1
|
Yu H, Resch W, Moss B. Poxvirus structural biology for application to vaccine design. Trends Immunol 2025:S1471-4906(25)00094-8. [PMID: 40340168 DOI: 10.1016/j.it.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025]
Abstract
The upsurge of mpox (formerly known as monkeypox) in Africa and its global spread highlight the need for improved vaccines. The development of new recombinant vaccines, including mRNA and protein nanoparticles, depends on understanding the biology of poxviruses and selecting the most protective immunogens. Animal studies demonstrate that vaccines need to target the antigens of both infectious forms - the mature virion and the enveloped virion - which display surface proteins responsible for cell entry and cell-to-cell spread, respectively. Although some of these proteins have been shown to induce protective antibodies, others including most of those that are essential for membrane fusion remain to be tested. We review the structures of orthopoxvirus surface proteins as a guide to the selection of optimal antigens for recombinant vaccines.
Collapse
Affiliation(s)
- Huibin Yu
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wolfgang Resch
- Center for Information Technology, NIH, Bethesda, MD, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
De T, Thangamani S, Urbański A, Yakimovich A. A digital photography dataset for Vaccinia Virus plaque quantification using Deep Learning. Sci Data 2025; 12:719. [PMID: 40307255 PMCID: PMC12043936 DOI: 10.1038/s41597-025-05030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Virological plaque assay is the major method of detecting and quantifying infectious viruses in research and diagnostic samples. Furthermore, viral plaque phenotypes contain information about the life cycle and spreading mechanism of the virus forming them. While some modernisations have been proposed, the conventional assay typically involves manual quantification of plaque phenotypes, which is both laborious and time-consuming. Here, we present an annotated dataset of digital photographs of plaque assay plates of Vaccinia virus - a prototypic propoxvirus. We demonstrate how analysis of these plates can be performed using deep learning by training models based on the leading architecture for biomedical instance segmentation - StarDist. Finally, we show that the entire analysis can be achieved in a single step by HydraStarDist - the modified architecture we propose.
Collapse
Affiliation(s)
- Trina De
- Center for Advanced Systems Understanding (CASUS), Görlitz, 02826, Germany
- Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, 01328, Germany
- Department of Computer Science, Technische Universität Dresden, Dresden, 01069, Germany
| | - Subasini Thangamani
- Center for Advanced Systems Understanding (CASUS), Görlitz, 02826, Germany
- Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, 01328, Germany
| | - Adrian Urbański
- Center for Advanced Systems Understanding (CASUS), Görlitz, 02826, Germany
- Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, 01328, Germany
- Institute of Computer Science, University of Wrocław, Wrocław, 50-383, Poland
| | - Artur Yakimovich
- Center for Advanced Systems Understanding (CASUS), Görlitz, 02826, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, 01328, Germany.
- Institute of Computer Science, University of Wrocław, Wrocław, 50-383, Poland.
| |
Collapse
|
3
|
Baabdulla AA, Cristi F, Shmulevitz M, Hillen T. Mathematical modelling of reoviruses in cancer cell cultures. PLoS One 2025; 20:e0318078. [PMID: 40294035 PMCID: PMC12036895 DOI: 10.1371/journal.pone.0318078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/09/2025] [Indexed: 04/30/2025] Open
Abstract
Oncolytic virotherapy has emerged as a potential cancer therapy, utilizing viruses to selectively target and replicate within cancer cells while preserving normal cells. In this paper, we investigate the oncolytic potential of unmodified reovirus T3wt relative to a mutated variant SV5. In animal cancer cell monolayer experiments it was found that SV5 was more oncolytic relative to T3wt. SV5 forms larger sized plaques on cancer cell monolayers and spreads to farther distances from the initial site of infection as compared to T3wt. Paradoxically, SV5 attaches to cancer cells less efficiently than T3wt, which lead us to hypothesize that there might be an optimal binding affinity with maximal oncolytic activity. To understand the relationship between the binding process and virus spread for T3wt and SV5, we employ mathematical modelling. A reaction-diffusion model is applied, which is fit to the available data and then validated on data that were not used for the fit. Analysis of our model shows that there is an optimal binding rate that leads to maximum viral infection of the cancer monolayer, and we estimate this value for T3wt and SV5. Moreover, we find that the viral burst size is an important parameter for viral spread, and that a combination of efficient binding and large burst sizes is a promising direction to further develop anti-cancer viruses.
Collapse
Affiliation(s)
- Arwa Abdulla Baabdulla
- Department of Mathematical Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Francisca Cristi
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Maya Shmulevitz
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Hillen
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Deng Y, Navarro-Forero S, Yang Z. Temporal expression classes and functions of vaccinia virus and mpox (monkeypox) virus genes. mBio 2025; 16:e0380924. [PMID: 40111027 PMCID: PMC11980589 DOI: 10.1128/mbio.03809-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Poxviruses comprise pathogens that are highly pathogenic to humans and animals, causing diseases such as smallpox and mpox (formerly monkeypox). The family also contains members developed as vaccine vectors and oncolytic agents to fight other diseases. Vaccinia virus is the prototype poxvirus and the vaccine used to eradicate smallpox. Poxvirus genes follow a cascade temporal expression pattern, categorized into early, intermediate, and late stages using distinct transcription factors. This review comprehensively summarized the temporal expression classification of over 200 vaccinia virus genes. The relationships between expression classes and functions, as well as different branches of immune responses, were discussed. Based on the vaccinia virus orthologs, we classified the temporal expression classes of all the mpox virus genes, including a few that were not previously annotated with orthologs in vaccinia viruses. Additionally, we reviewed the functions of all vaccinia virus genes based on the up-to-date published papers. This review provides a readily usable resource for researchers working on poxvirus biology, medical countermeasures, and poxvirus utility development.
Collapse
Affiliation(s)
- Yining Deng
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Santiago Navarro-Forero
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Barreto‐Vieira DF, Miranda MD, da Silva MAN, de Almeida AS, de Almeida ALT, Bandeira DM, Ferreira VNS, Rosa AS, Girard‐Dias W, Archanjo BS, Barth OM. MPXV: Update on Morphological and Morphogenesis Aspects Through Transmission and Scanning Electron Microscopies and 3D Reconstruction. J Med Virol 2025; 97:e70180. [PMID: 39825732 PMCID: PMC11742698 DOI: 10.1002/jmv.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/14/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential. The most robust in vitro studies on poxviruses concern the Vaccinia virus, and there are significant gaps in understanding the replicative cycle of MPXV. Herein, we conducted ultrastructural studies using transmission and scanning electron microscopies and 3D reconstruction to describe and elucidate the step-by-step morphogenesis of MPXV. Vero cells, derived from the kidney lineage of Cercopithecus aethiops monkeys, were infected with a strain isolated from an oropharyngeal swab of a patient with suspected Mpox, collected during an observational cohort study conducted between June 12 and August 19, 2022, in Rio de Janeiro, Brazil. Infected Vero cells exhibited several morphological alterations, including cell lysis plaque formation, nuclei with altered chromatin profiles, thickening of the rough endoplasmic reticulum (RER), presence of myelin figures, disorganization of mitochondrial cristae, and the formation of a granular and fibrous matrix (viral factory) surrounded by mitochondria and RER cisternae in a perinuclear space. Viral entry into cells occurred via endocytosis MPXV particles were observed adhering to cytoskeletal filaments, and viral progeny extrusion occurred through exocytosis. This article presents novel data on the morphogenesis of MPXV that have not been previously documented in the literature.
Collapse
Affiliation(s)
| | - Milene Dias Miranda
- Laboratório de Morfologia e Morfogênese ViralInstituto Oswaldo Cruz, Fundação Oswaldo Cruz‐FiocruzRio de JaneiroBrazil
| | | | - Andressa Santos de Almeida
- Laboratório de Morfologia e Morfogênese ViralInstituto Oswaldo Cruz, Fundação Oswaldo Cruz‐FiocruzRio de JaneiroBrazil
| | - Ana Luisa Teixeira de Almeida
- Laboratório de Morfologia e Morfogênese ViralInstituto Oswaldo Cruz, Fundação Oswaldo Cruz‐FiocruzRio de JaneiroBrazil
| | - Derick Mendes Bandeira
- Laboratório de Morfologia e Morfogênese ViralInstituto Oswaldo Cruz, Fundação Oswaldo Cruz‐FiocruzRio de JaneiroBrazil
| | - Vivian Neuza S. Ferreira
- Laboratório de Morfologia e Morfogênese ViralInstituto Oswaldo Cruz, Fundação Oswaldo Cruz‐FiocruzRio de JaneiroBrazil
| | - Alice Santos Rosa
- Laboratório de Morfologia e Morfogênese ViralInstituto Oswaldo Cruz, Fundação Oswaldo Cruz‐FiocruzRio de JaneiroBrazil
| | - Wendell Girard‐Dias
- Plataforma de Microscopia Eletrônica Rudolf BarthInstituto Oswaldo Cruz, Fundação Oswaldo Cruz‐FiocruzRio de JaneiroBrazil
| | - Bráulio Soares Archanjo
- Núcleo de Laboratórios de MicroscopiaInstituto Nacional de Metrologia, Qualidade e TecnologiaRio de JaneiroBrazil
| | - Ortrud Monika Barth
- Laboratório de Morfologia e Morfogênese ViralInstituto Oswaldo Cruz, Fundação Oswaldo Cruz‐FiocruzRio de JaneiroBrazil
| |
Collapse
|
6
|
Qi Z, Gu J, Qu L, Shi X, He Z, Sun J, Tan L, Sun M. Advancements of engineered live oncolytic biotherapeutics (microbe/virus/cells): Preclinical research and clinical progress. J Control Release 2024; 375:209-235. [PMID: 39244159 DOI: 10.1016/j.jconrel.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The proven efficacy of immunotherapy in fighting tumors has been firmly established, heralding a new era in harnessing both the innate and adaptive immune systems for cancer treatment. Despite its promise, challenges such as inefficient delivery, insufficient tumor penetration, and considerable potential toxicity of immunomodulatory agents have impeded the advancement of immunotherapies. Recent endeavors in the realm of tumor prophylaxis and management have highlighted the use of living biological entities, including bacteria, oncolytic viruses, and immune cells, as a vanguard for an innovative class of live biotherapeutic products (LBPs). These LBPs are gaining recognition for their inherent ability to target tumors. However, these LBPs must contend with significant barriers, including robust immune clearance mechanisms, cytotoxicity and other in vivo adverse effects. Priority must be placed on enhancing their safety and therapeutic indices. This review consolidates the latest preclinical research and clinical progress pertaining to the exploitation of engineered biologics, spanning bacteria, oncolytic viruses, immune cells, and summarizes their integration with combination therapies aimed at circumventing current clinical impasses. Additionally, the prospective utilities and inherent challenges of the biotherapeutics are deliberated, with the objective of accelerating their clinical application in the foreseeable future.
