1
|
Contemori G, Guenot J, Cottereau BR, Trotter Y, Battaglini L, Bertamini M. Neural and Perceptual Adaptations in Bilateral Macular Degeneration: An Integrative Review. Neuropsychologia 2025:109165. [PMID: 40345486 DOI: 10.1016/j.neuropsychologia.2025.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/03/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Bilateral age-related macular degeneration (AMD) results in central vision loss, affecting the fovea-associated cortical regions. This review examines neuroimaging and psychophysical evidence of spontaneous neural adaptation in acquired bilateral central scotoma. Early visual brain areas show reduced cortical thickness and axonal integrity due to postsynaptic (anterograde) degeneration. Contrary to animal models, evidence for spontaneous adaptation in the primary visual cortex (V1) is limited. Activity in the lesion projection zone (LPZ), previously seen as extensive cortical remapping, may result from non-retinotopic peripheral-to-foveal feedback, sharing substrates with healthy retinal feedforward processes. Preferred retinal loci (PRLs) are influenced more by location and task than by residual vision quality. Reduced lateral masking in the PRL may reflect decreased contrast sensitivity from retinal damage, rather than genuine adaptive mechanisms. Weakened crowding in the PRL is explained by transient adaptation in healthy subjects to artificial scotomas, not by long-term plasticity. Higher visual areas may show compensatory mechanisms enhancing complex tasks like symmetry, face, and motion discrimination. Leveraging spontaneous adaptation through perceptual learning-based treatments can preserve residual visual abilities. Because of limited evidence for spontaneous reorganization in AMD, behavioural training and emerging techniques are crucial for optimal treatment efficacy.
Collapse
Affiliation(s)
- Giulio Contemori
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Jade Guenot
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| | - Benoit R Cottereau
- CerCo UMR 5549, CNRS - Université Toulouse III, Toulouse, France; IPAL, CNRS IRL 2955, Singapore, Singapore
| | - Yves Trotter
- CerCo UMR 5549, CNRS - Université Toulouse III, Toulouse, France
| | - Luca Battaglini
- Department of General Psychology, University of Padova, Padova, Italy; Centro di Ateneo dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padova, Italy; Neuro.Vis.U.S, University of Padova, Padova, Italy
| | - Marco Bertamini
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Xie Y, Wang R, McClatchy DB, Ma Y, Diedrich J, Sanchez-Alavez M, Petrascheck M, Yates JR, Cline HT. Activity-dependent synthesis of Emerin gates neuronal plasticity by regulating proteostasis. Cell Rep 2025; 44:115439. [PMID: 40208794 PMCID: PMC12080591 DOI: 10.1016/j.celrep.2025.115439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/26/2024] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
Neurons dynamically regulate their proteome in response to sensory input, a key process underlying experience-dependent plasticity. We characterized the visual experience-dependent nascent proteome in mice within a brief, defined time window after stimulation using an optimized metabolic labeling approach. Visual experience induced cell-type-specific and age-dependent alterations in the nascent proteome, including proteostasis-related proteins. Emerin is the top activity-induced candidate plasticity protein. Activity-induced neuronal Emerin synthesis is rapid and transcription independent. Emerin broadly inhibits protein synthesis, decreasing translation regulators and synaptic proteins. Decreasing Emerin shifted the dendritic spine population from a predominantly mushroom morphology to filopodia and decreased network connectivity. Blocking visual experience-induced Emerin reduced visually evoked electrophysiological responses and impaired behaviorally assessed visual information processing. Our findings support a proteostatic model in which visual experience-induced Emerin provides a feedforward block on further protein synthesis, refining temporal control of activity-induced plasticity proteins and optimizing visual system function.
Collapse
Affiliation(s)
- Yi Xie
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Graduate Program, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ruoxi Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel B McClatchy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuanhui Ma
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene Diedrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Manuel Sanchez-Alavez
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Petrascheck
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hollis T Cline
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Anderson KR, Rogu PJ, Palumbo TB, Miwa JM. Abnormal response to chronic social defeat stress and fear extinction in a mouse model of Lynx2-based cholinergic dysregulation. Front Neurosci 2025; 19:1466166. [PMID: 40236946 PMCID: PMC11998120 DOI: 10.3389/fnins.2025.1466166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/27/2025] [Indexed: 04/17/2025] Open
Abstract
Nicotinic receptor signaling is influential in modulating appropriate responses to salient stimuli within a complex environment. The cholinergic neurotransmitter system drives attention to salient stimuli such as stressors, and aids in orchestrating the proper neural and behavioral responses. Dysregulation of this system, however, has been implicated in altered anxiety regulation and mood disorders. Among the multiple layers of regulation are protein modulators such as Lynx2/Lypd1, which provides negative nicotinic acetylcholine receptor regulation within anxiety-related circuits, such as the amygdala and medial prefrontal cortex, among other brain regions. Mice null for Lynx2/Lypd1 (Lynx2 KO) show elevated basal anxiety-like behavior in tests such as elevated plus maze, light-dark box and social interaction assays. Here, we queried how a line predisposed to basal anxiety-like behavior would respond to specific stressors, using validated models of experiential-based affective disorders such as fear extinction, acute and chronic social defeat stress assays. We discovered that Lynx2 KO mice demonstrate an inability to extinguish learned fear during fear extinction tests even during milder stress conditions. In social defeat studies, contrary to our predictions, the Lynx2 KO mice switched from a socially avoidant phenotype (which could be considered susceptible) before defeat to a social approach/resilient phenotype after defeat. Consistent with reports of the inverse relationship between resilience and BDNF levels, we observed reduced BDNF levels in the VTA of Lynx2 KO mice. Furthermore, we provide evidence for the functional role of α7 nicotinic receptor subtypes by phenotypic rescue of fear extinction and social defeat phenotypes by MLA antagonism of α7 nicotinic acetylcholine receptors, or by crossing with α7 nicotinic acetylcholine receptor null mutant mice. A stable physical interaction between LYNX2 and α7 nAChRs was observed by co-immunoprecipitation of complexes from mouse amygdalae extracts. Together, these data indicate that responses to specific stressors can become aberrant when baseline genetic factors predispose animals to anxiety dysregulation. These studies underscore the critical nature of well-regulated nicotinic receptor function in the adaptive response to environmental stressors.
Collapse
Affiliation(s)
| | | | | | - Julie M. Miwa
- Department of Biological and Chemical Sciences, Bethlehem, PA, United States
| |
Collapse
|
4
|
Matsumoto I, Nobukawa S, Kanamaru T, Sakemi Y, Sviridova N, Kurikawa T, Wagatsuma N, Aihara K. Neural activity responsiveness by maturation of inhibition underlying critical period plasticity. Front Neural Circuits 2025; 18:1519704. [PMID: 39911753 PMCID: PMC11794837 DOI: 10.3389/fncir.2024.1519704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Neural circuits develop during critical periods (CPs) and exhibit heightened plasticity to adapt to the surrounding environment. Accumulating evidence indicates that the maturation of inhibitory circuits, such as gamma-aminobutyric acid and parvalbumin-positive interneurons, plays a crucial role in CPs and contributes to generating gamma oscillations. A previous theory of the CP mechanism suggested that the maturation of inhibition suppresses internally driven spontaneous activity and enables synaptic plasticity to respond to external stimuli. However, the neural response to external stimuli and neuronal oscillations at the neural population level during CPs has not yet been fully clarified. In the present study, we aimed to investigate neuronal activity responsiveness with respect to the maturation of inhibition at gamma-band frequencies. Method We calculated inter-trial phase coherence (ITPC), which quantifies event-related phase modulations across trials, using a biologically plausible spiking neural network that generates gamma oscillations through interactions between excitatory and inhibitory neurons. Results Our results demonstrated that the neuronal response coherence to external periodic inputs exhibits an inverted U-shape with respect to the maturation of inhibition. Additionally, the peak of this profile was consistent with the moderate suppression of the gamma-band spontaneous activity. Discussion This finding suggests that the neuronal population's highly reproducible response to increased inhibition may lead to heightened synaptic plasticity. Our computational model can help elucidate the underlying mechanisms that maximize synaptic plasticity at the neuronal population level during CPs.
Collapse
Affiliation(s)
- Ibuki Matsumoto
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Chiba, Japan
| | - Sou Nobukawa
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Chiba, Japan
- Department of Computer Science, Chiba Institute of Technology, Chiba, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Center of Neurology and Psychiatry, Tokyo, Japan
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Takashi Kanamaru
- Department of Mechanical Science and Engineering, Kogakuin University, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Yusuke Sakemi
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Chiba, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Nina Sviridova
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
- Department of Intelligent Systems, Tokyo City University, Tokyo, Japan
| | - Tomoki Kurikawa
- Department of Complex and Intelligent Systems, Future University, Hakodate, Hokkaido, Japan
| | | | - Kazuyuki Aihara
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Chiba, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Brown TC, McGee AW. Experience directs the instability of neuronal tuning for critical period plasticity in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633213. [PMID: 39868143 PMCID: PMC11761750 DOI: 10.1101/2025.01.15.633213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Brief monocular deprivation during a developmental critical period, but not thereafter, alters the receptive field properties (tuning) of neurons in visual cortex, but the characteristics of neural circuitry that permit this experience-dependent plasticity are largely unknown. We performed repeated calcium imaging at neuronal resolution to track the tuning properties of populations of excitatory layer 2/3 neurons in mouse visual cortex during or after the critical period, as well as in nogo-66 receptor (ngr1) mutant mice that sustain critical-period plasticity as adults. The instability of tuning for populations of neurons was greater in juvenile mice and adult ngr1 mutant mice. We propose instability of neuronal tuning gates plasticity and is directed by experience to alter the tuning of neurons during the critical period.
