1
|
Dudziak A, Pleuger R, Schmidt J, Hamm F, Tendulkar S, Jänen K, Vetter IR, Singh S, Fischböck J, Herzog F, Westermann S. The Spc105/Kre28 complex promotes mitotic error correction by outer kinetochore recruitment of Ipl1/Sli15. EMBO J 2025:10.1038/s44318-025-00437-w. [PMID: 40281358 DOI: 10.1038/s44318-025-00437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Kinetochores link chromosomes to dynamic microtubules of the mitotic spindle. To ensure equal chromosome segregation, sister chromatids must achieve biorientation. The conserved kinase Aurora B phosphorylates outer kinetochore proteins on attachments lacking tension, allowing the re-establishment of new connections until biorientation is achieved. Aurora B localizes to the centromere as part of the chromosomal passenger complex (CPC), but the underlying recruitment pathways can be eliminated without disrupting biorientation. It therefore remains unclear how the kinase operates during error correction. Here, we identify the conserved Spc105/Kre28 complex as an outer kinetochore receptor of the Aurora kinase Ipl1 and its activator Sli15 in Saccharomyces cerevisiae. We show that mutations in the helix bundle domain of Spc105/Kre28 impair mitotic error correction, resembling the effects of ipl1 or sli15 mutants. The defects can be suppressed by the artificial recruitment of Ipl1. In biochemical experiments, Ipl1/Sli15 directly associates with Spc105/Kre28, and a conserved segment in the Sli15 central domain is crucially involved in the binding mechanism. These results have important implications for the mechanism of tension-dependent error correction during chromosome biorientation.
Collapse
Affiliation(s)
- Alexander Dudziak
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117, Essen, Germany
| | - Richard Pleuger
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117, Essen, Germany
| | - Jasmin Schmidt
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117, Essen, Germany
| | - Frederik Hamm
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117, Essen, Germany
| | - Sharvari Tendulkar
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117, Essen, Germany
| | - Karolin Jänen
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117, Essen, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Sylvia Singh
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Josef Fischböck
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Franz Herzog
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377, Munich, Germany
- Institute Krems Bioanalytics, IMC University of Applied Sciences, Krems, Piaristengasse 1, A-3500, Krems, Austria
| | - Stefan Westermann
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117, Essen, Germany.
| |
Collapse
|
2
|
Mohammadi A, Deroo S, Leitner A, Stengel F, Krammer EM, Aebersold R, Prévost M, Raussens V. Characterization of the N- and C-terminal domain interface of the three main apoE isoforms: A combined quantitative cross-linking mass spectrometry and molecular modeling study. Biochim Biophys Acta Gen Subj 2025; 1869:130768. [PMID: 39880049 DOI: 10.1016/j.bbagen.2025.130768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Apolipoprotein E (apoE) polymorphism is associated with different pathologies such as atherosclerosis and Alzheimer's disease. Knowledge of the three-dimensional structure of apoE and isoform-specific structural differences are prerequisites for the rational design of small molecule structure modulators that correct the detrimental effects of pathological isoforms. In this study, cross-linking mass spectrometry (XL-MS) targeting Asp, Glu and Lys residues was used to explore the intramolecular interactions in the E2, E3 and E4 isoforms of apoE. The resulting quantitative XL-MS data combined with molecular modeling revealed isoform-specific characteristics of the N- and C-terminal domain interfaces as well as the isoform-dependent dynamic equilibrium of these interfaces. Finally, the data identified a network of salt bridges formed by R61-R112-E109 residues in the N-terminal helical bundle as a modulator of the interaction with the C-terminal domain making this network a potential drug target.
Collapse
Affiliation(s)
- Azadeh Mohammadi
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Currently at Puratos NV, Industrialaan 25, 1702 Groot-Bijgaarden, Belgium.
| | - Stéphanie Deroo
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Florian Stengel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; University of Konstanz, Department of Biology, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Eva-Maria Krammer
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium; Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University Lille, CNRS, UMR, 8576, Lille, France
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Martine Prévost
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Raussens
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
3
|
Iyer SS, Chen F, Ogunmolu FE, Moradi S, Volkov VA, van Grinsven EJ, van Hoorn C, Wu J, Andrea N, Hua S, Jiang K, Vakonakis I, Potočnjak M, Herzog F, Gigant B, Gudimchuk N, Stecker KE, Dogterom M, Steinmetz MO, Akhmanova A. Centriolar cap proteins CP110 and CPAP control slow elongation of microtubule plus ends. J Cell Biol 2025; 224:e202406061. [PMID: 39847124 PMCID: PMC11756378 DOI: 10.1083/jcb.202406061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Centrioles are microtubule-based organelles required for the formation of centrosomes and cilia. Centriolar microtubules, unlike their cytosolic counterparts, are stable and grow very slowly, but the underlying mechanisms are poorly understood. Here, we reconstituted in vitro the interplay between the proteins that cap distal centriole ends and control their elongation: CP110, CEP97, and CPAP/SAS-4. We found that whereas CEP97 does not bind to microtubules directly, CP110 autonomously binds microtubule plus ends, blocks their growth, and inhibits depolymerization. Cryo-electron tomography revealed that CP110 associates with the luminal side of microtubule plus ends and suppresses protofilament flaring. CP110 directly interacts with CPAP, which acts as a microtubule polymerase that overcomes CP110-induced growth inhibition. Together, the two proteins impose extremely slow processive microtubule growth. Disruption of CP110-CPAP interaction in cells inhibits centriole elongation and increases incidence of centriole defects. Our findings reveal how two centriolar cap proteins with opposing activities regulate microtubule plus-end elongation and explain their antagonistic relationship during centriole formation.
Collapse
Affiliation(s)
- Saishree S. Iyer
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Fangrui Chen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Funso E. Ogunmolu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Shoeib Moradi
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
| | - Vladimir A. Volkov
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Emma J. van Grinsven
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Chris van Hoorn
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jingchao Wu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nemo Andrea
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Shasha Hua
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Kai Jiang
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Mia Potočnjak
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Franz Herzog
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benoît Gigant
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nikita Gudimchuk
- Department of Physics, and Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Lomonosov Moscow State University, Moscow, Russia
| | - Kelly E. Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Michel O. Steinmetz
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- University of Basel, Biozentrum, Basel, Switzerland
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Ströbaek J, Tang D, Gueto-Tettay C, Gomez Toledo A, Olofsson B, Hartman E, Heusel M, Malmström J, Malmström L. Epitope Mapping with Sidewinder: An XL-MS and Structural Modeling Approach. Int J Mol Sci 2025; 26:1488. [PMID: 40003954 PMCID: PMC11855800 DOI: 10.3390/ijms26041488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Antibodies are critical to the host's immune defense against bacterial pathogens. Understanding the mechanisms of antibody-antigen interactions is essential for developing new targeted immunotherapies. Building computational workflows that can identify where an antibody binds its cognate antigen and deconvoluting the interaction interface in a high-throughput manner are critical for advancing this field. Cross-linking mass spectrometry (XL-MS) integrated with structural modeling offers a flexible and high-resolution strategy to map protein-protein interactions from low sample amounts. However, cross-linking and in silico modeling have limitations that require robust analytical workflows to make accurate inferences. In this study, we introduce Sidewinder, a modular high-throughput pipeline combining state-of-the-art computational structural prediction and molecular docking with rapid XL-MS analysis, enabling comprehensive interrogation of antibody-antigen systems. We validated this pipeline on antibodies targeting two Streptococcus pyogenes virulence factors. Using recently published data, we identified a well-defined monoclonal antibody epitope on Streptolysin O by generating and querying a large ensemble of interaction models probabilistically. We also showcased the utility of the Sidewinder pipeline by analyzing a more complex system, involving monoclonal antibodies that target the cell wall-anchored M1 protein. The flexibility and robustness of the Sidewinder pipeline provide a powerful framework for future studies of complex antibody-antigen systems, potentially leading to new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lars Malmström
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, 221 84 Lund, Sweden; (J.S.); (D.T.); (J.M.)