Collapse
Affiliation(s)
- Zhengzhuo Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Junmou Gu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lihang Qu
- The 4th People's Hospital of Shenyang, China Medical University, Shenyang, Liaoning, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Lingchen Tan
- School of Life Sciences and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
7
|
Aquino ILM, Reis ES, Moreira ROAM, Arias NEC, Barcelos MG, Queiroz VF, Arifa RDDN, Lucas LMB, Tatara JM, Souza DG, Costa A, Rosa L, Almeida GMF, Kroon EG, Abrahão JS. Giant viruses inhibit superinfection by downregulating phagocytosis in Acanthamoeba. J Virol 2024; 98:e0104524. [PMID: 39225468 PMCID: PMC11494976 DOI: 10.1128/jvi.01045-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
In the context of the virosphere, viral particles can compete for host cells. In this scenario, some viruses block the entry of exogenous virions upon infecting a cell, a phenomenon known as superinfection inhibition. The molecular mechanisms associated with superinfection inhibition vary depending on the viral species and the host, but generally, blocking superinfection ensures the genetic supremacy of the virus's progeny that first infects the cell. Giant amoeba-infecting viruses have attracted the scientific community's attention due to the complexity of their particles and genomes. However, there are no studies on the occurrence of superinfection and its inhibition induced by giant viruses. This study shows that mimivirus, moumouvirus, and megavirus, exhibit different strategies related to the infection of Acanthamoeba. For the first time, we have reported that mimivirus and moumouvirus induce superinfection inhibition in amoebas. Interestingly, megaviruses do not exhibit this ability, allowing continuous entry of exogenous virions into infected amoebas. Our investigation into the mechanisms behind superinfection blockage reveals that mimivirus and moumouvirus inhibit amoebic phagocytosis, leading to significant changes in the morphology and activity of the host cells. In contrast, megavirus-infected amoebas continue incorporating newly formed virions, negatively affecting the available viral progeny. This effect, however, is reversible with chemical inhibition of phagocytosis. This work contributes to the understanding of superinfection and its inhibition in mimivirus, moumouvirus, and megavirus, demonstrating that despite their evolutionary relatedness, these viruses exhibit profound differences in their interactions with their hosts.IMPORTANCESome viruses block the entry of new virions upon infecting a cell, a phenomenon known as superinfection inhibition. Superinfection inhibition in giant viruses has yet to be studied. This study reveals that even closely related viruses, such as mimivirus, moumouvirus, and megavirus, have different infection strategies for Acanthamoeba. For the first time, we have reported that mimivirus and moumouvirus induce superinfection inhibition in amoebas. In contrast, megaviruses do not exhibit this ability, allowing continuous entry of exogenous virions into infected amoebas. Our investigation shows that mimivirus and moumouvirus inhibit amoebic phagocytosis, causing significant changes in host cell morphology and activity. Megavirus-infected amoebas, however, continue incorporating newly formed viruses, affecting viral progeny. This research enhances our understanding of superinfection inhibition in these viruses, highlighting their differences in host interactions.
Collapse
Affiliation(s)
- Isabella L. M. Aquino
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erik Sousa Reis
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafaella Oliveira Almeida Mattos Moreira
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nídia Esther Colquehuanca Arias
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus Gomes Barcelos
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Victória Fulgêncio Queiroz
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel Duque do Nascimento Arifa
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Larissa Mendes Barbosa Lucas
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT ‐ The Arctic University of Norway, Tromsø, Norway
| | - Daniele G. Souza
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel M. F. Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT ‐ The Arctic University of Norway, Tromsø, Norway
| | - Erna Geessien Kroon
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas S. Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
8
|
Raab JE, Hamilton DJ, Harju TB, Huynh TN, Russo BC. Pushing boundaries: mechanisms enabling bacterial pathogens to spread between cells. Infect Immun 2024; 92:e0052423. [PMID: 38661369 PMCID: PMC11385730 DOI: 10.1128/iai.00524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
For multiple intracellular bacterial pathogens, the ability to spread directly into adjacent epithelial cells is an essential step for disease in humans. For pathogens such as Shigella, Listeria, Rickettsia, and Burkholderia, this intercellular movement frequently requires the pathogens to manipulate the host actin cytoskeleton and deform the plasma membrane into structures known as protrusions, which extend into neighboring cells. The protrusion is then typically resolved into a double-membrane vacuole (DMV) from which the pathogen quickly escapes into the cytosol, where additional rounds of intercellular spread occur. Significant progress over the last few years has begun to define the mechanisms by which intracellular bacterial pathogens spread. This review highlights the interactions of bacterial and host factors that drive mechanisms required for intercellular spread with a focus on how protrusion structures form and resolve.
Collapse
Affiliation(s)
- Julie E. Raab
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Desmond J. Hamilton
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Tucker B. Harju
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Thao N. Huynh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Brian C. Russo
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| |
Collapse
|
9
|
Yu X, Zhu Y, Yin G, Wang Y, Shi X, Cheng G. Exploiting hosts and vectors: viral strategies for facilitating transmission. EMBO Rep 2024; 25:3187-3201. [PMID: 39048750 PMCID: PMC11315993 DOI: 10.1038/s44319-024-00214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Viruses have developed various strategies to ensure their survival and transmission. One intriguing strategy involves manipulating the behavior of infected arthropod vectors and hosts. Through intricate interactions, viruses can modify vector behavior, aiding in crossing barriers and improving transmission to new hosts. This manipulation may include altering vector feeding preferences, thus promoting virus transmission to susceptible individuals. In addition, viruses employ diverse dissemination methods, including cell-to-cell and intercellular transmission via extracellular vesicles. These strategies allow viruses to establish themselves in favorable environments, optimize replication, and increase the likelihood of spreading to other individuals. Understanding these complex viral strategies offers valuable insights into their biology, transmission dynamics, and potential interventions for controlling infections. Unraveling interactions between viruses, hosts, and vectors enables the development of targeted approaches to effectively mitigate viral diseases and prevent transmission.
Collapse
Affiliation(s)
- Xi Yu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gang Yin
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
10
|
Diaz-Cánova D, Moens U, Brinkmann A, Nitsche A, Okeke MI. Whole genome sequencing of recombinant viruses obtained from co-infection and superinfection of Vero cells with modified vaccinia virus ankara vectored influenza vaccine and a naturally occurring cowpox virus. Front Immunol 2024; 15:1277447. [PMID: 38633245 PMCID: PMC11021749 DOI: 10.3389/fimmu.2024.1277447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as recombinant vector vaccine against infectious diseases and cancers in humans and animals. However, one biosafety concern about the use of MVA vectored vaccine is the potential for MVA to recombine with naturally occurring orthopoxviruses in cells and hosts in which it multiplies poorly and, therefore, producing viruses with mosaic genomes with altered genetic and phenotypic properties. We previously conducted co-infection and superinfection experiments with MVA vectored influenza vaccine (MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-permissive to MVA infection) and showed that recombination occurred in both co-infected and superinfected cells. In this study, we selected the putative recombinant viruses and performed genomic characterization of these viruses. Some putative recombinant viruses displayed plaque morphology distinct of that of the parental viruses. Our analysis demonstrated that they had mosaic genomes of different lengths. The recombinant viruses, with a genome more similar to MVA-HANP (>50%), rescued deleted and/or fragmented genes in MVA and gained new host ranges genes. Our analysis also revealed that some MVA-HANP contained a partially deleted transgene expression cassette and one recombinant virus contained part of the transgene expression cassette similar to that incomplete MVA-HANP. The recombination in co-infected and superinfected Vero cells resulted in recombinant viruses with unpredictable biological and genetic properties as well as recovery of delete/fragmented genes in MVA and transfer of the transgene into replication competent CPXV. These results are relevant to hazard characterization and risk assessment of MVA vectored biologicals.
Collapse
Affiliation(s)
- Diana Diaz-Cánova
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Annika Brinkmann
- WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Malachy Ifeanyi Okeke
- Section of Biomedical Sciences, Department of Natural and Environmental Sciences, School of Arts and Sciences, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
11
|
Khairat J, Hatta M, Abdullah N, Azman A, Calvin S, Syed Hassan S. Unearthing the role of septins in viral infections. Biosci Rep 2024; 44:BSR20231827. [PMID: 38372298 PMCID: PMC10920062 DOI: 10.1042/bsr20231827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Septin proteins are a subfamily of closely related GTP-binding proteins conserved in all species except for higher plants and perform essential biological processes. Septins self-assemble into heptameric or octameric complexes and form higher-order structures such as filaments, rings, or gauzes by end-to-end binding. Their close association with cell membrane components makes them central in regulating critical cellular processes. Due to their organisation and properties, septins function as diffusion barriers and are integral in providing scaffolding to support the membrane's curvature and stability of its components. Septins are also involved in vesicle transport and exocytosis through the plasma membrane by co-localising with exocyst protein complexes. Recently, there have been emerging reports of several human and animal diseases linked to septins and abnormalities in their functions. Most of our understanding of the significance of septins during microbial diseases mainly pertains to their roles in bacterial infections but not viruses. This present review focuses on the known roles of septins in host-viral interactions as detailed by various studies.
