1
|
Gu C, Mi Y, Zhang T, Wang S. Enhancing Monodispersity and Thermal Stability of Human H-Ferritin as a Nanocarrier by Protein Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12787-12798. [PMID: 40377399 DOI: 10.1021/acs.jafc.5c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Cage-like ferritin has been explored as a new class of nanovehicle in the field of food and nutrition, but its aggregation characteristics and low thermal stability limit its further application. This study focused on improving the monodispersity and thermal stability of recombinant human H-ferritin (rHuHF) for enhanced cargo molecule delivery. With the aid of AlphaFold 3.0, we designed a ferritin mutant by removing cysteine residues of rHuHF to improve monodispersity during storage while introducing histidine mutations at the C3 and C4 interfaces to enhance thermal stability. Notably, the designed protein structure was validated by a resolved crystal structure at the atomic level. As expected, the designed ferritin nanocage exhibited significantly improved monodispersity and thermal stability, enhancing its cargo loading capacity and cellular uptake efficiency. Such designed ferritin offers a more stable, efficient nanocarrier for cargo delivery and cargo protection under heat stress as compared to wild-type rHuHF.
Collapse
Affiliation(s)
- Chunkai Gu
- State Key Laboratory of Food Nutrition and Safety and School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin300457, China
| | - Ya'nan Mi
- State Key Laboratory of Food Nutrition and Safety and School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin300457, China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety and School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin300457, China
| |
Collapse
|
2
|
Levasseur MD. Nonviral protein cages as tools to decipher and combat viral threats. NPJ VIRUSES 2025; 3:45. [PMID: 40419646 DOI: 10.1038/s44298-025-00127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
Zoonotic viruses rank among the greatest threats to public health, with urbanization and global warming accelerating their emergence and spread. As the risk of future pandemics grows, innovative tools are needed to deepen our understanding of viral pathogenesis and enhance pandemic preparedness. Nonviral protein cages provide a versatile platform for studying viral mechanisms, virus-host interactions, and designing next-generation therapeutic approaches, making them powerful assets in the fight against viral threats.
Collapse
|
3
|
Koziej L, Fatehi F, Aleksejczuk M, Byrne MJ, Heddle JG, Twarock R, Azuma Y. Dynamic Assembly of Pentamer-Based Protein Nanotubes. ACS NANO 2025; 19:8786-8798. [PMID: 39993171 PMCID: PMC11912573 DOI: 10.1021/acsnano.4c16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Hollow proteinaceous particles are useful nanometric containers for delivery and catalysis. Understanding the molecular mechanisms and the geometrical theory behind the polymorphic protein assemblies provides a basis for designing ones with the desired morphology. As such, we found that a circularly permuted variant of a cage-forming enzyme, Aquifex aeolicus lumazine synthase, cpAaLS, assembles into a variety of hollow spherical and cylindrical structures in response to changes in ionic strength. Cryogenic electron microscopy revealed that these structures are composed entirely of pentameric subunits, and the dramatic cage-to-tube transformation is attributed to the moderately hindered 3-fold symmetry interaction and the imparted torsion angle of the building blocks, where both mechanisms are mediated by an α-helix domain that is untethered from the native position by circular permutation. Mathematical modeling suggests that the unique double- and triple-stranded helical arrangements of subunits are optimal tiling patterns, while different geometries should be possible by modulating the interaction angles of the pentagons. These structural insights into dynamic, pentamer-based protein cages and nanotubes afford guidelines for designing nanoarchitectures with customized morphology and assembly characteristics.
Collapse
Affiliation(s)
- Lukasz Koziej
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Farzad Fatehi
- Departments
of Mathematics, University of York, York YO10 5DD, U.K.
| | - Marta Aleksejczuk
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Matthew J. Byrne
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Jonathan G. Heddle
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- School
of Biological and Biomedical Sciences, Durham
University, Durham DH1 3LE, U.K.
| | - Reidun Twarock
- Departments
of Mathematics, University of York, York YO10 5DD, U.K.
- Department
of Biology, University of York, York YO10 5DD, U.K.
| | - Yusuke Azuma
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
4
|
Ebihara R, Nakama T, Morishima K, Yagi-Utsumi M, Sugiyama M, Fujita D, Sato S, Fujita M. Physical Isolation of Single Protein Molecules within Well-Defined Coordination Cages to Enhance Their Stability. Angew Chem Int Ed Engl 2025; 64:e202419476. [PMID: 39523933 DOI: 10.1002/anie.202419476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Encapsulation of a single protein within a confined space can lead to distinct properties compared to bulk solutions, but controlling the number of encapsulated proteins and their environment remains challenging. This study demonstrates the encapsulation of single proteins within well-defined, tunable cavities of self-assembled coordination cages, thereby enhancing protein stability. Within uniform cavities of size-tunable coordination cages, 15 different proteins of varying sizes (3-6 nm in diameter) and properties (e.g., isoelectric points and hydrophobicity) were successfully confined. Various analytical techniques confirmed that the proteins maintained their secondary structures and enzymatic activities under denaturing conditions such as exposure to organic solvents, heat, and buffers. These findings suggest that such coordination cages have the potential to serve as synthetic hosts for precisely controlling protein functions within their customizable cavities.
Collapse
Affiliation(s)
- Risa Ebihara
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Takahiro Nakama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
- Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Daishi Fujita
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
- Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Makoto Fujita
- Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Tokyo College, U-Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
5
|
Gu C, Mi Y, Zhang T, Zhao G, Wang S. Construction of robust protein nanocage by designed disulfide bonds for active cargo molecules protection in the gastric environment. J Colloid Interface Sci 2025; 678:637-647. [PMID: 39216391 DOI: 10.1016/j.jcis.2024.08.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Notwithstanding the progress made, cargo molecules encapsulated within ferritin via oral administration in the gastric environment remains a persistent challenge. This study focuses on the strategic enhancement of ferritin stability in harsh gastric environment. By taking advantagie of computational-assisted design, we strategically introduced up to 96 disulfide bonds along three key inter-subunit interfaces to one single ferritin molecule with human H-chain ferritin and shrimp (Marsupenaeus japonicus) ferritin as starting materials, producing two kinds of robust ferritin nanocages with markedly enhanced acid and protease (pepsin and rennin) resistance. The crystal structure of ferritin nanocage confirmed our design at an atomic level. Encapsulation experiments demonstrated successful loading of bioactive cargo molecules (e.g., doxorubicin) into the engineered ferritin nanocages, with pronouncedly improved protection against leakage under acidic condition and the presence of pepsin and rennin as compared to their native counterparts. This study presents a potential approach for the design and engineering of protein nanocages for oral administration.
Collapse
Affiliation(s)
- Chunkai Gu
- State Key Laboratory of Food Nutrition and Safety and School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ya'nan Mi
- State Key Laboratory of Food Nutrition and Safety and School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety and School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Harjung A, Fracassi A, Devaraj NK. Encoding extracellular modification of artificial cell membranes using engineered self-translocating proteins. Nat Commun 2024; 15:9363. [PMID: 39477950 PMCID: PMC11526174 DOI: 10.1038/s41467-024-53783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
The development of artificial cells has led to fundamental insights into the functional processes of living cells while simultaneously paving the way for transformative applications in biotechnology and medicine. A common method of generating artificial cells is to encapsulate protein expression systems within lipid vesicles. However, to communicate with the external environment, protein translocation across lipid membranes must take place. In living cells, protein transport across membranes is achieved with the aid of complex translocase systems which are difficult to reconstitute into artificial cells. Thus, there is need for simple mechanisms by which proteins can be encoded and expressed inside synthetic compartments yet still be externally displayed. Here we present a genetically encodable membrane functionalization system based on mutants of pore-forming proteins. We modify the membrane translocating loop of α-hemolysin to translocate functional peptides up to 52 amino acids across lipid membranes. Full membrane translocation occurs in the absence of any translocase machinery and the translocated peptides are recognized by specific peptide-binding ligands on the opposing membrane side. Engineered hemolysins can be used for genetically programming artificial cells to display interacting peptide pairs, enabling their assembly into artificial tissue-like structures.