| |
Collapse
|
5
|
Saridakis I, Adoni KR, Leischner T, Brutiu BR, Shaaban S, Ferrari G, Thalassinos K, Maulide N. Rational Modification of a Cross-Linker for Improved Flexible Protein Structure Modeling. Anal Chem 2025; 97:1273-1280. [PMID: 39785238 PMCID: PMC11755394 DOI: 10.1021/acs.analchem.4c05319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Chemical cross-linking/mass spectrometry (XL-MS) has emerged as a complementary tool for mapping interaction sites within protein networks as well as gaining moderate-resolution native structural insight with minimal interference. XL-MS technology mostly relies on chemoselective reactions (cross-linking) between protein residues and a linker. DSSO represents a versatile cross-linker for protein structure investigation and in-cell XL-MS. However, our assessment of its shelf life and batch purity revealed decomposition of DSSO in anhydrous solution via a retro-Michael reaction, which may reduce the active ingredient down to below 90%. To mitigate the occurrence of this degradative mechanism, we report the rational design and synthesis of DSSO-carbamate, which contains an inserted nitrogen atom in the DSSO backbone structure. This modification to DSSO yielded remarkably favorable stability against such decomposition, which translated to higher cross-link and monolink recovery when performing XL-MS on monomeric flexible proteins. Recently, XL-MS has been leveraged against AlphaFold2 and other protein structure prediction algorithms for improved prediction of flexible monomeric multiconformational proteins. To this end, we demonstrate that our novel cross-linker, termed DSSO-carbamate, generated more accurate protein structure predictions when combined with AlphaFold2, on account of its increased recovery of cross-links and monolinks, compared to DSSO. As such, DSSO-carbamate represents a useful addition to the XL-MS community, particularly for protein structure prediction.
Collapse
Affiliation(s)
- Iakovos Saridakis
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
| | - Kish R. Adoni
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building Room 101A, London WC1E 6BT, United Kingdom
| | - Thomas Leischner
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
| | - Bogdan R. Brutiu
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
| | - Saad Shaaban
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
| | - Giammarco Ferrari
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building Room 101A, London WC1E 6BT, United Kingdom
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building Room 101A, London WC1E 6BT, United Kingdom
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
- Research
Platform NeGeMac, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
Greenblatt JF, Alberts BM, Krogan NJ. Discovery and significance of protein-protein interactions in health and disease. Cell 2024; 187:6501-6517. [PMID: 39547210 PMCID: PMC11874950 DOI: 10.1016/j.cell.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
The identification of individual protein-protein interactions (PPIs) began more than 40 years ago, using protein affinity chromatography and antibody co-immunoprecipitation. As new technologies emerged, analysis of PPIs increased to a genome-wide scale with the introduction of intracellular tagging methods, affinity purification (AP) followed by mass spectrometry (MS), and co-fractionation MS (CF-MS). Now, combining the resulting catalogs of interactions with complementary methods, including crosslinking MS (XL-MS) and cryogenic electron microscopy (cryo-EM), helps distinguish direct interactions from indirect ones within the same or between different protein complexes. These powerful approaches and the promise of artificial intelligence applications like AlphaFold herald a future where PPIs and protein complexes, including energy-driven protein machines, will be understood in exquisite detail, unlocking new insights in the contexts of both basic biology and disease.
Collapse
Affiliation(s)
- Jack F Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Bruce M Alberts
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
7
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
8
|
Cheng J, Wang H, Zhang Y, Wang X, Liu G. Advances in crosslinking chemistry and proximity-enabled strategies: deciphering protein complexes and interactions. Org Biomol Chem 2024; 22:7549-7559. [PMID: 39192765 DOI: 10.1039/d4ob01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Mass spectrometry, coupled with innovative crosslinking techniques to decode protein conformations and interactions through uninterrupted signal connections, has undergone remarkable progress in recent years. It is crucial to develop selective crosslinking reagents that minimally disrupt protein structure and dynamics, providing insights into protein network regulation and biological functions. Compared to traditional crosslinkers, new bifunctional chemical crosslinkers exhibit high selectivity and specificity in connecting proximal amino acid residues, resulting in stable molecular crosslinked products. The conjugation with specific amino acid residues like lysine, cysteine, arginine and tyrosine expands the XL-MS toolbox, enabling more precise modeling of target substrates and leading to improved data quality and reliability. Another emerging crosslinking method utilizes unnatural amino acids (UAAs) derived from proximity-enabled reactivity with specific amino acids or sulfur-fluoride exchange (SuFEx) reactions with nucleophilic residues. These UAAs are genetically encoded into proteins for the formation of specific covalent bonds. This technique combines the benefits of genetic encoding for live cell compatibility with chemical crosslinking, providing a valuable method for capturing transient and weak protein-protein interactions (PPIs) for mapping PPI coordinates and improving the pharmacological properties of proteins. With continued advancements in technology and applications, crosslinking mass spectrometry is poised to play an increasingly significant role in guiding our understanding of protein dynamics and function in the future.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| |
Collapse
|
9
|
Yeh MC, Hsu NH, Chu HY, Yang CH, Hsu PH, Chou CC, Shie JT, Lee WM, Ho MC, Lo KY. Dual protection by Bcp1 and Rkm1 ensures incorporation of uL14 into pre-60S ribosomal subunits. J Cell Biol 2024; 223:e202306117. [PMID: 39007857 PMCID: PMC11248248 DOI: 10.1083/jcb.202306117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/13/2024] [Accepted: 04/19/2024] [Indexed: 07/16/2024] Open
Abstract
Eukaryotic ribosomal proteins contain extended regions essential for translation coordination. Dedicated chaperones stabilize the associated ribosomal proteins. We identified Bcp1 as the chaperone of uL14 in Saccharomyces cerevisiae. Rkm1, the lysine methyltransferase of uL14, forms a ternary complex with Bcp1 and uL14 to protect uL14. Rkm1 is transported with uL14 by importins to the nucleus, and Bcp1 disassembles Rkm1 and importin from uL14 simultaneously in a RanGTP-independent manner. Molecular docking, guided by crosslinking mass spectrometry and validated by a low-resolution cryo-EM map, reveals the correlation between Bcp1, Rkm1, and uL14, demonstrating the protection model. In addition, the ternary complex also serves as a surveillance point, whereas incorrect uL14 is retained on Rkm1 and prevented from loading to the pre-60S ribosomal subunits. This study reveals the molecular mechanism of how uL14 is protected and quality checked by serial steps to ensure its safe delivery from the cytoplasm until its incorporation into the 60S ribosomal subunit.
Collapse
Affiliation(s)
- Min-Chi Yeh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ning-Hsiang Hsu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hao-Yu Chu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, College of Life Science, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jing-Ting Shie
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wei-Ming Lee
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Cesnik A, Schaffer LV, Gaur I, Jain M, Ideker T, Lundberg E. Mapping the Multiscale Proteomic Organization of Cellular and Disease Phenotypes. Annu Rev Biomed Data Sci 2024; 7:369-389. [PMID: 38748859 PMCID: PMC11343683 DOI: 10.1146/annurev-biodatasci-102423-113534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
While the primary sequences of human proteins have been cataloged for over a decade, determining how these are organized into a dynamic collection of multiprotein assemblies, with structures and functions spanning biological scales, is an ongoing venture. Systematic and data-driven analyses of these higher-order structures are emerging, facilitating the discovery and understanding of cellular phenotypes. At present, knowledge of protein localization and function has been primarily derived from manual annotation and curation in resources such as the Gene Ontology, which are biased toward richly annotated genes in the literature. Here, we envision a future powered by data-driven mapping of protein assemblies. These maps can capture and decode cellular functions through the integration of protein expression, localization, and interaction data across length scales and timescales. In this review, we focus on progress toward constructing integrated cell maps that accelerate the life sciences and translational research.