Collapse
|
6
|
Parmar P, Spahic H, Lechner C, St Pierre M, Carlin K, Nugent M, Chavez-Valdez R. Neonatal hypoxia-ischemia alters the events governing the hippocampal critical period of postnatal synaptic plasticity leading to deficits in working memory in mice. Neurobiol Dis 2024; 202:106722. [PMID: 39486775 PMCID: PMC11646096 DOI: 10.1016/j.nbd.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/04/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Postnatal critical periods of synaptic plasticity (CPsp) are characterized by profound neural network refinement, which is shaped by synaptic activity and sculpted by maturation of the GABAergic network. Even after therapeutic hypothermia (TH), neonatal hypoxia-ischemia (HI) impairs two triggers for the initiation of the CPsp in the hippocampus: i) PSA-NCAM developmental decline and ii) parvalbumin (PV) + interneuron (IN) maturation. Thus, we investigated whether neonatal HI despite TH disturbs other events governing the onset, consolidation and closure of the postnatal CPsp in the hippocampus. We induced cerebral HI in P10 C57BL6 mice with right carotid ligation and 45 m of hypoxia (FiO2 = 0.08), followed by normothermia (36 °C, NT) or TH (31 °C) for 4 h with anesthesia-exposed shams as controls. ELISA, immunoblotting and immunohistochemistry were performed at 24 h (P11), 5 days (P15), 8 days (P18) and 30 days (P40) after HI injury. We specifically assessed: i) BDNF levels and TrkB activation, controlling the CPsp, ii) Otx2 and NPTX2 immunoreactivity (IR), engaging CPsp onset and iii) NogoR1, Lynx1 IR, PNN formation and myelination (MBP) mediating CPsp closure. Pups aged to P40 also received a battery of tests assessing working memory. Here, we documented deficits in hippocampal BDNF levels and TrkB activation at P18 in response to neonatal HI even with TH. Neonatal HI impaired in the CA1 the developmental increase in PV, Otx2, and NPTX2 between P11 and P18, the colocalization of Otx2 and PV at P18 and P40, the accumulation of NPTX2 in PV+ dendrites at P18 and P40, and the expression of NogoR at P40. Furthermore, neonatal HI decreased BDNF and impaired PNN development and myelination (MBP) at P40. Most of these abnormalities were insensitive to TH and correlated with memory deficits. Neonatal HI appears to disrupt many of the molecular and structural events initiating and consolidating the postnatal hippocampal CPsp, perhaps due to the early and delayed deficits in TrkB activation leading to memory deficits.
Collapse
Affiliation(s)
- Pritika Parmar
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Harisa Spahic
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Lechner
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mark St Pierre
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Michael Nugent
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA; Neuroscience Intensive Care Nursery Program, Johns Hopkins University- School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Ng B, Tasaki S, Greathouse KM, Walker CK, Zhang A, Covitz S, Cieslak M, Weber AJ, Adamson AB, Andrade JP, Poovey EH, Curtis KA, Muhammad HM, Seidlitz J, Satterthwaite T, Bennett DA, Seyfried NT, Vogel J, Gaiteri C, Herskowitz JH. Integration across biophysical scales identifies molecular and cellular correlates of person-to-person variability in human brain connectivity. Nat Neurosci 2024; 27:2240-2252. [PMID: 39482360 PMCID: PMC11537986 DOI: 10.1038/s41593-024-01788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
Brain connectivity arises from interactions across biophysical scales, ranging from molecular to cellular to anatomical to network level. To date, there has been little progress toward integrated analysis across these scales. To bridge this gap, from a unique cohort of 98 individuals, we collected antemortem neuroimaging and genetic data, as well as postmortem dendritic spine morphometric, proteomic and gene expression data from the superior frontal and inferior temporal gyri. Through the integration of the molecular and dendritic spine morphology data, we identified hundreds of proteins that explain interindividual differences in functional connectivity and structural covariation. These proteins are enriched for synaptic structures and functions, energy metabolism and RNA processing. By integrating data at the genetic, molecular, subcellular and tissue levels, we link specific biochemical changes at synapses to connectivity between brain regions. These results demonstrate the feasibility of integrating data from vastly different biophysical scales to provide a more comprehensive understanding of brain connectivity.
Collapse
Affiliation(s)
- Bernard Ng
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney K Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ada Zhang
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sydney Covitz
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Matt Cieslak
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Audrey J Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashley B Adamson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia P Andrade
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily H Poovey
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hamad M Muhammad
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jakob Seidlitz
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ted Satterthwaite
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob Vogel
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Clinical Science, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Allen SJ, Morishita H. Local and long-range input balance: A framework for investigating frontal cognitive circuit maturation in health and disease. SCIENCE ADVANCES 2024; 10:eadh3920. [PMID: 39292771 PMCID: PMC11409946 DOI: 10.1126/sciadv.adh3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Frontal cortical circuits undergo prolonged maturation across childhood and adolescence; however, it remains unknown what specific changes are occurring at the circuit level to establish adult cognitive function. With the recent advent of circuit dissection techniques, it is now feasible to examine circuit-specific changes in connectivity, activity, and function in animal models. Here, we propose that the balance of local and long-range inputs onto frontal cognitive circuits is an understudied metric of circuit maturation. This review highlights research on a frontal-sensory attention circuit that undergoes refinement of local/long-range connectivity, regulated by circuit activity and neuromodulatory signaling, and evaluates how this process may occur generally in the frontal cortex to support adult cognitive behavior. Notably, this balance can be bidirectionally disrupted through various mechanisms relevant to psychiatric disorders. Pharmacological or environmental interventions to normalize or reset the local and long-range balance could hold great therapeutic promise to prevent or rescue cognitive deficits.
Collapse
Affiliation(s)
- Samuel J. Allen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
9
|
Birch EE, Duffy KR. Leveraging neural plasticity for the treatment of amblyopia. Surv Ophthalmol 2024; 69:818-832. [PMID: 38763223 PMCID: PMC11380599 DOI: 10.1016/j.survophthal.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Amblyopia is a form of visual cortical impairment that arises from abnormal visual experience early in life. Most often, amblyopia is a unilateral visual impairment that can develop as a result of strabismus, anisometropia, or a combination of these conditions that result in discordant binocular experience. Characterized by reduced visual acuity and impaired binocular function, amblyopia places a substantial burden on the developing child. Although frontline treatment with glasses and patching can improve visual acuity, residual amblyopia remains for most children. Newer binocular-based therapies can elicit rapid recovery of visual acuity and may also improve stereoacuity in some children. Nevertheless, for both treatment modalities full recovery is elusive, recurrence of amblyopia is common, and improvements are negligible when treatment is administered at older ages. Insights derived from animal models about the factors that govern neural plasticity have been leveraged to develop innovative treatments for amblyopia. These novel therapies exhibit efficacy to promote recovery, and some are effective even at ages when conventional treatments fail to yield benefit. Approaches for enhancing visual system plasticity and promoting recovery from amblyopia include altering the balance between excitatory and inhibitory mechanisms, reversing the accumulation of proteins that inhibit plasticity, and harnessing the principles of metaplasticity. Although these therapies have exhibited promising results in animal models, their safety and ability to remediate amblyopia need to be evaluated in humans.
Collapse
Affiliation(s)
- Eileen E Birch
- Crystal Charity Ball Pediatric Vision Laboratory, Retina Foundation, Dallas, TX, USA; University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
10
|
Xie Y, Wang R, McClatchy DB, Ma Y, Diedrich J, Sanchez-Alavez M, Petrascheck M, Yates JR, Cline HT. Activity-dependent synthesis of Emerin gates neuronal plasticity by regulating proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.600712. [PMID: 38979362 PMCID: PMC11230442 DOI: 10.1101/2024.06.30.600712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Neurons dynamically regulate their proteome in response to sensory input, a key process underlying experience-dependent plasticity. We characterized the visual experience-dependent nascent proteome within a brief, defined time window after stimulation using an optimized metabolic labeling approach. Visual experience induced cell type-specific and age-dependent alterations in the nascent proteome, including proteostasis-related processes. We identified Emerin as the top activity-induced candidate plasticity protein and demonstrated that its rapid activity-induced synthesis is transcription-independent. In contrast to its nuclear localization and function in myocytes, activity-induced neuronal Emerin is abundant in the endoplasmic reticulum and broadly inhibits protein synthesis, including translation regulators and synaptic proteins. Downregulating Emerin shifted the dendritic spine population from predominantly mushroom morphology to filopodia and decreased network connectivity. In mice, decreased Emerin reduced visual response magnitude and impaired visual information processing. Our findings support an experience-dependent feed-forward role for Emerin in temporally gating neuronal plasticity by negatively regulating translation.
Collapse
|
11
|
Dwivedi D, Dumontier D, Sherer M, Lin S, Mirow AMC, Qiu Y, Xu Q, Liebman SA, Joseph D, Datta SR, Fishell G, Pouchelon G. Metabotropic signaling within somatostatin interneurons controls transient thalamocortical inputs during development. Nat Commun 2024; 15:5421. [PMID: 38926335 PMCID: PMC11208423 DOI: 10.1038/s41467-024-49732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
During brain development, neural circuits undergo major activity-dependent restructuring. Circuit wiring mainly occurs through synaptic strengthening following the Hebbian "fire together, wire together" precept. However, select connections, essential for circuit development, are transient. They are effectively connected early in development, but strongly diminish during maturation. The mechanisms by which transient connectivity recedes are unknown. To investigate this process, we characterize transient thalamocortical inputs, which depress onto somatostatin inhibitory interneurons during development, by employing optogenetics, chemogenetics, transcriptomics and CRISPR-based strategies in mice. We demonstrate that in contrast to typical activity-dependent mechanisms, transient thalamocortical connectivity onto somatostatin interneurons is non-canonical and involves metabotropic signaling. Specifically, metabotropic-mediated transcription, of guidance molecules in particular, supports the elimination of this connectivity. Remarkably, we found that this process impacts the development of normal exploratory behaviors of adult mice.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | | | - Mia Sherer
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Sherry Lin
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
| | - Andrea M C Mirow
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Yanjie Qiu
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Qing Xu
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Samuel A Liebman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Djeckby Joseph
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Sandeep R Datta
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
| | - Gord Fishell
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA.
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
| | - Gabrielle Pouchelon
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA.