Collapse
Affiliation(s)
- Jasmine Elanie Khairat
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad Nur Adam Hatta
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurshariza Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Adzzie Shazleen Azman
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Shee Yin Ming Calvin
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
12
|
Samolej J, White IJ, Strang BL, Mercer J. Cardiac glycosides inhibit early and late vaccinia virus protein expression. J Gen Virol 2024; 105:001971. [PMID: 38546099 PMCID: PMC10995631 DOI: 10.1099/jgv.0.001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiac glycosides (CGs) are natural steroid glycosides, which act as inhibitors of the cellular sodium-potassium ATPase pump. Although traditionally considered toxic to human cells, CGs are widely used as drugs for the treatment of cardiovascular-related medical conditions. More recently, CGs have been explored as potential anti-viral drugs and inhibit replication of a range of RNA and DNA viruses. Previously, a compound screen identified CGs that inhibited vaccinia virus (VACV) infection. However, no further investigation of the inhibitory potential of these compounds was performed, nor was there investigation of the stage(s) of the poxvirus lifecycle they impacted. Here, we investigated the anti-poxvirus activity of a broad panel of CGs. We found that all CGs tested were potent inhibitors of VACV replication. Our virological experiments showed that CGs did not impact virus infectivity, binding, or entry. Rather, experiments using recombinant viruses expressing reporter proteins controlled by VACV promoters and arabinoside release assays demonstrated that CGs inhibited early and late VACV protein expression at different concentrations. Lack of virus assembly in the presence of CGs was confirmed using electron microscopy. Thus, we expand our understanding of compounds with anti-poxvirus activity and highlight a yet unrecognized mechanism by which poxvirus replication can be inhibited.
Collapse
Affiliation(s)
- Jerzy Samolej
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Blair L. Strang
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Jason Mercer
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
13
|
Cristi F, Walters M, Narayan N, Agopsowicz K, Hitt MM, Shmulevitz M. Improved oncolytic activity of a reovirus mutant that displays enhanced virus spread due to reduced cell attachment. Mol Ther Oncolytics 2023; 31:100743. [PMID: 38033400 PMCID: PMC10685048 DOI: 10.1016/j.omto.2023.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Wild-type reovirus serotype 3 Dearing (T3wt), a non-pathogenic intestinal virus, has shown promise as a cancer therapy in clinical trials, but it would benefit from an increased potency. Given that T3wt is naturally adapted to the intestinal environment (rather than tumors), we genetically modified reovirus to improve its infectivity in cancer cells. Various reovirus mutants were created, and their oncolytic potency was evaluated in vitro using plaque size as a measure of virus fitness in cancer cells. Notably, Super Virus 5 (SV5), carrying five oncolytic mutations, displayed the largest plaques in breast cancer cells among the mutants tested, indicating the potential for enhancing oncolytic potency through the combination of mutations. Furthermore, in a HER2+ murine breast cancer model, mice treated with SV5 exhibited superior tumor reduction and increased survival compared with those treated with PBS or T3wt. Intriguingly, SV5 did not replicate faster than T3wt in cultured cells but demonstrated a farther spread relative to T3wt, attributed to its reduced attachment to cancer cells. These findings highlight the significance of increased virus spread as a crucial mechanism for improving oncolytic virus activity. Thus, genetic modifications of reovirus hold the potential for augmenting its efficacy in cancer therapy.
Collapse
Affiliation(s)
- Francisca Cristi
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Maiah Walters
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Nashae Narayan
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Kate Agopsowicz
- Department of Oncology, University of Alberta, Edmonton AB T6G 1Z2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Mary M. Hitt
- Department of Oncology, University of Alberta, Edmonton AB T6G 1Z2, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Maya Shmulevitz
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| |
Collapse
|
14
|
Basant A, Way M. The amount of Nck rather than N-WASP correlates with the rate of actin-based motility of Vaccinia virus. Microbiol Spectr 2023; 11:e0152923. [PMID: 37855608 PMCID: PMC10883800 DOI: 10.1128/spectrum.01529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/03/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Vaccinia virus is a large double-stranded DNA virus and a close relative of Mpox and Variola virus, the causative agent of smallpox. During infection, Vaccinia hijacks its host's transport systems and promotes its spread into neighboring cells by recruiting a signaling network that stimulates actin polymerization. Over the years, Vaccinia has provided a powerful model to understand how signaling networks regulate actin polymerization. Nevertheless, we still lack important quantitative information about the system, including the precise number of viral and host molecules required to induce actin polymerization. Using quantitative fluorescence microscopy techniques, we have determined the number of viral and host signaling proteins accumulating on virions during their egress. Our analysis has uncovered two unexpected new aspects of this process: the number of viral proteins in the virion is not fixed and the velocity of virus movement depends on the level of a single adaptor within the signaling network.
Collapse
Affiliation(s)
- Angika Basant
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute , London, United Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute , London, United Kingdom
- Department of Infectious Disease, Imperial College , London, United Kingdom
| |
Collapse
|
15
|
Leeks A, Bono LM, Ampolini EA, Souza LS, Höfler T, Mattson CL, Dye AE, Díaz-Muñoz SL. Open questions in the social lives of viruses. J Evol Biol 2023; 36:1551-1567. [PMID: 37975507 PMCID: PMC11281779 DOI: 10.1111/jeb.14203] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 11/19/2023]
Abstract
Social interactions among viruses occur whenever multiple viral genomes infect the same cells, hosts, or populations of hosts. Viral social interactions range from cooperation to conflict, occur throughout the viral world, and affect every stage of the viral lifecycle. The ubiquity of these social interactions means that they can determine the population dynamics, evolutionary trajectory, and clinical progression of viral infections. At the same time, social interactions in viruses raise new questions for evolutionary theory, providing opportunities to test and extend existing frameworks within social evolution. Many opportunities exist at this interface: Insights into the evolution of viral social interactions have immediate implications for our understanding of the fundamental biology and clinical manifestation of viral diseases. However, these opportunities are currently limited because evolutionary biologists only rarely study social evolution in viruses. Here, we bridge this gap by (1) summarizing the ways in which viruses can interact socially, including consequences for social evolution and evolvability; (2) outlining some open questions raised by viruses that could challenge concepts within social evolution theory; and (3) providing some illustrative examples, data sources, and conceptual questions, for studying the natural history of social viruses.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA
| | - Lisa M. Bono
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Elizabeth A. Ampolini
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lucas S. Souza
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas Höfler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Courtney L. Mattson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
| | - Anna E. Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| |
Collapse
|
16
|
Liang Q, Yang J, Fan WTL, Lo WC. Patch formation driven by stochastic effects of interaction between viruses and defective interfering particles. PLoS Comput Biol 2023; 19:e1011513. [PMID: 37782667 PMCID: PMC10569632 DOI: 10.1371/journal.pcbi.1011513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/12/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Abstract
Defective interfering particles (DIPs) are virus-like particles that occur naturally during virus infections. These particles are defective, lacking essential genetic materials for replication, but they can interact with the wild-type virus and potentially be used as therapeutic agents. However, the effect of DIPs on infection spread is still unclear due to complicated stochastic effects and nonlinear spatial dynamics. In this work, we develop a model with a new hybrid method to study the spatial-temporal dynamics of viruses and DIPs co-infections within hosts. We present two different scenarios of virus production and compare the results from deterministic and stochastic models to demonstrate how the stochastic effect is involved in the spatial dynamics of virus transmission. We compare the spread features of the virus in simulations and experiments, including the formation and the speed of virus spread and the emergence of stochastic patchy patterns of virus distribution. Our simulations simultaneously capture observed spatial spread features in the experimental data, including the spread rate of the virus and its patchiness. The results demonstrate that DIPs can slow down the growth of virus particles and make the spread of the virus more patchy.
Collapse
Affiliation(s)
- Qiantong Liang
- Department of Mathematics, City University of Hong Kong, Hong Kong, China
| | - Johnny Yang
- Department of Mathematics, Indiana University, Bloomington, Indiana, United States of America
| | - Wai-Tong Louis Fan
- Department of Mathematics, Indiana University, Bloomington, Indiana, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Wing-Cheong Lo
- Department of Mathematics, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Li M, Zhang M, Ye Q, Liu Y, Qian W. Preclinical and clinical trials of oncolytic vaccinia virus in cancer immunotherapy: a comprehensive review. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0202. [PMID: 37615308 PMCID: PMC10546091 DOI: 10.20892/j.issn.2095-3941.2023.0202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Oncolytic virotherapy has emerged as a promising treatment for human cancers owing to an ability to elicit curative effects via systemic administration. Tumor cells often create an unfavorable immunosuppressive microenvironment that degrade viral structures and impede viral replication; however, recent studies have established that viruses altered via genetic modifications can serve as effective oncolytic agents to combat hostile tumor environments. Specifically, oncolytic vaccinia virus (OVV) has gained popularity owing to its safety, potential for systemic delivery, and large gene insertion capacity. This review highlights current research on the use of engineered mutated viruses and gene-armed OVVs to reverse the tumor microenvironment and enhance antitumor activity in vitro and in vivo, and provides an overview of ongoing clinical trials and combination therapies. In addition, we discuss the potential benefits and drawbacks of OVV as a cancer therapy, and explore different perspectives in this field.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minghuan Zhang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qian Ye
- Hangzhou Rong-Gu Biotechnology Limited Company, Hangzhou 310056, China
| | - Yunhua Liu
- Department of Pathology & Pathophysiology and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
18
|
Witt ASA, Trindade GDS, Souza FGD, Serafim MSM, da Costa AVB, Silva MVF, de Melo Iani FC, Rodrigues RAL, Kroon EG, Abrahão JS. Ultrastructural analysis of monkeypox virus replication in Vero cells. J Med Virol 2023; 95:e28536. [PMID: 36708101 DOI: 10.1002/jmv.28536] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
In early May 2022, the first worldwide monkeypox virus (MPXV) outbreak was reported, with different clinical aspects from previously studied human monkeypox infections. Despite monkeypox medical importance, much of its biological aspects remain to be further investigated. In the present work, we evaluated ultrastructural aspects of MPXV asynchronous infections in Vero cells by transmission electron microscopy (TEM). The viral strain was isolated from a male patient infected during the 2022 outbreak. TEM analysis showed: (i) adhered intracellular mature virus particles before entry of the host cell; (ii) a reorganization of the rough endoplasmic reticulum cisternae into the so-called "mini-nuclei" structure associated with genome replication; and (iii) noticeably different sites within the viral factory presenting granular or fibrillar aspects. We also observed viral crescents, different MPXV particle morphotypes, and cellular alterations induced by infection, such as changes in the cytoskeleton structure and multimembrane vesicles abundance. Taken together, to the best of our knowledge, these results revealed for the first-time ultrastructural aspects of different steps of the MPXV cycle.