Collapse
Affiliation(s)
- Anthony Cesnik
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| | - Leah V Schaffer
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Ishan Gaur
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| | - Mayank Jain
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Trey Ideker
- Departments of Computer Science and Engineering and Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Emma Lundberg
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Pathology, Stanford University, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| |
Collapse
|
11
|
Cull J, Cooper S, Alharbi H, Chothani S, Rackham O, Meijles D, Dash P, Kerkelä R, Ruparelia N, Sugden P, Clerk A. Striatin plays a major role in angiotensin II-induced cardiomyocyte and cardiac hypertrophy in mice in vivo. Clin Sci (Lond) 2024; 138:573-597. [PMID: 38718356 PMCID: PMC11130554 DOI: 10.1042/cs20240496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The three striatins (STRN, STRN3, STRN4) form the core of STRiatin-Interacting Phosphatase and Kinase (STRIPAK) complexes. These place protein phosphatase 2A (PP2A) in proximity to protein kinases thereby restraining kinase activity and regulating key cellular processes. Our aim was to establish if striatins play a significant role in cardiac remodelling associated with cardiac hypertrophy and heart failure. All striatins were expressed in control human hearts, with up-regulation of STRN and STRN3 in failing hearts. We used mice with global heterozygote gene deletion to assess the roles of STRN and STRN3 in cardiac remodelling induced by angiotensin II (AngII; 7 days). Using echocardiography, we detected no differences in baseline cardiac function or dimensions in STRN+/- or STRN3+/- male mice (8 weeks) compared with wild-type littermates. Heterozygous gene deletion did not affect cardiac function in mice treated with AngII, but the increase in left ventricle mass induced by AngII was inhibited in STRN+/- (but not STRN3+/-) mice. Histological staining indicated that cardiomyocyte hypertrophy was inhibited. To assess the role of STRN in cardiomyocytes, we converted the STRN knockout line for inducible cardiomyocyte-specific gene deletion. There was no effect of cardiomyocyte STRN knockout on cardiac function or dimensions, but the increase in left ventricle mass induced by AngII was inhibited. This resulted from inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. The data indicate that cardiomyocyte striatin is required for early remodelling of the heart by AngII and identify the striatin-based STRIPAK system as a signalling paradigm in the development of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Joshua J. Cull
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Susanna T.E. Cooper
- Molecular and Clinical Sciences Institute, St. George’s University of London, London, U.K
| | - Hajed O. Alharbi
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Sonia P. Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore
| | - Owen J.L. Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore
- School of Biological Sciences, University of Southampton, Southampton, U.K
| | - Daniel N. Meijles
- Molecular and Clinical Sciences Institute, St. George’s University of London, London, U.K
| | - Philip R. Dash
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Medical Research Centre Oulu (Oulu University Hospital) and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Neil Ruparelia
- School of Biological Sciences, University of Reading, Reading, U.K
- Department of Cardiology, Royal Berkshire Hospital, Reading, U.K
| | - Peter H. Sugden
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, U.K
| |
Collapse
|
12
|
Liao QQ, Shu X, Sun W, Mandapaka H, Xie F, Zhang Z, Dai T, Wang S, Zhao J, Jiang H, Zhang L, Lin J, Li SW, Coin I, Yang F, Peng J, Li K, Wu H, Zhou F, Yang B. Capturing Protein-Protein Interactions with Acidic Amino Acids Reactive Cross-Linkers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308383. [PMID: 38073323 DOI: 10.1002/smll.202308383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Indexed: 05/18/2024]
Abstract
Acidic residues (Asp and Glu) have a high prevalence on protein surfaces, but cross-linking reactions targeting these residues are limited. Existing methods either require high-concentration coupling reagents or have low structural compatibility. Here a previously reported "plant-and-cast" strategy is extended to develop heterobifunctional cross-linkers. These cross-linkers first react rapidly with Lys sidechains and then react with Asp and Glu sidechains, in a proximity-enhanced fashion. The cross-linking reaction proceeds at neutral pH and room temperature without coupling reagents. The efficiency and robustness of cross-linking using model proteins, ranging from small monomeric proteins to large protein complexes are demonstrated. Importantly, it is shown that this type of cross-linkers are efficient at identifying protein-protein interactions involving acidic domains. The Cross-linking mass spectrometry (XL-MS) study with p53 identified 87 putative binders of the C-terminal domain of p53. Among them, SARNP, ZRAB2, and WBP11 are shown to regulate the expression and alternative splicing of p53 target genes. Thus, these carboxylate-reactive cross-linkers will further expand the power of XL-MS in the analysis of protein structures and protein-protein interactions.
Collapse
Affiliation(s)
- Qing-Qing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wei Sun
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hyma Mandapaka
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, 67260, USA
| | - Feng Xie
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhengkui Zhang
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tong Dai
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shuai Wang
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinghua Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital Fudan University, Shanghai, 200438, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital Fudan University, Shanghai, 200438, China
| | - Shu-Wei Li
- Nanjing Apollomics Biotech, Inc, Nanjing, Jiangsu, 210033, China
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04103, Leipzig, Germany
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, 67260, USA
| | - Fangfang Zhou
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
13
|
Manalastas-Cantos K, Adoni KR, Pfeifer M, Märtens B, Grünewald K, Thalassinos K, Topf M. Modeling Flexible Protein Structure With AlphaFold2 and Crosslinking Mass Spectrometry. Mol Cell Proteomics 2024; 23:100724. [PMID: 38266916 PMCID: PMC10884514 DOI: 10.1016/j.mcpro.2024.100724] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
We propose a pipeline that combines AlphaFold2 (AF2) and crosslinking mass spectrometry (XL-MS) to model the structure of proteins with multiple conformations. The pipeline consists of two main steps: ensemble generation using AF2 and conformer selection using XL-MS data. For conformer selection, we developed two scores-the monolink probability score (MP) and the crosslink probability score (XLP)-both of which are based on residue depth from the protein surface. We benchmarked MP and XLP on a large dataset of decoy protein structures and showed that our scores outperform previously developed scores. We then tested our methodology on three proteins having an open and closed conformation in the Protein Data Bank: Complement component 3 (C3), luciferase, and glutamine-binding periplasmic protein, first generating ensembles using AF2, which were then screened for the open and closed conformations using experimental XL-MS data. In five out of six cases, the most accurate model within the AF2 ensembles-or a conformation within 1 Å of this model-was identified using crosslinks, as assessed through the XLP score. In the remaining case, only the monolinks (assessed through the MP score) successfully identified the open conformation of glutamine-binding periplasmic protein, and these results were further improved by including the "occupancy" of the monolinks. This serves as a compelling proof-of-concept for the effectiveness of monolinks. In contrast, the AF2 assessment score was only able to identify the most accurate conformation in two out of six cases. Our results highlight the complementarity of AF2 with experimental methods like XL-MS, with the MP and XLP scores providing reliable metrics to assess the quality of the predicted models. The MP and XLP scoring functions mentioned above are available at https://gitlab.com/topf-lab/xlms-tools.
