1
|
Qin Z, Li Y, Shao X, Li K, Bai Y, Wang B, Ma F, Shi W, Song L, Zhuang A, He F, Ding C, Yang W. HNF4A functions as a hepatocellular carcinoma oncogene or tumor suppressor depending upon the AMPK pathway activity status. Cancer Lett 2025; 623:217732. [PMID: 40254090 DOI: 10.1016/j.canlet.2025.217732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cancer cells frequently undergo energy metabolic stress induced by the increased dynamics of nutrient supply. Hepatocyte nuclear factor 4A (HNF4A) is a master transcription factor (TF) in hepatocytes that regulates metabolism and differentiation. However, the mechanism underlying how HNF4A functions in cancer progression remains unclear due to conflicting results observed in numerous studies. To address the roles of HNF4A in hepatocellular carcinoma (HCC), we investigated the regulatory functions of HNF4A in HCC cells under different glucose supply conditions. We found that HNF4A exhibited tumor-suppressive effects on the proliferation and migration of HCC cells in glucose-sufficient conditions and tumor-promotive effects on HCC cells in glucose-insufficient conditions. Further investigation revealed that this diverse function of HNF4A was dependent upon the AMPK pathway activity. Similarly, the prognosis predicted by HNF4A was also correlated with whether the AMPKa expression levels were low or high in clinical HCC patients. Multiomics approaches consisting of proteomics and ChIP-seq revealed that key HNF4A target genes, including NEDD4 and RPS6KA2, are involved in the diverse function of HNF4A in HCC in response to the AMPK activity status. Specifically, HNF4A could bind to the promoter region of NEDD4 and RPS6KA2, and upregulating their expression. Our study has demonstrated the relationship between and synergism of AMPK and HNF4A in the progression of HCC under diverse nutrient conditions.
Collapse
Affiliation(s)
- Zhaoyu Qin
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Yan Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Xiexiang Shao
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kai Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Yihe Bai
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Bing Wang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Fahan Ma
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Wenhao Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Aojia Zhuang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Fuchu He
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chen Ding
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Wenjun Yang
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Lopez-Pier MA, Marino VA, Vazquez-Loreto AC, Skaria RS, Cannon DK, Hoyer-Kimura CH, Solomon AE, Lipovka Y, Doubleday K, Pier M, Chu M, Mayfield R, Behunin SM, Hu T, Langlais PR, McKinsey TA, Konhilas JP. Myocardial transcriptomic and proteomic landscapes across the menopausal continuum in a murine model of chemically induced accelerated ovarian failure. Physiol Genomics 2025; 57:409-430. [PMID: 40266891 DOI: 10.1152/physiolgenomics.00133.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/17/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Risk of cardiovascular disease (CVD) in women increases with the menopausal transition. Using a chemical model (4-vinylcyclohexene diepoxide; VCD) of accelerated ovarian failure, we previously demonstrated that menopausal females are more susceptible to CVD compared with peri- or premenopausal females like humans. Yet, the cellular and molecular mechanisms underlying this shift in CVD susceptibility across the pre- to peri- to menopause continuum remain understudied. In this work using the VCD mouse model, we phenotyped cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses. The transcriptional profile of premenopausal hearts clustered separately from perimenopausal and menopausal hearts, which clustered more similarly. Proteomics also revealed hormonal clustering; perimenopausal hearts grouped more closely with premenopausal than menopausal hearts. Both proteomes and transcriptomes showed similar trends in genes associated with atherothrombosis, contractility, and impaired nuclear signaling between pre-, peri-, and menopausal murine hearts. Further analysis of posttranslational modifications (PTMs) showed hormone-dependent shifts in the phosphoproteome and acetylome. To further interrogate these findings, we triggered pathological remodeling using angiotensin II (Ang II). Phosphorylation of AMP-activated protein kinase (AMPK) signaling and histone deacetylase (HDAC) activity were found to be dependent on hormonal status and Ang II stimulation. Finally, knockdown of anti-inflammatory regulatory T cells (Treg) exacerbated Ang II-dependent fibrosis implicating HDAC-mediated epigenetic suppression of Treg activity. Taken together, we demonstrated unique cellular and molecular profiles underlying the cardiac phenotype of pre-, peri-, and menopausal mice supporting the necessity to study CVD in females across the hormonal transition.NEW & NOTEWORTHY Cycling and perimenopausal females are protected from cardiovascular disease (CVD) whereas menopausal females are more susceptible to CVD and other pathological sequalae. The cellular and molecular mechanisms underlying loss of CVD protection across the pre- to peri- to menopause transition remain understudied. Using the murine 4-vinylcyclohexene diepoxide (VCD) model of menopause we highlight cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses.
Collapse
Affiliation(s)
- Marissa A Lopez-Pier
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| | - Vito A Marino
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | | | - Rinku S Skaria
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Danielle K Cannon
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | | | - Alice E Solomon
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Yulia Lipovka
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Kevin Doubleday
- College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Maricela Pier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Meinsung Chu
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Rachel Mayfield
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Samantha M Behunin
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
| | - Tianjing Hu
- Division of Cardiology and Consortium for Fibrosis Research & Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Paul R Langlais
- Department of Endocrinology, University of Arizona, Tucson, Arizona, United States
- College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Timothy A McKinsey
- Division of Cardiology and Consortium for Fibrosis Research & Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John P Konhilas
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
3
|
Yang R, Xu Y, Zhu F, Ma X, Fan T, Wang HL. Gut microbiome, a potential modulator of neuroepigenome. J Nutr Biochem 2025:109961. [PMID: 40412567 DOI: 10.1016/j.jnutbio.2025.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 04/01/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
Gut microbiome has a considerable impact on the central nervous system via the "gut-brain axis". Neuroepigenome emerges as the interface between environment and genes, potentially help conveying the signals derived from the microbiome to the brain tissue. While only a limited number of studies have implicated epigenetic roles in the gut-brain axis, this review explores how gut microbiome might impact various brain-based epigenetic mechanisms, including DNA methylation, histone modification, ncRNA and RNA methylation, notably in the context of the specific neural complications. Among the epigenetic mechanisms, histone acetylation was most well-studied with respect to its relationships with gut microbiome, exerting a dynamic influence on gene expression in the brain. Furthermore, the pathways connecting gut bacteria to neuroepigenome were summarized, highlighting the roles of metabolites such as butyrate, propionate, acetate, lactate, and folate. Of particular interest, the roles of butyrate are emphasized due to their outstanding inhibitory activity towards histone deacetylases (HDACs), among other mechanisms. It is worth noting that some indirect gut-brain pathways may also be associated with the interplay between microbiome and neuroepigenome, while IL-6 has been found to effectively transmit microbe-derived signals to histone methylation in brains. Finally, we recapitulate the future perspectives critical to understanding this gut-brain crosstalk, such as clarifying the cause-and-effect relationship, bacterial cross-feeding within the gut, and the mechanisms underlying the site-specific histone modification in the brain. Together, this review attempts to consolidate our current knowledge about the "microbiome-neuroepigenome interplay" and propose a conceptual pathway to decipher the gut-brain axis in various neurological conditions.
Collapse
Affiliation(s)
- Ruili Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yi Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Feng Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaojing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingting Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
4
|
Greer EL, Lee SS, Prahlad V. Chromatin and epigenetics in aging biology. Genetics 2025; 230:iyaf055. [PMID: 40202900 DOI: 10.1093/genetics/iyaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/03/2025] [Indexed: 04/11/2025] Open
Abstract
This book chapter will focus on modifications to chromatin itself, how chromatin modifications are regulated, and how these modifications are deciphered by the cell to impact aging. In this chapter, we will review how chromatin modifications change with age, examine how chromatin-modifying enzymes have been shown to regulate aging and healthspan, discuss how some of these epigenetic changes are triggered and how they can regulate the lifespan of the individual and its naïve descendants, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
5
|
Mével-Aliset M, Radu AG, Allard J, Blanchet S, Montellier E, Hainaut P, Rossignol R, Torch S, Orsi GA, Thibert C. Transcriptional regulation by LKB1 in lung adenocarcinomas: Exploring oxidative stress, neuroglial and amino acid signatures. Biochem Biophys Res Commun 2025; 755:151571. [PMID: 40043609 DOI: 10.1016/j.bbrc.2025.151571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent cancer types worldwide and has one of the poorest survival rates. Understanding its developpment is crucial for improving diagnosis, prognosis, and treatment. A key factor in LUAD is the frequent loss-of-function mutations in LKB1/STK11, a kinase that regulates metabolism. These mutations are linked to increased metastasis and worse clinical outcomes. In this study, we analyzed gene expression data from LUAD patients to explore how LKB1 mutations affect cancer behavior. We found that LKB1 mutations in KRAS-driven LUAD lead to widespread gene downregulation. By integrating avalaible protein interaction data, mass spectrometry analysis of LKB1 nuclear partners, and co-immunoprecipitations experiments, we identified BRG1, a chromatin activator and subunit of the BAF complex, as a nuclear partner of LKB1. Further analysis suggested that LKB1 mutations may impair BRG1 activity, disrupting chromatin regulation and gene expression. Notably, LUAD patients with mutated LKB1 showed gene expression patterns indicative of oxidative stress, defective neuronal-glial and neuroinflammation programs, and altered amino acid homeostasis. These changes resemble the roles LKB1 plays in neural crest stem cells, suggesting that LKB1 may reduce tumor aggressiveness in LUAD by maintaining a developmental gene expression program.