Collapse
Affiliation(s)
- Amanda Stéphanie Arantes Witt
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giliane de Souza Trindade
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Gil de Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alana Vitor Barbosa da Costa
- Fundação Ezequiel Dias, Diretoria do Instituto Octávio Magalhães, Serviço de Virologia e Riquetsioses, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Vinícius Ferreira Silva
- Fundação Ezequiel Dias, Diretoria do Instituto Octávio Magalhães, Serviço de Virologia e Riquetsioses, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Campos de Melo Iani
- Fundação Ezequiel Dias, Diretoria do Instituto Octávio Magalhães, Serviço de Virologia e Riquetsioses, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erna Geessien Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
19
|
Molteni C, Forni D, Cagliani R, Mozzi A, Clerici M, Sironi M. Evolution of the orthopoxvirus core genome. Virus Res 2023; 323:198975. [PMID: 36280003 PMCID: PMC9586335 DOI: 10.1016/j.virusres.2022.198975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Orthopoxviruses comprise several relevant pathogens, including the causative agent of smallpox and monkeypox virus. Analysis of orthopoxvirus genome evolution mainly focused on gene gains/losses. We instead analyzed core genes, which are conserved in all orthopoxviruses. We show that, despite their strong constraint, some genes involved in viral morphogenesis and transcription/replication were targets of pervasive positive selection, which was relatively uncommon in immunomodulatory genes. However at least three of the positively selected genes, E3L, A24R, and H3L, might have evolved in response to immune selection. Episodic positive selection was particularly common on the internal branches of the orthopox phylogeny and on the monkeypox virus lineage. The latter showed evidence of episodic positive selection at the D14L gene, which encodes a modulator of complement activation (MOPICE). Notably, two genes (B1R and A33R) targeted by episodic selection on more than one branch are involved in forms of intra-genomic conflict. Finally, we found that, in orthopoxvirus proteomes, intrinsically disordered regions (IDRs) tend to be less constrained and are common targets of positive selection. Extension of our analysis to all poxviruses showed no evidence that the IDR fraction differs with host range. Conversely, we found a strong effect of base composition, which was however not sufficient to explain IDR fraction. We thus suggest that, in poxviruses, the IDR fraction is maintained by modulating GC content to accommodate disorder-promoting codons. Overall, our data provide novel insight in orthopoxvirus evolution and provide a list of genes and sites that are expected to modulate viral phenotypes.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- University of Milan, Milan, Italy; Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
20
|
Omole RK, Oluwatola O, Akere MT, Eniafe J, Agboluaje EO, Daramola OB, Ayantunji YJ, Omotade TI, Torimiro N, Ayilara MS, Adeyemi OI, Salinsile OS. Comprehensive assessment on the applications of oncolytic viruses for cancer immunotherapy. Front Pharmacol 2022; 13:1082797. [PMID: 36569326 PMCID: PMC9772532 DOI: 10.3389/fphar.2022.1082797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The worldwide burden of cancers is increasing at a very high rate, including the aggressive and resistant forms of cancers. Certain levels of breakthrough have been achieved with the conventional treatment methods being used to treat different forms of cancers, but with some limitations. These limitations include hazardous side effects, destruction of non-tumor healthy cells that are rapidly dividing and developing, tumor resistance to anti-cancer drugs, damage to tissues and organs, and so on. However, oncolytic viruses have emerged as a worthwhile immunotherapeutic option for the treatment of different types of cancers. In this treatment approach, oncolytic viruses are being modeled to target cancer cells with optimum cytotoxicity and spare normal cells with optimal safety, without the oncolytic viruses themselves being killed by the host immune defense system. Oncolytic viral infection of the cancer cells are also being genetically manipulated (either by removal or addition of certain genes into the oncolytic virus genome) to make the tumor more visible and available for attack by the host immune cells. Hence, different variants of these viruses are being developed to optimize their antitumor effects. In this review, we examined how grave the burden of cancer is on a global level, particularly in sub-Saharan Africa, major conventional therapeutic approaches to the treatment of cancer and their individual drawbacks. We discussed the mechanisms of action employed by these oncolytic viruses and different viruses that have found their relevance in the fight against various forms of cancers. Some pre-clinical and clinical trials that involve oncolytic viruses in cancer management were reported. This review also examined the toxicity and safety concerns surrounding the adoption of oncolytic viro-immunotherapy for the treatment of cancers and the likely future directions for researchers and general audience who wants updated information.
Collapse
Affiliation(s)
- Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria,*Correspondence: Richard Kolade Omole,
| | - Oluwaseyi Oluwatola
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,Department of Immunology, Moffit Cancer Center, Tampa, FL, United States
| | - Millicent Tambari Akere
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | | | | | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, Nigeria
| | | | - Nkem Torimiro
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Oluwole Isaac Adeyemi
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
21
|
Segredo-Otero E, Sanjuán R. Cooperative Virus-Virus Interactions: An Evolutionary Perspective. BIODESIGN RESEARCH 2022; 2022:9819272. [PMID: 37850129 PMCID: PMC10521650 DOI: 10.34133/2022/9819272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/21/2022] [Indexed: 10/19/2023] Open
Abstract
Despite extensive evidence of virus-virus interactions, not much is known about their biological significance. Importantly, virus-virus interactions could have evolved as a form of cooperation or simply be a by-product of other processes. Here, we review and discuss different types of virus-virus interactions from the point of view of social evolution, which provides a well-established framework for interpreting the fitness costs and benefits of such traits. We also classify interactions according to their mechanisms of action and speculate on their evolutionary implications. As in any other biological system, the evolutionary stability of viral cooperation critically requires cheaters to be excluded from cooperative interactions. We discuss how cheater viruses exploit cooperative traits and how viral populations are able to counteract this maladaptive process.
Collapse
Affiliation(s)
- Ernesto Segredo-Otero
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| |
Collapse
|
22
|
Abstract
The success of many viruses depends upon cooperative interactions between viral genomes. However, whenever cooperation occurs, there is the potential for 'cheats' to exploit that cooperation. We suggest that: (1) the biology of viruses makes viral cooperation particularly susceptible to cheating; (2) cheats are common across a wide range of viruses, including viral entities that are already well studied, such as defective interfering genomes, and satellite viruses. Consequently, the evolutionary theory of cheating could help us understand and manipulate viral dynamics, while viruses also offer new opportunities to study the evolution of cheating.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| |
Collapse
|
23
|
Effect of Serial Passage on the Pathogenicity and Immunogenicity of Vaccinia Virus LC16m8 Strain. BIOLOGY 2021; 10:biology10111158. [PMID: 34827150 PMCID: PMC8614788 DOI: 10.3390/biology10111158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/20/2023]
Abstract
The phenotype of an attenuated live vaccine depends on gene mutation achieved by, for example, many passages in cultured cells. Viral clones with preferable phenotypes are selected and the causative genetic mutation(s) are later identified. LC16m8 is an example of a highly attenuated smallpox vaccine that was developed and licensed in Japan in the 1970s. LC16m8 was obtained by the passaging of Lister strain, with indicators of small plaque formation and temperature sensitivity as virus phenotypes. This strain can replicate in mammalian cells and provides robust cellular and humoral immunity, as well as long-term immune memory. Recent studies using proteome-wide antigen arrays have revealed that antibody production against LC16m8 and other VACVs differs largely among individuals. Moreover, associations between SNPs in immune-related genes and immune outcomes have been increasingly found. These results lead to predicting adverse events of a vaccine, which is a purpose of vaccinomics. Studies on VACV will continue to contribute to the understanding of host-pathogen interactions and to development of a vaccine for other infectious and non-infectious diseases. Here, we review studies of VACV, including our recent research on LC16m8, with a focus on the phenotype and genotype, and we discuss future research directions.
Collapse
|
24
|
Latently KSHV-Infected Cells Promote Further Establishment of Latency upon Superinfection with KSHV. Int J Mol Sci 2021; 22:ijms222111994. [PMID: 34769420 PMCID: PMC8584431 DOI: 10.3390/ijms222111994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-related virus which engages in two forms of infection: latent and lytic. Latent infection allows the virus to establish long-term persistent infection, whereas the lytic cycle is needed for the maintenance of the viral reservoir and for virus spread. By using recombinant KSHV viruses encoding mNeonGreen and mCherry fluorescent proteins, we show that various cell types that are latently-infected with KSHV can be superinfected, and that the new incoming viruses establish latent infection. Moreover, we show that latency establishment is enhanced in superinfected cells compared to primary infected ones. Further analysis revealed that cells that ectopically express the major latency protein of KSHV, LANA-1, prior to and during infection exhibit enhanced establishment of latency, but not cells expressing LANA-1 fragments. This observation supports the notion that the expression level of LANA-1 following infection determines the efficiency of latency establishment and avoids loss of viral genomes. These findings imply that a host can be infected with more than a single viral genome and that superinfection may support the maintenance of long-term latency.