Collapse
Affiliation(s)
- Karen Manalastas-Cantos
- Center for Data and Computing in Natural Sciences, Universität Hamburg, Hamburg, Germany; Department of Integrative Virology, Leibniz-Institut für Virologie (LIV), Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Kish R Adoni
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Matthias Pfeifer
- Department of Integrative Virology, Leibniz-Institut für Virologie (LIV), Centre for Structural Systems Biology (CSSB), Hamburg, Germany; Universitätsklinikum Hamburg Eppendorf (UKE), Hamburg, Germany
| | - Birgit Märtens
- Department of Integrative Virology, Leibniz-Institut für Virologie (LIV), Centre for Structural Systems Biology (CSSB), Hamburg, Germany; Universitätsklinikum Hamburg Eppendorf (UKE), Hamburg, Germany
| | - Kay Grünewald
- Department of Integrative Virology, Leibniz-Institut für Virologie (LIV), Centre for Structural Systems Biology (CSSB), Hamburg, Germany; Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Maya Topf
- Department of Integrative Virology, Leibniz-Institut für Virologie (LIV), Centre for Structural Systems Biology (CSSB), Hamburg, Germany; Universitätsklinikum Hamburg Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
14
|
Nouchikian L, Fernandez-Martinez D, Renard PY, Sabot C, Duménil G, Rey M, Chamot-Rooke J. Do Not Waste Time─Ensure Success in Your Cross-Linking Mass Spectrometry Experiments before You Begin. Anal Chem 2024; 96:2506-2513. [PMID: 38294351 PMCID: PMC10867798 DOI: 10.1021/acs.analchem.3c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Cross-linking mass spectrometry (XL-MS) has become a very useful tool for studying protein complexes and interactions in living systems. It enables the investigation of many large and dynamic assemblies in their native state, providing an unbiased view of their protein interactions and restraints for integrative modeling. More researchers are turning toward trying XL-MS to probe their complexes of interest, especially in their native environments. However, due to the presence of other potentially higher abundant proteins, sufficient cross-links on a system of interest may not be reached to achieve satisfactory structural and interaction information. There are currently no rules for predicting whether XL-MS experiments are likely to work or not; in other words, if a protein complex of interest will lead to useful XL-MS data. Here, we show that a simple iBAQ (intensity-based absolute quantification) analysis performed from trypsin digest data can provide a good understanding of whether proteins of interest are abundant enough to achieve successful cross-linking data. Comparing our findings to large-scale data on diverse systems from several other groups, we show that proteins of interest should be at least in the top 20% abundance range to expect more than one cross-link found per protein. We foresee that this guideline is a good starting point for researchers who would like to use XL-MS to study their protein of interest and help ensure a successful cross-linking experiment from the beginning. Data are available via ProteomeXchange with identifier PXD045792.
Collapse
Affiliation(s)
- Lucienne Nouchikian
- Institut
Pasteur, Université Paris Cité, CNRS UAR 2024, Mass
Spectrometry for Biology Unit, Paris 75015, France
| | - David Fernandez-Martinez
- Institut
Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis
of Vascular Infections Unit, Paris 75015, France
| | - Pierre-Yves Renard
- Univ
Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA
UMR 6014, INC3M FR 3038, Rouen F-76000, France
| | - Cyrille Sabot
- Univ
Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA
UMR 6014, INC3M FR 3038, Rouen F-76000, France
| | - Guillaume Duménil
- Institut
Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis
of Vascular Infections Unit, Paris 75015, France
| | - Martial Rey
- Institut
Pasteur, Université Paris Cité, CNRS UAR 2024, Mass
Spectrometry for Biology Unit, Paris 75015, France
| | - Julia Chamot-Rooke
- Institut
Pasteur, Université Paris Cité, CNRS UAR 2024, Mass
Spectrometry for Biology Unit, Paris 75015, France
| |
Collapse
|
15
|
Fujiwara R, Zhai SN, Liang D, Shah AP, Tracey M, Ma XK, Fields CJ, Mendoza-Figueroa MS, Meline MC, Tatomer DC, Yang L, Wilusz JE. IntS6 and the Integrator phosphatase module tune the efficiency of select premature transcription termination events. Mol Cell 2023; 83:4445-4460.e7. [PMID: 37995689 PMCID: PMC10841813 DOI: 10.1016/j.molcel.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
The metazoan-specific Integrator complex catalyzes 3' end processing of small nuclear RNAs (snRNAs) and premature termination that attenuates the transcription of many protein-coding genes. Integrator has RNA endonuclease and protein phosphatase activities, but it remains unclear if both are required for complex function. Here, we show IntS6 (Integrator subunit 6) over-expression blocks Integrator function at a subset of Drosophila protein-coding genes, although having no effect on snRNAs or attenuation of other loci. Over-expressed IntS6 titrates protein phosphatase 2A (PP2A) subunits, thereby only affecting gene loci where phosphatase activity is necessary for Integrator function. IntS6 functions analogous to a PP2A regulatory B subunit as over-expression of canonical B subunits, which do not bind Integrator, is also sufficient to inhibit Integrator activity. These results show that the phosphatase module is critical at only a subset of Integrator-regulated genes and point to PP2A recruitment as a tunable step that modulates transcription termination efficiency.
Collapse
Affiliation(s)
- Rina Fujiwara
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Si-Nan Zhai
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aayushi P Shah
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew Tracey
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Christopher J Fields
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - María Saraí Mendoza-Figueroa
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michele C Meline
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Deirdre C Tatomer
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Zhang H, Jia H, Hong J, Zhang M, Jiang T, Xu W. Development of a High-Field "Brick" Mass Spectrometer with Extended Mass Range and Capable of Characterizing Native Proteins. Anal Chem 2023; 95:13503-13508. [PMID: 37650728 DOI: 10.1021/acs.analchem.3c01769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
One of the main challenges of analyzing intact proteins on an ion trap mass spectrometer is the mass range limitation, especially for miniature mass spectrometers. In this study, a high-field frequency scanning ion trap miniature mass spectrometer, namely the high-field "Brick" mass spectrometer, was developed to analyze intact proteins. A high-voltage broadband radio frequency (rf) amplifier was designed with a maximum output of 900 Vp-p over a frequency range of 130-700 kHz. Compared to the 600 Vp-p rf amplifier equipped in the conventional "Brick" mass spectrometer, the mass range of the instrument could be extended from 2000 to over 8000 Th. Sensitivity and mass resolution for native protein analyses were also evaluated and compared. Various proteins as well as their mixtures were analyzed on the high-field "Brick" mass spectrometer. The noncovalent interaction between protein-ligand complexes, lysozyme with triN-acetylchitotriose, was also analyzed. In addition, a hybrid ion scan mode was explored to further expand the mass range of the instrument at both low- and high-mass ends. In the hybrid ion scan mode, both rf frequency and amplitude were tuned, and a mass range from 100 to 12,000 Th was realized. As a result, both small drugs and proteins could be analyzed in a single mass scan. As proof-of-concept demonstrations, a mixture of atenolol and bovine serum albuminand oligomers of transferrin were analyzed.
Collapse
Affiliation(s)
- Hongjia Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Heyuan Jia
- Kunshan Nier Precision Instrumentation Inc., Kunshan, Suzhou 215316, China
| | - Jie Hong
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Mei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ting Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Zhong B, An Y, Gao H, Zhao L, Li X, Liang Z, Zhang Y, Zhao Q, Zhang L. In vivo cross-linking-based affinity purification and mass spectrometry for targeting intracellular protein-protein interactions. Anal Chim Acta 2023; 1265:341273. [PMID: 37230567 DOI: 10.1016/j.aca.2023.341273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Comprehensive interactome analysis of targeted proteins is important to understand how proteins work together in regulating functions. Commonly, affinity purification followed by mass spectrometry (AP-MS) has been recognized as the most often used technique for studying protein-protein interactions (PPIs). However, some proteins with weak interactions, which are responsible for key roles in regulation, are easily broken during cell lysis and purification through an AP approach. Herein, we have developed an approach termed in vivo cross-linking-based affinity purification and mass spectrometry (ICAP-MS). By this method, in vivo cross-linking was introduced to covalently fix intracellular PPIs in their functional states to assure all PPIs could be integrally maintained during cell disruption. In addition, the chemically cleavable crosslinkers which were employed enabled unbinding of PPIs for in-depth identification of components within the interactome and biological analysis, while allowing binding of PPIs for cross-linking-mass spectrometry (CXMS)-based direct interaction determination. Multi-level information on targeted PPIs network can be obtained by ICAP-MS, including composition of interacting proteins, as well as direct interacting partners and binding sites. As a proof of concept, the interactome of MAPK3 from 293A cells was profiled with 6.15-fold improvement in identification than by conventional AP-MS. Meanwhile, 184 cross-link site pairs of these PPIs were experimentally identified by CXMS. Furthermore, ICAP-MS was applied in the temporal profiling of MAPK3 interactions under activation by cAMP-mediated pathway. The regulatory manner of MAPK pathways was presented through the quantitative changes of MAPK3 and its interacting proteins at different time points after activation. Therefore, all reported results demonstrated that the ICAP-MS approach may provide comprehensive information on interactome of targeted protein for functional exploration.