Collapse
Affiliation(s)
- Marie Mével-Aliset
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Anca G Radu
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jordan Allard
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Sandrine Blanchet
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Emilie Montellier
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Pierre Hainaut
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Rodrigue Rossignol
- INSERM U1211, Bordeaux University, 146 rue Léo Saignat, 33076, Bordeaux, France; CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Sakina Torch
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Guillermo A Orsi
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics of Regeneration and Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Chantal Thibert
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
6
|
Toribio D, Morokuma J, Pellino D, Hardt M, Zoukhri D. Quantitative Changes in the Proteome of Chronically Inflamed Lacrimal Glands From a Sjögren's Disease Animal Model. Invest Ophthalmol Vis Sci 2025; 66:44. [PMID: 40244610 PMCID: PMC12013672 DOI: 10.1167/iovs.66.4.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose The lacrimal gland (LG) is the major source of aqueous tears, and insufficient LG secretion leads to aqueous-deficient dry eye (ADDE) disease. To provide a foundational description of LG's protein expression patterns, we prepared protein extracts of LGs from a wild-type and an ADDE mouse model and analyzed the proteome by quantitative mass spectrometry. Methods LGs were isolated from an ADDE mouse model, male non-obese diabetic (NOD) mice and control wild-type BALB/c mice (n = 6 each). Protein samples were prepared in urea-based lysis buffer and protein concentrations determined by the BCA method. The equivalent of 200 µg protein were tryptically digested and analyzed by nanoflow liquid chromatography tandem mass spectrometry (LC-MS/MS). Proteins were identified and quantified using the PEAKS X bioinformatics suite. Downstream differential protein expression analysis was performed using the MS-DAP R package. Selected significantly differentially expressed and detected proteins were subjected to spatial expression analysis using immunohistochemistry. Results Cumulatively, the LC-MS/MS-based proteomics analyses of the murine LG samples identified a total of 31,932 peptide sequences resulting in 2617 protein identifications at a 1% false discovery rate at the peptide and protein level. Principal component analysis (PCA) and hierarchical cluster analysis revealed a separation of NOD and BALB/c samples. Overall, protein diversity was consistently higher in NOD samples. After applying global peptide filter criteria and peptide-to-protein rollup, 1750 remaining proteins were subjected to differential expression analysis using the MSqRob algorithm, which identified 580 proteins with statistically significant expression differences. Data are available via ProteomeXchange with identifier PXD060937. At the cellular level, the up- and downregulation of select proteins were confirmed by immunohistochemistry. Conclusions Our data suggest that chronic inflammation leads to significant alterations in the LG proteome. Ongoing studies aim to identify potentially unique, inflammation-induced proteins that could be amenable to pharmacological modulation.
Collapse
Affiliation(s)
- Danny Toribio
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Junji Morokuma
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Dante Pellino
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Markus Hardt
- Center for Salivary Diagnostics, ADA Forsyth Institute, Cambridge, Massachusetts, United States
- Department of Inflammation and Immunology, ADA Forsyth Institute, Cambridge, Massachusetts, United States
| | - Driss Zoukhri
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Pei X, Li H, Yu H, Wang W, Mao D. APN/AdipoRon regulates luteal steroidogenesis through AMPK/EZH2/H3K27me3 in goats. J Steroid Biochem Mol Biol 2025; 247:106653. [PMID: 39647537 DOI: 10.1016/j.jsbmb.2024.106653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
AMPK plays a crucial role in cellular energy metabolism and is involved in the regulation of luteal steroidogenesis by APN and its analog AdipoRon. To further explore the regulatory mechanism of AMPK in goat luteal steroidogenesis mediated by APN, cyclic and pregnant CL were utilized to assess the localization and expression of AMPK, EZH2, H3K27me3 and H3K27ac by WB and mIHC, and the interaction between AMPK and EZH2 by Co-IP. Then, isolated luteal cells were treated with APN/AdipoRon to evaluate the expression levels of AMPK, EZH2, H3K27me3 and H3K27ac. Results showed that AMPK and EZH2 were co-localized to the cytoplasm of luteal cells, and interacted as detected by Co-IP. H3K27me3 and H3K27ac were localized to the nucleus of goat luteal cells. H3K27me3 expression in late CL was significantly higher than that in early and middle CL, while the expressions of AMPK, H3K27ac and EZH2 in middle CL were significantly higher than those in early and late CL. Notably, all these proteins were expressed at similar levels between pregnancy and middle cycle, with the exception of EZH2. Following incubation with AdipoRon (25 μM) and APN (1 μg/mL) for 24 h, the expressions of AMPK and H3K27ac decreased, while H3K27me3 increased in luteal cells. Compound C (AMPK activity inhibitor) reversed the AdipoRon - induced decrease in EZH2 expression and the increase in H3K27me3 expression. The increased H3K27me3 expression and decreased steroidogenic protein (CYP11A1 and HSD3B) expression after GSK126 (EZH2 inhibitor) treatment were consistent with the effects seen after AdipoRon treatment. In conclusion, APN/AdipoRon inhibits luteal steroidogenesis by inhibiting the interaction between AMPK and EZH2, thereby promoting H3K27me3 expression.
Collapse
Affiliation(s)
- Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
8
|
Adams S, Tandonnet S, Pires-daSilva A. Balancing selfing and outcrossing: the genetics and cell biology of nematodes with three sexual morphs. Genetics 2025; 229:iyae173. [PMID: 39548861 PMCID: PMC11796466 DOI: 10.1093/genetics/iyae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024] Open
Abstract
Trioecy, a rare reproductive system where hermaphrodites, females, and males coexist, is found in certain algae, plants, and animals. Though it has evolved independently multiple times, its rarity suggests it may be an unstable or transitory evolutionary strategy. In the well-studied Caenorhabditis elegans, attempts to engineer a trioecious strain have reverted to the hermaphrodite/male system, reinforcing this view. However, these studies did not consider the sex-determination systems of naturally stable trioecious species. The discovery of free-living nematodes of the Auanema genus, which have naturally stable trioecy, provides an opportunity to study these systems. In Auanema, females produce only oocytes, while hermaphrodites produce both oocytes and sperm for self-fertilization. Crosses between males and females primarily produce daughters (XX hermaphrodites and females), while male-hermaphrodite crosses result in sons only. These skewed sex ratios are due to X-chromosome drive during spermatogenesis, where males produce only X-bearing sperm through asymmetric cell division. The stability of trioecy in Auanema is influenced by maternal control over sex determination and environmental cues. These factors offer insights into the genetic and environmental dynamics that maintain trioecy, potentially explaining its evolutionary stability in certain species.
Collapse
Affiliation(s)
- Sally Adams
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sophie Tandonnet
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | | |
Collapse
|
9
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
10
|
Liu Y, Yang Z, Wang S, Miao R, Chang CWM, Zhang J, Zhang X, Hung MC, Hou J. Nuclear PD-L1 compartmentalization suppresses tumorigenesis and overcomes immunocheckpoint therapy resistance in mice via histone macroH2A1. J Clin Invest 2024; 134:e181314. [PMID: 39545415 PMCID: PMC11563670 DOI: 10.1172/jci181314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024] Open
Abstract
Canonically PD-L1 functions as the inhibitory immune checkpoint on cell surface. Recent studies have observed PD-L1 expression in the nucleus of cancer cells. But the biological function of nuclear PD-L1 (nPD-L1) in tumor growth and antitumor immunity is unclear. Here we enforced nPD-L1 expression and established stable cells. nPD-L1 suppressed tumorigenesis and aggressiveness in vitro and in vivo. Compared with PD-L1 deletion, nPD-L1 expression repressed tumor growth and improved survival more markedly in immunocompetent mice. Phosphorylated AMPKα (p-AMPKα) facilitated nuclear PD-L1 compartmentalization and then cooperated with it to directly phosphorylate S146 of histone variant macroH2A1 (mH2A1) to epigenetically activate expression of genes of cellular senescence, JAK/STAT, and Hippo signaling pathways. Lipoic acid (LA) that induced nuclear PD-L1 translocation suppressed tumorigenesis and boosted antitumor immunity. Importantly, LA treatment synergized with PD-1 antibody and overcame immune checkpoint blockade (ICB) resistance, which likely resulted from nPD-L1-increased MHC-I expression and sensitivity of tumor cells to interferon-γ. These findings offer a conceptual advance for PD-L1 function and suggest LA as a promising therapeutic option for overcoming ICB resistance.
Collapse
Affiliation(s)
- Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders
| | - Zhi Yang
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglian Wang
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Miao
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | | | - Jingyu Zhang
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology and
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Junwei Hou
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Lowe TL, Valencia DA, Velasquez VE, Quinlan ME, Clarke SG. Methylation and phosphorylation of formin homology domain proteins (Fhod1 and Fhod3) by protein arginine methyltransferase 7 (PRMT7) and Rho kinase (ROCK1). J Biol Chem 2024; 300:107857. [PMID: 39368550 PMCID: PMC11584945 DOI: 10.1016/j.jbc.2024.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
Protein post-translational modifications (PTMs) can regulate biological processes by altering an amino acid's bulkiness, charge, and hydrogen bonding interactions. Common modifications include phosphorylation, methylation, acetylation, and ubiquitylation. Although a primary focus of studying PTMs is understanding the effects of a single amino acid modification, the possibility of additional modifications increases the complexity. For example, substrate recognition motifs for arginine methyltransferases and some serine/threonine kinases overlap, leading to potential enzymatic crosstalk. In this study we have shown that the human family of formin homology domain-containing proteins (Fhods) contain a substrate recognition motif specific for human protein arginine methyltransferase 7 (PRMT7). In particular, PRMT7 methylates two arginine residues in the diaphanous autoinhibitory domain (DAD) of the family of Fhod proteins: R1588 and/or R1590 of Fhod3 isoform 4. Additionally, we confirmed that S1589 and S1595 in the DAD domain of Fhod3 can be phosphorylated by Rho/ROCK1 kinase. Significantly, we have determined that if S1589 is phosphorylated then PRMT7 cannot subsequently methylate R1588 or R1590. In contrast, if R1588 or R1590 of Fhod3 is methylated then ROCK1 phosphorylation activity is only slightly affected. Finally, we show that the interaction of the N-terminal DID domain can also inhibit the methylation of the DAD domain. Taken together these results suggest that the family of Fhod proteins, potential in vivo substrates for PRMT7, might be regulated by a combination of methylation and phosphorylation.
