM) is known to play an important role in this process but understanding of the expression and organization remains incomplete. Here, we performed 3D confocal imaging of ECM in the left ventricle and whole heart of embryonic chick from stages Hamburger-Hamilton 28-35 (days 5-9) as an accessible model of heart formation. First, we observed the formation of a fibronectin-rich, capillary-like networks in the myocardium between day 5 and day 9 of development. Then, we focused on day 5 prior to vascularization to determine the relative expression of fibronectin, laminin, and collagen type IV. Cardiomyocytes were found to uniaxially align prior to vascularization and, while the epicardium contained all ECM components, laminin was reduced, and collagen type IV was largely absent. Quantification of fibronectin revealed highly aligned fibers with a mean diameter of ~500 nm and interfiber spacing of ~3 µm. These structural parameters (volume, spacing, fiber diameter, length, and orientation) provide a quantitative framework to describe the organization of the embryonic ECM.
Collapse
Affiliation(s)
- Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Adam W. Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Correspondence: ; Tel.: +1-412-268-4897
| |
Collapse
|
21
|
Atmanli A, Hu D, Deiman FE, van de Vrugt AM, Cherbonneau F, Black LD, Domian IJ. Multiplex live single-cell transcriptional analysis demarcates cellular functional heterogeneity. eLife 2019; 8:49599. [PMID: 31591966 PMCID: PMC6861004 DOI: 10.7554/elife.49599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
A fundamental goal in the biological sciences is to determine how individual cells with varied gene expression profiles and diverse functional characteristics contribute to development, physiology, and disease. Here, we report a novel strategy to assess gene expression and cell physiology in single living cells. Our approach utilizes fluorescently labeled mRNA-specific anti-sense RNA probes and dsRNA-binding protein to identify the expression of specific genes in real-time at single-cell resolution via FRET. We use this technology to identify distinct myocardial subpopulations expressing the structural proteins myosin heavy chain α and myosin light chain 2a in real-time during early differentiation of human pluripotent stem cells. We combine this live-cell gene expression analysis with detailed physiologic phenotyping to capture the functional evolution of these early myocardial subpopulations during lineage specification and diversification. This live-cell mRNA imaging approach will have wide ranging application wherever heterogeneity plays an important biological role.
Collapse
Affiliation(s)
- Ayhan Atmanli
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States.,Department of Biomedical Engineering, Tufts University, Medford, United States
| | - Dongjian Hu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States.,Department of Biomedical Engineering, Boston University, Boston, United States
| | - Frederik Ernst Deiman
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Annebel Marjolein van de Vrugt
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - François Cherbonneau
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States
| | - Lauren Deems Black
- Department of Biomedical Engineering, Tufts University, Medford, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, United States
| | - Ibrahim John Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
22
|
Abstract
Supplemental Digital Content is available in the text. If unifying principles could be revealed for how the same genome encodes different eukaryotic cells and for how genetic variability and environmental input are integrated to impact cardiovascular health, grand challenges in basic cell biology and translational medicine may succumb to experimental dissection. A rich body of work in model systems has implicated chromatin-modifying enzymes, DNA methylation, noncoding RNAs, and other transcriptome-shaping factors in adult health and in the development, progression, and mitigation of cardiovascular disease. Meanwhile, deployment of epigenomic tools, powered by next-generation sequencing technologies in cardiovascular models and human populations, has enabled description of epigenomic landscapes underpinning cellular function in the cardiovascular system. This essay aims to unpack the conceptual framework in which epigenomes are studied and to stimulate discussion on how principles of chromatin function may inform investigations of cardiovascular disease and the development of new therapies.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Douglas J Chapski
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Thomas M Vondriska
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles.
| |
Collapse
|
23
|
Tampakakis E, Miyamoto M, Kwon C. In Vitro Generation of Heart Field-specific Cardiac Progenitor Cells. J Vis Exp 2019. [PMID: 31329174 DOI: 10.3791/59826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pluripotent stem cells offer great potential for understanding heart development and disease and for regenerative medicine. While recent advances in developmental cardiology have led to generating cardiac cells from pluripotent stem cells, it is unclear if the two cardiac fields - the first and second heart fields (FHF and SHF) - are induced in pluripotent stem cells systems. To address this, we generated a protocol for in vitro specification and isolation of heart field-specific cardiac progenitor cells. We used embryonic stem cells lines carrying Hcn4-GFP and Tbx1-Cre; Rosa-RFP reporters of the FHF and the SHF, respectively, and live cell immunostaining of the cell membrane protein Cxcr4, a SHF marker. With this approach, we generated progenitor cells which recapitulate the functional properties and transcriptome of their in vivo counterparts. Our protocol can be utilized to study early specification and segregation of the two heart fields and to generate chamber-specific cardiac cells for heart disease modelling. Since this is an in vitro organoid system, it may not provide precise anatomical information. However, this system overcomes the poor accessibility of gastrulation-stage embryos and can be upscaled for high-throughput screens.