Collapse
Affiliation(s)
- Alexander Harjung
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| |
Collapse
|
7
|
Tang TMS, Luk LYP. Towards controlling activity of a peptide asparaginyl ligase (PAL) by lumazine synthetase compartmentalization. Faraday Discuss 2024; 252:403-421. [PMID: 38832470 PMCID: PMC11476191 DOI: 10.1039/d4fd00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/16/2024] [Indexed: 06/05/2024]
Abstract
Peptide asparaginyl ligases (PALs) hold significant potential in protein bioconjugation due to their excellent kinetic properties and broad substrate compatibility. However, realizing their full potential in biocatalytic applications requires precise control of their activity. Inspired by nature, we aimed to compartmentalize a representative PAL, OaAEP1-C247A, within protein containers to create artificial organelles with substrate sorting capability. Two encapsulation approaches were explored using engineered lumazine synthases (AaLS). The initial strategy involved tagging the PAL with a super-positively charged GFP(+36) for encapsulation into the super-negatively charged AaLS-13 variant, but it resulted in undesired truncation of the enzyme. The second approach involved genetic fusion of the OaAEP1-C247A with a circularly permutated AaLS variant (cpAaLS) and its co-production with AaLS-13, which successfully enabled compartmentalization of the PAL within a patch-work protein cage. Although the caged PAL retained its activity, it was significantly reduced compared to the free enzyme (∼30-40-fold), likely caused by issues related to OaAEP1-C247A stability and folding. Nevertheless, these findings demonstrated the feasibility of the AaLS encapsulation approach and encourage further optimization in the design of peptide-ligating artificial organelles in E. coli, aiming for a more effective and stable system for protein modifications.
Collapse
Affiliation(s)
- T M Simon Tang
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Main Building, Room 1.54, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Main Building, Room 1.54, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
8
|
Hori M, Steinauer A, Tetter S, Hälg J, Manz EM, Hilvert D. Stimulus-responsive assembly of nonviral nucleocapsids. Nat Commun 2024; 15:3576. [PMID: 38678040 PMCID: PMC11055949 DOI: 10.1038/s41467-024-47808-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.
Collapse
Affiliation(s)
- Mao Hori
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LIBN, Lausanne, Switzerland
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Jamiro Hälg
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Eva-Maria Manz
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Herpoldt K, López CL, Sappington I, Pham MN, Srinivasan S, Netland J, Montgomery KS, Roy D, Prossnitz AN, Ellis D, Wargacki AJ, Pepper M, Convertine AJ, Stayton PS, King NP. Macromolecular Cargo Encapsulation via In Vitro Assembly of Two-Component Protein Nanoparticles. Adv Healthc Mater 2024; 13:e2303910. [PMID: 38180445 PMCID: PMC11468305 DOI: 10.1002/adhm.202303910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Self-assembling protein nanoparticles are a promising class of materials for targeted drug delivery. Here, the use of a computationally designed, two-component, icosahedral protein nanoparticle is reported to encapsulate multiple macromolecular cargoes via simple and controlled self-assembly in vitro. Single-stranded RNA molecules between 200 and 2500 nucleotides in length are encapsulated and protected from enzymatic degradation for up to a month with length-dependent decay rates. Immunogenicity studies of nanoparticles packaging synthetic polymers carrying a small-molecule TLR7/8 agonist show that co-delivery of antigen and adjuvant results in a more than 20-fold increase in humoral immune responses while minimizing systemic cytokine secretion associated with free adjuvant. Coupled with the precise control over nanoparticle structure offered by computational design, robust and versatile encapsulation via in vitro assembly opens the door to a new generation of cargo-loaded protein nanoparticles that can combine the therapeutic effects of multiple drug classes.
Collapse
Affiliation(s)
- Karla‐Luise Herpoldt
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
- Present address:
2seventy BioSeattleWA98102USA
| | - Ciana L. López
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Isaac Sappington
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Minh N. Pham
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Selvi Srinivasan
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Jason Netland
- Department of ImmunologyUniversity of WashingtonSeattleWA98195USA
| | | | - Debashish Roy
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | | | - Daniel Ellis
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Adam J. Wargacki
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Marion Pepper
- Department of ImmunologyUniversity of WashingtonSeattleWA98195USA
| | - Anthony J. Convertine
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
- Present address:
Department of Material Science and EngineeringMissouri University of Science and TechnologyRollaMO65409USA
| | | | - Neil P. King
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
10
|
Muikham I, Thongsum O, Jaranathummakul S, Wathammawut A, Chotwiwatthanakun C, Jariyapong P, Weerachatyanukul W. Interior modification of Macrobrachium rosenbergii nodavirus-like particle enhances encapsulation of VP37-dsRNA against shrimp white spot syndrome infection. BMC Vet Res 2024; 20:91. [PMID: 38459500 PMCID: PMC10921773 DOI: 10.1186/s12917-024-03936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Application of a virus-like particle (VLP) as a nanocontainer to encapsulate double stranded (ds)RNA to control viral infection in shrimp aquaculture has been extensively reported. In this study, we aimed at improving VLP's encapsulation efficiency which should lead to a superior fighting weapon with disastrous viruses. RESULTS We constructed 2 variants of chimeric Macrobrachium rosenbergii nodavirus (MrNV)-like particles (V1- and V2-MrN-VLPs) and tested their efficiency to encapsulate VP37 double stranded RNA as well as WSSV protection in P. vannamei. Two types of short peptides, RNA-binding domain (RBD) and deca-arginine (10R) were successfully engineered into the interior surface of VLP, the site where the contact with VP37-dsRNA occurs. TEM and dynamic light scattering (DLS) analyses revealed that the chimeric VLPs remained their assembling property to be an icosahedral symmetric particle with a diameter of about 30 nm, similar to the original MrN-VLP particle. The superior encapsulation efficiency of VP37-dsRNA into V2-MrN-VLP was achieved, which was slightly better than that of V1-MrN-VLP but far better (1.4-fold) than its parental V0-MrN-VLP which the mole ratio of 7.5-10.5 for all VLP variants. The protection effect against challenging WSSV (as gauged from the level of VP37 gene and the remaining viral copy number in shrimp) was significantly improved in both V1- and V2-MrN-VLP compared with an original V0-MrN-VLP template. CONCLUSION MrN-VLP (V0-) were re-engineered interiorly with RBD (V1-) and 10R (V2-) peptides which had an improved VP37-dsRNA encapsulation capability. The protection effect against WSSV infection through shrimp administration with dsRNA + V1-/V2-MrN VLPs was experimentally evident.
Collapse
Affiliation(s)
- Itsares Muikham
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand
| | - Orawan Thongsum
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand
| | - Somkid Jaranathummakul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand
| | - Atthaboon Wathammawut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Charoonroj Chotwiwatthanakun
- Faculty of Science, Mahidol University, Nakhonsawan Campus, Nakhonsawan, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
| | - Pitchanee Jariyapong
- Department of Medical Science, School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, 80160, Thailand.
| | - Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
11
|
Peng Y, Yan H, Zhang J, Peng R, Feng X, Su J, Yi H, Lu Y, Chen Z. Potent immune responses against thermostable Foot-and-Mouth disease virus VP1 nanovaccine adjuvanted with polymeric thermostable scaffold. Vaccine 2024; 42:732-737. [PMID: 38220487 DOI: 10.1016/j.vaccine.2023.12.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/16/2024]
Abstract
Foot-and-mouth disease (FMD) is an acute zoonosis causes significant economic losses. Vaccines able to stimulate efficient protective immune responses are urgently needed. In this study, Escherichia coli-derived recombinant VP1 of serotype A and O FMD virus (FMDV) was conjugated to thermostable scaffold lumazine synthase (LS) or Quasibacillus thermotolerans encapsulin (QtEnc) using a robust plug-and-display SpyTag/SpyCatcher system to generate multimeric nanovaccines. These nanovaccines induced highly potent antibody responses in vaccinated mice. On day 14 after the first immunisation, antibody titres were approximately 100 times higher than those of monomer antigens. Both vaccines induced high and long-term IgG antibody production. Moreover, the QtEnc-VP1 nanovaccine induced higher antibody titres than the LS-VP1 nanovaccine. The nanovaccines also induced Th1-biased immune responses and higher levels of neutralising antibodies. These data indicated that FMDV nanovaccines generated by conjugating VP1 with a thermostable scaffold are highly immunogenic and ideal candidates for FMDV control in low-resource areas.