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA.
| |
Collapse
|
12
|
Abbondanza A, Urushadze A, Alves-Barboza AR, Janickova H. Expression and function of nicotinic acetylcholine receptors in specific neuronal populations: Focus on striatal and prefrontal circuits. Pharmacol Res 2024; 204:107190. [PMID: 38704107 DOI: 10.1016/j.phrs.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and play an important role in the control of neural functions including neuronal activity, transmitter release and synaptic plasticity. Although the common subtypes of nAChRs are abundantly expressed throughout the brain, their expression in different brain regions and by individual neuronal types is not homogeneous or incidental. In recent years, several studies have emerged showing that particular subtypes of nAChRs are expressed by specific neuronal populations in which they have major influence on the activity of local circuits and behavior. It has been demonstrated that even nAChRs expressed by relatively rare neuronal types can induce significant changes in behavior and contribute to pathological processes. Depending on the identity and connectivity of the particular nAChRs-expressing neuronal populations, the activation of nAChRs can have distinct or even opposing effects on local neuronal signaling. In this review, we will summarize the available literature describing the expression of individual nicotinic subunits by different neuronal types in two crucial brain regions, the striatum and the prefrontal cortex. The review will also briefly discuss nicotinic expression in non-neuronal, glial cells, as they cannot be ignored as potential targets of nAChRs-modulating drugs. The final section will discuss options that could allow us to target nAChRs in a neuronal-type-specific manner, not only in the experimental field, but also eventually in clinical practice.
Collapse
Affiliation(s)
- Alice Abbondanza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Anna Urushadze
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Amanda Rosanna Alves-Barboza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Helena Janickova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic.
| |
Collapse
|
13
|
Shmal D, Mantero G, Floss T, Benfenati F, Maya-Vetencourt JF. Restoring vision in adult amblyopia by enhancing plasticity through deletion of the transcriptional repressor REST. iScience 2024; 27:109507. [PMID: 38591011 PMCID: PMC11000024 DOI: 10.1016/j.isci.2024.109507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Visual cortical plasticity is high during early life, but gradually decreases with development. This is due to the Otx2-driven maturation of intracortical inhibition that parallels the condensation of extracellular matrix components into perineuronal nets mainly around parvalbumin-positive GABAergic neurons. Repressor Element 1 Silencing Transcription (REST) epigenetically controls the expression of a plethora of neuron-specific genes. We demonstrate that the conditional knockout of REST in the primary visual cortex of adult mice induces a shift of ocular dominance after short-term monocular deprivation and promotes the recovery of vision in long-term deprived animals after reverse suture. These phenomena paralleled a reduction of perineuronal net density and increased expression of REST target genes, but not of the homeoprotein Otx2 in the visual cortex contralateral to the deprived eye. This shows that REST regulates adult visual cortical plasticity and is a potential therapeutic target to restore vision in adult amblyopia by enhancing V1 plasticity.
Collapse
Affiliation(s)
- Dmytro Shmal
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giulia Mantero
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Thomas Floss
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - José Fernando Maya-Vetencourt
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Dwivedi D, Dumontier D, Sherer M, Lin S, Mirow AM, Qiu Y, Xu Q, Liebman SA, Joseph D, Datta SR, Fishell G, Pouchelon G. Metabotropic signaling within somatostatin interneurons controls transient thalamocortical inputs during development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558862. [PMID: 37790336 PMCID: PMC10542166 DOI: 10.1101/2023.09.21.558862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
During brain development, neural circuits undergo major activity-dependent restructuring. Circuit wiring mainly occurs through synaptic strengthening following the Hebbian "fire together, wire together" precept. However, select connections, essential for circuit development, are transient. They are effectively connected early in development, but strongly diminish during maturation. The mechanisms by which transient connectivity recedes are unknown. To investigate this process, we characterize transient thalamocortical inputs, which depress onto somatostatin inhibitory interneurons during development, by employing optogenetics, chemogenetics, transcriptomics and CRISPR-based strategies. We demonstrate that in contrast to typical activity-dependent mechanisms, transient thalamocortical connectivity onto somatostatin interneurons is non-canonical and involves metabotropic signaling. Specifically, metabotropic-mediated transcription, of guidance molecules in particular, supports the elimination of this connectivity. Remarkably, we found that this developmental process impacts the development of normal exploratory behaviors of adult mice.
Collapse
|
15
|
Wallace ML, Sabatini BL. Synaptic and circuit functions of multitransmitter neurons in the mammalian brain. Neuron 2023; 111:2969-2983. [PMID: 37463580 PMCID: PMC10592565 DOI: 10.1016/j.neuron.2023.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023]
Abstract
Neurons in the mammalian brain are not limited to releasing a single neurotransmitter but often release multiple neurotransmitters onto postsynaptic cells. Here, we review recent findings of multitransmitter neurons found throughout the mammalian central nervous system. We highlight recent technological innovations that have made the identification of new multitransmitter neurons and the study of their synaptic properties possible. We also focus on mechanisms and molecular constituents required for neurotransmitter corelease at the axon terminal and synaptic vesicle, as well as some possible functions of multitransmitter neurons in diverse brain circuits. We expect that these approaches will lead to new insights into the mechanism and function of multitransmitter neurons, their role in circuits, and their contribution to normal and pathological brain function.
Collapse
Affiliation(s)
- Michael L Wallace
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Graham G, Chimenti MS, Knudtson KL, Grenard DN, Co L, Sumner M, Tchou T, Bieszczad KM. Learning induces unique transcriptional landscapes in the auditory cortex. Hear Res 2023; 438:108878. [PMID: 37659220 PMCID: PMC10529106 DOI: 10.1016/j.heares.2023.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
Learning can induce neurophysiological plasticity in the auditory cortex at multiple timescales. Lasting changes to auditory cortical function that persist over days, weeks, or even a lifetime, require learning to induce de novo gene expression. Indeed, transcription is the molecular determinant for long-term memories to form with a lasting impact on sound-related behavior. However, auditory cortical genes that support auditory learning, memory, and acquired sound-specific behavior are largely unknown. Using an animal model of adult, male Sprague-Dawley rats, this report is the first to identify genome-wide changes in learning-induced gene expression within the auditory cortex that may underlie long-lasting discriminative memory formation of acoustic frequency cues. Auditory cortical samples were collected from animals in the initial learning phase of a two-tone discrimination sound-reward task known to induce sound-specific neurophysiological and behavioral effects. Bioinformatic analyses on gene enrichment profiles from bulk RNA sequencing identified cholinergic synapse (KEGG rno04725), extra-cellular matrix receptor interaction (KEGG rno04512), and neuroactive receptor interaction (KEGG rno04080) among the top biological pathways are likely to be important for auditory discrimination learning. The findings characterize candidate effectors underlying the early stages of changes in cortical and behavioral function to ultimately support the formation of long-term discriminative auditory memory in the adult brain. The molecules and mechanisms identified are potential therapeutic targets to facilitate experiences that induce long-lasting changes to sound-specific auditory function in adulthood and prime for future gene-targeted investigations.
Collapse
Affiliation(s)
- G Graham
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ, USA; Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - M S Chimenti
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - K L Knudtson
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - D N Grenard
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - L Co
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - M Sumner
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - T Tchou
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - K M Bieszczad
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ, USA; Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA; Rutgers Center for Cognitive Science, Rutgers Univ., Piscataway, NJ, USA; Dept. of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
17
|
Duffy KR, Bear MF, Patel NB, Das VE, Tychsen L. Human deprivation amblyopia: treatment insights from animal models. Front Neurosci 2023; 17:1249466. [PMID: 37795183 PMCID: PMC10545969 DOI: 10.3389/fnins.2023.1249466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Amblyopia is a common visual impairment that develops during the early years of postnatal life. It emerges as a sequela to eye misalignment, an imbalanced refractive state, or obstruction to form vision. All of these conditions prevent normal vision and derail the typical development of neural connections within the visual system. Among the subtypes of amblyopia, the most debilitating and recalcitrant to treatment is deprivation amblyopia. Nevertheless, human studies focused on advancing the standard of care for amblyopia have largely avoided recruitment of patients with this rare but severe impairment subtype. In this review, we delineate characteristics of deprivation amblyopia and underscore the critical need for new and more effective therapy. Animal models offer a unique opportunity to address this unmet need by enabling the development of unconventional and potent amblyopia therapies that cannot be pioneered in humans. Insights derived from studies using animal models are discussed as potential therapeutic innovations for the remediation of deprivation amblyopia. Retinal inactivation is highlighted as an emerging therapy that exhibits efficacy against the effects of monocular deprivation at ages when conventional therapy is ineffective, and recovery occurs without apparent detriment to the treated eye.
Collapse
Affiliation(s)
- Kevin R. Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Mark F. Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nimesh B. Patel
- College of Optometry, University of Houston, Houston, TX, United States
| | - Vallabh E. Das
- College of Optometry, University of Houston, Houston, TX, United States
| | - Lawrence Tychsen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
19
|
Graham G, Chimenti MS, Knudtson KL, Grenard DN, Co L, Sumner M, Tchou T, Bieszczad KM. Learning induces unique transcriptional landscapes in the auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536914. [PMID: 37090563 PMCID: PMC10120736 DOI: 10.1101/2023.04.15.536914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Learning can induce neurophysiological plasticity in the auditory cortex at multiple timescales. Lasting changes to auditory cortical function that persist over days, weeks, or even a lifetime, require learning to induce de novo gene expression. Indeed, transcription is the molecular determinant for long-term memories to form with a lasting impact on sound-related behavior. However, auditory cortical genes that support auditory learning, memory, and acquired sound-specific behavior are largely unknown. This report is the first to identify in young adult male rats (Sprague-Dawley) genome-wide changes in learning-induced gene expression within the auditory cortex that may underlie the formation of long-lasting discriminative memory for acoustic frequency cues. Auditory cortical samples were collected from animals in the initial learning phase of a two-tone discrimination sound-reward task known to induce sound-specific neurophysiological and behavioral effects (e.g., Shang et al., 2019). Bioinformatic analyses on gene enrichment profiles from bulk RNA sequencing identified cholinergic synapse (KEGG 04725), extra-cellular matrix receptor interaction (KEGG 04512) , and neuroactive ligand-receptor interaction (KEGG 04080) as top biological pathways for auditory discrimination learning. The findings characterize key candidate effectors underlying changes in cortical function that support the initial formation of long-term discriminative auditory memory in the adult brain. The molecules and mechanisms identified are potential therapeutic targets to facilitate lasting changes to sound-specific auditory function in adulthood and prime for future gene-targeted investigations.