Collapse
Affiliation(s)
- Troy L Lowe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Dylan A Valencia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Vicente E Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
12
|
Capatina AL, Malcolm JR, Stenning J, Moore RL, Bridge KS, Brackenbury WJ, Holding AN. Hypoxia-induced epigenetic regulation of breast cancer progression and the tumour microenvironment. Front Cell Dev Biol 2024; 12:1421629. [PMID: 39282472 PMCID: PMC11392762 DOI: 10.3389/fcell.2024.1421629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The events that control breast cancer progression and metastasis are complex and intertwined. Hypoxia plays a key role both in oncogenic transformation and in fueling the metastatic potential of breast cancer cells. Here we review the impact of hypoxia on epigenetic regulation of breast cancer, by interfering with multiple aspects of the tumour microenvironment. The co-dependent relationship between oxygen depletion and metabolic shift to aerobic glycolysis impacts on a range of enzymes and metabolites available in the cell, promoting posttranslational modifications of histones and chromatin, and changing the gene expression landscape to facilitate tumour development. Hormone signalling, particularly through ERα, is also tightly regulated by hypoxic exposure, with HIF-1α expression being a prognostic marker for therapeutic resistance in ER+ breast cancers. This highlights the strong need to understand the hypoxia-endocrine signalling axis and exploit it as a therapeutic target. Furthermore, hypoxia has been shown to enhance metastasis in TNBC cells, as well as promoting resistance to taxanes, radiotherapy and even immunotherapy through microRNA regulation and changes in histone packaging. Finally, several other mediators of the hypoxic response are discussed. We highlight a link between ionic dysregulation and hypoxia signalling, indicating a potential connection between HIF-1α and tumoural Na+ accumulation which would be worth further exploration; we present the role of Ca2+ in mediating hypoxic adaptation via chromatin remodelling, transcription factor recruitment and changes in signalling pathways; and we briefly summarise some of the findings regarding vesicle secretion and paracrine induced epigenetic reprogramming upon hypoxic exposure in breast cancer. By summarising these observations, this article highlights the heterogeneity of breast cancers, presenting a series of pathways with potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Jodie R Malcolm
- Department of Biology, University of York, York, United Kingdom
| | - Jack Stenning
- Department of Biology, University of York, York, United Kingdom
| | - Rachael L Moore
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Katherine S Bridge
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew N Holding
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
13
|
Chai Y, Sun X, Zhou Q, Li H, Xi Y. Exploration of the mechanism of fraxetin in treating acute myeloid leukemia based on network pharmacology and experimental verification. Heliyon 2024; 10:e34717. [PMID: 39166080 PMCID: PMC11334658 DOI: 10.1016/j.heliyon.2024.e34717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Objective To explore the pharmacological mechanism of the effect of fraxetin in treating acute myeloid leukemia (AML) by the network pharmacology method combined with experimental validation. Methods The targets of fraxetin were identified through Swisstarget prediction, PhammerMap, and CTDBASE. Disease-related targets of AML were explored using GeneCards and DisGenet databases, and the intersected targets were analyzed in the String website to construct a protein-protein interaction (PPI) network. Subsequently, gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were conducted using the DAVID database. Molecular docking of core proteins with drugs was performed using Auto Dock Vina software. Finally, the effect of fraxetin on AML was evaluated by in vitro experiments. The effect of fraxetin on AML cell proliferation was assessed by CCK8, the effect of fraxetin on AML cell apoptosis was assessed by flow cytometry, and the expression of relevant protein targets was detected by Western blotting to evaluate the anti-AML effect of fraxetin. Results In this study, fraxetin exerts its effect against AML through 101 intersecting genes. The pathway enrichment analysis revealed that the pharmacological effects of fraxetin on AML were related to the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, and the molecular docking results indicated that fraxetin had an excellent binding affinity to both the core target and AMPK. In vitro experiments have demonstrated that fraxetin inhibited the proliferation and induced apoptosis of THP1 and HL60 cells, and the western blotting results indicated that the p-AMPK of the fraxetin intervention group was significantly changed in a dose-dependent manner. Conclusion Fraxetin may modulate the AMPK signal pathway by interactine with the core target, thereby potentially therapeutic effect on AML.
Collapse
Affiliation(s)
- Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xiaohong Sun
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Hongxing Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
- Department of Hematology, First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| |
Collapse
|
14
|
Rehman S, Storey KB. Small RNA and Freeze Survival: The Cryoprotective Functions of MicroRNA in the Frozen Muscle Tissue of the Grey Tree Frog. Metabolites 2024; 14:387. [PMID: 39057710 PMCID: PMC11279038 DOI: 10.3390/metabo14070387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The grey tree frog, Dryophytes versicolor, survives whole-body freezing for weeks during cold winter months. Survival in a state devoid of available food, water, or oxygen forces a reliance on metabolic rate depression (MRD) and the reprioritization of bodily functions. This study utilizes next-generation sequencing (NGS) and bioinformatic analyses to characterize changes in the microRNAome of D. versicolor. When comparing control to frozen groups, five microRNAs (miRNA) were found to be differentially regulated (miR-143-3p, miR-30e-3p, miR-10a-5p, miR-140-3p, and miR-148a-3p), suggesting that they play key roles in freeze survival. The KEGG and GO analyses of these changes predicted a significant negative enrichment of terms associated with cell proliferation and active metabolism while simultaneously predicting the upregulation of cell signalling terms. These results suggest a fast-acting regulatory role for miRNA in contributing to the reorganization of gene expression and the limitation of energy-expensive processes during MRD in the hind leg skeletal muscle of the frog.
Collapse
Affiliation(s)
| | - Kenneth B. Storey
- Department of Biology, Carleton Univesrity, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
15
|
Dhahri H, Saintilnord WN, Chandler D, Fondufe-Mittendorf YN. Beyond the Usual Suspects: Examining the Role of Understudied Histone Variants in Breast Cancer. Int J Mol Sci 2024; 25:6788. [PMID: 38928493 PMCID: PMC11203562 DOI: 10.3390/ijms25126788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The incorporation of histone variants has structural ramifications on nucleosome dynamics and stability. Due to their unique sequences, histone variants can alter histone-histone or histone-DNA interactions, impacting the folding of DNA around the histone octamer and the overall higher-order structure of chromatin fibers. These structural modifications alter chromatin compaction and accessibility of DNA by transcription factors and other regulatory proteins to influence gene regulatory processes such as DNA damage and repair, as well as transcriptional activation or repression. Histone variants can also generate a unique interactome composed of histone chaperones and chromatin remodeling complexes. Any of these perturbations can contribute to cellular plasticity and the progression of human diseases. Here, we focus on a frequently overlooked group of histone variants lying within the four human histone gene clusters and their contribution to breast cancer.
Collapse
Affiliation(s)
- Hejer Dhahri
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | - Wesley N. Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center of Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | | |
Collapse
|
16
|
Yu X, Li S. Specific regulation of epigenome landscape by metabolic enzymes and metabolites. Biol Rev Camb Philos Soc 2024; 99:878-900. [PMID: 38174803 DOI: 10.1111/brv.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Metabolism includes anabolism and catabolism, which play an essential role in many biological processes. Chromatin modifications are post-translational modifications of histones and nucleic acids that play important roles in regulating chromatin-associated processes such as gene transcription. There is a tight connection between metabolism and chromatin modifications. Many metabolic enzymes and metabolites coordinate cellular activities with alterations in nutrient availability by regulating gene expression through epigenetic mechanisms such as DNA methylation and histone modifications. The dysregulation of gene expression by metabolism and epigenetic modifications may lead to diseases such as diabetes and cancer. Recent studies reveal that metabolic enzymes and metabolites specifically regulate chromatin modifications, including modification types, modification residues and chromatin regions. This specific regulation has been implicated in the development of human diseases, yet the underlying mechanisms are only beginning to be uncovered. In this review, we summarise recent studies of the molecular mechanisms underlying the metabolic regulation of histone and DNA modifications and discuss how they contribute to pathogenesis. We also describe recent developments in technologies used to address the key questions in this field. We hope this will inspire further in-depth investigations of the specific regulatory mechanisms involved, and most importantly will shed lights on the development of more effective disease therapies.