Collapse
Affiliation(s)
- Yuanli Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Haozhen Yan
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Jinsong Zhang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Ruihao Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Xiangning Feng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Jiayue Su
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Huaimin Yi
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Yuying Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, P. R. China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
12
|
Chen X, Zhang T, Liu H, Zang J, Lv C, Du M, Zhao G. Shape-Anisotropic Assembly of Protein Nanocages with Identical Building Blocks by Designed Intermolecular π-π Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305398. [PMID: 37870198 PMCID: PMC10724428 DOI: 10.1002/advs.202305398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Indexed: 10/24/2023]
Abstract
Protein lattices that shift the structure and shape anisotropy in response to environmental cues are closely coupled to potential functionality. However, to design and construct shape-anisotropic protein arrays from the same building blocks in response to different external stimuli remains challenging. Here, by a combination of the multiple, symmetric interaction sites on the outer surface of protein nanocages and the tunable features of phenylalanine-phenylalanine interactions, a protein engineering approach is reported to construct a variety of superstructures with shape anisotropy, including 3D cubic, 2D hexagonal layered, and 1D rod-like crystalline protein nanocage arrays by using one single protein building block. Notably, the assembly of these crystalline protein arrays is reversible, which can be tuned by external stimuli (pH and ionic strength). The anisotropic morphologies of the fabricated macroscopic crystals can be correlated with the Å-to-nm scale protein arrangement details by crystallographic elucidation. These results enhance the understanding of the freedom offered by an object's symmetry and inter-object π-π stacking interactions for protein building blocks to assemble into direction- and shape-anisotropic biomaterials.
Collapse
Affiliation(s)
- Xuemin Chen
- College of Food Science & Nutritional EngineeringBeijing Key Laboratory of Functional Food from Plant ResourcesChina Agricultural UniversityBeijing100083China
| | - Tuo Zhang
- College of Food Science & Nutritional EngineeringBeijing Key Laboratory of Functional Food from Plant ResourcesChina Agricultural UniversityBeijing100083China
| | - Hanxiong Liu
- School of Food Science and TechnologyNational Engineering Research Center of SeafoodDalian Polytechnic UniversityDalian116034China
| | - Jiachen Zang
- College of Food Science & Nutritional EngineeringBeijing Key Laboratory of Functional Food from Plant ResourcesChina Agricultural UniversityBeijing100083China
| | - Chenyan Lv
- College of Food Science & Nutritional EngineeringBeijing Key Laboratory of Functional Food from Plant ResourcesChina Agricultural UniversityBeijing100083China
| | - Ming Du
- School of Food Science and TechnologyNational Engineering Research Center of SeafoodDalian Polytechnic UniversityDalian116034China
| | - Guanghua Zhao
- College of Food Science & Nutritional EngineeringBeijing Key Laboratory of Functional Food from Plant ResourcesChina Agricultural UniversityBeijing100083China
| |
Collapse
|
13
|
Morris MA, Mills CE, Paloni JM, Miller EA, Sikes HD, Olsen BD. High-Throughput Screening of Streptavidin-Binding Proteins in Self-Assembled Solid Films for Directed Evolution of Materials. NANO LETTERS 2023; 23:7303-7310. [PMID: 37566825 DOI: 10.1021/acs.nanolett.3c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Evolution has shaped the development of proteins with an incredible diversity of properties. Incorporating proteins into materials is desirable for applications including biosensing; however, high-throughput selection techniques for screening protein libraries in materials contexts is lacking. In this work, a high-throughput platform to assess the binding affinity for ordered sensing proteins was established. A library of fusion proteins, consisting of an elastin-like polypeptide block, one of 22 variants of rcSso7d, and a coiled-coil order-directing sequence, was generated. All selected variants had high binding in films, likely due to the similarity of the assay to magnetic bead sorting used for initial selection, while solution binding was more variable. From these results, both the assembly of the fusion proteins in their operating state and the functionality of the binding protein are key factors in the biosensing performance. Thus, the integration of directed evolution with assembled systems is necessary to the design of better materials.
Collapse
Affiliation(s)
- Melody A Morris
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Carolyn E Mills
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Justin M Paloni
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eric A Miller
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Zakaszewski D, Koziej L, Pankowski J, Malolan VV, Gämperli N, Heddle JG, Hilvert D, Azuma Y. Complementary charge-driven encapsulation of functional protein by engineered protein cages in cellulo. J Mater Chem B 2023; 11:6540-6546. [PMID: 37427706 DOI: 10.1039/d3tb00754e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Charge-driven inclusion complex formation in live cells was examined using a degradation-prone fluorescent protein and a series of protein cages. The results show that sufficiently strong host-guest ionic interaction and an intact shell-like structure are crucial for the protective guest encapsulation.
Collapse
Affiliation(s)
- Daniel Zakaszewski
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, 30348 Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
| | - Jędrzej Pankowski
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
- Faculty of Biochemistry, Biophysics, sand Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland
| | - V Vishal Malolan
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, 30348 Krakow, Poland
| | - Nina Gämperli
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Yusuke Azuma
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
15
|
Nakama T, Rossen A, Ebihara R, Yagi-Utsumi M, Fujita D, Kato K, Sato S, Fujita M. Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages. Chem Sci 2023; 14:2910-2914. [PMID: 36937586 PMCID: PMC10016334 DOI: 10.1039/d2sc05879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Confinement of molecules in a synthetic host can physically isolate even their unstable temporary structures, which has potential for application to protein transient structure analysis. Here we report the NMR snapshot observation of protein unfolding and refolding processes by confining a target protein in a self-assembled coordination cage. With increasing acetonitrile content in CD3CN/H2O media (50 to 90 vol%), the folding structure of a protein sharply denatured at 83 vol%, clearly revealing the regions of initial unfolding. Unfavorable aggregation of the protein leading to irreversible precipitation is completely prevented because of the spatial isolation of the single protein molecule in the cage. When the acetonitrile content reversed (84 to 70 vol%), the once-denatured protein started to regain its original folded structure at 80 vol%, showing that the protein folding/unfolding process can be referred to as a phase transition with hysteresis behavior.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Anouk Rossen
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Risa Ebihara
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Maho Yagi-Utsumi
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Daishi Fujita
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Koichi Kato
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Sota Sato
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| |
Collapse
|
16
|
González-Davis O, Villagrana-Escareño MV, Trujillo MA, Gama P, Chauhan K, Vazquez-Duhalt R. Virus-like nanoparticles as enzyme carriers for Enzyme Replacement Therapy (ERT). Virology 2023; 580:73-87. [PMID: 36791560 DOI: 10.1016/j.virol.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Enzyme replacement therapy (ERT) has been used to treat a few of the many existing diseases which are originated from the lack of, or low enzymatic activity. Exogenous enzymes are administered to contend with the enzymatic activity deficiency. Enzymatic nanoreactors based on the enzyme encapsulation inside of virus-like particles (VLPs) appear as an interesting alternative for ERT. VLPs are excellent delivery vehicles for therapeutic enzymes as they are biodegradable, uniformly organized, and porous nanostructures that transport and could protect the biocatalyst from the external environment without much affecting the bioactivity. Consequently, significant efforts have been made in the production processes of virus-based enzymatic nanoreactors and their functionalization, which are critically reviewed. The use of virus-based enzymatic nanoreactors for the treatment of lysosomal storage diseases such as Gaucher, Fabry, and Pompe diseases, as well as potential therapies for galactosemia, and Hurler and Hunter syndromes are discussed.