Collapse
Affiliation(s)
| | - Matthew Miyamoto
- Division of Cardiology, Department Medicine, Johns Hopkins School of Medicine
| | - Chulan Kwon
- Division of Cardiology, Department Medicine, Johns Hopkins School of Medicine;
| |
Collapse
|
24
|
Camberos V, Baio J, Bailey L, Hasaniya N, Lopez LV, Kearns-Jonker M. Effects of Spaceflight and Simulated Microgravity on YAP1 Expression in Cardiovascular Progenitors: Implications for Cell-Based Repair. Int J Mol Sci 2019; 20:E2742. [PMID: 31167392 PMCID: PMC6600678 DOI: 10.3390/ijms20112742] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023] Open
Abstract
Spaceflight alters many processes of the human body including cardiac function and cardiac progenitor cell behavior. The mechanism behind these changes remains largely unknown; however, simulated microgravity devices are making it easier for researchers to study the effects of microgravity. To study the changes that take place in cardiac progenitor cells in microgravity environments, adult cardiac progenitor cells were cultured aboard the International Space Station (ISS) as well as on a clinostat and examined for changes in Hippo signaling, a pathway known to regulate cardiac development. Cells cultured under microgravity conditions, spaceflight-induced or simulated, displayed upregulation of downstream genes involved in the Hippo pathway such as YAP1 and SOD2. YAP1 is known to play a role in cardiac regeneration which led us to investigate YAP1 expression in a sheep model of cardiovascular repair. Additionally, to mimic the effects of microgravity, drug treatment was used to induce Hippo related genes as well as a regulator of the Hippo pathway, miRNA-302a. These studies provide insight into the changes that occur in space and how the effects of these changes relate to cardiac regeneration studies.
Collapse
Affiliation(s)
- Victor Camberos
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Jonathan Baio
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Leonard Bailey
- Department of Cardiovascular and Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Nahidh Hasaniya
- Department of Cardiovascular and Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Larry V Lopez
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
25
|
A Human iPSC Double-Reporter System Enables Purification of Cardiac Lineage Subpopulations with Distinct Function and Drug Response Profiles. Cell Stem Cell 2019; 24:802-811.e5. [PMID: 30880024 DOI: 10.1016/j.stem.2019.02.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/10/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
The diversity of cardiac lineages contributes to the heterogeneity of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs). Here, we report the generation of a hiPSC TBX5Clover2 and NKX2-5TagRFP double reporter to delineate cardiac lineages and isolate lineage-specific subpopulations. Molecular analyses reveal that four different subpopulations can be isolated based on the differential expression of TBX5 and NKX2-5, TBX5+NKX2-5+, TBX5+NKX2-5-, TBX5-NKX2-5+, and TBX5-NKX2-5-, mimicking the first heart field, epicardial, second heart field, and endothelial lineages, respectively. Genetic and functional characterization indicates that each subpopulation differentiates into specific cardiac cells. We further identify CORIN as a cell-surface marker for isolating the TBX5+NKX2-5+ subpopulation and demonstrate the use of lineage-specific CMs for precise drug testing. We anticipate that this tool will facilitate the investigation of cardiac lineage specification and isolation of specific cardiac subpopulations for drug screening, tissue engineering, and disease modeling.
Collapse
|
26
|
Bover O, Justo T, Pereira PNG, Facucho-Oliveira J, Inácio JM, Ramalho JS, Domian IJ, Belo JA. Loss of Ccbe1 affects cardiac-specification and cardiomyocyte differentiation in mouse embryonic stem cells. PLoS One 2018; 13:e0205108. [PMID: 30281646 PMCID: PMC6169972 DOI: 10.1371/journal.pone.0205108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/19/2018] [Indexed: 01/27/2023] Open
Abstract
Understanding the molecular pathways regulating cardiogenesis is crucial for the early diagnosis of heart diseases and improvement of cardiovascular disease. During normal mammalian cardiac development, collagen and calcium-binding EGF domain-1 (Ccbe1) is expressed in the first and second heart field progenitors as well as in the proepicardium, but its role in early cardiac commitment remains unknown. Here we demonstrate that during mouse embryonic stem cell (ESC) differentiation Ccbe1 is upregulated upon emergence of Isl1- and Nkx2.5- positive cardiac progenitors. Ccbe1 is markedly enriched in Isl1-positive cardiac progenitors isolated from ESCs differentiating in vitro or embryonic hearts developing in vivo. Disruption of Ccbe1 activity by shRNA knockdown or blockade with a neutralizing antibody results in impaired differentiation of embryonic stem cells along the cardiac mesoderm lineage resulting in a decreased expression of mature cardiomyocyte markers. In addition, knockdown of Ccbe1 leads to smaller embryoid bodies. Collectively, our results show that CCBE1 is essential for the commitment of cardiac mesoderm and consequently, for the formation of cardiac myocytes in differentiating mouse ESCs.
Collapse
Affiliation(s)
- Oriol Bover
- Stem Cells and Development Laboratory, CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Tiago Justo
- Stem Cells and Development Laboratory, CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
- Center for Biomedical Research, Campus de Gambelas, University of Algarve, Faro, Portugal
| | - Paulo N. G. Pereira
- Stem Cells and Development Laboratory, CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - João Facucho-Oliveira
- Center for Biomedical Research, Campus de Gambelas, University of Algarve, Faro, Portugal
| | - José M. Inácio
- Stem Cells and Development Laboratory, CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - José S. Ramalho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ibrahim J. Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| | - José António Belo
- Stem Cells and Development Laboratory, CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
27
|
Precardiac organoids form two heart fields via Bmp/Wnt signaling. Nat Commun 2018; 9:3140. [PMID: 30087351 PMCID: PMC6081372 DOI: 10.1038/s41467-018-05604-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 07/17/2018] [Indexed: 12/24/2022] Open
Abstract
The discovery of the first heart field (FHF) and the second heart field (SHF) led us to understand how cardiac lineages and structures arise during development. However, it remains unknown how they are specified. Here, we generate precardiac spheroids with pluripotent stem cells (PSCs) harboring GFP/RFP reporters under the control of FHF/SHF markers, respectively. GFP+ cells and RFP+ cells appear from two distinct areas and develop in a complementary fashion. Transcriptome analysis shows a high degree of similarities with embryonic FHF/SHF cells. Bmp and Wnt are among the most differentially regulated pathways, and gain- and loss-of-function studies reveal that Bmp specifies GFP+ cells and RFP+ cells via the Bmp/Smad pathway and Wnt signaling, respectively. FHF/SHF cells can be isolated without reporters by the surface protein Cxcr4. This study provides novel insights into understanding the specification of two cardiac origins, which can be leveraged for PSC-based modeling of heart field/chamber-specific disease. The heart arises from distinct progenitor cells of both the first and second heart fields (FHF and SHF). Here, the authors generated precardiac organoids from mouse and human pluripotent cells and show that FHF and SHF cells form similarly to their in vivo counterparts in response to BMP and Wnt signalling, respectively.