Collapse
|
25
|
Engineered Promoter-Switched Viruses Reveal the Role of Poxvirus Maturation Protein A26 as a Negative Regulator of Viral Spread. J Virol 2021; 95:e0101221. [PMID: 34260287 PMCID: PMC8428399 DOI: 10.1128/jvi.01012-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus produces two types of virions known as single-membraned intracellular mature virus (MV) and double-membraned extracellular enveloped virus (EV). EV production peaks earlier when initial MVs are further wrapped and secreted to spread infection within the host. However, late during infection, MVs accumulate intracellularly and become important for host-to-host transmission. The process that regulates this switch remains elusive and is thought to be influenced by host factors. Here, we examined the hypothesis that EV and MV production are regulated by the virus through expression of F13 and the MV-specific protein A26. By switching the promoters and altering the expression kinetics of F13 and A26, we demonstrate that A26 expression downregulates EV production and plaque size, thus limiting viral spread. This process correlates with A26 association with the MV surface protein A27 and exclusion of F13, thus reducing EV titers. Thus, MV maturation is controlled by the abundance of the viral A26 protein, independently of other factors, and is rate limiting for EV production. The A26 gene is conserved within vertebrate poxviruses but is strikingly lost in poxviruses known to be transmitted exclusively by biting arthropods. A26-mediated virus maturation thus has the appearance to be an ancient evolutionary adaptation to enhance transmission of poxviruses that has subsequently been lost from vector-adapted species, for which it may serve as a genetic signature. The existence of virus-regulated mechanisms to produce virions adapted to fulfill different functions represents a novel level of complexity in mammalian viruses with major impacts on evolution, adaptation, and transmission. IMPORTANCE Chordopoxviruses are mammalian viruses that uniquely produce a first type of virion adapted to spread within the host and a second type that enhances transmission between hosts, which can take place by multiple ways, including direct contact, respiratory droplets, oral/fecal routes, or via vectors. Both virion types are important to balance intrahost dissemination and interhost transmission, so virus maturation pathways must be tightly controlled. Here, we provide evidence that the abundance and kinetics of expression of the viral protein A26 regulates this process by preventing formation of the first form and shifting maturation toward the second form. A26 is expressed late after the initial wave of progeny virions is produced, so sufficient viral dissemination is ensured, and A26 provides virions with enhanced environmental stability. Conservation of A26 in all vertebrate poxviruses, but not in those transmitted exclusively via biting arthropods, reveals the importance of A26-controlled virus maturation for transmission routes involving environmental exposure.
Collapse
|
26
|
Abstract
Despite their simplicity, viruses exhibit certain types of social interactions. Situations in which a given virus achieves higher fitness in combination with other members of the viral population have been described at the level of transmission, replication, suppression of host immune responses, and host killing, enabling the evolution of viral cooperation. Although cellular coinfection with multiple viral particles is the typical playground for these interactions, cooperation between viruses infecting different cells is also established through cellular and viral-encoded communication systems. In general, the stability of cooperation is compromised by cheater genotypes, as best exemplified by defective interfering particles. As predicted by social evolution theory, cheater invasion can be avoided when cooperators interact preferentially with other cooperators, a situation that is promoted in spatially structured populations. Processes such as transmission bottlenecks, organ compartmentalization, localized spread of infection foci, superinfection exclusion, and even discrete intracellular replication centers promote multilevel spatial structuring in viruses. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas and Universitat de València, 46980 Paterna, València, Spain;
| |
Collapse
|
27
|
Singer ZS, Ambrose PM, Danino T, Rice CM. Quantitative measurements of early alphaviral replication dynamics in single cells reveals the basis for superinfection exclusion. Cell Syst 2021; 12:210-219.e3. [PMID: 33515490 PMCID: PMC9143976 DOI: 10.1016/j.cels.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
While decades of research have elucidated many steps of the alphavirus lifecycle, the earliest replication dynamics have remained unclear. This missing time window has obscured early replicase strand-synthesis behavior and prevented elucidation of how the first events of infection might influence subsequent viral competition. Using quantitative live-cell and single-molecule imaging, we observed the initial replicase activity and its strand preferences in situ and measured the trajectory of replication over time. Under this quantitative framework, we investigated viral competition, where one alphavirus is able to exclude superinfection by a second homologous virus. We show that this appears as an indirect phenotypic consequence of a bidirectional competition between the two species, coupled with the rapid onset of viral replication and a limited total cellular carrying capacity. Together, these results emphasize the utility of analyzing viral kinetics within single cells.
Collapse
Affiliation(s)
- Zakary S Singer
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Pradeep M Ambrose
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; Data Science Institute, Columbia University, New York, NY 10027, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
28
|
Hernandez-Gonzalez M, Larocque G, Way M. Viral use and subversion of membrane organization and trafficking. J Cell Sci 2021; 134:jcs252676. [PMID: 33664154 PMCID: PMC7610647 DOI: 10.1242/jcs.252676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking is an essential cellular process conserved across all eukaryotes, which regulates the uptake or release of macromolecules from cells, the composition of cellular membranes and organelle biogenesis. It influences numerous aspects of cellular organisation, dynamics and homeostasis, including nutrition, signalling and cell architecture. Not surprisingly, malfunction of membrane trafficking is linked to many serious genetic, metabolic and neurological disorders. It is also often hijacked during viral infection, enabling viruses to accomplish many of the main stages of their replication cycle, including entry into and egress from cells. The appropriation of membrane trafficking by viruses has been studied since the birth of cell biology and has helped elucidate how this integral cellular process functions. In this Review, we discuss some of the different strategies viruses use to manipulate and take over the membrane compartments of their hosts to promote their replication, assembly and egress.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gabrielle Larocque
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
29
|
Shin J, Hong SO, Kim M, Lee H, Choi H, Kim J, Hong J, Kang H, Lee E, Lee S, Kong B, Kim M, Choi H, Kim S. Generation of a Novel Oncolytic Vaccinia Virus Using the IHD-W Strain. Hum Gene Ther 2020; 32:517-527. [PMID: 32854548 PMCID: PMC8140350 DOI: 10.1089/hum.2020.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oncolytic viruses are promising cancer therapies due to their selective killing of tumor cells and ability to stimulate the host immune system. As an oncolytic virus platform, vaccinia virus has unique advantages, including rapid replication, a broad range of host targets, and a large capacity for transgene incorporation. In this study, we developed a novel oncolytic vaccinia virus with high potency and a favorable safety profile. We began with the International Health Department-White (IHD-W) strain, which had the strongest cytotoxicity against tumor cells among the four vaccinia virus strains tested. Next, several candidate viruses were constructed by deleting three viral genes (C11R, K3L, and J2R) in various combinations, and their efficacy and safety were compared. The virus ultimately selected, named KLS-3010, exhibited strong antitumor activity against broad targets in vitro and in vivo. Furthermore, KLS-3010 showed a favorable safety profile in mice, as determined by the biodistribution and body weight change. More promisingly, KLS-3010 was able to shift the tumor microenvironment to a proinflammatory state, as evidenced by an increase in activated lymphocytes after KLS-3010 administration, suggesting that this strain may elicit an oncolytic virus-mediated immune response. The KLS-3010 strain thus represents a promising platform for the further development of oncolytic virus-based cancer therapies.
Collapse
Affiliation(s)
- Jaeil Shin
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Soon-Oh Hong
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Minju Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Hyesun Lee
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Hwanjun Choi
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Joonsung Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Jieun Hong
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Hyesoo Kang
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Eunjin Lee
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Soondong Lee
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Byoungjae Kong
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Minjung Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Heonsik Choi
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Sujeong Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| |
Collapse
|
30
|
Abstract
A critical step in the life cycle of a virus is spread to a new target cell, which generally involves the release of new viral particles from the infected cell which can then initiate infection in the next target cell. While cell-free viral particles released into the extracellular environment are necessary for long distance spread, there are disadvantages to this mechanism. These include the presence of immune system components, the low success rate of infection by single particles, and the relative fragility of viral particles in the environment. Several mechanisms of direct cell-to-cell spread have been reported for animal viruses which would avoid the issues associated with cell-free particles. A number of viruses can utilize several different mechanisms of direct cell-to-cell spread, but our understanding of the differential usage by these pathogens is modest. Although the mechanisms of cell-to-cell spread differ among viruses, there is a common exploitation of key pathways and components of the cellular cytoskeleton. Remarkably, some of the viral mechanisms of cell-to-cell spread are surprisingly similar to those used by bacteria. Here we summarize the current knowledge of the conventional and non-conventional mechanisms of viral spread, the common methods used to detect viral spread, and the impact that these mechanisms can have on viral pathogenesis.
Collapse
Affiliation(s)
- Nicolas Cifuentes-Munoz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, San Miguel, Santiago, Chile
| | - Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
31
|
Georgi F, Andriasyan V, Witte R, Murer L, Hemmi S, Yu L, Grove M, Meili N, Kuttler F, Yakimovich A, Turcatti G, Greber UF. The FDA-Approved Drug Nelfinavir Inhibits Lytic Cell-Free but Not Cell-Associated Nonlytic Transmission of Human Adenovirus. Antimicrob Agents Chemother 2020; 64:e01002-20. [PMID: 32601166 PMCID: PMC7449217 DOI: 10.1128/aac.01002-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Adenoviruses (AdVs) are prevalent and give rise to chronic and recurrent disease. Human AdV (HAdV) species B and C, such as HAdV-C2, -C5, and -B14, cause respiratory disease and constitute a health threat for immunocompromised individuals. HAdV-Cs are well known for lysing cells owing to the E3 CR1-β-encoded adenovirus death protein (ADP). We previously reported a high-throughput image-based screening framework and identified an inhibitor of HAdV-C2 multiround infection, nelfinavir mesylate. Nelfinavir is the active ingredient of Viracept, an FDA-approved inhibitor of human immunodeficiency virus (HIV) aspartyl protease that is used to treat AIDS. It is not effective against single-round HAdV infections. Here, we show that nelfinavir inhibits lytic cell-free transmission of HAdV, indicated by the suppression of comet-shaped infection foci in cell culture. Comet-shaped foci occur upon convection-based transmission of cell-free viral particles from an infected cell to neighboring uninfected cells. HAdV lacking ADP was insensitive to nelfinavir but gave rise to comet-shaped foci, indicating that ADP enhances but is not required for cell lysis. This was supported by the notion that HAdV-B14 and -B14p1 lacking ADP were highly sensitive to nelfinavir, although HAdV-A31, -B3, -B7, -B11, -B16, -B21, -D8, -D30, and -D37 were less sensitive. Conspicuously, nelfinavir uncovered slow-growing round HAdV-C2 foci, independent of neutralizing antibodies in the medium, indicative of nonlytic cell-to-cell transmission. Our study demonstrates the repurposing potential of nelfinavir with postexposure efficacy against different HAdVs and describes an alternative nonlytic cell-to-cell transmission mode of HAdV.