Collapse
Affiliation(s)
- G Graham
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - M S Chimenti
- Iowa Institute of Human Genetics, Univ. of Iowa Carver College of Medicine, Iowa City, IA
| | - K L Knudtson
- Iowa Institute of Human Genetics, Univ. of Iowa Carver College of Medicine, Iowa City, IA
| | - D N Grenard
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - L Co
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - M Sumner
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - T Tchou
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - K M Bieszczad
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
- Rutgers Center for Cognitive Science, Rutgers Univ., Piscataway, NJ
- Dept. of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
20
|
Palumbo TB, Miwa JM. Lynx1 and the family of endogenous mammalian neurotoxin-like proteins and their roles in modulating nAChR function. Pharmacol Res 2023; 194:106845. [PMID: 37437646 DOI: 10.1016/j.phrs.2023.106845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The promise of nicotinic receptors as a therapeutic target has yet to be fully realized, despite solid data supporting their involvement in neurological and neuropsychiatric diseases. The reasons for this are likely complex and manifold, having to do with the widespread action of the cholinergic system and the biophysical mechanism of action of nicotinic receptors leading to fast desensitization and down-regulation. Conventional drug development strategies tend to focus on receptor subtype-specific action of candidate therapeutics, although the broad agonist, nicotine, is being explored in the clinic. The potential negative effects of nicotine make the search for alternate strategies warranted. Prototoxins are a promising yet little-explored avenue of nicotinic receptor drug development. Nicotinic receptors in the brain belong to a complex of proteins, including those that bind to the extracellular face of the receptor, as well as chaperones that bind the intracellular domain, etc. Lynx prototoxins have allosteric modularity effects on receptor function and number and have been implicated in complex in vivo processes such as neuroplasticity, learning, and memory. Their mechanism of action and binding specificity on sets of nAChR subtypes present intriguing possibilities for more efficacious and nuanced therapeutic targeting than nicotinic receptor subtypes alone. An allosteric drug may restrict its actions to physiologically relevant time points, which tend to be correlated with salient events which would be encoded into long-term memory storage. Rather than blanketing the brain with a steady and prolonged elevation of agonist, an allosteric nAChR compound could avoid side effects and loss of efficacy over time. This review details the potential strengths and challenges of prototoxin proteins as therapeutic targets, and some of the utility of such therapeutics based on the emerging understanding of cholinergic signaling in a growing number of complex neural processes.
Collapse
Affiliation(s)
- Talulla B Palumbo
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| |
Collapse
|
21
|
Wu C, Gaier ED, Nihalani BR, Whitecross S, Hensch TK, Hunter DG. Durable recovery from amblyopia with donepezil. Sci Rep 2023; 13:10161. [PMID: 37349338 PMCID: PMC10287641 DOI: 10.1038/s41598-023-34891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/09/2023] [Indexed: 06/24/2023] Open
Abstract
An elevated threshold for neuroplasticity limits visual gains with treatment of residual amblyopia in older children and adults. Acetylcholinesterase inhibitors (AChEI) can enable visual neuroplasticity and promote recovery from amblyopia in adult mice. Motivated by these promising findings, we sought to determine whether donepezil, a commercially available AChEI, can enable recovery in older children and adults with residual amblyopia. In this open-label pilot efficacy study, 16 participants (mean age 16 years; range 9-37 years) with residual anisometropic and/or strabismic amblyopia were treated with daily oral donepezil for 12 weeks. Donepezil dosage was started at 2.5 or 5.0 mg based on age and increased by 2.5 mg if the amblyopic eye visual acuity did not improve by 1 line from the visit 4 weeks prior for a maximum dosage of 7.5 or 10 mg. Participants < 18 years of age further patched the dominant eye. The primary outcome was visual acuity in the amblyopic eye at 22 weeks, 10 weeks after treatment was discontinued. Mean amblyopic eye visual acuity improved 1.2 lines (range 0.0-3.0), and 4/16 (25%) improved by ≥ 2 lines after 12 weeks of treatment. Gains were maintained 10 weeks after cessation of donepezil and were similar for children and adults. Adverse events were mild and self-limited. Residual amblyopia improves in older children and adults treated with donepezil, supporting the concept that the critical window of visual cortical plasticity can be pharmacologically manipulated to treat amblyopia. Placebo-controlled studies are needed.
Collapse
Affiliation(s)
- Carolyn Wu
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Eric D Gaier
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bharti R Nihalani
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sarah Whitecross
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
| | - Takao K Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA, USA
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo, Japan
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| |
Collapse
|
22
|
Kirkland JM, Patel I, Kopec AM. Microglia-mediated synaptic pruning in the nucleus accumbens during adolescence: A preliminary study of the proteomic consequences and putative female-specific pruning target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539121. [PMID: 37205455 PMCID: PMC10187173 DOI: 10.1101/2023.05.02.539121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adolescence is a period of copious neural development, particularly in the 'reward' circuitry of the brain, and reward-related behavioral development, including social development. One neurodevelopmental mechanism that appears to be common across brain regions and developmental periods is the requirement for synaptic pruning to produce mature neural communication and circuits. We published that microglia-C3-mediated synaptic pruning also occurs in the nucleus accumbens (NAc) reward region during adolescence to mediate social development in male and female rats. However, both the adolescent stage in which microglial pruning occurred, and the synaptic pruning target, were sex specific. NAc pruning occurred between early and mid-adolescence in male rats to eliminate dopamine D1 receptors (D1rs), and between pre- and early adolescence in female rats (P20-30) to eliminate an unknown, non-D1r target. In this report, we sought to better understand the proteomic consequences of microglial pruning in the NAc, and what the female pruning target might be. To do this, we inhibited microglial pruning in the NAc during each sex's pruning period and collected tissue for mass spectrometry proteomic analysis and ELISA validation. We found that the proteomic consequences of inhibiting microglial pruning in the NAc were inversely proportional between the sexes, and a novel, female-specific pruning target may be Lynx1. Please note, if this preprint will be pushed further to publication it will not be by me (AMK), as I am leaving academia. So, I'm going to write more conversationally.
Collapse
Affiliation(s)
- J. M. Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ishan Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ashley M. Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| |
Collapse
|
23
|
Wu W, Kang L, Liu Y, Ma X, Zhang X, Yang Y. The early stage of adult ocular dominance plasticity revealed by near-infrared optical imaging of intrinsic signals. Neuroimage 2023; 274:120122. [PMID: 37080344 DOI: 10.1016/j.neuroimage.2023.120122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Long term monocular deprivation is considered to be necessary for the induction of significant ocular dominance plasticity in the adult visual cortex. In this study, we subjected adult mice to monocular deprivation for various durations and screened for changes in ocular dominance using dual-wavelength intrinsic signal optical imaging. We found that short-term deprivation was sufficient to cause a shift in ocular dominance and that these early-stage changes were detected only by near-infrared illumination. In addition, single-unit recordings showed that these early-stage changes primarily occurred in deep cortical layers. This early-stage ocular dominance shift was abolished by the blockade of NMDA receptors. In summary, our findings reveal an early phase of adult ocular dominance plasticity and provide the dynamics of adult plasticity.
Collapse
Affiliation(s)
- Wei Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Luwei Kang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yueqin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xiao Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xinxin Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yupeng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
24
|
Djemil S, Sames AM, Pak DTS. ACh Transfers: Homeostatic Plasticity of Cholinergic Synapses. Cell Mol Neurobiol 2023; 43:697-709. [PMID: 35643882 PMCID: PMC11415198 DOI: 10.1007/s10571-022-01227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
The field of homeostatic plasticity continues to advance rapidly, highlighting the importance of stabilizing neuronal activity within functional limits in the context of numerous fundamental processes such as development, learning, and memory. Most homeostatic plasticity studies have been focused on glutamatergic synapses, while the rules that govern homeostatic regulation of other synapse types are less understood. While cholinergic synapses have emerged as a critical component in the etiology of mammalian neurodegenerative disease mechanisms, relatively few studies have been conducted on the homeostatic plasticity of such synapses, particularly in the mammalian nervous system. An exploration of homeostatic mechanisms at the cholinergic synapse may illuminate potential therapeutic targets for disease management and treatment. We will review cholinergic homeostatic plasticity in the mammalian neuromuscular junction, the autonomic nervous system, central synapses, and in relation to pathological conditions including Alzheimer disease and DYT1 dystonia. This work provides a historical context for the field of cholinergic homeostatic regulation by examining common themes, unique features, and outstanding questions associated with these distinct cholinergic synapse types and aims to inform future research in the field.
Collapse
Affiliation(s)
- Sarra Djemil
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Antonia M Sames
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA.
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
25
|
Venkatesan S, Chen T, Liu Y, Turner EE, Tripathy SJ, Lambe EK. Chrna5 and lynx prototoxins identify acetylcholine super-responder subplate neurons. iScience 2023; 26:105992. [PMID: 36798433 PMCID: PMC9926215 DOI: 10.1016/j.isci.2023.105992] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Attention depends on cholinergic excitation of prefrontal neurons but is sensitive to perturbation of α5-containing nicotinic receptors encoded by Chrna5. However, Chrna5-expressing (Chrna5+) neurons remain enigmatic, despite their potential as a target to improve attention. Here, we generate complex transgenic mice to probe Chrna5+ neurons and their sensitivity to endogenous acetylcholine. Through opto-physiological experiments, we discover that Chrna5+ neurons contain a distinct population of acetylcholine super-responders. Leveraging single-cell transcriptomics, we discover molecular markers conferring subplate identity on this subset. We determine that Chrna5+ super-responders express a unique complement of GPI-anchored lynx prototoxin genes (Lypd1, Ly6g6e, and Lypd6b), predicting distinct nicotinic receptor regulation. To manipulate lynx regulation of endogenous nicotinic responses, we developed a pharmacological strategy guided by transcriptomic predictions. Overall, we reveal Chrna5-Cre mice as a transgenic tool to target the diversity of subplate neurons in adulthood, yielding new molecular strategies to manipulate their cholinergic activation relevant to attention disorders.