Collapse
|
28
|
Ong CS, Nam L, Ong K, Krishnan A, Huang CY, Fukunishi T, Hibino N. 3D and 4D Bioprinting of the Myocardium: Current Approaches, Challenges, and Future Prospects. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6497242. [PMID: 29850546 PMCID: PMC5937623 DOI: 10.1155/2018/6497242] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/04/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
3D and 4D bioprinting of the heart are exciting notions in the modern era. However, myocardial bioprinting has proven to be challenging. This review outlines the methods, materials, cell types, issues, challenges, and future prospects in myocardial bioprinting. Advances in 3D bioprinting technology have significantly improved the manufacturing process. While scaffolds have traditionally been utilized, 3D bioprinters, which do not require scaffolds, are increasingly being employed. Improved understanding of the cardiac cellular composition and multiple strategies to tackle the issues of vascularization and viability had led to progress in this field. In vivo studies utilizing small animal models have been promising. 4D bioprinting is a new concept that has potential to advance the field of 3D bioprinting further by incorporating the fourth dimension of time. Clinical translation will require multidisciplinary collaboration to tackle the pertinent issues facing this field.
Collapse
Affiliation(s)
- Chin Siang Ong
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Lucy Nam
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Kingsfield Ong
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore
| | - Aravind Krishnan
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Chen Yu Huang
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Takuma Fukunishi
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
29
|
Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater 2018; 70:48-56. [PMID: 29452273 PMCID: PMC6022829 DOI: 10.1016/j.actbio.2018.02.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy. Primary cardiomyocytes were isolated from infant rat hearts and suspended in a fibrin-based bioink to determine the priting capability for cardiac tissue engineering. This cell-laden hydrogel was sequentially printed with a sacrificial hydrogel and a supporting polymeric frame through a 300-µm nozzle by pressured air. Bioprinted cardiac tissue constructs had a spontaneous synchronous contraction in culture, implying in vitro cardiac tissue development and maturation. Progressive cardiac tissue development was confirmed by immunostaining for α-actinin and connexin 43, indicating that cardiac tissues were formed with uniformly aligned, dense, and electromechanically coupled cardiac cells. These constructs exhibited physiologic responses to known cardiac drugs regarding beating frequency and contraction forces. In addition, Notch signaling blockade significantly accelerated development and maturation of bioprinted cardiac tissues. Our results demonstrated the feasibility of bioprinting functional cardiac tissues that could be used for tissue engineering applications and pharmaceutical purposes. STATEMENT OF SIGNIFICANCE Cardiovascular disease remains a leading cause of death in the United States and a major health-care burden. Myocardial infarction (MI) is a main cause of death in cardiovascular diseases. MI occurs as a consequence of sudden blocking of blood vessels supplying the heart. When occlusions in the coronary arteries occur, an immediate decrease in nutrient and oxygen supply to the cardiac muscle, resulting in permanent cardiac cell death. Eventually, scar tissue formed in the damaged cardiac muscle that cannot conduct electrical or mechanical stimuli thus leading to a reduction in the pumping efficiency of the heart. The therapeutic options available for end-stage heart failure is to undergo heart transplantation or the use of mechanical ventricular assist devices (VADs). However, many patients die while being on a waiting list, due to the organ shortage and limitation of VADs, such as surgical complications, infection, thrombogenesis, and failure of the electrical motor and hemolysis. Ultimately, 3D bioprinting strategy aims to create clinically applicable tissue constructs that can be immediately implanted in the body. To date, the focus on replicating complex and heterogeneous tissue constructs continues to increase as 3D bioprinting technologies advance. In this study, we demonstrated the feasibility of 3D bioprinting strategy to bioengineer the functional cardiac tissue that possesses a highly organized structure with unique physiological and biomechanical properties similar to native cardiac tissue. This bioprinting strategy has great potential to precisely generate functional cardiac tissues for use in pharmaceutical and regenerative medicine applications.
Collapse
Affiliation(s)
- Zhan Wang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Heng-Jie Cheng
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
30
|
Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, Morikawa K, Teles D, Yazawa M, Vunjak-Novakovic G. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 2018; 556:239-243. [PMID: 29618819 PMCID: PMC5895513 DOI: 10.1038/s41586-018-0016-3] [Citation(s) in RCA: 836] [Impact Index Per Article: 119.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Cardiac tissues generated from human induced pluripotent stem cells (iPSCs) can serve as platforms for patient-specific studies of physiology and disease1-6. However, the predictive power of these models is presently limited by the immature state of the cells1, 2, 5, 6. Here we show that this fundamental limitation can be overcome if cardiac tissues are formed from early-stage iPSC-derived cardiomyocytes soon after the initiation of spontaneous contractions and are subjected to physical conditioning with increasing intensity over time. After only four weeks of culture, for all iPSC lines studied, such tissues displayed adult-like gene expression profiles, remarkably organized ultrastructure, physiological sarcomere length (2.2 µm) and density of mitochondria (30%), the presence of transverse tubules, oxidative metabolism, a positive force-frequency relationship and functional calcium handling. Electromechanical properties developed more slowly and did not achieve the stage of maturity seen in adult human myocardium. Tissue maturity was necessary for achieving physiological responses to isoproterenol and recapitulating pathological hypertrophy, supporting the utility of this tissue model for studies of cardiac development and disease.