Collapse
Affiliation(s)
- Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
17
|
Ding SA, Liu H, Zheng R, Ge Y, Fu Z, Mei J, Tang M. Downregulation of MYBL1 in endothelial cells contributes to atherosclerosis by repressing PLEKHM1-inducing autophagy. Cell Biol Toxicol 2024; 40:40. [PMID: 38797732 PMCID: PMC11128406 DOI: 10.1007/s10565-024-09873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
MYBL1 is a strong transcriptional activator involved in the cell signaling. However, there is no systematic study on the role of MYBL1 in atherosclerosis. The aim of this study is to elucidate the role and mechanism of MYBL1 in atherosclerosis. GSE28829, GSE43292 and GSE41571 were downloaded from NCBI for differentially expressed analysis. The expression levels of MYBL1 in atherosclerotic plaque tissue and normal vessels were detected by qRT-PCR, Western blot and Immunohistochemistry. Transwell and CCK-8 were used to detect the migration and proliferation of HUVECs after silencing MYBL1. RNA-seq, Western blot, qRT-PCR, Luciferase reporter system, Immunofluorescence, Flow cytometry, ChIP and CO-IP were used to study the role and mechanism of MYBL1 in atherosclerosis. The microarray data of GSE28829, GSE43292, and GSE41571 were analyzed and intersected, and then MYBL1 were verified. MYBL1 was down-regulated in atherosclerotic plaque tissue. After silencing of MYBL1, HUVECs were damaged, and their migration and proliferation abilities were weakened. Overexpression of MYBL1 significantly enhanced the migration and proliferation of HUVECs. MYBL1 knockdown induced abnormal autophagy in HUVEC cells, suggesting that MYBL1 was involved in the regulation of HUVECs through autophagy. Mechanistic studies showed that MYBL1 knockdown inhibited autophagosome and lysosomal fusion in HUVECs by inhibiting PLEKHM1, thereby exacerbating atherosclerosis. Furthermore, MYBL1 was found to repress lipid accumulation in HUVECs after oxLDL treatment. MYBL1 knockdown in HUVECs was involved in atherosclerosis by inhibiting PLEKHM1-induced autophagy, which provided a novel target of therapy for atherosclerosis.
Collapse
Affiliation(s)
- Shi-Ao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Hao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Rui Zheng
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Yang Ge
- Department of Pediatric Cardiovascular Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Fu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Min Tang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China.
| |
Collapse
|
18
|
Gu L, Fu Y, Li X. Roles of post-translational modifications of UHRF1 in cancer. Epigenetics Chromatin 2024; 17:15. [PMID: 38725075 PMCID: PMC11080273 DOI: 10.1186/s13072-024-00540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
UHRF1 as a member of RING-finger type E3 ubiquitin ligases family, is an epigenetic regulator with five structural domains. It has been involved in the regulation of a series of biological functions, such as DNA replication, DNA methylation, and DNA damage repair. Additionally, aberrant overexpression of UHRF1 has been observed in over ten cancer types, indicating that UHRF1 is a typical oncogene. The overexpression of UHRF1 repressed the transcription of such tumor-suppressor genes as CDKN2A, BRCA1, and CDH1 through DNMT1-mediated DNA methylation. In addition to the upstream transcription factors regulating gene transcription, post-translational modifications (PTMs) also contribute to abnormal overexpression of UHRF1 in cancerous tissues. The types of PTM include phosphorylation, acetylation, methylationand ubiquitination, which regulate protein stability, histone methyltransferase activity, intracellular localization and the interaction with binding partners. Recently, several novel PTM types of UHRF1 have been reported, but the detailed mechanisms remain unclear. This comprehensive review summarized the types of UHRF1 PTMs, as well as their biological functions. A deep understanding of these crucial mechanisms of UHRF1 is pivotal for the development of novel UHRF1-targeted anti-cancer therapeutic strategies in the future.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yongming Fu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Xiong Li
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
19
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
20
|
Neja S, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16:396. [PMID: 38337680 PMCID: PMC10857208 DOI: 10.3390/nu16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sultan Neja
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
21
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
22
|
Sun G, Leclerc GJ, Chahar S, Barredo JC. AMPK Associates with Chromatin and Phosphorylates the TAF-1 Subunit of the Transcription Initiation Complex to Regulate Histone Gene Expression in ALL Cells. Mol Cancer Res 2023; 21:1261-1273. [PMID: 37682252 PMCID: PMC10690046 DOI: 10.1158/1541-7786.mcr-23-0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The survival rates for relapsed/refractory acute lymphoblastic leukemia (ALL) remain poor. We and others have reported that ALL cells are vulnerable to conditions inducing energy/ER-stress mediated by AMP-activated protein kinase (AMPK). To identify the target genes directly regulated by AMPKα2, we performed genome-wide RNA-seq and ChIP-seq in CCRF-CEM (T-ALL) cells expressing HA-AMPKα2 (CN2) under normal and energy/metabolic stress conditions. CN2 cells show significantly altered AMPKα2 genomic binding and transcriptomic profile under metabolic stress conditions, including reduced histone gene expression. Proteomic analysis and in vitro kinase assays identified the TATA-Box-Binding Protein-Associated Factor 1 (TAF1) as a novel AMPKα2 substrate that downregulates histone gene transcription in response to energy/metabolic stress. Knockdown and knockout studies demonstrated that both AMPKα2 and TAF1 are required for histone gene expression. Mechanistically, upon activation, AMPKα2 phosphorylates TAF1 at Ser-1353 which impairs TAF1 interaction with RNA polymerase II (Pol II), leading to a compromised state of p-AMPKα2/p-TAF1/Pol II chromatin association and suppression of transcription. This mechanism was also observed in primary ALL cells and in vivo in NSG mice. Consequently, we uncovered a non-canonical function of AMPK that phosphorylates TAF1, both members of a putative chromatin-associated transcription complex that regulate histone gene expression, among others, in response to energy/metabolic stress. IMPLICATIONS Fully delineating the protein interactome by which AMPK regulates adaptive survival responses to energy/metabolic stress, either via epigenetic gene regulation or other mechanisms, will allow the rational development of strategies to overcome de novo or acquired resistance in ALL and other cancers.
Collapse
Affiliation(s)
- Guangyan Sun
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Guy J. Leclerc
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Sanjay Chahar
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Julio C. Barredo
- Department of Pediatrics, Biochemistry, and Molecular Biology and Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
23
|
Min H, Yang L, Xu X, Geng Y, Liu F, Liu Y. SNHG15 promotes gallbladder cancer progression by enhancing the autophagy of tumor cell under nutrition stress. Cell Cycle 2023; 22:2130-2141. [PMID: 37937948 PMCID: PMC10732635 DOI: 10.1080/15384101.2023.2278339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/28/2023] [Indexed: 11/09/2023] Open
Abstract
Gallbladder cancer (GBC) is a major malignant carcinoma of the biliary tract with extremely poor prognosis. Currently, there is no useful therapy strategies for GBC treatment, indicating the unmet mechanism researches for GBC. In this study, our data showed that SNHG15 expression significantly up-regulated and its high expression associated with poor overall survival of patients suffer from GBC. Functional experiments showed that SNHG15 depletion delayed the proliferation and enhanced the apoptosis of GBC tumor cells under the nutrition stress condition, which further confirmed in the subcutaneous xenograft model and liver metastasis model. Mechanistically, SNHG15 could interact with AMPK and facilitate the phosphorylation of AMPK to Tuberous sclerosis complex TSC2, resulting in mTOR suppression and autophagy enhancement, and finally, conferring the GBC cell sustain proliferation under nutrition stress. Taken together, our findings revealed that SNHG15 promotes GBC tumor progression by enhancing the autophagy under poor nutrition tumor microenvironment, which could be a promising targets for GBC.
Collapse
Affiliation(s)
- He Min
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Linhua Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xinsen Xu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yajun Geng
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Fatao Liu
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
24
|
Soukar I, Amarasinghe A, Pile LA. Coordination of cross-talk between metabolism and epigenetic regulation by the SIN3 complex. Enzymes 2023; 53:33-68. [PMID: 37748836 DOI: 10.1016/bs.enz.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Post-translational modifications of histone proteins control the expression of genes. Metabolites from central and one-carbon metabolism act as donor moieties to modify histones and regulate gene expression. Thus, histone modification and gene regulation are connected to the metabolite status of the cell. Histone modifiers, such as the SIN3 complex, regulate genes involved in proliferation and metabolism. The SIN3 complex contains a histone deacetylase and a histone demethylase, which regulate the chromatin landscape and gene expression. In this chapter, we review the cross-talk between metabolic pathways that produce donor moieties, and epigenetic complexes regulating proliferation and metabolic genes. This cross-talk between gene regulation and metabolism is tightly controlled, and disruption of this cross-talk leads to metabolic diseases. We discuss promising therapeutics that directly regulate histone modifiers, and can affect the metabolic status of the cell, alleviating some metabolic diseases.
Collapse
Affiliation(s)
- Imad Soukar
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anjalie Amarasinghe
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
25
|
Yu YS, Kim H, Kim KI, Baek SH. Epigenetic regulation of autophagy by histone-modifying enzymes under nutrient stress. Cell Death Differ 2023; 30:1430-1436. [PMID: 36997734 PMCID: PMC10244364 DOI: 10.1038/s41418-023-01154-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process that is induced in response to various stress factors in order to protect cells and maintain cellular homeostasis by degrading redundant components and dysfunctional organelles. Dysregulation of autophagy has been implicated in several conditions such as cancer, neurodegenerative diseases, and metabolic disorders. Although autophagy has been commonly considered as a cytoplasmic process, accumulating evidence has revealed that epigenetic regulation within the nucleus is also important for regulation of autophagy. In particular, when energy homeostasis is disrupted, for instance due to nutrient deprivation, cells increase autophagic activity at the transcriptional level, thereby also increasing the extent of overall autophagic flux. The transcription of genes associated with autophagy is strictly regulated by epigenetic factors through a network of histone-modifying enzymes along with histone modifications. A better understanding of the complex regulatory mechanisms of autophagy could reveal potential new therapeutic targets for autophagy-related diseases. In this review, we discuss the epigenetic regulation of autophagy in response to nutrient stress, focusing on histone-modifying enzymes and histone modifications.