Collapse
Affiliation(s)
- Sridevi Venkatesan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
| | - Tianhui Chen
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
| | - Yupeng Liu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
| | - Eric E. Turner
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Shreejoy J. Tripathy
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Evelyn K. Lambe
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Quast KB, Reh RK, Caiati MD, Kopell N, McCarthy MM, Hensch TK. Rapid synaptic and gamma rhythm signature of mouse critical period plasticity. Proc Natl Acad Sci U S A 2023; 120:e2123182120. [PMID: 36598942 PMCID: PMC9926253 DOI: 10.1073/pnas.2123182120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
Early-life experience enduringly sculpts thalamocortical (TC) axons and sensory processing. Here, we identify the very first synaptic targets that initiate critical period plasticity, heralded by altered cortical oscillations. Monocular deprivation (MD) acutely induced a transient (<3 h) peak in EEG γ-power (~40 Hz) specifically within the visual cortex, but only when the critical period was open (juvenile mice or adults after dark-rearing, Lynx1-deletion, or diazepam-rescued GAD65-deficiency). Rapid TC input loss onto parvalbumin-expressing (PV) inhibitory interneurons (but not onto nearby pyramidal cells) was observed within hours of MD in a TC slice preserving the visual pathway - again once critical periods opened. Computational TC modeling of the emergent γ-rhythm in response to MD delineated a cortical interneuronal gamma (ING) rhythm in networks of PV-cells bearing gap junctions at the start of the critical period. The ING rhythm effectively dissociated thalamic input from cortical spiking, leading to rapid loss of previously strong TC-to-PV connections through standard spike-timing-dependent plasticity rules. As a consequence, previously silent TC-to-PV connections could strengthen on a slower timescale, capturing the gradually increasing γ-frequency and eventual fade-out over time. Thus, ING enables cortical dynamics to transition from being dominated by the strongest TC input to one that senses the statistics of population TC input after MD. Taken together, our findings reveal the initial synaptic events underlying critical period plasticity and suggest that the fleeting ING accompanying a brief sensory perturbation may serve as a robust readout of TC network state with which to probe developmental trajectories.
Collapse
Affiliation(s)
- Kathleen B. Quast
- Department of Molecular Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA02138
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Rebecca K. Reh
- Department of Molecular Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA02138
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Maddalena D. Caiati
- Department of Molecular Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Nancy Kopell
- Department of Mathematics, Boston University, Boston, MA02215
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Bunkyo-ku, Tokyo113, Japan
| | - Michelle M. McCarthy
- Department of Mathematics, Boston University, Boston, MA02215
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Bunkyo-ku, Tokyo113, Japan
| | - Takao K. Hensch
- Department of Molecular Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA02138
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Bunkyo-ku, Tokyo113, Japan
| |
Collapse
|
27
|
Hollis E, Li Y. Nicotinic acetylcholine signaling is required for motor learning but not for rehabilitation from spinal cord injury. Neural Regen Res 2023; 18:364-367. [PMID: 35900431 PMCID: PMC9396487 DOI: 10.4103/1673-5374.346544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Cang J, Fu J, Tanabe S. Neural circuits for binocular vision: Ocular dominance, interocular matching, and disparity selectivity. Front Neural Circuits 2023; 17:1084027. [PMID: 36874946 PMCID: PMC9975354 DOI: 10.3389/fncir.2023.1084027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The brain creates a single visual percept of the world with inputs from two eyes. This means that downstream structures must integrate information from the two eyes coherently. Not only does the brain meet this challenge effortlessly, it also uses small differences between the two eyes' inputs, i.e., binocular disparity, to construct depth information in a perceptual process called stereopsis. Recent studies have advanced our understanding of the neural circuits underlying stereoscopic vision and its development. Here, we review these advances in the context of three binocular properties that have been most commonly studied for visual cortical neurons: ocular dominance of response magnitude, interocular matching of orientation preference, and response selectivity for binocular disparity. By focusing mostly on mouse studies, as well as recent studies using ferrets and tree shrews, we highlight unresolved controversies and significant knowledge gaps regarding the neural circuits underlying binocular vision. We note that in most ocular dominance studies, only monocular stimulations are used, which could lead to a mischaracterization of binocularity. On the other hand, much remains unknown regarding the circuit basis of interocular matching and disparity selectivity and its development. We conclude by outlining opportunities for future studies on the neural circuits and functional development of binocular integration in the early visual system.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, United States.,Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Jieming Fu
- Department of Biology, University of Virginia, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Seiji Tanabe
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
29
|
Orientational Preferences of GPI-Anchored Ly6/uPAR Proteins. Int J Mol Sci 2022; 24:ijms24010011. [PMID: 36613456 PMCID: PMC9819746 DOI: 10.3390/ijms24010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Ly6/uPAR proteins regulate many essential functions in the nervous and immune systems and epithelium. Most of these proteins contain single β-structural LU domains with three protruding loops and are glycosylphosphatidylinositol (GPI)-anchored to a membrane. The GPI-anchor role is currently poorly studied. Here, we investigated the positional and orientational preferences of six GPI-anchored proteins in the receptor-unbound state by molecular dynamics simulations. Regardless of the linker length between the LU domain and GPI-anchor, the proteins interacted with the membrane by polypeptide parts and N-/O-glycans. Lynx1, Lynx2, Lypd6B, and Ly6H contacted the membrane by the loop regions responsible for interactions with nicotinic acetylcholine receptors, while Lypd6 and CD59 demonstrated unique orientations with accessible receptor-binding sites. Thus, GPI-anchoring does not guarantee an optimal 'pre-orientation' of the LU domain for the receptor interaction.
Collapse
|
30
|
Tran The J, Magistretti PJ, Ansermet F. The critical periods of cerebral plasticity: A key aspect in a dialog between psychoanalysis and neuroscience centered on the psychopathology of schizophrenia. Front Mol Neurosci 2022; 15:1057539. [PMID: 36590919 PMCID: PMC9795046 DOI: 10.3389/fnmol.2022.1057539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Through research into the molecular and cellular mechanisms that occur during critical periods, recent experimental neurobiological data have brought to light the importance of early childhood. These have demonstrated that childhood and early environmental stimuli play a part not only in our subjective construction, but also in brain development; thus, confirming Freud's intuition regarding the central role of childhood and early experiences of the environment in our psychological development and our subjective outcomes. "Critical periods" of cerebral development represent temporal windows that mark favorable, but also circumscribed, moments in developmental cerebral plasticity. They also vary between different cortical areas. There are, therefore, strictly defined temporal periods for learning language, music, etc., after which this learning becomes more difficult, or even impossible, to acquire. Now, research into these critical periods can be seen as having a significant part to play in the interdisciplinary dialog between psychoanalysis and neurosciences with regard to the role of early experiences in the etiology of some psychopathological conditions. Research into the cellular and molecular mechanisms controlling the onset and end of these critical periods, notably controlled by the maturation of parvalbumin-expressing basket cells, have brought to light the presence of anomalies in the maturation of these neurons in patients with schizophrenia. Starting from these findings we propose revisiting the psychoanalytic theories on the etiology of psychosis from an interdisciplinary perspective. Our study works from the observation, common to both psychoanalysis and neurosciences, that experience leaves a trace; be it a "psychic" or a "synaptic" trace. Thus, we develop a hypothesis for an "absence of trace" in psychosis; reexamining psychosis through the prism of the biological theory of critical periods in plasticity.
Collapse
Affiliation(s)
- Jessica Tran The
- INSERM U1077 Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France,Ecole Pratique des Hautes Etudes, Université Paris Sciences et Lettres, Paris, France,UFR de Psychologie, Université de Caen Normandie, Caen, France,Centre Hospitalier Universitaire de Caen, Caen, France,Cyceron, Caen, France,Agalma Foundation Geneva, Chemin des Mines, Switzerland,*Correspondence: Jessica Tran The,
| | - Pierre J. Magistretti
- Agalma Foundation Geneva, Chemin des Mines, Switzerland,Brain Mind Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Francois Ansermet
- Agalma Foundation Geneva, Chemin des Mines, Switzerland,Département de Psychiatrie, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| |
Collapse
|
31
|
Talvio K, Minkeviciene R, Townsley KG, Achuta VS, Huckins LM, Corcoran P, Brennand KJ, Castrén ML. Reduced LYNX1 expression in transcriptome of human iPSC-derived neural progenitors modeling fragile X syndrome. Front Cell Dev Biol 2022; 10:1034679. [PMID: 36506088 PMCID: PMC9731341 DOI: 10.3389/fcell.2022.1034679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Lack of FMR1 protein results in fragile X syndrome (FXS), which is the most common inherited intellectual disability syndrome and serves as an excellent model disease to study molecular mechanisms resulting in neuropsychiatric comorbidities. We compared the transcriptomes of human neural progenitors (NPCs) generated from patient-derived induced pluripotent stem cells (iPSCs) of three FXS and three control male donors. Altered expression of RAD51C, PPIL3, GUCY1A2, MYD88, TRAPPC4, LYNX1, and GTF2A1L in FXS NPCs suggested changes related to triplet repeat instability, RNA splicing, testes development, and pathways previously shown to be affected in FXS. LYNX1 is a cholinergic brake of tissue plasminogen activator (tPA)-dependent plasticity, and its reduced expression was consistent with augmented tPA-dependent radial glial process growth in NPCs derived from FXS iPSC lines. There was evidence of human iPSC line donor-dependent variation reflecting potentially phenotypic variation. NPCs derived from an FXS male with concomitant epilepsy expressed differently several epilepsy-related genes, including genes shown to cause the auditory epilepsy phenotype in the murine model of FXS. Functional enrichment analysis highlighted regulation of insulin-like growth factor pathway in NPCs modeling FXS with epilepsy. Our results demonstrated potential of human iPSCs in disease modeling for discovery and development of therapeutic interventions by showing early gene expression changes in FXS iPSC-derived NPCs consistent with the known pathophysiological changes in FXS and by revealing disturbed FXS progenitor growth linked to reduced expression of LYNX1, suggesting dysregulated cholinergic system.