Collapse
Affiliation(s)
- Kacey Ronaldson-Bouchard
- Laboratory for Stem Cells and Tissue Engineering, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Stephen P Ma
- Laboratory for Stem Cells and Tissue Engineering, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Keith Yeager
- Laboratory for Stem Cells and Tissue Engineering, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Timothy Chen
- Laboratory for Stem Cells and Tissue Engineering, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - LouJin Song
- Department of Rehabilitation and Regenerative Medicine, Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dario Sirabella
- Laboratory for Stem Cells and Tissue Engineering, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kumi Morikawa
- Department of Rehabilitation and Regenerative Medicine, Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Diogo Teles
- Laboratory for Stem Cells and Tissue Engineering, Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga-Guimarães, Portugal
| | - Masayuki Yazawa
- Department of Rehabilitation and Regenerative Medicine, Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Laboratory for Stem Cells and Tissue Engineering, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
31
|
Galkowski D, Ratajczak MZ, Kocki J, Darzynkiewicz Z. Of Cytometry, Stem Cells and Fountain of Youth. Stem Cell Rev Rep 2018; 13:465-481. [PMID: 28364326 DOI: 10.1007/s12015-017-9733-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Outlined are advances of cytometry applications to identify and sort stem cells, of laser scanning cytometry and ImageStream imaging instrumentation to further analyze morphometry of these cells, and of mass cytometry to classify a multitude of cellular markers in large cell populations. Reviewed are different types of stem cells, including potential candidates for cancer stem cells, with respect to their "stemness", and other characteristics. Appraised is further progress in identification and isolation of the "very small embryonic-like stem cells" (VSELs) and their autogenous transplantation for tissue repair and geroprotection. Also assessed is a function of hyaluronic acid, the major stem cells niche component, as a guardian and controller of stem cells. Briefly appraised are recent advances and challenges in the application of stem cells in regenerative medicine and oncology and their future role in different disciplines of medicine, including geriatrics.
Collapse
Affiliation(s)
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University in Lublin, 20-080, Lublin, Poland
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, 10095, USA.
| |
Collapse
|
32
|
Human ISL1 + Ventricular Progenitors Self-Assemble into an In Vivo Functional Heart Patch and Preserve Cardiac Function Post Infarction. Mol Ther 2018; 26:1644-1659. [PMID: 29606507 PMCID: PMC6035340 DOI: 10.1016/j.ymthe.2018.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 11/26/2022] Open
Abstract
The generation of human pluripotent stem cell (hPSC)-derived ventricular progenitors and their assembly into a 3-dimensional in vivo functional ventricular heart patch has remained an elusive goal. Herein, we report the generation of an enriched pool of hPSC-derived ventricular progenitors (HVPs), which can expand, differentiate, self-assemble, and mature into a functional ventricular patch in vivo without the aid of any gel or matrix. We documented a specific temporal window, in which the HVPs will engraft in vivo. On day 6 of differentiation, HVPs were enriched by depleting cells positive for pluripotency marker TRA-1-60 with magnetic-activated cell sorting (MACS), and 3 million sorted cells were sub-capsularly transplanted onto kidneys of NSG mice where, after 2 months, they formed a 7 mm × 3 mm × 4 mm myocardial patch resembling the ventricular wall. The graft acquired several features of maturation: expression of ventricular marker (MLC2v), desmosomes, appearance of T-tubule-like structures, and electrophysiological action potential signature consistent with maturation, all this in a non-cardiac environment. We further demonstrated that HVPs transplanted into un-injured hearts of NSG mice remain viable for up to 8 months. Moreover, transplantation of 2 million HVPs largely preserved myocardial contractile function following myocardial infarction. Taken together, our study reaffirms the promising idea of using progenitor cells for regenerative therapy.
Collapse
|
33
|
Ban K, Bae S, Yoon YS. Current Strategies and Challenges for Purification of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Theranostics 2017. [PMID: 28638487 PMCID: PMC5479288 DOI: 10.7150/thno.19427] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) are considered a most promising option for cell-based cardiac repair. Hence, various protocols have been developed for differentiating hPSCs into CMs. Despite remarkable improvement in the generation of hPSC-CMs, without purification, these protocols can only generate mixed cell populations including undifferentiated hPSCs or non-CMs, which may elicit adverse outcomes. Therefore, one of the major challenges for clinical use of hPSC-CMs is the development of efficient isolation techniques that allow enrichment of hPSC-CMs. In this review, we will discuss diverse strategies that have been developed to enrich hPSC-CMs. We will describe major characteristics of individual hPSC-CM purification methods including their scientific principles, advantages, limitations, and needed improvements. Development of a comprehensive system which can enrich hPSC-CMs will be ultimately useful for cell therapy for diseased hearts, human cardiac disease modeling, cardiac toxicity screening, and cardiac tissue engineering.