Collapse
Affiliation(s)
- Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Luca Murer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lisa Yu
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Melanie Grove
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nicole Meili
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Artur Yakimovich
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Artificial Intelligence for Life Sciences CIC, London, United Kingdom
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Xiao Y, Zeng Y, Schante C, Joshi SB, Buchman GW, Volkin DB, Middaugh CR, Isaacs SN. Short-term and longer-term protective immune responses generated by subunit vaccination with smallpox A33, B5, L1 or A27 proteins adjuvanted with aluminum hydroxide and CpG in mice challenged with vaccinia virus. Vaccine 2020; 38:6007-6018. [PMID: 32741672 PMCID: PMC7456309 DOI: 10.1016/j.vaccine.2020.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/08/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022]
Abstract
Smallpox, a contagious and deadly disease caused by variola virus, was eradicated by a strategy that included vaccination with vaccinia virus, a live-virus vaccine. Because the threat of bioterrorism with smallpox persists and infections with zoonotic poxvirus infections like monkeypox continue, and there may be a time when an alternative vaccine platform is needed, recombinant-subunit vaccine strategies for poxviruses have been pursued. Our prior work focused on understanding the immune responses generated to vaccine-formulations containing the virus protein L1. In this work, we examine vaccine-formulations with additional key protein targets: A33 and B5 (components of the extracellular virus) and another protein on the mature virus (A27) adjuvanted with aluminum hydroxide (AH) with and without CpG- oligonucleotide. Each vaccine was formulated to allow either adsorption or non-adsorption of the protein (and CpG) to AH. Mice given a prime and single boost produced long-lasting antibody responses. A second boost (given ~5-months after the first) further increased antibody titers. Similar to our prior findings with L1 vaccine-formulations, the most protective A33 vaccine-formulations included CpG, resulted in the generation of IgG2a-antibody responses. Unlike the prior findings with L1 (where formulations that adsorbed both the protein and the CpG to AH resulted in 100% survival after challenge and minimal weight loss), the AH-adsorption status of A33 and CpG did not play as important a role, since both AH-adsorbed and non-adsorbed groups lost weight after challenge and had similar survival. Vaccination with B5-formulations gave different results. While CpG-containing formulations were the only ones that generated IgG2a-antibody responses, the vaccine-formulation that adsorbed B5 to AH (without CpG) was as equally effective in protecting mice after challenge. These results indicate that the mechanism of how antibodies against A33 and B5 protect differ. The data also show the complexity of designing optimized vaccine-formulations containing multiple adjuvants and recombinant protein-based antigens.
Collapse
Affiliation(s)
- Yuhong Xiao
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Division of Infectious Diseases, Philadelphia, PA 19104-6073, United States
| | - Yuhong Zeng
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Carole Schante
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Sangeeta B Joshi
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - George W Buchman
- Chesapeake-Perl, Inc., 8510 A Corridor Rd., Savage, MD 20763, United States
| | - David B Volkin
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - C Russell Middaugh
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Stuart N Isaacs
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Division of Infectious Diseases, Philadelphia, PA 19104-6073, United States.
| |
Collapse
|
33
|
García NH, Porta DJ, Alasino RV, Muñoz SE, Beltramo DM. Ibuprofen, a traditional drug that may impact the course of COVID-19 new effective formulation in nebulizable solution. Med Hypotheses 2020; 144:110079. [PMID: 32758897 PMCID: PMC7340056 DOI: 10.1016/j.mehy.2020.110079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 11/17/2022]
Abstract
The traditional formulation of ibuprofen is poorly soluble in water, so the administered dose must be 10 times higher than the dose required for a therapeutic effect. The development of a hydrosoluble form of ibuprofen can be a strategy to reach a high concentration in the lungs by using modern inhalation devices. Therefore, the development of an inhalable formulation with high bioavailability in the lungs was the leitmotiv of our investigation. The hypertonic ibuprofen solution to be nebulized (NIH) presents great relevant characteristics: bactericidal, virucidal, mucolytic and has a known anti-inflammatory property. Bactericidal and virucidal effects are related to the physico-chemical properties of Na-ibuprofenate as an amphipathic molecule. It has the capability to insert into the bilayer membranes destabilizing the structure, altering its biological properties and avoiding the duplication or infection. Our preliminary results indicate that the presence of this high ionic strength solution reduces 10 times the amount of ibuprofen necessary to kill bacteria, but also the time to kill 1x106 bacteria, from 4 h (in its absence) to only three minutes (in its presence). That was observed using Pseudomona aeruginosa, methicillin-resistant Staphylococcus aureus and Burkholderia cepacia. Also, "in vitro'' ibuprofen demonstrated virucidal activity against the so-called enveloped virus, a family that includes coronavirus strain (2019-nCoV). We observed too, the markedly reduced local inflammation in the airways after administering NIH lays on its ability to inhibit the enzyme cyclooxygenase and to markedly diminish reactive oxygen species (ROS). Other investigators also showed the importance of actin in the rapid spread of virus infection. Furthermore, reorganization of the actin filaments is a key step in lung inflammation induced by systemic inflammatory responses caused by SARS-CoV-2. These findings suggest that the interaction between actin proteins and S1 is involved in the 2019-nCoV infection and pathogenesis. Consequently, the possibility of interfering in this interaction could represent a valid hypothesis for the development of promising therapeutic and prevention strategies. In conclusion, we consider that treating people with COVID-19 with NIH may be beneficial and an opportunity to contribute for the current global health emergency.
Collapse
Affiliation(s)
- Néstor H García
- Instituto de Investigaciones en Ciencias de la Salud-FCM (INICSA-CONICET), Córdoba C 5000, Argentina.
| | - Daniela J Porta
- Instituto de Investigaciones en Ciencias de la Salud-FCM (INICSA-CONICET), Córdoba C 5000, Argentina
| | - Roxana V Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Ministerio de Ciencia y Tecnología de Córdoba Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz 2290, C1425FQB CABA, Argentina
| | - Sonia E Muñoz
- Instituto de Investigaciones en Ciencias de la Salud-FCM (INICSA-CONICET), Córdoba C 5000, Argentina
| | - Dante M Beltramo
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Ministerio de Ciencia y Tecnología de Córdoba Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz 2290, C1425FQB CABA, Argentina
| |
Collapse
|
34
|
Flores EB, Bartee MY, Bartee E. Reduced cellular binding affinity has profoundly different impacts on the spread of distinct poxviruses. PLoS One 2020; 15:e0231977. [PMID: 32352982 PMCID: PMC7192435 DOI: 10.1371/journal.pone.0231977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 01/11/2023] Open
Abstract
Poxviruses are large enveloped viruses that replicate exclusively in the cytoplasm. Like all viruses, their replication cycle begins with virion adsorption to the cell surface. Unlike most other viral families, however, no unique poxviral receptor has ever been identified. In the absence of a unique receptor, poxviruses are instead thought to adhere to the cell surface primarily through electrostatic interactions between the positively charged viral envelope proteins and the negatively charged sulfate groups on cellular glycosaminoglycans (GAGs). While these negatively charged GAGs are an integral part of all eukaryotic membranes, their specific expression and sulfation patterns differ between cell types. Critically, while poxviral binding has been extensively studied using virally centered genetic strategies, the impact of cell-intrinsic changes to GAG charge has never been examined. Here we show that loss of heparin sulfation, accomplished by deleting the enzyme N-Deacetylase and N-Sulfotransferase-1 (NDST1) which is essential for GAG sulfation, significantly reduces the binding affinity of both vaccinia and myxoma viruses to the cell surface. Strikingly, however, while this lowered binding affinity inhibits the subsequent spread of myxoma virus, it actually enhances the overall spread of vaccinia by generating more diffuse regions of infection. These data indicate that cell-intrinsic GAG sulfation plays a major role in poxviral infection, however, this role varies significantly between different members of the poxviridae.
Collapse
Affiliation(s)
- Erica B. Flores
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Mee Y. Bartee
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Eric Bartee
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| |
Collapse
|
35
|
Gowripalan A, Abbott CR, McKenzie C, Chan WS, Karupiah G, Levy L, Newsome TP. Cell-to-cell spread of vaccinia virus is promoted by TGF-β-independent Smad4 signalling. Cell Microbiol 2020; 22:e13206. [PMID: 32237038 DOI: 10.1111/cmi.13206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/02/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
The induction of Smad signalling by the extracellular ligand TGF-β promotes tissue plasticity and cell migration in developmental and pathological contexts. Here, we show that vaccinia virus (VACV) stimulates the activity of Smad transcription factors and expression of TGF-β/Smad-responsive genes at the transcript and protein levels. Accordingly, infected cells share characteristics to those undergoing TGF-β/Smad-mediated epithelial-to-mesenchymal transition (EMT). Depletion of the Smad4 protein, a common mediator of TGF-β signalling, results in an attenuation of viral cell-to-cell spread and reduced motility of infected cells. VACV induction of TGF-β/Smad-responsive gene expression does not require the TGF-β ligand or type I and type II TGF-β receptors, suggesting a novel, non-canonical Smad signalling pathway. Additionally, the spread of ectromelia virus, a related orthopoxvirus that does not activate a TGF-β/Smad response, is enhanced by the addition of exogenous TGF-β. Together, our results indicate that VACV orchestrates a TGF-β-like response via a unique activation mechanism to enhance cell migration and promote virus spread.