Collapse
Affiliation(s)
- Karo Talvio
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rimante Minkeviciene
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kayla G. Townsley
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Padraic Corcoran
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kristen J. Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, United States,Department of Genetics, Yale University, New Haven, CT, United States
| | - Maija L. Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Maija L. Castrén,
| |
Collapse
|
32
|
Leet MP, Bear MF, Gaier ED. Metaplasticity: a key to visual recovery from amblyopia in adulthood? Curr Opin Ophthalmol 2022; 33:512-518. [PMID: 36094025 PMCID: PMC9547850 DOI: 10.1097/icu.0000000000000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW We examine the development of amblyopia and the effectiveness of conventional and emerging therapies through the lens of the Bienenstock, Cooper, and Munro (BCM) theory of synaptic modification. RECENT FINDINGS The BCM theory posits metaplastic adjustment in the threshold for synaptic potentiation, governed by prior neuronal activity. Viewing established clinical principles of amblyopia treatment from the perspective of the BCM theory, occlusion, blur, or release of interocular suppression reduce visual cortical activity in the amblyopic state to lower the modification threshold and enable amblyopic eye strengthening. Although efficacy of these treatment approaches declines with age, significant loss of vision in the fellow eye by damage or disease can trigger visual acuity improvements in the amblyopic eye of adults. Likewise, reversible retinal inactivation stimulates recovery of amblyopic eye visual function in adult mice and cats. SUMMARY Conventional and emerging amblyopia treatment responses abide by the framework of BCM theory. Preclinical studies support that the dramatic reduction in cortical activity accompanying temporary retinal silencing can promote recovery from amblyopia even in adulthood, highlighting a promising therapeutic avenue.
Collapse
Affiliation(s)
- Madison P Leet
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge
| | - Mark F Bear
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge
| | - Eric D Gaier
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Impact of somatostatin interneurons on interactions between barrels in plasticity induced by whisker deprivation. Sci Rep 2022; 12:17992. [PMID: 36289269 PMCID: PMC9605983 DOI: 10.1038/s41598-022-22801-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The activity of inhibitory interneurons has a profound role in shaping cortical plasticity. Somatostatin-expressing interneurons (SOM-INs) are involved in several aspects of experience-dependent cortical rewiring. We addressed the question of the barrel cortex SOM-IN engagement in plasticity formation induced by sensory deprivation in adult mice (2-3 months old). We used a spared vibrissa paradigm, resulting in a massive sensory map reorganization. Using chemogenetic manipulation, the activity of barrel cortex SOM-INs was blocked or activated by continuous clozapine N-oxide (CNO) administration during one-week-long deprivation. To visualize the deprivation-induced plasticity, [14C]-2-deoxyglucose mapping of cortical functional representation of the spared whisker was performed at the end of the deprivation. The plasticity was manifested as an extension of cortical activation in response to spared vibrissae stimulation. We found that SOM-IN inhibition in the cortical column of the spared whisker did not influence the areal extent of the cortex activated by the spared whisker. However, blocking the activity of SOM-INs in the deprived column, adjacent to the spared one, decreased the plasticity of the spared whisker representation. SOM-IN activation did not affect plasticity. These data show that SOM-IN activity is part of cortical circuitry that affects interbarrel interactions underlying deprivation-induced plasticity in adult mice.
Collapse
|
34
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
35
|
Shah S, Shah M, Purohit A, Khanguda V. Perceptual learning with hand - eye coordination as an effective tool for managing amblyopia: A prospective study. Indian J Ophthalmol 2022; 70:3630-3633. [PMID: 36190061 PMCID: PMC9789846 DOI: 10.4103/ijo.ijo_852_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose Amblyopia is a serious condition resulting in monocular impairment of vision. Although traditional treatment improves vision, we attempted to explore the results of perceptual learning in this study. Methods This prospective cohort study included all patients with amblyopia who were subjected to perceptual learning. The presenting data on vision, stereopsis and contrast sensitivity were documented in a pretested online format, and the pre- and post-treatment information was compared using descriptive, cross-tabulation and comparative methods on SPSS 2.2. The mean values were obtained, and P < 0.05 was considered statistically significant. Results The cohort consisted of 47 patients (23 females and 24 males) with a mean age of 14.11 ± 7.13 years. A statistically significant improvement was detected in visual acuity after the perceptual learning session, and the median follow-up period was 17 days. Also, significant improvements were observed in stereopsis but not in the visual outcomes among the age groups. Conclusion Perceptual learning with hand-eye coordination is an effective method for managing amblyopia. This approach can improve vision in all age groups. However, visual improvement is significantly influenced by ocular alignment.
Collapse
Affiliation(s)
| | - Mehul Shah
- Drashti Netralaya, Dahod, Gujarat, India,Correspondence to: Dr. Mehul Shah, Drashti Netralaya, Chakalia Road, Dahod, Gujarat, India. E-mail:
| | | | | |
Collapse
|
36
|
Abstract
For four decades, investigations of the biological basis of critical periods in the developing mammalian visual cortex were dominated by study of the consequences of altered early visual experience in cats and nonhuman primates. The neural deficits thus revealed also provided insight into the origin and neural basis of human amblyopia that in turn motivated additional studies of humans with abnormal early visual input. Recent human studies point to deficits arising from alterations in all visual cortical areas and even in nonvisual cortical regions. As the new human data accumulated in parallel with a near-complete shift toward the use of rodent animal models for the study of neural mechanisms, it is now essential to review the human data and the earlier animal data obtained from cats and monkeys to infer general conclusions and to optimize future choice of the most appropriate animal model. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Donald E Mitchell
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada;
| | - Daphne Maurer
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada;
| |
Collapse
|
37
|
Doss SV, Barbat-Artigas S, Lopes M, Pradhan BS, Prószyński TJ, Robitaille R, Valdez G. Expression and Roles of Lynx1, a Modulator of Cholinergic Transmission, in Skeletal Muscles and Neuromuscular Junctions in Mice. Front Cell Dev Biol 2022; 10:838612. [PMID: 35372356 PMCID: PMC8967655 DOI: 10.3389/fcell.2022.838612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Lynx1 is a glycosylphosphatidylinositol (GPI)-linked protein shown to affect synaptic plasticity through modulation of nicotinic acetylcholine receptor (nAChR) subtypes in the brain. Because of this function and structural similarity to α-bungarotoxin, which binds muscle-specific nAChRs with high affinity, Lynx1 is a promising candidate for modulating nAChRs in skeletal muscles. However, little is known about the expression and roles of Lynx1 in skeletal muscles and neuromuscular junctions (NMJs). Here, we show that Lynx1 is expressed in skeletal muscles, increases during development, and concentrates at NMJs. We also demonstrate that Lynx1 interacts with muscle-specific nAChR subunits. Additionally, we present data indicating that Lynx1 deletion alters the response of skeletal muscles to cholinergic transmission and their contractile properties. Based on these findings, we asked if Lynx1 deletion affects developing and adult NMJs. Loss of Lynx1 had no effect on NMJs at postnatal day 9 (P9) and moderately increased their size at P21. Thus, Lynx1 plays a minor role in the structural development of NMJs. In 7- and 12-month-old mice lacking Lynx1, there is a marked increase in the incidence of NMJs with age- and disease-associated morphological alterations. The loss of Lynx1 also reduced the size of adult muscle fibers. Despite these effects, Lynx1 deletion did not alter the rate of NMJ reinnervation and stability following motor axon injury. These findings suggest that Lynx1 is not required during fast remodeling of the NMJ, as is the case during reformation following crushing of motor axons and development. Instead, these data indicate that the primary role of Lynx1 may be to maintain the structure and function of adult and aging NMJs.
Collapse
Affiliation(s)
- Sydney V. Doss
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI, United States
| | | | - Mikayla Lopes
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Bhola Shankar Pradhan
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Synaptogenesis, Łukasiewicz Research Network—PORT Polish Center for Technology Development, Wrocław, Poland
| | - Tomasz J. Prószyński
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Synaptogenesis, Łukasiewicz Research Network—PORT Polish Center for Technology Development, Wrocław, Poland
| | - Richard Robitaille
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche Interdisciplinaire sur le Cerveau et L’Apprentissage (CIRCA), Montreal, QC, Canada
| | - Gregorio Valdez
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI, United States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, United States
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, United States
- *Correspondence: Gregorio Valdez,
| |
Collapse
|
38
|
Loukas S, Lordier L, Meskaldji DE, Filippa M, Sa de Almeida J, Van De Ville D, Hüppi PS. Musical memories in newborns: A resting-state functional connectivity study. Hum Brain Mapp 2022; 43:647-664. [PMID: 34738276 PMCID: PMC8720188 DOI: 10.1002/hbm.25677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022] Open
Abstract
Music is known to induce emotions and activate associated memories, including musical memories. In adults, it is well known that music activates both working memory and limbic networks. We have recently discovered that as early as during the newborn period, familiar music is processed differently from unfamiliar music. The present study evaluates music listening effects at the brain level in newborns, by exploring the impact of familiar or first‐time music listening on the subsequent resting‐state functional connectivity in the brain. Using a connectome‐based framework, we describe resting‐state functional connectivity (RS‐FC) modulation after music listening in three groups of newborn infants, in preterm infants exposed to music during their neonatal‐intensive‐care‐unit (NICU) stay, in control preterm, and full‐term infants. We observed modulation of the RS‐FC between brain regions known to be implicated in music and emotions processing, immediately following music listening in all newborn infants. In the music exposed group, we found increased RS‐FC between brain regions known to be implicated in familiar and emotionally arousing music and multisensory processing, and therefore implying memory retrieval and associative memory. We demonstrate a positive correlation between the occurrence of the prior music exposure and increased RS‐FC in brain regions implicated in multisensory and emotional processing, indicating strong engagement of musical memories; and a negative correlation with the Default Mode Network, indicating disengagement due to the aforementioned cognitive processing. Our results describe the modulatory effect of music listening on brain RS‐FC that can be linked to brain correlates of musical memory engrams in preterm infants.