Collapse
|
34
|
Yuan X, Qi H, Li X, Wu F, Fang J, Bober E, Dobreva G, Zhou Y, Braun T. Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice. J Clin Invest 2017; 127:2235-2248. [PMID: 28436940 DOI: 10.1172/jci88725] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) represents the most prevalent inborn anomaly. Only a minority of CHD cases are attributed to genetic causes, suggesting a major role of environmental factors. Nonphysiological hypoxia during early pregnancy induces CHD, but the underlying reasons are unknown. Here, we have demonstrated that cells in the mouse heart tube are hypoxic, while cardiac progenitor cells (CPCs) expressing islet 1 (ISL1) in the secondary heart field (SHF) are normoxic. In ISL1+ CPCs, induction of hypoxic responses caused CHD by repressing Isl1 and activating NK2 homeobox 5 (Nkx2.5), resulting in decreased cell proliferation and enhanced cardiomyocyte specification. We found that HIF1α formed a complex with the Notch effector hes family bHLH transcription factor 1 (HES1) and the protein deacetylase sirtuin 1 (SIRT1) at the Isl1 gene. This complex repressed Isl1 in the hypoxic heart tube or following induction of ectopic hypoxic responses. Subsequently, reduced Isl1 expression abrogated ISL1-dependent recruitment of histone deacetylases HDAC1/5, inhibiting Nkx2.5 expression. Inactivation of Sirt1 in ISL1+ CPCs blocked Isl1 suppression via the HIF1α/HES1/SIRT1 complex and prevented CHDs induced by pathological hypoxia. Our results indicate that spatial differences in oxygenation of the developing heart serve as signals to control CPC expansion and cardiac morphogenesis. We propose that physiological hypoxia coordinates homeostasis of CPCs, providing mechanistic explanations for some nongenetic causes of CHD.
Collapse
|
35
|
Atmanli A, Domian IJ. Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease. Trends Cell Biol 2016; 27:352-364. [PMID: 28007424 DOI: 10.1016/j.tcb.2016.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
The advent of human pluripotent stem cell (hPSC) biology has opened unprecedented opportunities for the use of tissue engineering to generate human cardiac tissue for in vitro study. Engineering cardiac constructs that recapitulate human development and disease requires faithful recreation of the cardiac niche in vitro. Here we discuss recent progress in translating the in vivo cardiac microenvironment into PSC models of the human heart. We review three key physiologic features required to recreate the cardiac niche and facilitate normal cardiac differentiation and maturation: the biochemical, biophysical, and bioelectrical signaling cues. Finally, we discuss key barriers that must be overcome to fulfill the promise of stem cell biology in preclinical applications and ultimately in clinical practice.
Collapse
Affiliation(s)
- Ayhan Atmanli
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Ibrahim John Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
36
|
Pacheco-Leyva I, Matias AC, Oliveira DV, Santos JMA, Nascimento R, Guerreiro E, Michell AC, van De Vrugt AM, Machado-Oliveira G, Ferreira G, Domian I, Bragança J. CITED2 Cooperates with ISL1 and Promotes Cardiac Differentiation of Mouse Embryonic Stem Cells. Stem Cell Reports 2016; 7:1037-1049. [PMID: 27818139 PMCID: PMC5161512 DOI: 10.1016/j.stemcr.2016.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/07/2023] Open
Abstract
The transcriptional regulator CITED2 is essential for heart development. Here, we investigated the role of CITED2 in the specification of cardiac cell fate from mouse embryonic stem cells (ESC). The overexpression of CITED2 in undifferentiated ESC was sufficient to promote cardiac cell emergence upon differentiation. Conversely, the depletion of Cited2 at the onset of differentiation resulted in a decline of ESC ability to generate cardiac cells. Moreover, loss of Cited2 expression impairs the expression of early mesoderm markers and cardiogenic transcription factors (Isl1, Gata4, Tbx5). The cardiogenic defects in Cited2-depleted cells were rescued by treatment with recombinant CITED2 protein. We showed that Cited2 expression is enriched in cardiac progenitors either derived from ESC or mouse embryonic hearts. Finally, we demonstrated that CITED2 and ISL1 proteins interact physically and cooperate to promote ESC differentiation toward cardiomyocytes. Collectively, our results show that Cited2 plays a pivotal role in cardiac commitment of ESC.
Collapse
Affiliation(s)
- Ivette Pacheco-Leyva
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - Ana Catarina Matias
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - Daniel V Oliveira
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - João M A Santos
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - Rita Nascimento
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - Eduarda Guerreiro
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - Anna C Michell
- Division of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Annebel M van De Vrugt
- Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA; Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Gisela Machado-Oliveira
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - Guilherme Ferreira
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Ibrahim Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA; Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - José Bragança
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal; ABC - Algarve Biomedical Centre, 8005-139 Faro, Portugal.
| |
Collapse
|
37
|
Nelson DO, Lalit PA, Biermann M, Markandeya YS, Capes DL, Addesso L, Patel G, Han T, John MC, Powers PA, Downs KM, Kamp TJ, Lyons GE. Irx4 Marks a Multipotent, Ventricular-Specific Progenitor Cell. Stem Cells 2016; 34:2875-2888. [PMID: 27570947 DOI: 10.1002/stem.2486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022]
Abstract
While much progress has been made in the resolution of the cellular hierarchy underlying cardiogenesis, our understanding of chamber-specific myocardium differentiation remains incomplete. To better understand ventricular myocardium differentiation, we targeted the ventricle-specific gene, Irx4, in mouse embryonic stem cells to generate a reporter cell line. Using an antibiotic-selection approach, we purified Irx4+ cells in vitro from differentiating embryoid bodies. The isolated Irx4+ cells proved to be highly proliferative and presented Cxcr4, Pdgfr-alpha, Flk1, and Flt1 on the cell surface. Single Irx4+ ventricular progenitor cells (VPCs) exhibited cardiovascular potency, generating endothelial cells, smooth muscle cells, and ventricular myocytes in vitro. The ventricular specificity of the Irx4+ population was further demonstrated in vivo as VPCs injected into the cardiac crescent subsequently produced Mlc2v+ myocytes that exclusively contributed to the nascent ventricle at E9.5. These findings support the existence of a newly identified ventricular myocardial progenitor. This is the first report of a multipotent cardiac progenitor that contributes progeny specific to the ventricular myocardium. Stem Cells 2016;34:2875-2888.