Collapse
Affiliation(s)
- Anjali Gowripalan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Caitlin R Abbott
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher McKenzie
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Weng S Chan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gunasegaran Karupiah
- Tasmanian School of Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Laurence Levy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Timothy P Newsome
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Domingo-Calap P, Mora-Quilis L, Sanjuán R. Social Bacteriophages. Microorganisms 2020; 8:E533. [PMID: 32272765 PMCID: PMC7232179 DOI: 10.3390/microorganisms8040533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 01/21/2023] Open
Abstract
Despite their simplicity, viruses can display social-like interactions such as cooperation, communication, and cheating. Focusing on bacteriophages, here we review features including viral product sharing, cooperative evasion of antiviral defenses, prudent host exploitation, superinfection exclusion, and inter-phage peptide-mediated signaling. We argue that, in order to achieve a better understanding of these processes, their mechanisms of action need to be considered in the context of social evolution theory, paying special attention to key population-level factors such as genetic relatedness and spatial structure.
Collapse
Affiliation(s)
- Pilar Domingo-Calap
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Paterna, Spain; (P.D.-C.); (L.M.-Q.)
- Department of Genetics, Universitat de València, 46980 Paterna, Spain
| | - Lucas Mora-Quilis
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Paterna, Spain; (P.D.-C.); (L.M.-Q.)
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Paterna, Spain; (P.D.-C.); (L.M.-Q.)
| |
Collapse
|
37
|
Abstract
Tunneling nanotubes (TNTs) are actin-based intercellular conduits that connect distant cells and allow intercellular transfer of molecular information, including genetic information, proteins, lipids, and even organelles. Besides providing a means of intercellular communication, TNTs may also be hijacked by pathogens, particularly viruses, to facilitate their spread. Viruses of many different families, including retroviruses, herpesviruses, orthomyxoviruses, and several others have been reported to trigger the formation of TNTs or TNT-like structures in infected cells and use these structures to efficiently spread to uninfected cells. In the current review, we give an overview of the information that is currently available on viruses and TNT-like structures, and we discuss some of the standing questions in this field.
Collapse
|
38
|
Mucker EM, Lindquist M, Hooper JW. Particle-specific neutralizing activity of a monoclonal antibody targeting the poxvirus A33 protein reveals differences between cell associated and extracellular enveloped virions. Virology 2020; 544:42-54. [PMID: 32174513 DOI: 10.1016/j.virol.2020.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
Abstract
Only a small subset of the hundreds of proteins encoded by the poxvirus genome have been shown to be effective as vaccine and/or therapeutic targets. One of these proteins is A33. Here we assess and dissect the ability of an anti-A33 humanized monoclonal antibody, c6C, to affect vaccinia virus infection in vitro. Enveloped virions (EV) released from infected cells can be sensitive or resistant to neutralization by c6C indicating there are different types of EV particles, extracellular enveloped virions (EEV) and released cellular-associated virions (rCEV), that are biologically distinct. Through a combination of plaque phenotype, confocal imaging, and neutralization assays, we found that c6C differentially affects EV from two different virus strains, IHD-J and WR. Evidence for an anti-A33 resistant EV particle, and strain differences in this phenotype, provides a logical answer as to why certain functional assays in the literature have been unable to detect anti-viral effects of anti-A33 antibodies.
Collapse
Affiliation(s)
- Eric M Mucker
- Molecular Virology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702, MD, USA
| | - Michael Lindquist
- Molecular Virology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702, MD, USA
| | - Jay W Hooper
- Molecular Virology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702, MD, USA.
| |
Collapse
|
39
|
Segredo-Otero E, Sanjuán R. The role of spatial structure in the evolution of viral innate immunity evasion: A diffusion-reaction cellular automaton model. PLoS Comput Biol 2020; 16:e1007656. [PMID: 32040504 PMCID: PMC7034925 DOI: 10.1371/journal.pcbi.1007656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 02/21/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Most viruses have evolved strategies for preventing interferon (IFN) secretion and evading innate immunity. Recent work has shown that viral shutdown of IFN secretion can be viewed as a social trait, since the ability of a given virus to evade IFN-mediated immunity depends on the phenotype of neighbor viruses. Following this idea, we investigate the role of spatial structure in the evolution of innate immunity evasion. For this, we model IFN signaling and viral spread using a spatially explicit approximation that combines a diffusion-reaction model and cellular automaton. Our results indicate that the benefits of preventing IFN secretion for a virus are strongly determined by spatial structure through paracrine IFN signaling. Therefore, innate immunity evasion can evolve as a cooperative or even altruistic trait based on indirect fitness effects that IFN shutdown exerts on other members of the viral population. We identify key factors determining whether evasion from IFN-mediated immunity should evolve, such as population bottlenecks occurring during viral transmission, the relative speed of cellular infection and IFN secretion, and the diffusion properties of the medium.
Collapse
Affiliation(s)
- Ernesto Segredo-Otero
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
| |
Collapse
|
40
|
Veljkovic V, Vergara-Alert J, Segalés J, Paessler S. Use of the informational spectrum methodology for rapid biological analysis of the novel coronavirus 2019-nCoV: prediction of potential receptor, natural reservoir, tropism and therapeutic/vaccine target. F1000Res 2020; 9:52. [PMID: 32419926 DOI: 10.12688/f1000research.22149.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 01/07/2023] Open
Abstract
A novel coronavirus recently identified in Wuhan, China (SARS-CoV-2) has expanded the number of highly pathogenic coronaviruses affecting humans. The SARS-CoV-2 represents a potential epidemic or pandemic threat, which requires a quick response for preparedness against this infection. The present report uses the informational spectrum methodology to identify the possible origin and natural host of the new virus, as well as putative therapeutic and vaccine targets. The performed in silico analysis indicates that the newly emerging SARS-CoV-2 is closely related to severe acute respiratory syndrome (SARS)-CoV and, to a lesser degree, Middle East respiratory syndrome (MERS)-CoV. Moreover, the well-known SARS-CoV receptor (ACE2) might be a putative receptor for the novel virus as well. Actin protein was also suggested as a host factor that participates in cell entry and pathogenesis of SARS-CoV-2; therefore, drugs modulating biological activity of this protein (e.g. ibuprofen) were suggested as potential candidates for treatment of this viral infection. Additional results indicated that civets and poultry are potential candidates for the natural reservoir of the SARS-CoV-2, and that domain 288-330 of S1 protein from the SARS-CoV-2 represents promising therapeutic and/or vaccine target.
Collapse
Affiliation(s)
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, 08193 Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Slobodan Paessler
- Department of Pathology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
41
|
Veljkovic V, Vergara-Alert J, Segalés J, Paessler S. Use of the informational spectrum methodology for rapid biological analysis of the novel coronavirus 2019-nCoV: prediction of potential receptor, natural reservoir, tropism and therapeutic/vaccine target. F1000Res 2020; 9:52. [PMID: 32419926 PMCID: PMC7202090 DOI: 10.12688/f1000research.22149.4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/29/2022] Open
Abstract
A novel coronavirus recently identified in Wuhan, China (SARS-CoV-2) has expanded the number of highly pathogenic coronaviruses affecting humans. The SARS-CoV-2 represents a potential epidemic or pandemic threat, which requires a quick response for preparedness against this infection. The present report uses the informational spectrum methodology to identify the possible origin and natural host of the new virus, as well as putative therapeutic and vaccine targets. The performed
in silico analysis indicates that the newly emerging SARS-CoV-2 is closely related to severe acute respiratory syndrome (SARS)-CoV and, to a lesser degree, Middle East respiratory syndrome (MERS)-CoV. Moreover, the well-known SARS-CoV receptor (ACE2) might be a putative receptor for the novel virus as well. Actin protein was also suggested as a host factor that participates in cell entry and pathogenesis of SARS-CoV-2; therefore, drugs modulating biological activity of this protein (e.g. ibuprofen) were suggested as potential candidates for treatment of this viral infection. Additional results indicated that civets and poultry are potential candidates for the natural reservoir of the SARS-CoV-2, and that domain 288-330 of S1 protein from the SARS-CoV-2 represents promising therapeutic and/or vaccine target.
Collapse
Affiliation(s)
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, 08193 Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Slobodan Paessler
- Department of Pathology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
42
|
Veljkovic V, Vergara-Alert J, Segalés J, Paessler S. Use of the informational spectrum methodology for rapid biological analysis of the novel coronavirus 2019-nCoV: prediction of potential receptor, natural reservoir, tropism and therapeutic/vaccine target. F1000Res 2020; 9:52. [PMID: 32419926 DOI: 10.12688/f1000research.22149.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2020] [Indexed: 01/13/2023] Open
Abstract
A novel coronavirus recently identified in Wuhan, China (SARS-CoV-2) has expanded the number of highly pathogenic coronaviruses affecting humans. The SARS-CoV-2 represents a potential epidemic or pandemic threat, which requires a quick response for preparedness against this infection. The present report uses the informational spectrum methodology to identify the possible origin and natural host of the new virus, as well as putative therapeutic and vaccine targets. The performed in silico analysis indicates that the newly emerging SARS-CoV-2 is closely related to severe acute respiratory syndrome (SARS)-CoV and, to a lesser degree, Middle East respiratory syndrome (MERS)-CoV. Moreover, the well-known SARS-CoV receptor (ACE2) might be a putative receptor for the novel virus as well. Actin protein was also suggested as a host factor that participates in cell entry and pathogenesis of SARS-CoV-2; therefore, drugs modulating biological activity of this protein (e.g. ibuprofen) were suggested as potential candidates for treatment of this viral infection. Additional results indicated that civets and poultry are potential candidates for the natural reservoir of the SARS-CoV-2, and that domain 288-330 of S1 protein from the SARS-CoV-2 represents promising therapeutic and/or vaccine target.