Collapse
Affiliation(s)
- Bowen Zhong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Yuxin An
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China.
| |
Collapse
|
18
|
Wu T, Li ST, Ran Y, Lin Y, Liu L, Zhang X, Zhou L, Zhang L, Wu D, Yang B, Tang S. Mapping protein direct interactome of oxidoreductases with small molecular chemical cross-linkers in live cells. Redox Biol 2023; 61:102642. [PMID: 36863169 PMCID: PMC9986639 DOI: 10.1016/j.redox.2023.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Identifying direct substrates of enzymes has been a long-term challenge. Here, we present a strategy using live cell chemical cross-linking and mass spectrometry to identify the putative substrates of enzymes for further biochemical validation. Compared with other methods, our strategy is based on the identification of cross-linked peptides supported by high-quality MS/MS spectra, which eliminates false-positive discoveries of indirect binders. Additionally, cross-linking sites allow the analysis of interaction interfaces, providing further information for substrate validation. We demonstrated this strategy by identifying direct substrates of thioredoxin in both E. coli and HEK293T cells using two bis-vinyl sulfone chemical cross-linkers BVSB and PDES. We confirmed that BVSB and PDES have high specificity in cross-linking the active site of thioredoxin with its substrates both in vitro and in live cells. Applying live cell cross-linking, we identified 212 putative substrates of thioredoxin in E. coli and 299 putative S-nitrosylation (SNO) substrates of thioredoxin in HEK293T cells. In addition to thioredoxin, we have shown that this strategy can be applied to other proteins in the thioredoxin superfamily. Based on these results, we believe future development of cross-linking techniques will further advance cross-linking mass spectrometry in identifying substrates of other classes of enzymes.
Collapse
Affiliation(s)
- Ting Wu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Shang-Tong Li
- Glbizzia Biosciences Co., Ltd, Beijing, 102601, China
| | - Yu Ran
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yinuo Lin
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lu Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiajun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Lianqi Zhou
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Donghai Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Shibing Tang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
19
|
Woike S, Eustermann S, Jung J, Wenzl SJ, Hagemann G, Bartho J, Lammens K, Butryn A, Herzog F, Hopfner KP. Structural basis for TBP displacement from TATA box DNA by the Swi2/Snf2 ATPase Mot1. Nat Struct Mol Biol 2023; 30:640-649. [PMID: 37106137 PMCID: PMC7615866 DOI: 10.1038/s41594-023-00966-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023]
Abstract
The Swi2/Snf2 family transcription regulator Modifier of Transcription 1 (Mot1) uses adenosine triphosphate (ATP) to dissociate and reallocate the TATA box-binding protein (TBP) from and between promoters. To reveal how Mot1 removes TBP from TATA box DNA, we determined cryogenic electron microscopy structures that capture different states of the remodeling reaction. The resulting molecular video reveals how Mot1 dissociates TBP in a process that, intriguingly, does not require DNA groove tracking. Instead, the motor grips DNA in the presence of ATP and swings back after ATP hydrolysis, moving TBP to a thermodynamically less stable position on DNA. Dislodged TBP is trapped by a chaperone element that blocks TBP's DNA binding site. Our results show how Swi2/Snf2 proteins can remodel protein-DNA complexes through DNA bending without processive DNA tracking and reveal mechanistic similarities to RNA gripping DEAD box helicases and RIG-I-like immune sensors.
Collapse
Affiliation(s)
- Stephan Woike
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sebastian Eustermann
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - James Jung
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Simon Josef Wenzl
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Götz Hagemann
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Joseph Bartho
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katja Lammens
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Agata Butryn
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Franz Herzog
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
- Institute Krems Bioanalytics, IMC University of Applied Sciences, Krems, Austria
| | - Karl-Peter Hopfner
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany.
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
20
|
Wagner EJ, Tong L, Adelman K. Integrator is a global promoter-proximal termination complex. Mol Cell 2023; 83:416-427. [PMID: 36634676 PMCID: PMC10866050 DOI: 10.1016/j.molcel.2022.11.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 01/13/2023]
Abstract
Integrator is a metazoan-specific protein complex capable of inducing termination at all RNAPII-transcribed loci. Integrator recognizes paused, promoter-proximal RNAPII and drives premature termination using dual enzymatic activities: an endonuclease that cleaves nascent RNA and a protein phosphatase that removes stimulatory phosphorylation associated with RNAPII pause release and productive elongation. Recent breakthroughs in structural biology have revealed the overall architecture of Integrator and provided insights into how multiple Integrator modules are coordinated to elicit termination effectively. Furthermore, functional genomics and biochemical studies have unraveled how Integrator-mediated termination impacts protein-coding and noncoding loci. Here, we review the current knowledge about the assembly and activity of Integrator and describe the role of Integrator in gene regulation, highlighting the importance of this complex for human health.
Collapse
Affiliation(s)
- Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Jiao F, Salituro LJ, Yu C, Gutierrez CB, Rychnovsky SD, Huang L. Exploring an Alternative Cysteine-Reactive Chemistry to Enable Proteome-Wide PPI Analysis by Cross-Linking Mass Spectrometry. Anal Chem 2023; 95:2532-2539. [PMID: 36652389 DOI: 10.1021/acs.analchem.2c04986] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of MS-cleavable cross-linking mass spectrometry (XL-MS) has enabled the effective capture and identification of endogenous protein-protein interactions (PPIs) and their residue contacts at the global scale without cell engineering. So far, only lysine-reactive cross-linkers have been successfully applied for proteome-wide PPI profiling. However, lysine cross-linkers alone cannot uncover the complete PPI map in cells. Previously, we have developed a maleimide-based cysteine-reactive MS-cleavable cross-linker (bismaleimide sulfoxide (BMSO)) that is effective for mapping PPIs of protein complexes to yield interaction contacts complementary to lysine-reactive reagents. While successful, the hydrolysis and limited selectivity of maleimides at physiological pH make their applications in proteome-wide XL-MS challenging. To enable global PPI mapping, we have explored an alternative cysteine-labeling chemistry and thus designed and synthesized a sulfoxide-containing MS-cleavable haloacetamide-based cross-linker, Dibromoacetamide sulfoxide (DBrASO). Our results have demonstrated that DBrASO cross-linked peptides display the same fragmentation characteristics as other sulfoxide-containing MS-cleavable cross-linkers, permitting their unambiguous identification by MSn. In combination with a newly developed two-dimensional peptide fractionation method, we have successfully performed DBrASO-based XL-MS analysis of HEK293 cell lysates and demonstrated its capability to complement lysine-reactive reagents and expand PPI coverage at the systems-level.