Collapse
Affiliation(s)
- Daryl O Nelson
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Pratik A Lalit
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mitch Biermann
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yogananda S Markandeya
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Deborah L Capes
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Luke Addesso
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Gina Patel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tianxiao Han
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Manorama C John
- University of Wisconsin Biotechnology Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Patricia A Powers
- University of Wisconsin Biotechnology Center, University of Wisconsin, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gary E Lyons
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
38
|
Differentiation-Associated MicroRNA Alterations in Mouse Heart-Derived Sca-1(+)CD31(-) and Sca-1(+)CD31(+) Cells. Stem Cells Int 2016; 2016:9586751. [PMID: 27298624 PMCID: PMC4889861 DOI: 10.1155/2016/9586751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/02/2016] [Accepted: 03/20/2016] [Indexed: 12/02/2022] Open
Abstract
Cardiac resident stem/progenitor cells (CSC/CPCs) are critical to the cellular and functional integrity of the heart because they maintain myocardial cell homeostasis. Several populations of CSC/CPCs have been identified based on expression of different stem cell-associated antigens. Sca-1+ cells in the cardiac tissue may be the most common CSC/CPCs. However, they are a heterogeneous cell population and, in transplants, clinicians might transplant more endothelial cells, cardiomyocytes, or other cells than stem cells. The purposes of this study were to (1) isolate CSC/CPCs with Lin−CD45−Sca-1+CD31− and Lin−CD45−Sca-1+CD31+ surface antigens using flow-activated cell sorting; (2) investigate their differentiation potential; and (3) determine the molecular basis for differences in stemness characteristics between cell subtypes. The results indicated that mouse heart-derived Sca-1+CD31− cells were multipotent and retained the ability to differentiate into different cardiac cell lineages, but Sca-1+CD31+ cells did not. Integrated analysis of microRNA and mRNA expression indicated that 20 microRNAs and 49 mRNAs were inversely associated with Sca-1+CD31− and Sca-1+CD31+ subtype stemness characteristics. In particular, mmu-miR-322-5p had more targeted and inversely associated genes and transcription factors and might have higher potential for CSC/CPCs differentiation.
Collapse
|
39
|
Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells. Nat Commun 2016; 7:10774. [PMID: 26952167 PMCID: PMC4786749 DOI: 10.1038/ncomms10774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 01/19/2016] [Indexed: 01/10/2023] Open
Abstract
Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human–mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1+ vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo. Understanding coronary vessels development provides basis for regenerative strategies. Here, Soh et al. identify endothelin-1 as a key molecule driving long-term expansion of ISL1+ bipotent vascular progenitors derived from human embryonic stem cells, and show that these cells can regenerate coronary vessels in mice.
Collapse
|
40
|
Affiliation(s)
- Mo Li
- From the Gene Expression Laboratory, the Salk Institute for Biological Studies, La Jolla, CA (M.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, Murcia, Spain (M.L.)
| | - Juan Carlos Izpisua Belmonte
- From the Gene Expression Laboratory, the Salk Institute for Biological Studies, La Jolla, CA (M.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, Murcia, Spain (M.L.)
| |
Collapse
|
41
|
Towards Reliable Organs-on-Chips and Humans-on-Chips. MICROSYSTEMS FOR ENHANCED CONTROL OF CELL BEHAVIOR 2016. [DOI: 10.1007/978-3-319-29328-8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Chen C, Kong X, Lee IS. Modification of surface/neuron interfaces for neural cell-type specific responses: a review. ACTA ACUST UNITED AC 2015; 11:014108. [PMID: 26694886 DOI: 10.1088/1748-6041/11/1/014108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface/neuron interfaces have played an important role in neural repair including neural prostheses and tissue engineered scaffolds. This comprehensive literature review covers recent studies on the modification of surface/neuron interfaces. These interfaces are identified in cases both where the surfaces of substrates or scaffolds were in direct contact with cells and where the surfaces were modified to facilitate cell adhesion and controlling cell-type specific responses. Different sources of cells for neural repair are described, such as pheochromocytoma neuronal-like cell, neural stem cell (NSC), embryonic stem cell (ESC), mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPS). Commonly modified methods are discussed including patterned surfaces at micro- or nano-scale, surface modification with conducting coatings, and functionalized surfaces with immobilized bioactive molecules. These approaches to control cell-type specific responses have enormous potential implications in neural repair.