Collapse
Affiliation(s)
- Oscar González-Davis
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Maria V Villagrana-Escareño
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Mario A Trujillo
- School of Medicine, Universidad Xochicalco, Ensenada, Baja California, Mexico
| | - Pedro Gama
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico.
| |
Collapse
|
17
|
Kaster M, Levasseur MD, Edwardson TGW, Caldwell MA, Hofmann D, Licciardi G, Parigi G, Luchinat C, Hilvert D, Meade TJ. Engineered Nonviral Protein Cages Modified for MR Imaging. ACS APPLIED BIO MATERIALS 2023; 6:591-602. [PMID: 36626688 PMCID: PMC9945100 DOI: 10.1021/acsabm.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 01/11/2023]
Abstract
Diagnostic medical imaging utilizes magnetic resonance (MR) to provide anatomical, functional, and molecular information in a single scan. Nanoparticles are often labeled with Gd(III) complexes to amplify the MR signal of contrast agents (CAs) with large payloads and high proton relaxation efficiencies (relaxivity, r1). This study examined the MR performance of two structurally unique cages, AaLS-13 and OP, labeled with Gd(III). The cages have characteristics relevant for the development of theranostic platforms, including (i) well-defined structure, symmetry, and size; (ii) the amenability to extensive engineering; (iii) the adjustable loading of therapeutically relevant cargo molecules; (iv) high physical stability; and (v) facile manufacturing by microbial fermentation. The resulting conjugates showed significantly enhanced proton relaxivity (r1 = 11-18 mM-1 s-1 at 1.4 T) compared to the Gd(III) complex alone (r1 = 4 mM-1 s-1). Serum phantom images revealed 107% and 57% contrast enhancements for Gd(III)-labeled AaLS-13 and OP cages, respectively. Moreover, proton nuclear magnetic relaxation dispersion (1H NMRD) profiles showed maximum relaxivity values of 50 mM-1 s-1. Best-fit analyses of the 1H NMRD profiles attributed the high relaxivity of the Gd(III)-labeled cages to the slow molecular tumbling of the conjugates and restricted local motion of the conjugated Gd(III) complex.
Collapse
Affiliation(s)
- Megan
A. Kaster
- Departments
of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois60208, United States
| | - Mikail D. Levasseur
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Thomas G. W. Edwardson
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Michael A. Caldwell
- Departments
of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois60208, United States
| | - Daniela Hofmann
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Giulia Licciardi
- Magnetic
Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino50019Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Giacomo Parigi
- Magnetic
Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino50019Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Claudio Luchinat
- Magnetic
Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino50019Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Donald Hilvert
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Thomas J. Meade
- Departments
of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois60208, United States
| |
Collapse
|
18
|
Evolution of protease activation and specificity via alpha-2-macroglobulin-mediated covalent capture. Nat Commun 2023; 14:768. [PMID: 36765057 PMCID: PMC9918453 DOI: 10.1038/s41467-023-36099-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023] Open
Abstract
Tailoring of the activity and specificity of proteases is critical for their utility across industrial, medical and research purposes. However, engineering or evolving protease catalysts is challenging and often labour intensive. Here, we describe a generic method to accelerate this process based on yeast display. We introduce the protease selection system A2Mcap that covalently captures protease catalysts by repurposed alpha-2-macroglobulin (A2Ms). To demonstrate the utility of A2Mcap for protease engineering we exemplify the directed activity and specificity evolution of six serine proteases. This resulted in a variant of Staphylococcus aureus serin-protease-like (Spl) protease SplB, an enzyme used for recombinant protein processing, that no longer requires activation by N-terminal signal peptide removal. SCHEMA-based domain shuffling was used to map the specificity determining regions of Spl proteases, leading to a chimeric scaffold that supports specificity switching via subdomain exchange. The ability of A2Mcap to overcome key challenges en route to tailor-made proteases suggests easier access to such reagents in the future.
Collapse
|
19
|
Liu Y, Chen X, Yin S, Chang X, Lv C, Zang J, Leng X, Zhang T, Zhao G. Directed Self-Assembly of Dimeric Building Blocks into Networklike Protein Origami to Construct Hydrogels. ACS NANO 2022; 16:19472-19481. [PMID: 36315654 DOI: 10.1021/acsnano.2c09391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Engineering proteins to construct self-assemblies is of crucial significance not only for understanding the sophisticated living systems but also for fabricating advanced materials with unexplored functions. However, due to the inherent chemical heterogeneity and structural complexity of the protein surface, designing complex protein assemblies in an anisotropic fashion remains challenging. Here, we describe a self-assembly approach to fabricating protein origami with a networklike structure by designing dual noncovalent interactions on the different positions of a single protein building block. With dimeric proteins as building blocks, 1D protein filaments were constructed by the designed metal coordination at key protein interfaces. Subsequently, the network superstructures were created by the cross-linking of the 1D protein filaments at branch point linkages through the second designed π-π stacking interactions. Notably, upon increasing the protein concentration, the formed protein networks convert into hydrogels with reversible, injectable, and self-healing properties, which have the ability to promote bone regeneration. This strategy could be used to fabricate other protein-based materials with unexplored functions.
Collapse
Affiliation(s)
- Yu Liu
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xuemin Chen
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Shuhua Yin
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xiaoxi Chang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xiaojing Leng
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| |
Collapse
|
20
|
Olshefsky A, Richardson C, Pun SH, King NP. Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjug Chem 2022; 33:2018-2034. [PMID: 35487503 PMCID: PMC9673152 DOI: 10.1021/acs.bioconjchem.2c00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite remarkable advances over the past several decades, many therapeutic nanomaterials fail to overcome major in vivo delivery barriers. Controlling immunogenicity, optimizing biodistribution, and engineering environmental responsiveness are key outstanding delivery problems for most nanotherapeutics. However, notable exceptions exist including some lipid and polymeric nanoparticles, some virus-based nanoparticles, and nanoparticle vaccines where immunogenicity is desired. Self-assembling protein nanoparticles offer a powerful blend of modularity and precise designability to the field, and have the potential to solve many of the major barriers to delivery. In this review, we provide a brief overview of key designable features of protein nanoparticles and their implications for therapeutic delivery applications. We anticipate that protein nanoparticles will rapidly grow in their prevalence and impact as clinically relevant delivery platforms.
Collapse
Affiliation(s)
- Audrey Olshefsky
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Christian Richardson
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Neil P. King
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
21
|
Levasseur MD, Hofmann R, Edwardson TGW, Hehn S, Thanaburakorn M, Bode JW, Hilvert D. Post-Assembly Modification of Protein Cages by Ubc9-Mediated Lysine Acylation. Chembiochem 2022; 23:e202200332. [PMID: 35951442 PMCID: PMC9826087 DOI: 10.1002/cbic.202200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/09/2022] [Indexed: 01/11/2023]
Abstract
Although viruses have been successfully repurposed as vaccines, antibiotics, and anticancer therapeutics, they also raise concerns regarding genome integration and immunogenicity. Virus-like particles and non-viral protein cages represent a potentially safer alternative but often lack desired functionality. Here, we investigated the utility of a new enzymatic bioconjugation method, called lysine acylation using conjugating enzymes (LACE), to chemoenzymatically modify protein cages. We equipped two structurally distinct protein capsules with a LACE-reactive peptide tag and demonstrated their modification with diverse ligands. This modular approach combines the advantages of chemical conjugation and genetic fusion and allows for site-specific modification with recombinant proteins as well as synthetic peptides with facile control of the extent of labeling. This strategy has the potential to fine-tune protein containers of different shape and size by providing them with new properties that go beyond their biologically native functions.