Collapse
Affiliation(s)
- Serafeim Loukas
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland.,Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Djalel-Eddine Meskaldji
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland.,Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Manuela Filippa
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Joana Sa de Almeida
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Skirzewski M, Molotchnikoff S, Hernandez LF, Maya-Vetencourt JF. Multisensory Integration: Is Medial Prefrontal Cortex Signaling Relevant for the Treatment of Higher-Order Visual Dysfunctions? Front Mol Neurosci 2022; 14:806376. [PMID: 35110996 PMCID: PMC8801884 DOI: 10.3389/fnmol.2021.806376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
In the mammalian brain, information processing in sensory modalities and global mechanisms of multisensory integration facilitate perception. Emerging experimental evidence suggests that the contribution of multisensory integration to sensory perception is far more complex than previously expected. Here we revise how associative areas such as the prefrontal cortex, which receive and integrate inputs from diverse sensory modalities, can affect information processing in unisensory systems via processes of down-stream signaling. We focus our attention on the influence of the medial prefrontal cortex on the processing of information in the visual system and whether this phenomenon can be clinically used to treat higher-order visual dysfunctions. We propose that non-invasive and multisensory stimulation strategies such as environmental enrichment and/or attention-related tasks could be of clinical relevance to fight cerebral visual impairment.
Collapse
Affiliation(s)
- Miguel Skirzewski
- Rodent Cognition Research and Innovation Core, University of Western Ontario, London, ON, Canada
| | - Stéphane Molotchnikoff
- Département de Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Génie Electrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luis F. Hernandez
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - José Fernando Maya-Vetencourt
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Synaptic Neuroscience, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- *Correspondence: José Fernando Maya-Vetencourt
| |
Collapse
|
40
|
Pisapati AV, Cao W, Anderson KR, Jones G, Holick KH, Whiteaker P, Im W, Zhang XF, Miwa JM. Biophysical characterization of lynx-nicotinic receptor interactions using atomic force microscopy. FASEB Bioadv 2021; 3:1034-1042. [PMID: 34938964 PMCID: PMC8664008 DOI: 10.1096/fba.2021-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are broadly expressed in the central and peripheral nervous systems, playing essential roles in cholinergic neurotransmission. The lynx family proteins, a subset of the Ly6/uPAR superfamily expressed in multiple brain regions, have been shown to bind to nAChRs and modulate their function via allosteric regulation. The binding interactions between lynx and nAChRs, however, have not been systematically quantified and compared. In this work, we characterized the interactions between lynx1 or lynx2 and α3β4- or α7-nAChRs using single-molecule atomic force microscopy (AFM). The AFM technique allows the quantification of the off-rate of lynx-nAChR binding and of the energetic barrier width between the bound state and transition state, providing a biophysical means to compare the selectivity of lynx proteins for nAChR subtypes. Results indicate that lynx1 has a marginal preference for α7- over α3β4-nAChRs. Strikingly, lynx2 exhibits a two order of magnitude stronger affinity for α3β4- compared to α7-nAChRs. Together, the AFM assay serves as a valuable tool for the biophysical characterization of lynx-nAChR binding affinities. Revealing the differential affinities of lynx proteins for nAChR subtypes will help elucidate how lynx regulates nAChR-dependent functions in the brain, including nicotine addiction and other critical pathways.
Collapse
Affiliation(s)
- Avani V. Pisapati
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Wenpeng Cao
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | | | - Griffin Jones
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | | | - Paul Whiteaker
- Division of NeurobiologyBarrow Neurological Institute, St. Joseph's Hospital and Medical CenterLehigh UniversityPhoenixArizonaUSA
| | - Wonpil Im
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - X. Frank Zhang
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Mechanical Engineering and MechanicsLehigh UniversityBethlehemPennsylvaniaUSA
| | - Julie M. Miwa
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
41
|
Sherafat Y, Chen E, Lallai V, Bautista M, Fowler JP, Chen YC, Miwa J, Fowler CD. Differential Expression Patterns of Lynx Proteins and Involvement of Lynx1 in Prepulse Inhibition. Front Behav Neurosci 2021; 15:703748. [PMID: 34803621 PMCID: PMC8595198 DOI: 10.3389/fnbeh.2021.703748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Negative allosteric modulators, such as lynx1 and lynx2, directly interact with nicotinic acetylcholine receptors (nAChRs). The nAChRs are integral to cholinergic signaling in the brain and have been shown to mediate different aspects of cognitive function. Given the interaction between lynx proteins and these receptors, we examined whether these endogenous negative allosteric modulators are involved in cognitive behaviors associated with cholinergic function. We found both cell-specific and overlapping expression patterns of lynx1 and lynx2 mRNA in brain regions associated with cognition, learning, memory, and sensorimotor processing, including the prefrontal cortex (PFC), cingulate cortex, septum, hippocampus, amygdala, striatum, and pontine nuclei. Since lynx proteins are thought to play a role in conditioned associations and given the expression patterns across brain regions, we first assessed whether lynx knockout mice would differ in a cognitive flexibility task. We found no deficits in reversal learning in either the lynx1–/– or lynx2–/– knockout mice. Thereafter, sensorimotor gating was examined with the prepulse inhibition (PPI) assessment. Interestingly, we found that both male and female lynx1–/– mice exhibited a deficit in the PPI behavioral response. Given the comparable expression of lynx2 in regions involved in sensorimotor gating, we then examined whether removal of the lynx2 protein would lead to similar behavioral effects. Unexpectedly, we found that while male lynx2–/– mice exhibited a decrease in the baseline startle response, no differences were found in sensorimotor gating for either male or female lynx2–/– mice. Taken together, these studies provide insight into the expression patterns of lynx1 and lynx2 across multiple brain regions and illustrate the modulatory effects of the lynx1 protein in sensorimotor gating.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Edison Chen
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Valeria Lallai
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - James P Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Julie Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
42
|
Zhang Y, Yao L, Li X, Meng M, Shang Z, Wang Q, Xiao J, Gu X, Xu Z, Zhang X. Schizophrenia risk-gene Crmp2 deficiency causes precocious critical period plasticity and deteriorated binocular vision. Sci Bull (Beijing) 2021; 66:2225-2237. [PMID: 36654114 DOI: 10.1016/j.scib.2021.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/29/2021] [Indexed: 02/03/2023]
Abstract
Brain-specific loss of a microtubule-binding protein collapsin response mediator protein-2 (CRMP2) in the mouse recapitulates many schizophrenia-like behaviors of human patients, possibly resulting from associated developmental deficits in neuronal differentiation, path-finding, and synapse formation. However, it is still unclear how the Crmp2 loss affects neuronal circuit function and plasticity. By conducting in vivo and ex vivo electrophysiological recording in the mouse primary visual cortex (V1), we reveal that CRMP2 exerts a key regulation on the timing of postnatal critical period (CP) for experience-dependent circuit plasticity of sensory cortex. In the developing V1, the Crmp2 deficiency induces not only a delayed maturation of visual tuning functions but also a precocious CP for visual input-induced ocular dominance plasticity and its induction activity - coincident binocular inputs right after eye-opening. Mechanistically, the Crmp2 deficiency accelerates the maturation process of cortical inhibitory transmission and subsequently promotes an early emergence of balanced excitatory-inhibitory cortical circuits during the postnatal development. Moreover, the precocious CP plasticity results in deteriorated binocular depth perception in adulthood. Thus, these findings suggest that the Crmp2 deficiency dysregulates the timing of CP for experience-dependent refinement of circuit connections and further leads to impaired sensory perception in later life.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiang Li
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Meizhen Meng
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ziwei Shang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaying Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Gu
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
43
|
Kulbatskii D, Shenkarev Z, Bychkov M, Loktyushov E, Shulepko M, Koshelev S, Povarov I, Popov A, Peigneur S, Chugunov A, Kozlov S, Sharonova I, Efremov R, Skrebitsky V, Tytgat J, Kirpichnikov M, Lyukmanova E. Human Three-Finger Protein Lypd6 Is a Negative Modulator of the Cholinergic System in the Brain. Front Cell Dev Biol 2021; 9:662227. [PMID: 34631692 PMCID: PMC8494132 DOI: 10.3389/fcell.2021.662227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Lypd6 is a GPI-tethered protein from the Ly-6/uPAR family expressed in the brain. Lypd6 enhances the Wnt/β-catenin signaling, although its action on nicotinic acetylcholine receptors (nAChRs) have been also proposed. To investigate a cholinergic activity of Lypd6, we studied a recombinant water-soluble variant of the human protein (ws-Lypd6) containing isolated “three-finger” LU-domain. Experiments at different nAChR subtypes expressed in Xenopus oocytes revealed the negative allosteric modulatory activity of ws-Lypd6. Ws-Lypd6 inhibited ACh-evoked currents at α3β4- and α7-nAChRs with IC50 of ∼35 and 10 μM, respectively, and the maximal amplitude of inhibition of 30–50%. EC50 of ACh at α3β4-nAChRs (∼30 μM) was not changed in the presence of 35 μM ws-Lypd6, while the maximal amplitude of ACh-evoked current was reduced by ∼20%. Ws-Lypd6 did not elicit currents through nAChRs in the absence of ACh. Application of 1 μM ws-Lypd6 significantly inhibited (up to ∼28%) choline-evoked current at α7-nAChRs in rat hippocampal slices. Similar to snake neurotoxin α-bungarotoxin, ws-Lypd6 suppressed the long-term potentiation (LTP) in mouse hippocampal slices. Colocalization of endogenous GPI-tethered Lypd6 with α3β4- and α7-nAChRs was detected in primary cortical and hippocampal neurons. Ws-Lypd6 interaction with the extracellular domain of α7-nAChR was modeled using the ensemble protein-protein docking protocol. The interaction of all three Lypd6 loops (“fingers”) with the entrance to the orthosteric ligand-binding site and the loop C of the primary receptor subunit was predicted. The results obtained allow us to consider Lypd6 as the endogenous negative modulator involved in the regulation of the cholinergic system in the brain.