Collapse
Affiliation(s)
- Fenglong Jiao
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
| | - Leah J Salituro
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
| | - Craig B Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
| | - Scott D Rychnovsky
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
22
|
Shcherbakova L, Pardo M, Roumeliotis T, Choudhary J. Identifying and characterising Thrap3, Bclaf1 and Erh interactions using cross-linking mass spectrometry. Wellcome Open Res 2023; 6:260. [PMID: 35865489 PMCID: PMC9270653 DOI: 10.12688/wellcomeopenres.17160.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Cross-linking mass spectrometry (XL-MS) is a powerful technology capable of yielding structural insights across the complex cellular protein interaction network. However, up to date most of the studies utilising XL-MS to characterise individual protein complexes' topology have been carried out on over-expressed or recombinant proteins, which might not accurately represent native cellular conditions. Methods: We performed XL-MS using MS-cleavable crosslinker disuccinimidyl sulfoxide (DSSO) after immunoprecipitation of endogenous BRG/Brahma-associated factors (BAF) complex and co-purifying proteins. Data are available via ProteomeXchange with identifier PXD027611. Results: Although we did not detect the expected enrichment of crosslinks within the BAF complex, we identified numerous crosslinks between three co-purifying proteins, namely Thrap3, Bclaf1 and Erh. Thrap3 and Bclaf1 are mostly disordered proteins for which no 3D structure is available. The XL data allowed us to map interaction surfaces on these proteins, which overlap with the non-disordered portions of both proteins. The identified XLs are in agreement with homology-modelled structures suggesting that the interaction surfaces are globular. Conclusions: Our data shows that MS-cleavable crosslinker DSSO can be used to characterise in detail the topology and interaction surfaces of endogenous protein complexes without the need for overexpression. We demonstrate that Bclaf1, Erh and Thrap3 interact closely with each other, suggesting they might form a novel complex, hereby referred to as BET complex. This data can be exploited for modelling protein-protein docking to characterise the three-dimensional structure of the complex. Endogenous XL-MS might be challenging due to crosslinker accessibility, protein complex abundance or isolation efficiency, and require further optimisation for some complexes like the BAF complex to detect a substantial number of crosslinks.
Collapse
Affiliation(s)
| | - Mercedes Pardo
- Cancer Biology, Institute of Cancer Research, UK, London, UK
| | | | - Jyoti Choudhary
- Cancer Biology, Institute of Cancer Research, UK, London, UK,
| |
Collapse
|
23
|
Shcherbakova L, Pardo M, Roumeliotis T, Choudhary J. Identifying and characterising Thrap3, Bclaf1 and Erh interactions using cross-linking mass spectrometry. Wellcome Open Res 2023; 6:260. [PMID: 35865489 PMCID: PMC9270653 DOI: 10.12688/wellcomeopenres.17160.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 01/09/2023] Open
Abstract
Background: Cross-linking mass spectrometry (XL-MS) is a powerful technology capable of yielding structural insights across the complex cellular protein interaction network. However, up to date most of the studies utilising XL-MS to characterise individual protein complexes' topology have been carried out on over-expressed or recombinant proteins, which might not accurately represent native cellular conditions. Methods: We performed XL-MS using MS-cleavable crosslinker disuccinimidyl sulfoxide (DSSO) after immunoprecipitation of endogenous BRG/Brahma-associated factors (BAF) complex and co-purifying proteins. Data are available via ProteomeXchange with identifier PXD027611. Results: Although we did not detect the expected enrichment of crosslinks within the BAF complex, we identified numerous crosslinks between three co-purifying proteins, namely Thrap3, Bclaf1 and Erh. Thrap3 and Bclaf1 are mostly disordered proteins for which no 3D structure is available. The XL data allowed us to map interaction surfaces on these proteins, which overlap with the non-disordered portions of both proteins. The identified XLs are in agreement with homology-modelled structures suggesting that the interaction surfaces are globular. Conclusions: Our data shows that MS-cleavable crosslinker DSSO can be used to characterise in detail the topology and interaction surfaces of endogenous protein complexes without the need for overexpression. We demonstrate that Bclaf1, Erh and Thrap3 interact closely with each other, suggesting they might form a novel complex, hereby referred to as TEB complex. This data can be exploited for modelling protein-protein docking to characterise the three-dimensional structure of the complex. Endogenous XL-MS might be challenging due to crosslinker accessibility, protein complex abundance or isolation efficiency, and require further optimisation for some complexes like the BAF complex to detect a substantial number of crosslinks.
Collapse
Affiliation(s)
| | - Mercedes Pardo
- Cancer Biology, Institute of Cancer Research, UK, London, UK
| | | | - Jyoti Choudhary
- Cancer Biology, Institute of Cancer Research, UK, London, UK,
| |
Collapse
|
24
|
Mei K, Guo W. Modeling the Cryo-EM Structure of the Exocyst Complex. Methods Mol Biol 2023; 2557:247-262. [PMID: 36512220 DOI: 10.1007/978-1-0716-2639-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multi-subunit tethering complexes (MTCs) are a family of evolutionarily conserved large protein complexes that function to tether intracellular vesicles from the donor compartments to the membrane of receptor compartments. The exocyst complex is an octameric MTC that tethers the post-Golgi secretory vesicles to the plasma membrane. To learn the function and regulation of the exocyst complex, it is crucial to understand the structure of the complex. We have solved the cryo-EM structure of the exocyst complex at 4.4 Angstrom (Å) resolution and detected the spatial relationship between the eight subunits using chemical cross-linking mass spectrometry. Here, we describe the method of modeling and validating the cryo-EM structure of the exocyst complex. This method could provide a guide for modeling of other protein complexes of which the structures are solved at medium to near-atomic resolution.
Collapse
Affiliation(s)
- Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Deep A, Gu Y, Gao YQ, Ego KM, Herzik MA, Zhou H, Corbett KD. The SMC-family Wadjet complex protects bacteria from plasmid transformation by recognition and cleavage of closed-circular DNA. Mol Cell 2022; 82:4145-4159.e7. [PMID: 36206765 PMCID: PMC9637719 DOI: 10.1016/j.molcel.2022.09.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/19/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Self versus non-self discrimination is a key element of innate and adaptive immunity across life. In bacteria, CRISPR-Cas and restriction-modification systems recognize non-self nucleic acids through their sequence and their methylation state, respectively. Here, we show that the Wadjet defense system recognizes DNA topology to protect its host against plasmid transformation. By combining cryoelectron microscopy with cross-linking mass spectrometry, we show that Wadjet forms a complex similar to the bacterial condensin complex MukBEF, with a novel nuclease subunit similar to a type II DNA topoisomerase. Wadjet specifically cleaves closed-circular DNA in a reaction requiring ATP hydrolysis by the structural maintenance of chromosome (SMC) ATPase subunit JetC, suggesting that the complex could use DNA loop extrusion to sense its substrate's topology, then specifically activate the nuclease subunit JetD to cleave plasmid DNA. Overall, our data reveal how bacteria have co-opted a DNA maintenance machine to specifically recognize and destroy foreign DNAs through topology sensing.
Collapse
Affiliation(s)
- Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yong-Qi Gao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaori M Ego
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark A Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Zhu P, Wu X, Zhang RY, Hsu CC, Zhang ZY, Tao WA. An Integrated Proteomic Strategy to Identify SHP2 Substrates. J Proteome Res 2022; 21:2515-2525. [PMID: 36103635 PMCID: PMC9597472 DOI: 10.1021/acs.jproteome.2c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein phosphatases play an essential role in normal cell physiology and the development of diseases such as cancer. The innate challenges associated with studying protein phosphatases have limited our understanding of their substrates, molecular mechanisms, and unique functions within highly coordinated networks. Here, we introduce a novel strategy using substrate-trapping mutants coupled with quantitative proteomics methods to identify physiological substrates of Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) in a high-throughput manner. The technique integrates three parallel mass spectrometry-based proteomics experiments, including affinity isolation of substrate-trapping mutant complex using wild-type and SHP2 KO cells, in vivo global quantitative phosphoproteomics, and in vitro phosphatase reaction. We confidently identified 18 direct substrates of SHP2 in the epidermal growth factor receptor signaling pathways, including both known and novel SHP2 substrates. Docking protein 1 was further validated using biochemical assays as a novel SHP2 substrate, providing a mechanism for SHP2-mediated Ras activation. This advanced workflow improves the systemic identification of direct substrates of protein phosphatases, facilitating our understanding of the equally important roles of protein phosphatases in cellular signaling.