Collapse
Affiliation(s)
- Young Suk Yu
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
26
|
Wang S, Zhou Z, Hu R, Dong M, Zhou X, Ren S, Zhang Y, Chen C, Huang R, Zhu M, Xie W, Han L, Shen J, Xie C. Metabolic Intervention Liposome Boosted Lung Cancer Radio-Immunotherapy via Hypoxia Amelioration and PD-L1 Restraint. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207608. [PMID: 37092578 PMCID: PMC10288235 DOI: 10.1002/advs.202207608] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
At present, radiotherapy (RT) still acquires limited success in clinical due to the lessened DNA damage under hypoxia and acquired immune tolerance owing to the amplified programmed death ligand-1 (PD-L1) expression. Incredibly, intracellular PD-L1 expression depression is proven to better sensitize RT by inhibiting DNA damage repair. However, the disability of the clinically used antibodies in disrupting the extracellular PD-L1function still limits the effectiveness of radio-immunotherapy. Therefore, better PD-L1 regulation strategies are still urgently needed to better sensitize radio-immunotherapy. Hence, for this purpose, TPP-LND is synthesized by linking mitochondrial-targeted triphenylphosphine cations (TPP+ ) to the antineoplastic agent lonidamine (LND), which significantly reduces the dose needed for LND to induce effective oxidative phosphorylation inhibition (2 vs 300 µM). Then, TPP-LND is wrapped with liposomes to form TPP-LND@Lip nanoparticles. By doing this, TPP-LND@Lip nanoparticles can sensitize RT by reversing the hypoxic microenvironment of tumors to generate more DNA damage and reducing the expression of PD-L1 via enhancing the adenosine 5'-monophosphate-activated protein kinase activation. As expected, these well-designed economical TPP-LND@Lip nanoparticles are more effective than conventional anti-PD-L1 antibodies to some extent.
Collapse
Affiliation(s)
- Saijun Wang
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision ScienceSchool of Ophthalmology and Optometry, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation OncologyWenzhouZhejiang325000China
| | - Rui Hu
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Mingyue Dong
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Xiaobo Zhou
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Siyan Ren
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Yi Zhang
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Chengxun Chen
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ruoyuan Huang
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Man Zhu
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Wanying Xie
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ling Han
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision ScienceSchool of Ophthalmology and Optometry, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation OncologyWenzhouZhejiang325000China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Congying Xie
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation OncologyWenzhouZhejiang325000China
- Zhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
27
|
Joseph FM, Young NL. Histone variant-specific post-translational modifications. Semin Cell Dev Biol 2023; 135:73-84. [PMID: 35277331 PMCID: PMC9458767 DOI: 10.1016/j.semcdb.2022.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/12/2023]
Abstract
Post-translational modifications (PTMs) of histones play a key role in DNA-based processes and contribute to cell differentiation and gene function by adding an extra layer of regulation. Variations in histone sequences within each family of histones expands the chromatin repertoire and provide further mechanisms for regulation and signaling. While variants are known to be present in certain genomic loci and carry out important functions, much remains unknown about variant-specific PTMs and their role in regulating chromatin. This ambiguity is in part due to the limited technologies and appropriate reagents to identify and quantitate variant-specific PTMs. Nonetheless, histone variants are an integral portion of the chromatin system and the understanding of their modifications and resolving how PTMs function differently on specific variants is paramount to the advancement of the field. Here we review the current knowledge on post-translational modifications specific to histone variants, with an emphasis on well-characterized PTMs of known function. While not every possible PTM is addressed, we present key variant-specific PTMs and what is known about their function and mechanisms in convenient reference tables.
Collapse
Affiliation(s)
- Faith M Joseph
- Translational Biology and Molecular Medicine Graduate Program, USA
| | - Nicolas L Young
- Translational Biology and Molecular Medicine Graduate Program, USA; Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N, Anto RJ. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol 2023; 14:1114582. [PMID: 36875093 PMCID: PMC9975160 DOI: 10.3389/fimmu.2023.1114582] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. AMPK contributes to diverse metabolic and physiological effects besides its fundamental role in glucose and lipid metabolism. Aberrancy in AMPK signaling is one of the determining factors which lead to the development of chronic diseases such as obesity, inflammation, diabetes, and cancer. The activation of AMPK and its downstream signaling cascades orchestrate dynamic changes in the tumor cellular bioenergetics. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways. In addition, AMPK plays a central role in potentiating the phenotypic and functional reprogramming of various classes of immune cells which reside in the tumor microenvironment (TME). Furthermore, AMPK-mediated inflammatory responses facilitate the recruitment of certain types of immune cells to the TME, which impedes the development, progression, and metastasis of cancer. Thus, AMPK appears to play an important role in the regulation of anti-tumor immune response by regulating the metabolic plasticity of various immune cells. AMPK effectuates the metabolic modulation of anti-tumor immunity via nutrient regulation in the TME and by virtue of its molecular crosstalk with major immune checkpoints. Several studies including that from our lab emphasize on the role of AMPK in regulating the anticancer effects of several phytochemicals, which are potential anticancer drug candidates. The scope of this review encompasses the significance of the AMPK signaling in cancer metabolism and its influence on the key drivers of immune responses within the TME, with a special emphasis on the potential use of phytochemicals to target AMPK and combat cancer by modulating the tumor metabolism.
Collapse
Affiliation(s)
- Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kalishwaralal Kalimuthu
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
29
|
Patankar A, Sudhakar DVS, Gajbhiye R, Surve S, Thangaraj K, Parte P. Proteomic and genetic dissection of testis-specific histone 2B in infertile men reveals its contribution to meiosis and sperm motility. F&S SCIENCE 2022; 3:322-330. [PMID: 35840050 DOI: 10.1016/j.xfss.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate testis-specific histone 2B (TSH2B) and its gene anomalies in infertile men. DESIGN Case-control study. SETTING Basic science laboratory. PATIENT(S) Fertile and infertile men. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) The histone and protamine status of sperm was studied by aniline blue and chromomycin A3 staining, respectively. Testis-specific histone 2B, total H2B, and phosphorylated TSH2B (pTSH2B) were estimated by Western blot analysis. The frequency of genetic polymorphisms and rare variants in H2BC1 was studied by Sanger sequencing. Phosphosites on TSH2B in sperm were identified by reverse-phase high-performance liquid chromatography purification of TSH2B followed by mass spectrometric analysis. RESULT(S) Aniline blue and chromomycin A3 staining revealed significantly higher histone retention and low protamine in sperm of infertile men. Sperm TSH2B and total H2B levels were significantly lower in oligozoospermic and oligoasthenozoospermic men (in both groups). The TSH2B levels were comparable in asthenozoospermic men; however, the pTSH2B level was significantly low. The H2BC1 gene sequencing identified 6 variants, of which 2 are rare variants (rs368672899 and rs544942090) and 4 (rs4711096, rs4712959, rs4712960 and rs4712961) are single nucleotide polymorphisms. Minor allele frequency of 5'-untranslated region variant rs4711096 was significantly lower in infertile men (OR = 0.65). The rare nonsynonymous variant, rs368672899, p.Ser5Pro was seen in 1 oligoasthenoteratozoospermic individual. Interestingly, mass spectrometric analysis identified a site on TSH2B to bear a phosphate group in the sperm of fertile men. CONCLUSION(S) Our study reveals a defect in the replacement of somatic histones with testis-specific variants in infertile men. Chromatin compaction positively correlates with sperm motility, which is suggestive of its utility in diagnostic semen analysis of infertile individuals. Our observations with TSH2B and its cognate gene in sperm of infertile men indicate an essential role for TSH2B in meiosis and its phosphorylation in sperm motility, respectively.
Collapse
Affiliation(s)
- Aniket Patankar
- Department of Gamete Immunobiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Digumarthi V S Sudhakar
- Department of Gamete Immunobiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Rahul Gajbhiye
- Clinical Research Laboratory & Andrology Clinic, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Suchitra Surve
- Clinical Research Laboratory & Andrology Clinic, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Kumarasamy Thangaraj
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology, Hyderabad, India; Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India.
| |
Collapse
|
30
|
Geffroy B. Energy as the cornerstone of environmentally driven sex allocation. Trends Endocrinol Metab 2022; 33:670-679. [PMID: 35934660 DOI: 10.1016/j.tem.2022.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
In recent years, observations of distinct organisms have linked the quality of the environment experienced by a given individual and the sex it will develop. In most described cases, facing relatively harsh conditions resulted in masculinization, while thriving in favorable conditions promoted the development of an ovary. This was shown indistinctively in some species presenting a genetic sex determination (GSD), which were able to sex-reverse, and in species with an environmental sex determination (ESD) system. However, this pattern strongly depends on evolutionary constrains and is detected only when females need more energy for reproduction. Here, I describe the mechanisms involved in this environmentally driven sex allocation (EDSA), which involves two main energy pathways, lipid and carbohydrate metabolism. These pathways act through various enzymes and are not necessarily independent of the previously known transducers of environmental signals in species with ESD: calcium-redox, epigenetic, and stress regulation pathways. Overall, there is evidence of a link between energy level and the sexual fate of individuals of various species, including reptiles, fish, amphibians, insects, and nematodes. As energy pathways are evolutionarily conserved, this knowledge opens new avenues to advance our understanding of the mechanisms that allow animals to adapt their sex according to the local environment.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, Univ Montpellier, Ifremer, IRD, CNRS, Montpellier, France.