Collapse
Affiliation(s)
- Dmitrii Kulbatskii
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Zakhar Shenkarev
- Structural Biology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Maxim Bychkov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Eugene Loktyushov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Mikhail Shulepko
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Sergey Koshelev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Igor Povarov
- Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Alexander Popov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Institute of Neuroscience, Nizhny Novgorod University, Nizhny Novgorod, Russia
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Anton Chugunov
- Structural Biology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.,International Laboratory for Supercomputer Atomistic Modelling and Multi-Scale Analysis, National Research University Higher School of Economics, Moscow, Russia
| | - Sergey Kozlov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Irina Sharonova
- Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Roman Efremov
- Structural Biology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.,International Laboratory for Supercomputer Atomistic Modelling and Multi-Scale Analysis, National Research University Higher School of Economics, Moscow, Russia
| | | | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Mikhail Kirpichnikov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Lyukmanova
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.,Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
44
|
Fong MF, Duffy KR, Leet MP, Candler CT, Bear MF. Correction of amblyopia in cats and mice after the critical period. eLife 2021; 10:e70023. [PMID: 34464258 PMCID: PMC8456712 DOI: 10.7554/elife.70023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022] Open
Abstract
Monocular deprivation early in development causes amblyopia, a severe visual impairment. Prognosis is poor if therapy is initiated after an early critical period. However, clinical observations have shown that recovery from amblyopia can occur later in life when the non-deprived (fellow) eye is removed. The traditional interpretation of this finding is that vision is improved simply by the elimination of interocular suppression in primary visual cortex, revealing responses to previously subthreshold input. However, an alternative explanation is that silencing activity in the fellow eye establishes conditions in visual cortex that enable the weak connections from the amblyopic eye to gain strength, in which case the recovery would persist even if vision is restored in the fellow eye. Consistent with this idea, we show here in cats and mice that temporary inactivation of the fellow eye is sufficient to promote a full and enduring recovery from amblyopia at ages when conventional treatments fail. Thus, connections serving the amblyopic eye are capable of substantial plasticity beyond the critical period, and this potential is unleashed by reversibly silencing the fellow eye.
Collapse
Affiliation(s)
- Ming-fai Fong
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Madison P Leet
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Christian T Candler
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
45
|
Consorti A, Di Marco I, Sansevero G. Physical Exercise Modulates Brain Physiology Through a Network of Long- and Short-Range Cellular Interactions. Front Mol Neurosci 2021; 14:710303. [PMID: 34489641 PMCID: PMC8417110 DOI: 10.3389/fnmol.2021.710303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decades, the effects of sedentary lifestyles have emerged as a critical aspect of modern society. Interestingly, recent evidence demonstrated that physical exercise plays an important role not only in maintaining peripheral health but also in the regulation of central nervous system function. Many studies have shown that physical exercise promotes the release of molecules, involved in neuronal survival, differentiation, plasticity and neurogenesis, from several peripheral organs. Thus, aerobic exercise has emerged as an intriguing tool that, on one hand, could serve as a therapeutic protocol for diseases of the nervous system, and on the other hand, could help to unravel potential molecular targets for pharmacological approaches. In the present review, we will summarize the cellular interactions that mediate the effects of physical exercise on brain health, starting from the factors released in myocytes during muscle contraction to the cellular pathways that regulate higher cognitive functions, in both health and disease.
Collapse
Affiliation(s)
- Alan Consorti
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
- NEUROFARBA, University of Florence, Florence, Italy
| | | | | |
Collapse
|
46
|
Aronitz EM, Kamermans BA, Duffy KR. Development of parvalbumin neurons and perineuronal nets in the visual cortex of normal and dark-exposed cats. J Comp Neurol 2021; 529:2827-2841. [PMID: 33576496 DOI: 10.1002/cne.25127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/06/2022]
Abstract
During development, the visual system maintains a high capacity for modification by expressing characteristics permissive for plasticity, enabling neural circuits to be refined by visual experience to achieve their mature form. This period is followed by the emergence of characteristics that stabilize the brain to consolidate for lifetime connections that were informed by experience. Attenuation of plasticity potential is thought to derive from an accumulation of plasticity-inhibiting characteristics that appear at ages beyond the peak of plasticity. Perineuronal nets (PNNs) are molecular aggregations that primarily surround fast-spiking inhibitory neurons called parvalbumin (PV) cells, which exhibit properties congruent with a plasticity inhibitor. In this study, we examined the development of PNNs and PV cells in the primary visual cortex of a highly visual mammal, and assessed the impact that 10 days of darkness had on both characteristics. Here, we show that labeling for PV expression emerges earlier and reaches adult levels sooner than PNNs. We also demonstrate that darkness, a condition known to enhance plasticity, significantly reduces the density of PNNs and the size of PV cell somata but does not alter the number of PV cells in the visual cortex. The darkness-induced reduction of PV cell size occurred irrespective of whether neurons were surrounded by a PNN, suggesting that PNNs have a restricted capacity to inhibit plasticity. Finally, we show that PV cells surrounded by a PNN were significantly larger than those without one, supporting the view that PNNs may mediate trophic support to the cells they surround.
Collapse
Affiliation(s)
- Elise M Aronitz
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Braden A Kamermans
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
47
|
Chen K, Ma X, Nehme A, Wei J, Cui Y, Cui Y, Yao D, Wu J, Anderson T, Ferguson D, Levitt P, Qiu S. Time-delimited signaling of MET receptor tyrosine kinase regulates cortical circuit development and critical period plasticity. Mol Psychiatry 2021; 26:3723-3736. [PMID: 31900430 PMCID: PMC7332377 DOI: 10.1038/s41380-019-0635-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Normal development of cortical circuits, including experience-dependent cortical maturation and plasticity, requires precise temporal regulation of gene expression and molecular signaling. Such regulation, and the concomitant impact on plasticity and critical periods, is hypothesized to be disrupted in neurodevelopmental disorders. A protein that may serve such a function is the MET receptor tyrosine kinase, which is tightly regulated developmentally in rodents and primates, and exhibits reduced cortical expression in autism spectrum disorder and Rett Syndrome. We found that the peak of MET expression in developing mouse cortex coincides with the heightened period of synaptogenesis, but is precipitously downregulated prior to extensive synapse pruning and certain peak periods of cortical plasticity. These results reflect a potential on-off regulatory synaptic mechanism for specific glutamatergic cortical circuits in which MET is enriched. In order to address the functional significance of the 'off' component of the proposed mechanism, we created a controllable transgenic mouse line that sustains cortical MET signaling. Continued MET expression in cortical excitatory neurons disrupted synaptic protein profiles, altered neuronal morphology, and impaired visual cortex circuit maturation and connectivity. Remarkably, sustained MET signaling eliminates monocular deprivation-induced ocular dominance plasticity during the normal cortical critical period; while ablating MET signaling leads to early closure of critical period plasticity. The results demonstrate a novel mechanism in which temporal regulation of a pleiotropic signaling protein underlies cortical circuit maturation and timing of cortical critical period, features that may be disrupted in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ke Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Antoine Nehme
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Yan Cui
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jie Wu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Barrow Neurological Institute, St. Joseph's Hospital Medical Center, Phoenix, AZ, 85013, USA
| | - Trent Anderson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
48
|
Abstract
Childhood socio-economic status (SES), a measure of the availability of material and social resources, is one of the strongest predictors of lifelong well-being. Here we review evidence that experiences associated with childhood SES affect not only the outcome but also the pace of brain development. We argue that higher childhood SES is associated with protracted structural brain development and a prolonged trajectory of functional network segregation, ultimately leading to more efficient cortical networks in adulthood. We hypothesize that greater exposure to chronic stress accelerates brain maturation, whereas greater access to novel positive experiences decelerates maturation. We discuss the impact of variation in the pace of brain development on plasticity and learning. We provide a generative theoretical framework to catalyse future basic science and translational research on environmental influences on brain development.
Collapse
Affiliation(s)
- Ursula A Tooley
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Allyson P Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
49
|
van Atteveldt N, Vandermosten M, Weeda W, Bonte M. How to capture developmental brain dynamics: gaps and solutions. NPJ SCIENCE OF LEARNING 2021; 6:10. [PMID: 33941785 PMCID: PMC8093270 DOI: 10.1038/s41539-021-00088-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/25/2021] [Indexed: 05/03/2023]
Abstract
Capturing developmental and learning-induced brain dynamics is extremely challenging as changes occur interactively across multiple levels and emerging functions. Different levels include the (social) environment, cognitive and behavioral levels, structural and functional brain changes, and genetics, while functions include domains such as math, reading, and executive function. Here, we report the insights that emerged from the workshop “Capturing Developmental Brain Dynamics”, organized to bring together multidisciplinary approaches to integrate data on development and learning across different levels, functions, and time points. During the workshop, current main gaps in our knowledge and tools were identified including the need for: (1) common frameworks, (2) longitudinal, large-scale, multisite studies using representative participant samples, (3) understanding interindividual variability, (4) explicit distinction of understanding versus predicting, and (5) reproducible research. After illustrating interactions across levels and functions during development, we discuss the identified gaps and provide solutions to advance the capturing of developmental brain dynamics.
Collapse
Affiliation(s)
- Nienke van Atteveldt
- Dept. of Clinical Developmental Psychology & Institute Learn!, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Maaike Vandermosten
- Dept. of Neuroscience, and Leuven Brain Institute, Experimental ORL, KU Leuven, Leuven, Belgium
| | - Wouter Weeda
- Dept. of Methodology & Statistics, Leiden University, Leiden, The Netherlands
| | - Milene Bonte
- Dept. of Cognitive Neuroscience, and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
50
|
Abstract
Tobacco smoking results in more than five million deaths each year and accounts for ∼90% of all deaths from lung cancer.3 Nicotine, the major reinforcing component of tobacco smoke, acts in the brain through the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are allosterically regulated, ligand-gated ion channels consisting of five membrane-spanning subunits. Twelve mammalian α subunits (α2-α10) and three β subunits (β2-β4) have been cloned. The predominant nAChR subtypes in mammalian brain are those containing α4 and β2 subunits (denoted as α4β2* nAChRs). The α4β2* nAChRs mediate many behaviors related to nicotine addiction and are the primary targets for currently approved smoking cessation agents. Considering the large number of nAChR subunits in the brain, it is likely that nAChRs containing subunits in addition to α4 and β2 also play a role in tobacco smoking. Indeed, genetic variation in the CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3, and β4 nAChR subunits, respectively, has been shown to increase vulnerability to tobacco dependence and smoking-associated diseases including lung cancer. Moreover, mice, in which expression of α5 or β4 subunits has been genetically modified, have profoundly altered patterns of nicotine consumption. In addition to the reinforcing properties of nicotine, the effects of nicotine on appetite, attention, and mood are also thought to contribute to establishment and maintenance of the tobacco smoking habit. Here, we review recent insights into the behavioral actions of nicotine, and the nAChR subtypes involved, which likely contribute to the development of tobacco dependence in smokers.
Collapse
Affiliation(s)
- Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|