Collapse
Affiliation(s)
- Peipei Zhu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - W Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Rogawski R, Sharon M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chem Rev 2022; 122:7386-7414. [PMID: 34406752 PMCID: PMC9052418 DOI: 10.1021/acs.chemrev.1c00217] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
28
|
Jiao F, Yu C, Wheat A, Wang X, Rychnovsky SD, Huang L. Two-Dimensional Fractionation Method for Proteome-Wide Cross-Linking Mass Spectrometry Analysis. Anal Chem 2022; 94:4236-4242. [PMID: 35235311 DOI: 10.1021/acs.analchem.1c04485] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cross-linking mass spectrometry (XL-MS) is an emergent technology for studying protein-protein interactions (PPIs) and elucidating architectures of protein complexes. The development of various MS-cleavable cross-linkers has facilitated the identification of cross-linked peptides, enabling XL-MS studies at the systems level. However, the scope and depth of cellular networks revealed by current XL-MS technologies remain limited. Due to the inherently broad dynamic range and complexity of proteomes, interference from highly abundant proteins impedes the identification of low-abundance cross-linked peptides in complex samples. Thus, peptide enrichment prior to MS analysis is necessary to enhance cross-link identification for proteome-wide studies. Although chromatographic techniques including size exclusion (SEC) and strong cation exchange (SCX) have been successful in isolating cross-linked peptides, new fractionation methods are still needed to further improve the depth of PPI mapping. Here, we present a two-dimensional (2D) separation strategy by integrating peptide SEC with tip-based high pH reverse-phase (HpHt) fractionation to expand the coverage of proteome-wide XL-MS analyses. Combined with the MS-cleavable cross-linker DSSO, we have successfully mapped in vitro PPIs from HEK293 cell lysates with improved identification of cross-linked peptides compared to existing approaches. The method developed here is effective and can be generalized for cross-linking studies of complex samples.
Collapse
Affiliation(s)
- Fenglong Jiao
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92694, United States
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92694, United States
| | - Andrew Wheat
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92694, United States
| | - Xiaorong Wang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92694, United States
| | - Scott D Rychnovsky
- Department of Chemistry, University of California, Irvine, Irvine, California 92694, United States
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92694, United States
| |
Collapse
|
29
|
Cabrera-Orefice A, Potter A, Evers F, Hevler JF, Guerrero-Castillo S. Complexome Profiling-Exploring Mitochondrial Protein Complexes in Health and Disease. Front Cell Dev Biol 2022; 9:796128. [PMID: 35096826 PMCID: PMC8790184 DOI: 10.3389/fcell.2021.796128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Complexome profiling (CP) is a state-of-the-art approach that combines separation of native proteins by electrophoresis, size exclusion chromatography or density gradient centrifugation with tandem mass spectrometry identification and quantification. Resulting data are computationally clustered to visualize the inventory, abundance and arrangement of multiprotein complexes in a biological sample. Since its formal introduction a decade ago, this method has been mostly applied to explore not only the composition and abundance of mitochondrial oxidative phosphorylation (OXPHOS) complexes in several species but also to identify novel protein interactors involved in their assembly, maintenance and functions. Besides, complexome profiling has been utilized to study the dynamics of OXPHOS complexes, as well as the impact of an increasing number of mutations leading to mitochondrial disorders or rearrangements of the whole mitochondrial complexome. Here, we summarize the major findings obtained by this approach; emphasize its advantages and current limitations; discuss multiple examples on how this tool could be applied to further investigate pathophysiological mechanisms and comment on the latest advances and opportunity areas to keep developing this methodology.
Collapse
Affiliation(s)
- Alfredo Cabrera-Orefice
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alisa Potter
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Felix Evers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, Utrecht, Netherlands.,Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, Netherlands.,Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sergio Guerrero-Castillo
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Nadel G, Yao Z, Wainstein E, Cohen I, Ben-Ami I, Schajnovitz A, Maik-Rachline G, Naor Z, Horwitz BA, Seger R. GqPCR-stimulated dephosphorylation of AKT is induced by an IGBP1-mediated PP2A switch. Cell Commun Signal 2022; 20:5. [PMID: 34998390 PMCID: PMC8742922 DOI: 10.1186/s12964-021-00805-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) usually regulate cellular processes via activation of intracellular signaling pathways. However, we have previously shown that in several cell lines, GqPCRs induce immediate inactivation of the AKT pathway, which leads to JNK-dependent apoptosis. This apoptosis-inducing AKT inactivation is essential for physiological functions of several GqPCRs, including those for PGF2α and GnRH. METHODS Here we used kinase activity assays of PI3K and followed phosphorylation state of proteins using specific antibodies. In addition, we used coimmunoprecipitation and proximity ligation assays to follow protein-protein interactions. Apoptosis was detected by TUNEL assay and PARP1 cleavage. RESULTS We identified the mechanism that allows the unique stimulated inactivation of AKT and show that the main regulator of this process is the phosphatase PP2A, operating with the non-canonical regulatory subunit IGBP1. In resting cells, an IGBP1-PP2Ac dimer binds to PI3K, dephosphorylates the inhibitory pSer608-p85 of PI3K and thus maintains its high basal activity. Upon GqPCR activation, the PP2Ac-IGBP1 dimer detaches from PI3K and thus allows the inhibitory dephosphorylation. At this stage, the free PP2Ac together with IGBP1 and PP2Aa binds to AKT, causing its dephosphorylation and inactivation. CONCLUSION Our results show a stimulated shift of PP2Ac from PI3K to AKT termed "PP2A switch" that represses the PI3K/AKT pathway, providing a unique mechanism of GPCR-stimulated dephosphorylation. Video Abstract.
Collapse
Affiliation(s)
- Guy Nadel
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Zhong Yao
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Wainstein
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Izel Cohen
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Ido Ben-Ami
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.,IVF and Fertility Unit, Department of OB/GYN, Shaare Zedek Medical Center and The Hebrew University Medical School, Jerusalem, Israel
| | - Amir Schajnovitz
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Galia Maik-Rachline
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin A Horwitz
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.,Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rony Seger
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
31
|
Horovitz A, Reingewertz TH, Cuéllar J, Valpuesta JM. Chaperonin Mechanisms: Multiple and (Mis)Understood? Annu Rev Biophys 2022; 51:115-133. [DOI: 10.1146/annurev-biophys-082521-113418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chaperonins are ubiquitous and essential nanomachines that assist in protein folding in an ATP-driven manner. They consist of two back-to-back stacked oligomeric rings with cavities in which protein (un)folding can take place in a shielding environment. This review focuses on GroEL from Escherichia coli and the eukaryotic chaperonin-containing t-complex polypeptide 1, which differ considerably in their reaction mechanisms despite sharing a similar overall architecture. Although chaperonins feature in many current biochemistry textbooks after being studied intensively for more than three decades, key aspects of their reaction mechanisms remain under debate and are discussed in this review. In particular, it is unclear whether a universal reaction mechanism operates for all substrates and whether it is passive, i.e., aggregation is prevented but the folding pathway is unaltered, or active. It is also unclear how chaperonin clients are distinguished from nonclients and what are the precise roles of the cofactors with which chaperonins interact. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Tali Haviv Reingewertz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Jorge Cuéllar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
32
|
Caldovic L, Bhuvanendran S, Jaiswal J. Assessing Protein Interactions for Clustering of Mitochondrial Urea Cycle Enzymes. Methods Mol Biol 2022; 2487:73-92. [PMID: 35687230 PMCID: PMC11270477 DOI: 10.1007/978-1-0716-2269-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Enzyme clustering is a phenomenon that involves partitioning of proteins that function together in a common subcellular or sub-organellar compartment. Traditional genetic, biochemical, and biophysical approaches for studying protein-protein interactions in complexes with defined stoichiometry yield inconclusive results when applied to clustered proteins. This chapter describes a combination of approaches to study clustered proteins including co-immunoprecipitation, biochemical co-localization in purified mitochondria, and super resolution imaging of endogenous proteins in situ. These approaches can be used to study interactions among proteins that form clusters. We will illustrate this approach by using the urea cycle enzymes that localize in the mitochondrial matrix, and form clusters at the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA.