| |
Collapse
|
31
|
Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 2022; 85:52-68. [PMID: 33862221 PMCID: PMC9768867 DOI: 10.1016/j.semcancer.2021.04.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
The intrinsic mechanisms sensing the imbalance of energy in cells are pivotal for cell survival under various environmental insults. AMP-activated protein kinase (AMPK) serves as a central guardian maintaining energy homeostasis by orchestrating diverse cellular processes, such as lipogenesis, glycolysis, TCA cycle, cell cycle progression and mitochondrial dynamics. Given that AMPK plays an essential role in the maintenance of energy balance and metabolism, managing AMPK activation is considered as a promising strategy for the treatment of metabolic disorders such as type 2 diabetes and obesity. Since AMPK has been attributed to aberrant activation of metabolic pathways, mitochondrial dynamics and functions, and epigenetic regulation, which are hallmarks of cancer, targeting AMPK may open up a new avenue for cancer therapies. Although AMPK is previously thought to be involved in tumor suppression, several recent studies have unraveled its tumor promoting activity. The double-edged sword characteristics for AMPK as a tumor suppressor or an oncogene are determined by distinct cellular contexts. In this review, we will summarize recent progress in dissecting the upstream regulators and downstream effectors for AMPK, discuss the distinct roles of AMPK in cancer regulation and finally offer potential strategies with AMPK targeting in cancer therapy.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
32
|
Chhunchha B, Kubo E, Singh DP. Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity. Cells 2022; 11:3021. [PMID: 36230981 PMCID: PMC9563310 DOI: 10.3390/cells11193021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Increasing levels of oxidative-stress due to deterioration of the Nrf2 (NFE2-related factor)/ARE (antioxidant response element) pathway is found to be a primary cause of aging pathobiology. Metformin having anti-aging effects can delay/halt aging-related diseases. Herein, using lens epithelial cell lines (LECs) of human (h) or mouse (m) and aging h/m primary LECs along with lenses as model systems, we demonstrated that Metformin could correct deteriorated Bmal1/Nrf2/ARE pathway by reviving AMPK-activation, and transcriptional activities of Bmal1/Nrf2, resulting in increased antioxidants enzymatic activity and expression of Phase II enzymes. This ensued reactive oxygen species (ROS) mitigation with cytoprotection and prevention of lens opacity in response to aging/oxidative stress. It was intriguing to observe that Metformin internalized lens/LECs and upregulated OCTs (Organic Cation Transporters). Mechanistically, we found that Metformin evoked AMPK activation-dependent increase of Bmal1, Nrf2, and antioxidants transcription by promoting direct E-Box and ARE binding of Bmal1 and Nrf2 to the promoters. Loss-of-function and disruption of E-Box/ARE identified that Metformin acted by increasing Bmal1/Nrf2-mediated antioxidant expression. Data showed that AMPK-activation was a requisite for Bmal1/Nrf2-antioxidants-mediated defense, as pharmacologically inactivating AMPK impeded the Metformin's effect. Collectively, the results for the first-time shed light on the hitherto incompletely uncovered crosstalk between the AMPK and Bmal1/Nrf2/antioxidants mediated by Metformin for blunting oxidative/aging-linked pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
33
|
Maree JP, Tvardovskiy A, Ravnsborg T, Jensen ON, Rudenko G, Patterton HG. Trypanosoma brucei histones are heavily modified with combinatorial post-translational modifications and mark Pol II transcription start regions with hyperacetylated H2A. Nucleic Acids Res 2022; 50:9705-9723. [PMID: 36095123 PMCID: PMC9508842 DOI: 10.1093/nar/gkac759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Trypanosomes diverged from the main eukaryotic lineage about 600 million years ago, and display some unusual genomic and epigenetic properties that provide valuable insight into the early processes employed by eukaryotic ancestors to regulate chromatin-mediated functions. We analysed Trypanosoma brucei core histones by high mass accuracy middle-down mass spectrometry to map core histone post-translational modifications (PTMs) and elucidate cis-histone combinatorial PTMs (cPTMs). T. brucei histones are heavily modified and display intricate cPTMs patterns, with numerous hypermodified cPTMs that could contribute to the formation of non-repressive euchromatic states. The Trypanosoma brucei H2A C-terminal tail is hyperacetylated, containing up to five acetylated lysine residues. MNase-ChIP-seq revealed a striking enrichment of hyperacetylated H2A at Pol II transcription start regions, and showed that H2A histones that are hyperacetylated in different combinations localised to different genomic regions, suggesting distinct epigenetic functions. Our genomics and proteomics data provide insight into the complex epigenetic mechanisms used by this parasite to regulate a genome that lacks the transcriptional control mechanisms found in later-branched eukaryotes. The findings further demonstrate the complexity of epigenetic mechanisms that were probably shared with the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Johannes P Maree
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Andrey Tvardovskiy
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Tina Ravnsborg
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Gloria Rudenko
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Hugh-G Patterton
- Center for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
34
|
Aβ-induced mitochondrial dysfunction in neural progenitors controls KDM5A to influence neuronal differentiation. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1461-1471. [PMID: 36056186 PMCID: PMC9534996 DOI: 10.1038/s12276-022-00841-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 06/02/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
Mitochondria in neural progenitors play a crucial role in adult hippocampal neurogenesis by being involved in fate decisions for differentiation. However, the molecular mechanisms by which mitochondria are related to the genetic regulation of neuronal differentiation in neural progenitors are poorly understood. Here, we show that mitochondrial dysfunction induced by amyloid-beta (Aβ) in neural progenitors inhibits neuronal differentiation but has no effect on the neural progenitor stage. In line with the phenotypes shown in Alzheimer's disease (AD) model mice, Aβ-induced mitochondrial damage in neural progenitors results in deficits in adult hippocampal neurogenesis and cognitive function. Based on hippocampal proteome changes after mitochondrial damage in neural progenitors identified through proteomic analysis, we found that lysine demethylase 5A (KDM5A) in neural progenitors epigenetically suppresses differentiation in response to mitochondrial damage. Mitochondrial damage characteristically causes KDM5A degradation in neural progenitors. Since KDM5A also binds to and activates neuronal genes involved in the early stage of differentiation, functional inhibition of KDM5A consequently inhibits adult hippocampal neurogenesis. We suggest that mitochondria in neural progenitors serve as the checkpoint for neuronal differentiation via KDM5A. Our findings not only reveal a cell-type-specific role of mitochondria but also suggest a new role of KDM5A in neural progenitors as a mediator of retrograde signaling from mitochondria to the nucleus, reflecting the mitochondrial status.
Collapse
|
35
|
Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022; 190:75-93. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
NRF2 (Nuclear factor E2 p45-related factor 2) is a stress responsive transcription factor lending cells resilience against oxidative, xenobiotic, and also nutrient or proteotoxic insults. AMPK (AMP-activated kinase), considered as prime regulator of cellular energy homeostasis, not only tunes metabolism to provide the cell at any time with sufficient ATP or building blocks, but also controls redox balance and inflammation. Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis. After a short introduction of the two players this narrative review paints the current picture on how AMPK and NRF2 signaling might interact on the molecular level, and highlights their possible crosstalk in selected examples of pathophysiology or bioactivity of drugs and phytochemicals.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Shara Natalia Sosa Cabrera
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
36
|
Jiang Y, Cong X, Jiang S, Dong Y, Zhao L, Zang Y, Tan M, Li J. Phosphoproteomics Reveals the AMPK Substrate Network in Response to DNA Damage and Histone Acetylation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:597-613. [PMID: 33607295 PMCID: PMC9880816 DOI: 10.1016/j.gpb.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/12/2020] [Accepted: 11/11/2020] [Indexed: 01/31/2023]
Abstract
AMP-activated protein kinase (AMPK) is a conserved energy sensor that plays roles in diverse biological processes via phosphorylating various substrates. Emerging studies have demonstrated the regulatory roles of AMPK in DNA repair, but the underlying mechanisms remain to be fully understood. Herein, using mass spectrometry-based proteomic technologies, we systematically investigate the regulatory network of AMPK in DNA damage response (DDR). Our system-wide phosphoproteome study uncovers a variety of newly-identified potential substrates involved in diverse biological processes, whereas our system-wide histone modification analysis reveals a link between AMPK and histone acetylation. Together with these findings, we discover that AMPK promotes apoptosis by phosphorylating apoptosis-stimulating of p53 protein 2 (ASPP2) in an irradiation (IR)-dependent manner and regulates histone acetylation by phosphorylating histone deacetylase 9 (HDAC9) in an IR-independent manner. Besides, we reveal that disrupting the histone acetylation by the bromodomain BRD4 inhibitor JQ-1 enhances the sensitivity of AMPK-deficient cells to IR. Therefore, our study has provided a resource to investigate the interplay between phosphorylation and histone acetylation underlying the regulatory network of AMPK, which could be beneficial to understand the exact role of AMPK in DDR.