Collapse
Affiliation(s)
- Mikail D. Levasseur
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | - Raphael Hofmann
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | - Thomas G. W. Edwardson
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | - Svenja Hehn
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | | | - Jeffrey W. Bode
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | - Donald Hilvert
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| |
Collapse
|
22
|
Jacobs M, Bansal P, Shukla D, Schroeder CM. Understanding Supramolecular Assembly of Supercharged Proteins. ACS CENTRAL SCIENCE 2022; 8:1350-1361. [PMID: 36188338 PMCID: PMC9523778 DOI: 10.1021/acscentsci.2c00730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 06/16/2023]
Abstract
Ordered supramolecular assemblies have recently been created using electrostatic interactions between oppositely charged proteins. Despite recent progress, the fundamental mechanisms governing the assembly of oppositely supercharged proteins are not fully understood. Here, we use a combination of experiments and computational modeling to systematically study the supramolecular assembly process for a series of oppositely supercharged green fluorescent protein variants. We show that net charge is a sufficient molecular descriptor to predict the interaction fate of oppositely charged proteins under a given set of solution conditions (e.g., ionic strength), but the assembled supramolecular structures critically depend on surface charge distributions. Interestingly, our results show that a large excess of charge is necessary to nucleate assembly and that charged residues not directly involved in interprotein interactions contribute to a substantial fraction (∼30%) of the interaction energy between oppositely charged proteins via long-range electrostatic interactions. Dynamic subunit exchange experiments further show that relatively small, 16-subunit assemblies of oppositely charged proteins have kinetic lifetimes on the order of ∼10-40 min, which is governed by protein composition and solution conditions. Broadly, our results inform how protein supercharging can be used to create different ordered supramolecular assemblies from a single parent protein building block.
Collapse
Affiliation(s)
- Michael
I. Jacobs
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Prateek Bansal
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles M. Schroeder
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
P Patterson D, Hjorth C, Hernandez Irias A, Hewagama N, Bird J. Delayed In Vivo Encapsulation of Enzymes Alters the Catalytic Activity of Virus-Like Particle Nanoreactors. ACS Synth Biol 2022; 11:2956-2968. [PMID: 36073831 DOI: 10.1021/acssynbio.1c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Encapsulation of enzymes inside protein cage structures, mimicking protein-based organelle structures found in nature, has great potential for the development of new catalytic materials with enhanced properties. In vitro and in vivo methodologies have been developed for the encapsulation of enzymes within protein cage structures of several types, particularly virus-like particles (VLPs), with the ability to retain the activity of the encapsulated enzymes. Here, we examine the in vivo encapsulation of enzymes within the bacteriophage P22 derived VLP and show that some enzymes may require a delay in encapsulation to allow proper folding and maturation before they can be encapsulated inside P22 as fully active enzymes. Using a sequential expression strategy, where enzyme cargoes are first expressed, allowed to fold, and later encapsulated by the expression of the P22 coat protein, altered enzymatic activities are obtained in comparison to enzymes encapsulated in P22 VLPs using a simultaneous coexpression strategy. The strategy and results discussed here highlight important considerations for researchers investigating the encapsulation of enzymes inside confined reaction environments via in vivo routes and provide a potential solution for those that have been unable to produce active enzymes upon encapsulation.
Collapse
Affiliation(s)
- Dustin P Patterson
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| | - Christy Hjorth
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| | - Andrea Hernandez Irias
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| | - Nathasha Hewagama
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jessica Bird
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| |
Collapse
|
25
|
Bradley JM, Gray E, Richardson J, Moore GR, Le Brun NE. Protein encapsulation within the internal cavity of a bacterioferritin. NANOSCALE 2022; 14:12322-12331. [PMID: 35969005 PMCID: PMC9439638 DOI: 10.1039/d2nr01780f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The thermal and chemical stability of 24mer ferritins has led to attempts to exploit their naturally occurring nanoscale (8 nm) internal cavities for biotechnological applications. An area of increasing interest is the encapsulation of molecules either for medical or biocatalysis applications. Encapsulation requires ferritin dissociation, typically induced using high temperature or acidic conditions (pH ≥ 2), which generally precludes the inclusion of fragile cargo such as proteins or peptide fragments. Here we demonstrate that minimizing salt concentration combined with adjusting the pH to ≤8.5 (i.e. low proton/metal ion concentration) reversibly shifts the naturally occurring equilibrium between dimeric and 24meric assemblies of Escherichia coli bacterioferritin (Bfr) in favour of the disassembled form. Interconversion between the different oligomeric forms of Bfr is sufficiently slow under these conditions to allow the use of size exclusion chromatography to obtain wild type protein in the purely dimeric and 24meric forms. This control over association state was exploited to bind heme at natural sites that are not accessible in the assembled protein. The potential for biotechnological applications was demonstrated by the encapsulation of a small, acidic [3Fe-4S] cluster-containing ferredoxin within the Bfr internal cavity. The capture of ∼4-6 negatively charged ferredoxin molecules per cage indicates that charge complementarity with the inner protein surface is not an essential determinant of successful encapsulation.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Elizabeth Gray
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Jake Richardson
- Bioimaging Facility, John Innes Centre, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
26
|
Patterson D, Draper D, Anazia K, Hjorth C, Bird J, Fancher S, Azghani A. Encapsulation of Pseudomonas aeruginosa Elastase Inside the P22 Virus‐Like Particle for Controlling Enzyme‐Substrate Interactions. Biotechnol J 2022; 17:e2200015. [DOI: 10.1002/biot.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dustin Patterson
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Derek Draper
- Department of Biology The University of Texas at Tyler Tyler Texas USA
| | - Kara Anazia
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Christy Hjorth
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Jessica Bird
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Shandis Fancher
- Department of Biology The University of Texas at Tyler Tyler Texas USA
| | - Ali Azghani
- Department of Biology The University of Texas at Tyler Tyler Texas USA
| |
Collapse
|
27
|
Caparco AA, Dautel DR, Champion JA. Protein Mediated Enzyme Immobilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106425. [PMID: 35182030 DOI: 10.1002/smll.202106425] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Enzyme immobilization is an essential technology for commercializing biocatalysis. It imparts stability, recoverability, and other valuable features that improve the effectiveness of biocatalysts. While many avenues to join an enzyme to solid phases exist, protein-mediated immobilization is rapidly developing and has many advantages. Protein-mediated immobilization allows for the binding interaction to be genetically coded, can be used to create artificial multienzyme cascades, and enables modular designs that expand the variety of enzymes immobilized. By designing around binding interactions between protein domains, they can be integrated into functional materials for protein immobilization. These materials are framed within the context of biocatalytic performance, immobilization efficiency, and stability of the materials. In this review, supports composed entirely of protein are discussed first, with systems such as cellulosomes and protein cages being discussed alongside newer technologies like spore-based biocatalysts and forizymes. Protein-composite materials such as polymersomes and protein-inorganic supraparticles are then discussed to demonstrate how protein-mediated strategies are applied to many classes of solid materials. Critical analysis and future directions of protein-based immobilization are then discussed, with a particular focus on both computational and design strategies to advance this area of research and make it more broadly applicable to many classes of enzymes.
Collapse
Affiliation(s)
- Adam A Caparco
- Department of Nanoengineering, University of California, San Diego, MC 0448, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA, 30332, USA
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA, 30332, USA
| |
Collapse
|
28
|
Xie VC, Styles MJ, Dickinson BC. Methods for the directed evolution of biomolecular interactions. Trends Biochem Sci 2022; 47:403-416. [PMID: 35427479 PMCID: PMC9022280 DOI: 10.1016/j.tibs.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
Noncovalent interactions between biomolecules such as proteins and nucleic acids coordinate all cellular processes through changes in proximity. Tools that perturb these interactions are and will continue to be highly valuable for basic and translational scientific endeavors. By taking cues from natural systems, such as the adaptive immune system, we can design directed evolution platforms that can generate proteins that bind to biomolecules of interest. In recent years, the platforms used to direct the evolution of biomolecular binders have greatly expanded the range of types of interactions one can evolve. Herein, we review recent advances in methods to evolve protein-protein, protein-RNA, and protein-DNA interactions.