Collapse
Affiliation(s)
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, 08193 Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Slobodan Paessler
- Department of Pathology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
43
|
Veljkovic V, Vergara-Alert J, Segalés J, Paessler S. Use of the informational spectrum methodology for rapid biological analysis of the novel coronavirus 2019-nCoV: prediction of potential receptor, natural reservoir, tropism and therapeutic/vaccine target. F1000Res 2020; 9:52. [PMID: 32419926 DOI: 10.12688/f1000research.22149.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
A novel coronavirus recently identified in Wuhan, China (SARS-CoV-2) has expanded the number of highly pathogenic coronaviruses affecting humans. The SARS-CoV-2 represents a potential epidemic or pandemic threat, which requires a quick response for preparedness against this infection. The present report uses the informational spectrum methodology to identify the possible origin and natural host of the new virus, as well as putative therapeutic and vaccine targets. The performed in silico analysis indicates that the newly emerging SARS-CoV-2 is closely related to severe acute respiratory syndrome (SARS)-CoV and, to a lesser degree, Middle East respiratory syndrome (MERS)-CoV. Moreover, the well-known SARS-CoV receptor (ACE2) might be a putative receptor for the novel virus as well. Actin protein was also suggested as a host factor that participates in cell entry and pathogenesis of SARS-CoV-2; therefore, drugs modulating biological activity of this protein (e.g. ibuprofen) were suggested as potential candidates for treatment of this viral infection. Additional results indicated that civets and poultry are potential candidates for the natural reservoir of the SARS-CoV-2, and that domain 288-330 of S1 protein from the SARS-CoV-2 represents promising therapeutic and/or vaccine target.
Collapse
Affiliation(s)
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, 08193 Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Slobodan Paessler
- Department of Pathology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
44
|
Wang C, Wang J, Fu D, Yan Q, Pang D, Zhang Z. Topography guiding the accelerated and persistently directional cell migration induced by vaccinia virus. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Singh BK, Pfaller CK, Cattaneo R, Sinn PL. Measles Virus Ribonucleoprotein Complexes Rapidly Spread across Well-Differentiated Primary Human Airway Epithelial Cells along F-Actin Rings. mBio 2019; 10:e02434-19. [PMID: 31772054 PMCID: PMC6879720 DOI: 10.1128/mbio.02434-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
Measles virus (MeV) is a highly contagious human pathogen that continues to be a worldwide health burden. One of the challenges for the study of MeV spread is the identification of model systems that accurately reflect how MeV behaves in humans. For our studies, we use unpassaged, well-differentiated primary cultures of airway epithelial cells from human donor lungs to examine MeV infection and spread. Here, we show that the main components of the MeV ribonucleoprotein complex (RNP), the nucleocapsid and phosphoprotein, colocalize with the apical and circumapical F-actin networks. To better understand how MeV infections spread across the airway epithelium, we generated a recombinant virus incorporating chimeric fluorescent proteins in its RNP complex. By live cell imaging, we observed rapid movement of RNPs along the circumapical F-actin rings of newly infected cells. This strikingly rapid mechanism of horizontal trafficking across epithelia is consistent with the opening of pores between columnar cells by the viral membrane fusion apparatus. Our work provides mechanistic insights into how MeV rapidly spreads through airway epithelial cells, contributing to its extremely contagious nature.IMPORTANCE The ability of viral particles to directly spread cell to cell within the airways without particle release is considered to be highly advantageous to many respiratory viruses. Our previous studies in well-differentiated, primary human airway epithelial cells suggest that measles virus (MeV) spreads cell to cell by eliciting the formation of intercellular membrane pores. Based on a newly generated ribonucleoprotein complex (RNP) "tracker" virus, we document by live-cell microscopy that MeV RNPs move along F-actin rings before entering a new cell. Thus, rather than diffusing through the cytoplasm of a newly infected columnar cell, RNPs take advantage of the cytoskeletal infrastructure to rapidly spread laterally across the human airway epithelium. This results in rapid horizontal spread through the epithelium that does not require particle release.
Collapse
Affiliation(s)
- Brajesh K Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Christian K Pfaller
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Langen, Germany
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick L Sinn
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
46
|
Li JF. Some models with repulsion effect on superinfecting viruses by infected cells. INT J BIOMATH 2019. [DOI: 10.1142/s1793524519500797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we study some models with repulsion effect on superinfecting viruses by infected cells [Formula: see text] where [Formula: see text], [Formula: see text] and [Formula: see text] are the density of uninfected cells, infected cells and viruses at time [Formula: see text] at location [Formula: see text], respectively. The functions [Formula: see text] and [Formula: see text] are assumed to be positive, continuous and bounded. [Formula: see text] denotes the production rate of uninfected cells. The infection rate is [Formula: see text] and the function [Formula: see text] is the production rate of free viruses. And [Formula: see text] is the rate of transfer from uninfected cells to infected cells. The positive constants [Formula: see text] and [Formula: see text] denote the death rate of uninfected cells, infected cells and viruses, respectively. The stability of the infection-free equilibrium solution and infection equilibrium solution is discussed. It is shown that if the basic reproduction number [Formula: see text] then the chemotaxis has no effect, that is, the infection-free constant solution is stable. For the system with chemotactic sensitivity [Formula: see text], if [Formula: see text], then the infection constant solution will be unstable under some conditions.
Collapse
Affiliation(s)
- Jun-Feng Li
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
47
|
Wang Z, Sun B, Gao Q, Ma Y, Liang Y, Chen Z, Wu H, Cui L, Shao Y, Wei P, Li H, Liu S. Host Src controls gallid alpha herpesvirus 1 intercellular spread in a cellular fatty acid metabolism-dependent manner. Virology 2019; 537:1-13. [PMID: 31425969 PMCID: PMC7172859 DOI: 10.1016/j.virol.2019.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/10/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022]
Abstract
Viral spread is considered a promising target for antiviral therapeutics, but the associated mechanisms remain unclear for gallid alpha herpesvirus 1 (ILTV). We previously identified proto-oncogene tyrosine-protein kinase Src (Src) as a crucial host determinant of ILTV infection. The present study revealed accelerated spread of ILTV upon Src inhibition. This phenomenon was independent of either viral replication or the proliferation of infected cells and could not be compromised by neutralizing antibody. Neither extracellular vesicles nor the direct cytosol-to-cytosol connections between adjacent cells contributed to the enhanced spread of ILTV upon Src inhibition. Further genome-wide transcriptional profile analyses in combination with functional validation identified fatty acid metabolism as an essential molecular event during modulation of the intercellular spread and subsequent cytopathic effect of ILTV by Src. Overall, these data suggest that Src controls the cell-to-cell spread of ILTV in a cellular fatty acid metabolism-dependent manner, which determines the virus's cytopathic effect.
Collapse
Affiliation(s)
- Zhitao Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bangyao Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Qi Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yong Ma
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yumeng Liang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Zhijie Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hanguang Wu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Ping Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| |
Collapse
|
48
|
High-Content Analyses of Vaccinia Plaque Formation. Methods Mol Biol 2019. [PMID: 31240682 DOI: 10.1007/978-1-4939-9593-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Vaccinia virus plaque assays are employed for quantification of virus titer through serial dilution of virus on a monolayer of cells. Once the virus titer is diluted enough to allow for only few cells of the monolayer to be infected, clonal spread of infection can be detected by observing the lesion in the cell monolayer or using virus-specific staining methods. Beyond simple titration, plaque formation bares priceless underlying information about subtle virus-host interactions and their impact on virus spread during multiple rounds of infection. These include virus infectivity, mode of virus spread, virus replication rate, and spatiotemporal spread efficacy. How this underlying information can be harnessed using a high-content imaging setup is discussed here.
Collapse
|
49
|
Yan Q, Wang C, Wang J, Pan L, Zhang Z. Controllable and flexible cellular network for virus cell-to-cell spread. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Guo Y, Zhang Z, Xu X, Xu Z, Wang S, Huang D, Li Y, Mou X, Liu F, Xiang C. Menstrual Blood-Derived Stem Cells as Delivery Vehicles for Oncolytic Adenovirus Virotherapy for Colorectal Cancer. Stem Cells Dev 2019; 28:882-896. [PMID: 30991894 DOI: 10.1089/scd.2018.0222] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncolytic adenoviruses (Ads) have potential applications in cancer therapy due to their ability to replicate and induce tumor cell death. However, their clinical application has been limited by the lack of efficient cell-based delivery systems that can provide protection from immune attack and prevent virus clearance by neutralizing antibodies. We previously demonstrated that menstrual blood-derived mesenchymal stem cells (MenSCs) can specifically target tumor cells and serve as a novel drug delivery platform. We engineered CRAd5/F11 chimeric oncolytic Ads that can infect MenSCs and preserve their tumor targeting ability in vitro. MenSCs loaded with these Ads were transplanted in a mouse tumor model. We found that a large number of the CRAd5/F11 viruses were accumulated in tumor site and mediated marked inhibitory effects against colorectal cancer (CRC). Thus, we concluded that MenSC-cloaked oncolytic Ads hold great potential as a novel virus-delivery platform for the therapy of various cancers, including CRC.
Collapse
Affiliation(s)
- Yang Guo
- 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenzhen Zhang
- 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaogang Xu
- 2 Zhejiang Hospital and Zhejiang Provincial Key Lab of Geriatrics, Hangzhou, China
| | - Zhenyu Xu
- 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shibing Wang
- 3 Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,4 Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, China
| | - Dongsheng Huang
- 3 Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,4 Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, China
| | - Yifei Li
- 5 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhou Mou
- 3 Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,4 Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, China
| | - Fanlong Liu
- 6 Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Charlie Xiang
- 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,5 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|