Collapse
Affiliation(s)
- Yuejing Jiang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoji Cong
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangwen Jiang
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Dong
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhao
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,Corresponding authors.
| | - Minjia Tan
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,Corresponding authors.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China,Corresponding authors.
| |
Collapse
|
37
|
Hu M, Santin JM. Transformation to ischaemia tolerance of frog brain function corresponds to dynamic changes in mRNA co-expression across metabolic pathways. Proc Biol Sci 2022; 289:20221131. [PMID: 35892220 PMCID: PMC9326273 DOI: 10.1098/rspb.2022.1131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neural activity is costly and requires continuous ATP from aerobic metabolism. Brainstem motor function of American bullfrogs normally collapses after minutes of ischaemia, but following hibernation, it becomes ischaemia-tolerant, generating output for up to 2 h without oxygen or glucose delivery. Transforming the brainstem to function during ischaemia involves a switch to anaerobic glycolysis and brain glycogen. We hypothesized that improving neural performance during ischaemia involves a transcriptional program for glycogen and glucose metabolism. Here we measured mRNA copy number of genes along the path from glycogen metabolism to lactate production using real-time quantitative PCR. The expression of individual genes did not reflect enhanced glucose metabolism. However, the number of co-expressed gene pairs increased early into hibernation, and by the end, most genes involved in glycogen metabolism, glucose transport and glycolysis exhibited striking linear co-expression. By contrast, co-expression of genes in the Krebs cycle and electron transport chain decreased throughout hibernation. Our results uncover reorganization of the metabolic transcriptional network associated with a shift to ischaemia tolerance in brain function. We conclude that modifying gene co-expression may be a critical step in synchronizing storage and use of glucose to achieve ischaemia tolerance in active neural circuits.
Collapse
Affiliation(s)
- Min Hu
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Joseph M. Santin
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
38
|
Han Y, Nie J, Wang DW, Ni L. Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front Cardiovasc Med 2022; 9:931475. [PMID: 35958418 PMCID: PMC9360326 DOI: 10.3389/fcvm.2022.931475] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac hypertrophy is a key process in cardiac remodeling development, leading to ventricle enlargement and heart failure. Recently, studies show the complicated relation between cardiac hypertrophy and epigenetic modification. Post-translational modification of histone is an essential part of epigenetic modification, which is relevant to multiple cardiac diseases, especially in cardiac hypertrophy. There is a group of enzymes related in the balance of histone acetylation/deacetylation, which is defined as histone acetyltransferase (HAT) and histone deacetylase (HDAC). In this review, we introduce an important enzyme family HDAC, a key regulator in histone deacetylation. In cardiac hypertrophy HDAC I downregulates the anti-hypertrophy gene expression, including Kruppel-like factor 4 (Klf4) and inositol-5 phosphatase f (Inpp5f), and promote the development of cardiac hypertrophy. On the contrary, HDAC II binds to myocyte-specific enhancer factor 2 (MEF2), inhibit the assemble ability to HAT and protect against cardiac hypertrophy. Under adverse stimuli such as pressure overload and calcineurin stimulation, the HDAC II transfer to cytoplasm, and MEF2 can bind to nuclear factor of activated T cells (NFAT) or GATA binding protein 4 (GATA4), mediating inappropriate gene expression. HDAC III, also known as SIRTs, can interact not only to transcription factors, but also exist interaction mechanisms to other HDACs, such as HDAC IIa. We also present the latest progress of HDAC inhibitors (HDACi), as a potential treatment target in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu Han
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- *Correspondence: Dao Wen Wang,
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Li Ni,
| |
Collapse
|
39
|
Chen C, Wang Z, Qin Y. Connections between metabolism and epigenetics: mechanisms and novel anti-cancer strategy. Front Pharmacol 2022; 13:935536. [PMID: 35935878 PMCID: PMC9354823 DOI: 10.3389/fphar.2022.935536] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer cells undergo metabolic adaptations to sustain their growth and proliferation under several stress conditions thereby displaying metabolic plasticity. Epigenetic modification is known to occur at the DNA, histone, and RNA level, which can alter chromatin state. For almost a century, our focus in cancer biology is dominated by oncogenic mutations. Until recently, the connection between metabolism and epigenetics in a reciprocal manner was spotlighted. Explicitly, several metabolites serve as substrates and co-factors of epigenetic enzymes to carry out post-translational modifications of DNA and histone. Genetic mutations in metabolic enzymes facilitate the production of oncometabolites that ultimately impact epigenetics. Numerous evidences also indicate epigenome is sensitive to cancer metabolism. Conversely, epigenetic dysfunction is certified to alter metabolic enzymes leading to tumorigenesis. Further, the bidirectional relationship between epigenetics and metabolism can impact directly and indirectly on immune microenvironment, which might create a new avenue for drug discovery. Here we summarize the effects of metabolism reprogramming on epigenetic modification, and vice versa; and the latest advances in targeting metabolism-epigenetic crosstalk. We also discuss the principles linking cancer metabolism, epigenetics and immunity, and seek optimal immunotherapy-based combinations.
Collapse
|
40
|
Goswami P, Samanta SK, Agarwal T, Ghosh SK. Stress-responsive AMP Kinase like protein regulates encystation of Entamoeba invadens. Mol Biochem Parasitol 2022; 251:111507. [PMID: 35870645 DOI: 10.1016/j.molbiopara.2022.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
Starvation is always accompanied by an increase in the ratio of AMP/ATP followed by activation of AMPK. It is one of the sensors for cellular energy status and is highly conserved across various species. Its role in the stage differentiation process of protozoan species like Giardia, Plasmodium, Trypanosome, and Toxoplasma has been reported. Since Entamoeba undergoes encystation in glucose-starved conditions; it intrigued us to investigate the existence and role of AMPK during the differentiation of trophozoites to the cyst. By employing in silico approaches, we have identified an AMPK homologue which is denominated here as EiAMPK (AMPK-like protein in Entamoeba invadens). Sequence and structural analysis indicate that EiAMPK is sequentially and structurally similar to the AMPK alpha subunit of other organisms. The recombinant form of EiAMPK was functionally active and in accordance, its activity was inhibited by an AMPK-specific inhibitor (eg. Compound C). The increased expression of EiAMPK during different stresses indicated that EiAMPK is a stress-responsive gene. To further investigate, whether EiAMPK has any role in encystation, we employed RNAi-mediated gene silencing that demonstrated its active involvement in encystation. It is known that Entamoeba maintains a flow of glucose from the glycolytic pathway to chitin synthesis for cyst wall formation during encystation. It is conceivable that EiAMPK might have a command over such glucose metabolism. As anticipated, the chitin synthesis was found greatly inhibited in both EiAMPK knockdown and Compound C treated cells, indicating that EiAMPK regulates the cyst wall chitin synthesis.
Collapse
Affiliation(s)
- Piyali Goswami
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sintu Kumar Samanta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudip K Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
41
|
Gao H, Jiang L, Du B, Ning B, Ding X, Zhang C, Song B, Liu S, Zhao M, Zhao Y, Rong T, Liu D, Wu J, Xu P, Zhang S. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:473-495. [PMID: 35562858 DOI: 10.1111/tpj.15809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a worldwide soybean (Glycine max) disease caused by the soil-borne pathogen Phytophthora sojae. This disease is devastating to soybean production, so improvement of resistance to P. sojae is a major target in soybean breeding. Mitogen-activated protein kinase (MAPK) cascades are important signaling modules that convert environmental stimuli into cellular responses. Compared with extensive studies in Arabidopsis, the molecular mechanism of MAPK cascades in soybean disease resistance is barely elucidated. In this work, we found that the gene expression of mitogen-activated protein kinase 6 (GmMPK6) was potently induced by P. sojae infection in the disease-resistant soybean cultivar 'Suinong 10'. Overexpression of GmMPK6 in soybean resulted in enhanced resistance to P. sojae and silencing of GmMPK6 led to the opposite phenotype. In our attempt to dissect the role of GmMPK6 in soybean resistance to phytophthora disease, we found that MAPK kinase 4 (GmMKK4) and the ERF transcription factor GmERF113 physically interact with GmMPK6, and we determined that GmMKK4 could phosphorylate and activate GmMPK6, which could subsequently phosphorylate GmERF113 upon P. sojae infection, suggesting that P. sojae can stimulate the GmMKK4-GmMPK6-GmERF113 signaling pathway in soybean. Moreover, phosphorylation of GmERF113 by the GmMKK4-GmMPK6 module promoted GmERF113 stability, nuclear localization and transcriptional activity, which significantly enhanced expression of the defense-related genes GmPR1 and GmPR10-1 and hence improved disease resistance of the transgenic soybean seedlings. In all, our data reveal that the GmMKK4-GmMPK6-GmERF113 cascade triggers resistance to P. sojae in soybean and shed light on functions of MAPK kinases in plant disease resistance.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Liangyu Jiang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Banghan Du
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bin Ning
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Xiaodong Ding
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Chuanzhong Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Ming Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Yuxin Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Tianyu Rong
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Dongxue Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, 150086, China
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| |
Collapse
|
42
|
Song WS, Lee JS, Lim JW, Kim J, Jo SH, Kwon JE, Park JH, Choi SH, Jang D, Kim IW, Jeong JH, Kim YG. Multiomics characterization of dose- and time-dependent effects of ionizing radiation on human skin keratinocytes. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
44
|
Andugulapati SB, Sundararaman A, Lahiry M, Rangarajan A. AMP- activated protein kinase (AMPK) promotes breast cancer stemness and drug resistance. Dis Model Mech 2022; 15:274505. [PMID: 35195687 PMCID: PMC9150117 DOI: 10.1242/dmm.049203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are a major cause of therapy resistance and tumour progression. Currently, their regulation is not entirely understood. Previous work from our laboratory demonstrated a context-specific pro-tumorigenic role for AMP-activated protein kinase (AMPK) under anchorage-deprivation and mammosphere formation, which are hallmarks of BCSCs. Therefore, we investigated the role of AMPK in the maintenance of BCSC state/function. AMPK depletion reduces serial sphere formation in vitro and tumour initiation in vivo. Intriguingly, tumour-derived cell analysis using stem cell markers and functional assays revealed that AMPK is required for the maintenance of BCSC populations in vivo. AMPK promotes the expression of stemness genes such as NANOG, SOX2 and BMI1 through the transcriptional upregulation of TWIST via promoter acetylation. Further, AMPK-driven stemness plays a critical role in doxorubicin resistance. Significantly, AMPK activity increased after chemotherapy in patient-derived tumour samples alongside an increase in stemness markers. Importantly, AMPK depletion sensitises mouse tumours to doxorubicin treatment. Our work indicates that targeting of AMPK in conjunction with regular chemotherapy is likely to reduce the stem cell pool and improve chemosensitivity in breast cancers. Summary: AMPK inhibition in conjunction with regular chemotherapy is likely to reduce the stem cell pool and improve chemosensitivity and therapeutic outcomes in breast cancers.