Collapse
Affiliation(s)
| | - Matthew J Styles
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
29
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
30
|
Liu Y, Zang J, Leng X, Zhao G. A short helix regulates conversion of dimeric and 24-meric ferritin architectures. Int J Biol Macromol 2022; 203:535-542. [PMID: 35120932 DOI: 10.1016/j.ijbiomac.2022.01.174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/28/2022]
Abstract
The inter-subunit interaction at the protein interfaces plays a key role in protein self-assembly, through which enabling protein self-assembly controllable is of great importance for preparing the novel nanoscale protein materials with unexplored properties. Different from normal 24-meric ferritin, archaeal ferritin, Thermotoga maritima ferritin (TmFtn) naturally occurs as a dimer, which can assemble into a 24-mer nanocage induced by salts. However, the regulation mechanism of protein self-assembly underlying this phenomenon remains unclear. Here, a combination of the computational energy simulation and key interface reconstruction revealed that a short helix involved interactions at the C4 interface are mainly responsible for the existence of such dimer. Agreeing with this idea, deletion of such short helix of each subunit triggers it to be a stable dimer, which losses the ability to reassemble into 24-meric ferritin in the presence of salts in solution. Further support for this idea comes from the observation that grafting a small helix from human H ferritin onto archaeal subunit resulted in a stable 24-mer protein nanocage even in the absence of salts. Thus, these findings demonstrate that adjusting the interactions at the protein interfaces appears to be a facile, effective approach to control subunit assembly into different protein architectures.
Collapse
Affiliation(s)
- Yu Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Xiaojing Leng
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
31
|
Gao R, Tan H, Li S, Ma S, Tang Y, Zhang K, Zhang Z, Fan Q, Yang J, Zhang XE, Li F. A prototype protein nanocage minimized from carboxysomes with gated oxygen permeability. Proc Natl Acad Sci U S A 2022; 119:e2104964119. [PMID: 35078933 PMCID: PMC8812686 DOI: 10.1073/pnas.2104964119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Protein nanocages (PNCs) in cells and viruses have inspired the development of self-assembling protein nanomaterials for various purposes. Despite the successful creation of artificial PNCs, the de novo design of PNCs with defined permeability remains challenging. Here, we report a prototype oxygen-impermeable PNC (OIPNC) assembled from the vertex protein of the β-carboxysome shell, CcmL, with quantum dots as the template via interfacial engineering. The structure of the cage was solved at the atomic scale by combined solid-state NMR spectroscopy and cryoelectron microscopy, showing icosahedral assembly of CcmL pentamers with highly conserved interpentamer interfaces. Moreover, a gating mechanism was established by reversibly blocking the pores of the cage with molecular patches. Thus, the oxygen permeability, which was probed by an oxygen sensor inside the cage, can be completely controlled. The CcmL OIPNC represents a PNC platform for oxygen-sensitive or oxygen-responsive storage, catalysis, delivery, sensing, etc.
Collapse
Affiliation(s)
- Ruimin Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huan Tan
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Shanshan Li
- Key Laboratory for Cellular Dynamics, Ministry of Education, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Shaojie Ma
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Yufu Tang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Kaiming Zhang
- Key Laboratory for Cellular Dynamics, Ministry of Education, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Jun Yang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China;
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Xian-En Zhang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China;
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China;
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
32
|
Uchida M, Manzo E, Echeveria D, Jiménez S, Lovell L. Harnessing physicochemical properties of virus capsids for designing enzyme confined nanocompartments. Curr Opin Virol 2022; 52:250-257. [PMID: 34974380 PMCID: PMC8939255 DOI: 10.1016/j.coviro.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Viruses have drawn significant scientific interest from a wide variety of disciplines beyond virology because of their elegant architectures and delicately balanced activities. A virus-like particle (VLP), a noninfectious protein cage derived from viruses or other cage-forming proteins, has been exploited as a nano-scale platform for bioinspired engineering and synthetic manipulation with a range of applications. Encapsulation of functional proteins, especially enzymes, is an emerging use of VLPs that is promising not only for developing efficient and robust catalytic materials, but also for providing fundamental insights into the effects of enzyme compartmentalization commonly observed in cells. This review highlights recent advances in employing VLPs as a container for confining enzymes. To accomplish larger and more controlled enzyme loading, various different enzyme encapsulation strategies have been developed; many of these strategies are inspired from assembly and genome loading mechanisms of viral capsids. Characterization of VLPs' physicochemical properties, such as porosity, could lead to rational manipulation and a better understanding of the catalytic behavior of the materials.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA.
| | - Elia Manzo
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Dustin Echeveria
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Sophie Jiménez
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Logan Lovell
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| |
Collapse
|
33
|
Wei J, Xu L, Wu WH, Sun F, Zhang WB. Genetically engineered materials: Proteins and beyond. Sci China Chem 2022; 65:486-496. [PMID: 35154293 PMCID: PMC8815391 DOI: 10.1007/s11426-021-1183-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023]
Abstract
Information-rich molecules provide opportunities for evolution. Genetically engineered materials are superior in that their properties are coded within genetic sequences and could be fine-tuned. In this review, we elaborate the concept of genetically engineered materials (GEMs) using examples ranging from engineered protein materials to engineered living materials. Protein-based materials are the materials of choice by nature. Recent progress in protein engineering has led to opportunities to tune their sequences for optimal material performance. Proteins also play a central role in living materials where they act in concert with other biological components as well as nonbiological cofactors, giving rise to living features. While the existing GEMs are often limited to those constructed by building blocks of biological origin, being genetically engineerable does not preclude nonbiologic or synthetic materials, the latter of which have yet to be fully explored.
![]()
Collapse
Affiliation(s)
- Jingjing Wei
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000 China
| | - Lianjie Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
34
|
Steiner M, Reiher M. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Top Catal 2022; 65:6-39. [PMID: 35185305 PMCID: PMC8816766 DOI: 10.1007/s11244-021-01543-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Autonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make computational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: (i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as well as with respect to the type and number of potentially important elementary reaction steps (including decomposition reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantification warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. (iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surprising in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11244-021-01543-9.
Collapse
Affiliation(s)
- Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
35
|
Kim NH, Choi H, Shahzad ZM, Ki H, Lee J, Chae H, Kim YH. Supramolecular assembly of protein building blocks: from folding to function. NANO CONVERGENCE 2022; 9:4. [PMID: 35024976 PMCID: PMC8755899 DOI: 10.1186/s40580-021-00294-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Several phenomena occurring throughout the life of living things start and end with proteins. Various proteins form one complex structure to control detailed reactions. In contrast, one protein forms various structures and implements other biological phenomena depending on the situation. The basic principle that forms these hierarchical structures is protein self-assembly. A single building block is sufficient to create homogeneous structures with complex shapes, such as rings, filaments, or containers. These assemblies are widely used in biology as they enable multivalent binding, ultra-sensitive regulation, and compartmentalization. Moreover, with advances in the computational design of protein folding and protein-protein interfaces, considerable progress has recently been made in the de novo design of protein assemblies. Our review presents a description of the components of supramolecular protein assembly and their application in understanding biological phenomena to therapeutics.
Collapse
Affiliation(s)
- Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hojae Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Zafar Muhammad Shahzad
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heesoo Ki
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaekyoung Lee
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heeyeop Chae
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
| |
Collapse
|
36
|
Zeng R, Lv C, Wang C, Zhao G. Bionanomaterials based on protein self-assembly: Design and applications in biotechnology. Biotechnol Adv 2021; 52:107835. [PMID: 34520791 DOI: 10.1016/j.biotechadv.2021.107835] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023]
Abstract
Elegant protein assembly to generate new biomaterials undergoes extremely rapid development for wide extension of biotechnology applications, which can be a powerful tool not only for creating nanomaterials but also for advancing understanding of the structure of life. Unique biological properties of proteins bestow these artificial biomaterials diverse functions that can permit them to be applied in encapsulation, bioimaging, biocatalysis, biosensors, photosynthetic apparatus, electron transport, magnetogenetic applications, vaccine development and antibodies design. This review gives a perspective view of the latest advances in the construction of protein-based nanomaterials. We initially start with distinguishable, specific interactions to construct sundry nanomaterials through protein self-assembly and concisely expound the assembly mechanism from the design strategy. And then, the design and construction of 0D, 1D, 2D, 3D protein assembled nanomaterials are especially highlighted. Furthermore, the potential applications have been discussed in detail. Overall, this review will illustrate how to fabricate highly sophisticated nanomaterials oriented toward applications in biotechnology based on the rules of supramolecular chemistry.