Collapse
Affiliation(s)
- Cen Chen
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | |
Collapse
|
43
|
Tao L, Bei Y, Zhou Y, Xiao J, Li X. Non-coding RNAs in cardiac regeneration. Oncotarget 2015; 6:42613-22. [PMID: 26462179 PMCID: PMC4767457 DOI: 10.18632/oncotarget.6073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Developing new therapeutic strategies which could enhance cardiomyocyte regenerative capacity is of significant clinical importance. Though promising, methods to promote cardiac regeneration have had limited success due to the weak regenerative capacity of the adult mammalian heart. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs) and long non-coding RNAs (lncRNAs), are functional RNA molecules without a protein coding function that have been reported to engage in cardiac regeneration and repair. In light of current regenerative strategies, the regulatory effects of ncRNAs can be categorized as follows: cardiac proliferation, cardiac differentiation, cardiac survival and cardiac reprogramming. miR-590, miR-199a, miR-17-92 cluster, miR302-367 cluster and miR-222 have been reported to promote cardiomyocyte proliferation while miR-1 and miR-133 suppress that. miR-499 and miR-1 promote the differentiation of cardiac progenitors into cardiomyocyte while miR-133 and H19 inhibit that. miR-21, miR-24, miR-221, miR-199a and miR-155 improve cardiac survival while miR-34a, miR-1 and miR-320 exhibit opposite effects. miR-1, miR-133, miR-208 and miR-499 are capable of reprogramming fibroblasts to cardiomyocyte-like cells and miR-284, miR-302, miR-93 , miR-106b and lncRNA-ST8SIA3 are able to enhace cardiac reprogramming. Exploring non-coding RNA-based methods to enhance cardiac regeneration would be instrumental for devising new effective therapies against cardiovascular diseases.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Affiliation(s)
- Adam W. Feinberg
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;
| |
Collapse
|
45
|
Breckwoldt K, Weinberger F, Eschenhagen T. Heart regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1749-59. [PMID: 26597703 DOI: 10.1016/j.bbamcr.2015.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023]
Abstract
Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Florian Weinberger
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
46
|
Dupays L, Shang C, Wilson R, Kotecha S, Wood S, Towers N, Mohun T. Sequential Binding of MEIS1 and NKX2-5 on the Popdc2 Gene: A Mechanism for Spatiotemporal Regulation of Enhancers during Cardiogenesis. Cell Rep 2015; 13:183-195. [PMID: 26411676 PMCID: PMC4597108 DOI: 10.1016/j.celrep.2015.08.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/17/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
The homeobox transcription factors NKX2-5 and MEIS1 are essential for vertebrate heart development and normal physiology of the adult heart. We show that, during cardiac differentiation, the two transcription factors have partially overlapping expression patterns, with the result that as cardiac progenitors from the anterior heart field differentiate and migrate into the cardiac outflow tract, they sequentially experience high levels of MEIS1 and then increasing levels of NKX2-5. Using the Popdc2 gene as an example, we also show that a significant proportion of target genes for NKX2-5 contain a binding motif recognized by NKX2-5, which overlaps with a binding site for MEIS1. Binding of the two factors to such overlapping sites is mutually exclusive, and this provides a simple regulatory mechanism for spatial and temporal synchronization of a common pool of targets between NKX2-5 and MEIS1. NKX2-5 shares a DNA-binding site with MEIS1 MEIS1 and NKX2-5 successively bind a Popdc2 enhancer Successive binding by MEIS1 and NKX2-5 is a general mechanism of regulation NKX2-5 represses fast troponin isoforms in the atria
Collapse
Affiliation(s)
- Laurent Dupays
- The Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Catherine Shang
- The Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Robert Wilson
- The Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Surendra Kotecha
- The Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Sophie Wood
- Procedural Services Section, The Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Norma Towers
- The Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Timothy Mohun
- The Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
47
|
Ovchinnikov DA, Hidalgo A, Yang SK, Zhang X, Hudson J, Mazzone SB, Chen C, Cooper-White JJ, Wolvetang EJ. Isolation of contractile cardiomyocytes from human pluripotent stem-cell-derived cardiomyogenic cultures using a human NCX1-EGFP reporter. Stem Cells Dev 2015; 24:11-20. [PMID: 25075536 DOI: 10.1089/scd.2014.0195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prospective isolation of defined contractile human pluripotent stem cell (hPSC)-derived cardiomyocytes is advantageous for regenerative medicine and drug screening applications. Currently, enrichment of cardiomyocyte populations from such cultures can be achieved by combinations of cell surface markers or the labor-intensive genetic modification of cardiac developmental genes, such as NKX2.5 or MYH6, with fluorescent reporters. To create a facile, portable method for the isolation of contractile cardiomyocytes from cardiomyogenic hPSC cultures, we employed a highly conserved cardiac enhancer sequence in the SLC8A1 (NCX1) gene to generate a lentivirally deliverable, antibiotic-selectable NCX1cp-EGFP reporter. We show that human embryonic stem cells (and induced pluripotent stem cells) transduced with the NCX1cp-EGFP reporter cassette exhibit enhanced green fluorescent protein (EGFP) expression in cardiac progenitors from 5 days into the directed cardiac hPSC differentiation protocol, with all reporter-positive cells transitioning to spontaneously contracting foci 3 days later. In subsequent stages of cardiomyocyte maturation, NCX1cp-EGFP expression was exclusively limited to contractile cells expressing high levels of cardiac troponin T (CTNT), MLC2a/v, and α-actinin proteins, and was not present in CD90/THY1(+) cardiac stromal cells or CD31/PECAM(+) endothelial cells. Flow-assisted cytometrically sorted EGFP(+) fractions of differentiated cultures were highly enriched in both early (NKX2.5 and TBX5) and late (CTNT/TNNI2, MYH6, MYH7, NPPA, and MYL2) cardiomyocyte markers, with a significant proportion of cells displaying a ventricular-like action potential pattern in patch-clamp recordings. We conclude that the use of the cardiac-specific promoter of the human SLC8A1(NCX1) gene is an effective strategy to isolate contractile cardiac cells and their progenitors from hPSC-derived cardiomyogenic cultures.