Collapse
Affiliation(s)
- Sai Balaji Andugulapati
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bangalore 560012, India
| | - Ananthalakshmy Sundararaman
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bangalore 560012, India
| | - Mohini Lahiry
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bangalore 560012, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
45
|
Abstract
Autophagy is an intracellular catabolic degradative process in which damaged cellular organelles, unwanted proteins and different cytoplasmic components get recycled to maintain cellular homeostasis or metabolic balance. During autophagy, a double membrane vesicle is formed to engulf these cytosolic materials and fuse to lysosomes wherein the entire cargo degrades to be used again. Because of this unique recycling ability of cells, autophagy is a universal stress response mechanism. Dysregulation of autophagy leads to several diseases, including cancer, neurodegeneration and microbial infection. Thus, autophagy machineries have become targets for therapeutics. This chapter provides an overview of the paradoxical role of autophagy in tumorigenesis in the perspective of metabolism.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
46
|
Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function. Cell Res 2022; 32:54-71. [PMID: 34561619 PMCID: PMC8724286 DOI: 10.1038/s41422-021-00565-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis. Although much has been learned on how low energy status and glucose starvation activate AMPK, how AMPK activity is properly controlled in vivo is still poorly understood. Here we report that UHRF1, an epigenetic regulator highly expressed in proliferating and cancer cells, interacts with AMPK and serves to suppress AMPK activity under both basal and stressed conditions. As a nuclear protein, UHRF1 promotes AMPK nuclear retention and strongly suppresses nuclear AMPK activity toward substrates H2B and EZH2. Importantly, we demonstrate that UHRF1 also robustly inhibits AMPK activity in the cytoplasm compartment, most likely as a consequence of AMPK nucleocytoplasmic shuttling. Mechanistically, we found that UHRF1 has no obvious effect on AMPK activation by upstream kinases LKB1 and CAMKK2 but inhibits AMPK activity by acting as a bridging factor targeting phosphatase PP2A to dephosphorylate AMPK. Hepatic overexpression of UHRF1 showed profound effects on glucose and lipid metabolism in wild-type mice but not in those with the liver-specific knockout of AMPKα1/α2, whereas knockdown of UHRF1 in adipose tissue led to AMPK activation and reduced sizes of adipocytes and lipogenic activity, highlighting the physiological significance of this regulation in glucose and lipid metabolism. Thus, our study identifies UHRF1 as a novel AMPK gate-keeper with critical roles in cellular metabolism.
Collapse
|
47
|
Wang G, Han JJ. Connections between metabolism and epigenetic modifications in cancer. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:199-221. [PMID: 37724300 PMCID: PMC10388788 DOI: 10.1515/mr-2021-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/19/2021] [Indexed: 09/20/2023]
Abstract
How cells sense and respond to environmental changes is still a key question. It has been identified that cellular metabolism is an important modifier of various epigenetic modifications, such as DNA methylation, histone methylation and acetylation and RNA N6-methyladenosine (m6A) methylation. This closely links the environmental nutrient availability to the maintenance of chromatin structure and gene expression, and is crucial to regulate cellular homeostasis, cell growth and differentiation. Cancer metabolic reprogramming and epigenetic alterations are widely observed, and facilitate cancer development and progression. In cancer cells, oncogenic signaling-driven metabolic reprogramming modifies the epigenetic landscape via changes in the key metabolite levels. In this review, we briefly summarized the current evidence that the abundance of key metabolites, such as S-adenosyl methionine (SAM), acetyl-CoA, α-ketoglutarate (α-KG), 2-hydroxyglutarate (2-HG), uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and lactate, affected by metabolic reprogramming plays an important role in dynamically regulating epigenetic modifications in cancer. An improved understanding of the roles of metabolic reprogramming in epigenetic regulation can contribute to uncover the underlying mechanisms of metabolic reprogramming in cancer development and identify the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Guangchao Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jingdong J. Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| |
Collapse
|
48
|
Wang P, Snijders R, Kohlen W, Liu J, Bisseling T, Limpens E. Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation. THE PLANT CELL 2021; 33:3470-3486. [PMID: 34469578 PMCID: PMC8567062 DOI: 10.1093/plcell/koab206] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 05/22/2023]
Abstract
To acquire sufficient mineral nutrients such as phosphate (Pi) from the soil, most plants engage in symbiosis with arbuscular mycorrhizal (AM) fungi. Attracted by plant-secreted strigolactones (SLs), the fungi colonize the roots and form highly branched hyphal structures called arbuscules inside inner cortex cells. The host plant must control the different steps of this interaction to maintain its symbiotic nature. However, how plants sense the amount of Pi obtained from the fungus, and how this determines the arbuscule lifespan, are far from understood. Here, we show that Medicago truncatula SPX-domain containing proteins SPX1 and SPX3 regulate root Pi starvation responses, in part by interacting with PHOSPHATE RESPONSE REGULATOR2, as well as fungal colonization and arbuscule degradation. SPX1 and SPX3 are induced upon Pi starvation but become more restricted to arbuscule-containing cells upon the establishment of symbiosis. This induction in arbuscule-containing cells is associated with the presence of cis-regulatory AW-boxes and transcriptional regulation by the WRINKLED1-like transcription factor WRI5a. Under Pi-limiting conditions, SPX1 and SPX3 facilitate the expression of the SL biosynthesis gene DWARF27, which could help explain the increased fungal branching in response to root exudates. Later, in arbuscule-containing cells, SPX1 and SPX3 redundantly control arbuscule degradation. Thus, SPX proteins play important roles as phosphate sensors to maintain a beneficial AM symbiosis.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Roxane Snijders
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jieyu Liu
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
- Author for correspondence:
| |
Collapse
|
49
|
Faure MC, Khoueiry R, Quanico J, Acloque H, Guerquin MJ, Bertoldo MJ, Chevaleyre C, Ramé C, Fournier I, Salzet M, Dupont J, Froment P. In Utero Exposure to Metformin Reduces the Fertility of Male Offspring in Adulthood. Front Endocrinol (Lausanne) 2021; 12:750145. [PMID: 34745014 PMCID: PMC8565088 DOI: 10.3389/fendo.2021.750145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is a drug used for the treatment of type 2 diabetes and disorders associated with insulin resistance. Metformin is also used in the treatment of pregnancy disorders such as gestational diabetes. However, the consequences of foetal exposure to metformin on the fertility of exposed offspring remain poorly documented. In this study, we investigated the effect of in utero metformin exposure on the fertility of female and male offspring. We observed that metformin is detectable in the blood of the mother and in amniotic fluid and blood of the umbilical cord. Metformin was not measurable in any tissues of the embryo, including the gonads. The effect of metformin exposure on offspring was sex specific. The adult females that had been exposed to metformin in utero presented no clear reduction in fertility. However, the adult males that had been exposed to metformin during foetal life exhibited a 30% reduction in litter size compared with controls. The lower fertility was not due to a change in sperm production or the motility of sperm. Rather, the phenotype was due to lower sperm head quality - significantly increased spermatozoa head abnormality with greater DNA damage - and hypermethylation of the genomic DNA in the spermatozoa associated with lower expression of the ten-eleven translocation methylcytosine dioxygenase 1 (TET1) protein. In conclusion, while foetal metformin exposure did not dramatically alter gonad development, these results suggest that metabolic modification by metformin during the foetal period could change the expression of epigenetic regulators such as Tet1 and perturb the genomic DNA in germ cells, changes that might contribute to a reduced fertility.
Collapse
Affiliation(s)
- Mélanie C. Faure
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Rita Khoueiry
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Jusal Quanico
- Université Lille 1, INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Villeneuve d’Ascq, France
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, Génétique Animale et Biologie Intégrative (GABI), Jouy-en-Josas, France
| | - Marie-Justine Guerquin
- UMR967 INSERM, Commissariat à l'Énergie Atomique (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut de Radiobiologie Cellulaire et Moléculaire (iRCM)/Service Cellules Souches et Radiation (SCSR)/LDG, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Laboratory of Development of the Gonads, Fontenay aux Roses, France
| | - Michael J. Bertoldo
- Fertility and Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Claire Chevaleyre
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Christelle Ramé
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Isabelle Fournier
- Université Lille 1, INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Villeneuve d’Ascq, France
| | - Michel Salzet
- Université Lille 1, INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Villeneuve d’Ascq, France
| | - Joëlle Dupont
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Pascal Froment
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| |
Collapse
|
50
|
Jamsheer K M, Kumar M, Srivastava V. SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6042-6065. [PMID: 33693699 DOI: 10.1093/jxb/erab079] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/17/2021] [Indexed: 05/03/2023]
Abstract
The Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Manoj Kumar
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|