Collapse
Affiliation(s)
- Ruiqi Zeng
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China.
| |
Collapse
|
37
|
Naskalska A, Borzęcka-Solarz K, Różycki J, Stupka I, Bochenek M, Pyza E, Heddle JG. Artificial Protein Cage Delivers Active Protein Cargos to the Cell Interior. Biomacromolecules 2021; 22:4146-4154. [PMID: 34499838 PMCID: PMC8512669 DOI: 10.1021/acs.biomac.1c00630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Artificial protein
cages have potential as programmable, protective
carriers of fragile macromolecules to cells. While natural cages and
VLPs have been extensively exploited, the use of artificial cages
to deliver active proteins to cells has not yet been shown. TRAP-cage
is an artificial protein cage with an unusual geometry and extremely
high stability, which can be triggered to break apart in the presence
of cellular reducing agents. Here, we demonstrate that TRAP-cage can
be filled with a protein cargo and decorated with a cell-penetrating
peptide, allowing it to enter cells. Tracking of both the TRAP-cage
and the cargo shows that the protein of interest can be successfully
delivered intracellularly in the active form. These results provide
a valuable proof of concept for the further development of TRAP-cage
as a delivery platform.
Collapse
Affiliation(s)
- Antonina Naskalska
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | | | - Jan Różycki
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Izabela Stupka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Michał Bochenek
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Elżbieta Pyza
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
38
|
Bialas F, Reichinger D, Becker CF. Biomimetic and biopolymer-based enzyme encapsulation. Enzyme Microb Technol 2021; 150:109864. [DOI: 10.1016/j.enzmictec.2021.109864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
|
39
|
Liu Q, Shaukat A, Kyllönen D, Kostiainen MA. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021; 13:1551. [PMID: 34683843 PMCID: PMC8537137 DOI: 10.3390/pharmaceutics13101551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Daniella Kyllönen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
- HYBER Center, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
40
|
Chauhan K, Zárate‐Romero A, Sengar P, Medrano C, Vazquez‐Duhalt R. Catalytic Kinetics Considerations and Molecular Tools for the Design of Multienzymatic Cascade Nanoreactors. ChemCatChem 2021. [DOI: 10.1002/cctc.202100604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kanchan Chauhan
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Andrés Zárate‐Romero
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
- Cátedra Consejo Nacional de Ciencia y Tecnología CNyN-UNAM Ensenada Baja California 22860 Mexico
| | - Prakhar Sengar
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Carlos Medrano
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Rafael Vazquez‐Duhalt
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| |
Collapse
|
41
|
Zhang X, Liu Y, Zheng B, Zang J, Lv C, Zhang T, Wang H, Zhao G. Protein interface redesign facilitates the transformation of nanocage building blocks to 1D and 2D nanomaterials. Nat Commun 2021; 12:4849. [PMID: 34381032 PMCID: PMC8357837 DOI: 10.1038/s41467-021-25199-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/28/2021] [Indexed: 01/09/2023] Open
Abstract
Although various artificial protein nanoarchitectures have been constructed, controlling the transformation between different protein assemblies has largely been unexplored. Here, we describe an approach to realize the self-assembly transformation of dimeric building blocks by adjusting their geometric arrangement. Thermotoga maritima ferritin (TmFtn) naturally occurs as a dimer; twelve of these dimers interact with each other in a head-to-side manner to generate 24-meric hollow protein nanocage in the presence of Ca2+ or PEG. By tuning two contiguous dimeric proteins to interact in a fully or partially side-by-side fashion through protein interface redesign, we can render the self-assembly transformation of such dimeric building blocks from the protein nanocage to filament, nanorod and nanoribbon in response to multiple external stimuli. We show similar dimeric protein building blocks can generate three kinds of protein materials in a manner that highly resembles natural pentamer building blocks from viral capsids that form different protein assemblies.
Collapse
Affiliation(s)
- Xiaorong Zhang
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Yu Liu
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Bowen Zheng
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Jiachen Zang
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Chenyan Lv
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Tuo Zhang
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Hongfei Wang
- grid.163032.50000 0004 1760 2008Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Energy Conversion and Storage Materials of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Guanghua Zhao
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| |
Collapse
|
42
|
Reddy MM, Bathla P, Sandanaraj BS. A Universal Chemical Method for Rational Design of Protein-Based Nanoreactors*. Chembiochem 2021; 22:3042-3048. [PMID: 34339092 DOI: 10.1002/cbic.202100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/30/2021] [Indexed: 12/28/2022]
Abstract
Self-assembly of a monomeric protease to form a multi-subunit protein complex "proteasome" enables targeted protein degradation in living cells. Naturally occurring proteasomes serve as an inspiration and blueprint for the design of artificial protein-based nanoreactors. Here we disclose a general chemical strategy for the design of proteasome-like nanoreactors. Micelle-assisted protein labeling (MAPLab) technology along with the N-terminal bioconjugation strategy is utilized for the synthesis of a well-defined monodisperse self-assembling semi-synthetic protease. The designed protein is programmed to self-assemble into a proteasome-like nanostructure which preserves the functional properties of native protease.
Collapse
Affiliation(s)
- Mullapudi Mohan Reddy
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, India
| | - Punita Bathla
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Britto S Sandanaraj
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, India.,Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
43
|
Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Chembiochem 2021; 22:2051-2078. [PMID: 33450141 PMCID: PMC8252369 DOI: 10.1002/cbic.202000850] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
Collapse
Affiliation(s)
- Roy A. J. F. Oerlemans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Suzanne B. P. E. Timmermans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| |
Collapse
|
44
|
Burgos-Morales O, Gueye M, Lacombe L, Nowak C, Schmachtenberg R, Hörner M, Jerez-Longres C, Mohsenin H, Wagner H, Weber W. Synthetic biology as driver for the biologization of materials sciences. Mater Today Bio 2021; 11:100115. [PMID: 34195591 PMCID: PMC8237365 DOI: 10.1016/j.mtbio.2021.100115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023] Open
Abstract
Materials in nature have fascinating properties that serve as a continuous source of inspiration for materials scientists. Accordingly, bio-mimetic and bio-inspired approaches have yielded remarkable structural and functional materials for a plethora of applications. Despite these advances, many properties of natural materials remain challenging or yet impossible to incorporate into synthetic materials. Natural materials are produced by living cells, which sense and process environmental cues and conditions by means of signaling and genetic programs, thereby controlling the biosynthesis, remodeling, functionalization, or degradation of the natural material. In this context, synthetic biology offers unique opportunities in materials sciences by providing direct access to the rational engineering of how a cell senses and processes environmental information and translates them into the properties and functions of materials. Here, we identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials. This includes materials that are otherwise produced from petrochemical resources, but also materials where the bio-produced substances contribute unique properties and functions not existing in traditional materials. Second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material. We finally provide a perspective of future scientific directions of this promising area of research and discuss science policy that would be required to support research and development in this field.
Collapse
Affiliation(s)
- O. Burgos-Morales
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - M. Gueye
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
| | - L. Lacombe
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
| | - C. Nowak
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - R. Schmachtenberg
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - M. Hörner
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - C. Jerez-Longres
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Spemann Graduate School of Biology and Medicine - SGBM, University of Freiburg, Freiburg, 79104, Germany
| | - H. Mohsenin
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - H.J. Wagner
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Department of Biosystems Science and Engineering - D-BSSE, ETH Zurich, Basel, 4058, Switzerland
| | - W. Weber
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Spemann Graduate School of Biology and Medicine - SGBM, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
45
|
Levasseur MD, Mantri S, Hayashi T, Reichenbach M, Hehn S, Waeckerle-Men Y, Johansen P, Hilvert D. Cell-Specific Delivery Using an Engineered Protein Nanocage. ACS Chem Biol 2021; 16:838-843. [PMID: 33881303 DOI: 10.1021/acschembio.1c00007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticle-based delivery systems have shown great promise for theranostics and bioimaging on the laboratory scale due to favorable pharmacokinetics and biodistribution. In this study, we examine the utility of a cage-forming variant of the protein lumazine synthase, which was previously designed and evolved to encapsulate biomacromolecular cargo. Linking antibody-binding domains to the exterior of the cage enabled binding of targeting immunoglobulins and cell-specific uptake of encapsulated cargo. Protein nanocages displaying antibody-binding domains appear to be less immunogenic than their unmodified counterparts, but they also recruit serum antibodies that can mask the efficacy of the targeting antibody. Our study highlights the strengths and limitations of a common targeting strategy for practical nanoparticle-based delivery applications.