Collapse
Affiliation(s)
- Dmitry A Ovchinnikov
- 1 Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St. Lucia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Birket MJ, Ribeiro MC, Verkerk AO, Ward D, Leitoguinho AR, den Hartogh SC, Orlova VV, Devalla HD, Schwach V, Bellin M, Passier R, Mummery CL. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol 2015; 33:970-9. [PMID: 26192318 DOI: 10.1038/nbt.3271] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022]
Abstract
The inability of multipotent cardiovascular progenitor cells (CPCs) to undergo multiple divisions in culture has precluded stable expansion of precursors of cardiomyocytes and vascular cells. This contrasts with neural progenitors, which can be expanded robustly and are a renewable source of their derivatives. Here we use human pluripotent stem cells bearing a cardiac lineage reporter to show that regulated MYC expression enables robust expansion of CPCs with insulin-like growth factor-1 (IGF-1) and a hedgehog pathway agonist. The CPCs can be patterned with morphogens, recreating features of heart field assignment, and controllably differentiated to relatively pure populations of pacemaker-like or ventricular-like cardiomyocytes. The cells are clonogenic and can be expanded for >40 population doublings while retaining the ability to differentiate into cardiomyocytes and vascular cells. Access to CPCs will allow precise recreation of elements of heart development in vitro and facilitate investigation of the molecular basis of cardiac fate determination. This technology is applicable for cardiac disease modeling, toxicology studies and tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Dorien Ward
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Verena Schwach
- Leiden University Medical Center, Leiden, the Netherlands
| | - Milena Bellin
- Leiden University Medical Center, Leiden, the Netherlands
| | - Robert Passier
- Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
49
|
Holt-Casper D, Theisen JM, Moreno AP, Warren M, Silva F, Grainger DW, Bull DA, Patel AN. Novel xeno-free human heart matrix-derived three-dimensional scaffolds. J Transl Med 2015; 13:194. [PMID: 26084398 PMCID: PMC4505384 DOI: 10.1186/s12967-015-0559-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/02/2015] [Indexed: 12/05/2022] Open
Abstract
Rationale Myocardial infarction (MI) results in damaged heart tissue which can progress to severely reduce cardiac function, leading to death. Recent studies have injected dissociated, suspended cardiac cells into coronary arteries to restore function with limited results attributed to poor cell retention and cell death. Extracellular matrix (ECM) injected into damaged cardiac tissue sites show some promising effects. However, combined use of human cardiac ECM and cardiac cells may produce superior benefits to restore cardiac function. Objective This study was designed to assess use of new three-dimensional human heart ECM-derived scaffolds to serve as vehicles to deliver cardiac-derived cells directly to damaged heart tissue and improve cell retention at these sites while also providing biomechanical support and attracting host cell recruitment. Methods and Results ECM-derived porous protein scaffolds were fabricated from human heart tissues. These scaffolds were designed to carry, actively promote and preserve cardiac cell phenotype, viability and functional retention in tissue sites. ECM scaffolds were optimized and were seeded with human cardiomyocytes, cultured and subsequently implanted ex vivo onto infarcted murine epicardium. Seeded human cardiomyocytes readily adhered to human cardiac-derived ECM scaffolds and maintained representative phenotypes including expression of cardiomyocyte-specific markers, and remained electrically synchronous within the scaffold in vitro. Ex vivo, cardiomyocyte-seeded ECM scaffolds spontaneously adhered and incorporated into murine ventricle. Conclusions Decellularized human cardiac tissue-derived 3D ECM scaffolds are effective delivery vehicles for human cardiac cells to directly target ischemic heart tissue and warrant further studies to assess their therapeutic potential in restoring essential cardiac functions. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0559-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dolly Holt-Casper
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Jeff M Theisen
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Alonso P Moreno
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112-5000, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112-5000, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Francisco Silva
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - David W Grainger
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112-5000, USA. .,Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - David A Bull
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, 84112, USA. .,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112-5000, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Amit N Patel
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, 84112, USA. .,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112-5000, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA. .,University of Utah, 30 N 1900 E SOM 3c127, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
50
|
Wang B, Tan L, Deng D, Lu T, Zhou C, Li Z, Tang Z, Wu Z, Tang H. Novel stable cytokine delivery system in physiological pH solution: chitosan oligosaccharide/heparin nanoparticles. Int J Nanomedicine 2015; 10:3417-27. [PMID: 26056441 PMCID: PMC4431508 DOI: 10.2147/ijn.s82091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Cell therapy is a promising strategy for tissue regeneration. Key to this strategy is mobilization and recruitment of exogenous or autologous stem/progenitor cells by cytokines. However, there is no effective cytokine delivery system available for clinic application, in particular for myocardial regeneration. The aim of this study was to develop a novel cytokine delivery system that is stable in solution at physiological pH. Methods Four groups of self-assembled chitosan oligosaccharide/heparin (CSO/H) nanoparticles were prepared with various volume ratios of chitosan oligosaccharide to heparin (5:2, 5:4, 4:15, 1:5) and characterized by laser diffraction, particle size analysis, and transmission electron microscopy. The encapsulation efficiency and loading content of two cytokines, ie, stromal cell-derived factor (SDF)-1α and vascular endothelial growth factor (VEGF) were quantified using an enzyme-linked immunosorbent assay. The biological activity of the loaded SDF-1α and VEGF was evaluated using the transwell migration assay and MTT assay. The dispersion profiles for the cytokine-loaded nanoparticles were quantified using fluorescence molecular tomography. Results CSO/H nanoparticles were prepared successfully in solution with physiological pH. The particle sizes in the four treatment groups were in the range of 96.2–210.5 nm and the zeta potential ranged from −29.4 mV to 24.2 mV. The loading efficiency in the CSO/H nanoparticle groups with the first three ratios was more than 90%. SDF-1α loaded into CSO/H nanoparticles retained its migration activity and VEGF loaded into CSO/H nanoparticles continued to show proliferation activity. The in vivo dispersion test showed that the CSO/H nanoparticles enabled to VEGF to accumulate locally for a longer period of time. Conclusion CSO/H nanoparticles have a high cytokine loading capacity and allow cytokines to maintain their bioactivity for longer, are stable in an environment with physiological pH, and may be a promising cytokine delivery system for tissue regeneration.
Collapse
Affiliation(s)
- Bin Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Ling Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Dengpu Deng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Changwei Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhongkui Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Hao Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|