Collapse
Affiliation(s)
| | - Shiksha Mantri
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Takahiro Hayashi
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Maria Reichenbach
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Svenja Hehn
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Pål Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
46
|
Adhikari A, Mondal S, Das M, Biswas P, Pal U, Darbar S, Bhattacharya SS, Pal D, Saha‐Dasgupta T, Das AK, Mallick AK, Pal SK. Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model. Adv Healthc Mater 2021; 10:e2001736. [PMID: 33326181 DOI: 10.1002/adhm.202001736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Indexed: 12/11/2022]
Abstract
The potentiality of nano-enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese-based biocompatible nanoscale material (C-Mn3 O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2 O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C-Mn3 O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non-toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Susmita Mondal
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Monojit Das
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
- Department of Zoology Vidyasagar University Rangamati 721102 India
| | - Pritam Biswas
- Department of Microbiology St. Xavier's College 30, Mother Teresa Sarani Kolkata 700016 India
| | - Uttam Pal
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Soumendra Darbar
- Research & Development Division Dey's Medical Stores (Mfg.) Ltd 62, Bondel Road, Ballygunge Kolkata 700019 India
| | | | - Debasish Pal
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
| | - Tanusri Saha‐Dasgupta
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
- Department of Condensed Matter Physics and Material Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Anjan Kumar Das
- Department of Pathology Coochbehar Govt. Medical College and Hospital Silver Jubilee Road Cooch Behar 736101 India
| | - Asim Kumar Mallick
- Department of Pediatric Medicine Nil Ratan Sircar Medical College and Hospital 138, Acharya Jagadish Chandra Bose Road, Sealdah Kolkata 700014 India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| |
Collapse
|
47
|
Kang YF, Zhang X, Yu XH, Zheng Q, Liu Z, Li JP, Sun C, Kong XW, Zhu QY, Chen HW, Huang Y, Xu M, Zhong Q, Zeng YX, Zeng MS. Immunization with a Self-Assembled Nanoparticle Vaccine Elicits Potent Neutralizing Antibody Responses against EBV Infection. NANO LETTERS 2021; 21:2476-2486. [PMID: 33683126 DOI: 10.1021/acs.nanolett.0c04687] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epstein-Barr virus (EBV) infection is a global health concern infecting over 90% of the population. However, there is no currently available vaccine. EBV primarily infects B cells, where the major glycoprotein 350 (gp350) is the main target of neutralizing antibodies. Given the advancement of nanoparticle vaccines, we describe rationally designed vaccine modalities presenting 60 copies of gp350 on self-assembled nanoparticles in a repetitive array. In a mouse model, gp350s on lumazine synthase (LS) and I3-01 adjuvanted with MF59 or aluminum hydroxide (Alhydrogel) elicited over 65- to 133-fold higher neutralizing antibody titers than the corresponding gp350 monomer to EBV. Furthermore, immunization with gp350D123-LS and gp350D123-I3-01 vaccine induced a Th2-biased response. For the nonhuman primate model, gp350D123-LS in MF59 elicited higher titers of total IgG and neutralizing antibodies than the monomeric gp350D123. Overall, these results support gp350D123-based nanoparticle vaccine design as a promising vaccine candidate for potent protection against EBV infection.
Collapse
Affiliation(s)
- Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xiao-Hui Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Zhe Liu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, P. R. China
| | - Jiang-Ping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xiang-Wei Kong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Hai-Wen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yang Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, P. R. China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| |
Collapse
|
48
|
Abstract
Significant advances in enzyme discovery, protein and reaction engineering have transformed biocatalysis into a viable technology for the industrial scale manufacturing of chemicals. Multi-enzyme catalysis has emerged as a new frontier for the synthesis of complex chemicals. However, the in vitro operation of multiple enzymes simultaneously in one vessel poses challenges that require new strategies for increasing the operational performance of enzymatic cascade reactions. Chief among those strategies is enzyme co-immobilization. This review will explore how advances in synthetic biology and protein engineering have led to bioinspired co-localization strategies for the scaffolding and compartmentalization of enzymes. Emphasis will be placed on genetically encoded co-localization mechanisms as platforms for future autonomously self-organizing biocatalytic systems. Such genetically programmable systems could be produced by cell factories or emerging cell-free systems. Challenges and opportunities towards self-assembling, multifunctional biocatalytic materials will be discussed.
Collapse
|
49
|
Lv C, Zhang X, Liu Y, Zhang T, Chen H, Zang J, Zheng B, Zhao G. Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly. Chem Soc Rev 2021; 50:3957-3989. [PMID: 33587075 DOI: 10.1039/d0cs01349h] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Compartmentalization is a hallmark of living systems. Through compartmentalization, ubiquitous protein nanocages such as viral capsids, ferritin, small heat shock proteins, and DNA-binding proteins from starved cells fulfill a variety of functions, while their shell-like structures hold great promise for various applications in the field of nanomedicine and nanotechnology. However, the number and structure of natural protein nanocages are limited, and these natural protein nanocages may not be suited for a given application, which might impede their further application as nanovehicles, biotemplates or building blocks. To overcome these shortcomings, different strategies have been developed by scientists to construct artificial protein nanocages, and 1D, 2D and 3D protein arrays with protein nanocages as building blocks through genetic and chemical modification to rival the size and functionality of natural protein nanocages. This review outlines the recent advances in the field of the design and construction of artificial protein nanocages and their assemblies with higher order, summarizes the strategies for creating the assembly of protein nanocages from zero-dimension to three dimensions, and introduces their corresponding applications in the preparation of nanomaterials, electrochemistry, and drug delivery. The review will highlight the roles of both the inter-subunit/intermolecular interactions at the key interface and the protein symmetry in constructing and controlling protein nanocage assemblies with different dimensions.
Collapse
Affiliation(s)
- Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Borlan R, Focsan M, Maniu D, Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery. Int J Nanomedicine 2021; 16:2147-2171. [PMID: 33746512 PMCID: PMC7966856 DOI: 10.2147/ijn.s295234] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescence imaging technique for visualization, resection and treatment of cancerous tissue, attained plenty of interest once the promise of whole body and deep tissue near-infrared (NIR) imaging emerged. Why is NIR so desired? Contrast agents with optical properties in the NIR spectral range offer an upgrade for the diagnosis and treatment of cancer, by dint of the deep tissue penetration of light in the NIR region of the electromagnetic spectrum, also known as the optical window in biological tissue. Thus, the development of a new generation of NIR emitting and absorbing contrast agents able to overcome the shortcomings of the basic free dye administration is absolutely essential. Several examples of nanoparticles (NPs) have been successfully implemented as carriers for NIR dye molecules to the tumour site owing to their prolonged blood circulation time and enhanced accumulation within the tumour, as well as their increased fluorescence signal relative to free fluorophore emission and active targeting of cancerous cells. Due to their versatile structure, good biocompatibility and capability to efficiently load dyes and bioconjugate with diverse cancer-targeting ligands, the research area of developing protein-based NPs encapsulated or conjugated with NIR dyes is highly promising but still in its infancy. The current review aims to provide an up-to-date overview on the biocompatibility, specific targeting and versatility offered by protein-based NPs loaded with different classes of NIR dyes as next-generation fluorescent agents. Moreover, this study brings to light the newest and most relevant advances involving the state-of-the-art NIR fluorescent agents for the real-time interventional NIR fluorescence imaging of cancer in clinical trials.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| |
Collapse
|