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| | | | - Jyoti Jaiswal
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
33
|
Combining Electron Microscopy (EM) and Cross-Linking Mass Spectrometry (XL-MS) for Structural Characterization of Protein Complexes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2420:217-232. [PMID: 34905177 DOI: 10.1007/978-1-0716-1936-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Structural biology has recently witnessed the benefits of the combined use of two complementary techniques: electron microscopy (EM) and cross-linking mass spectrometry (XL-MS). EM (especially its cryogenic variant cryo-EM) has proven to be a very powerful tool for the structural determination of proteins and protein complexes, even at an atomic level. In a complementary way, XL-MS allows the precise characterization of particular interactions when residues are located in close proximity. When working from low-resolution, negative-staining images and less-defined regions of flexible domains (whose mapping is made possible by cryo-EM), XL-MS can provide critical information on specific amino acids, thus identifying interacting regions and helping to deduce the overall protein structure. The protocol described here is particularly well suited for the study of protein complexes whose intrinsically flexible or transient nature prevents their high-resolution characterization by any structural technique itself.
Collapse
|
34
|
Graziadei A, Rappsilber J. Leveraging crosslinking mass spectrometry in structural and cell biology. Structure 2021; 30:37-54. [PMID: 34895473 DOI: 10.1016/j.str.2021.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Crosslinking mass spectrometry (crosslinking-MS) is a versatile tool providing structural insights into protein conformation and protein-protein interactions. Its medium-resolution residue-residue distance restraints have been used to validate protein structures proposed by other methods and have helped derive models of protein complexes by integrative structural biology approaches. The use of crosslinking-MS in integrative approaches is underpinned by progress in estimating error rates in crosslinking-MS data and in combining these data with other information. The flexible and high-throughput nature of crosslinking-MS has allowed it to complement the ongoing resolution revolution in electron microscopy by providing system-wide residue-residue distance restraints, especially for flexible regions or systems. Here, we review how crosslinking-MS information has been leveraged in structural model validation and integrative modeling. Crosslinking-MS has also been a key technology for cell biology studies and structural systems biology where, in conjunction with cryoelectron tomography, it can provide structural and mechanistic insights directly in situ.
Collapse
Affiliation(s)
- Andrea Graziadei
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
35
|
Piersimoni L, Kastritis PL, Arlt C, Sinz A. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein-Protein Interactions─A Method for All Seasons. Chem Rev 2021; 122:7500-7531. [PMID: 34797068 DOI: 10.1021/acs.chemrev.1c00786] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mass spectrometry (MS) has become one of the key technologies of structural biology. In this review, the contributions of chemical cross-linking combined with mass spectrometry (XL-MS) for studying three-dimensional structures of proteins and for investigating protein-protein interactions are outlined. We summarize the most important cross-linking reagents, software tools, and XL-MS workflows and highlight prominent examples for characterizing proteins, their assemblies, and interaction networks in vitro and in vivo. Computational modeling plays a crucial role in deriving 3D-structural information from XL-MS data. Integrating XL-MS with other techniques of structural biology, such as cryo-electron microscopy, has been successful in addressing biological questions that to date could not be answered. XL-MS is therefore expected to play an increasingly important role in structural biology in the future.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Biozentrum, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
36
|
Troyanovsky RB, Indra I, Kato R, Mitchell BJ, Troyanovsky SM. Basolateral protein Scribble binds phosphatase PP1 to establish a signaling network maintaining apicobasal polarity. J Biol Chem 2021; 297:101289. [PMID: 34634305 PMCID: PMC8569552 DOI: 10.1016/j.jbc.2021.101289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/25/2023] Open
Abstract
Scribble, a member of the LAP protein family, contributes to the apicobasal polarity (ABP) of epithelial cells. The LAP-unique region of these proteins, which is essential and sufficient for ABP, includes a conserved Leucine-Rich Repeat (LRR) domain. The major binding partners of this region that could regulate ABP remain unknown. Here, using proteomics, native gel electrophoresis, and site-directed mutagenesis, we show that the concave surface of LRR domain in Scribble participates in three types of mutually exclusive interactions-(i) homodimerization, serving as an auto-inhibitory mechanism; (ii) interactions with a diverse set of polarity proteins, such as Llgl1, Llgl2, EPB41L2, and EPB41L5, which produce distinct multiprotein complexes; and (iii) a direct interaction with the protein phosphatase, PP1. Analogy with the complex between PP1 and LRR domain of SDS22, a well-studied PP1 regulator, suggests that the Scibble-PP1 complex stores a latent form of PP1 in the basolateral cell cortex. Such organization may generate a dynamic signaling network wherein PP1 could be dispatched from the complex with Scribble to particular protein ligands, achieving fast dephosphorylation kinetics.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Indrajyoti Indra
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rei Kato
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Brian J Mitchell
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergey M Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
37
|
Yugandhar K, Zhao Q, Gupta S, Xiong D, Yu H. Progress in methodologies and quality-control strategies in protein cross-linking mass spectrometry. Proteomics 2021; 21:e2100145. [PMID: 34647422 DOI: 10.1002/pmic.202100145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022]
Abstract
Deciphering the interaction networks and structural dynamics of proteins is pivotal to better understanding their biological functions. Cross-linking mass spectrometry (XL-MS) is a powerful and increasingly popular technology that provides information about protein-protein interactions and their structural constraints for individual proteins and multiprotein complexes on a proteome-scale. In this review, we first assess the coverage and depth of the XL-MS technique by utilizing publicly available datasets. We then delve into the progress in XL-MS experimental and computational methodologies and examine different quality-control strategies reported in the literature. Finally, we discuss the progress in XL-MS applications along with the scope for future improvements.
Collapse
Affiliation(s)
- Kumar Yugandhar
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Qiuye Zhao
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Shobhita Gupta
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| |
Collapse
|
38
|
Xu Q, Hong J, Liu S, Zhai Y, Xu W. Development of a miniature protein mass spectrometer capable of analyzing native proteins. Talanta 2021; 233:122580. [PMID: 34215072 DOI: 10.1016/j.talanta.2021.122580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Current miniature mass spectrometers were usually designed for the detection of small and medium size molecules, including volatile (semi-volatile) compounds, drugs and lipids. In this study, a miniature protein mass spectrometer was developed in this work, which could serve as a biosensor for the rapid identification of proteins as well as their conformations. A linear ion trap with a field radius of 2.5 mm was designed to extend mass range of the instrument to over 6500 Th. Mass resolution and sensitivity of the instrument were also optimized for protein ions by increasing the buffer gas pressure and using a high-gain Faraday detector. It is then demonstrated that the mass spectra of native proteins, such as IgG1, could be acquired by coupling the instrument with a soft electrospray ionization source. As a proof-of-concept demonstration, results suggest that the current instrument could be used to identify target proteins and probe/distinguish their conformations in solutions.
Collapse
Affiliation(s)
- Qian Xu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jie Hong
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Siyu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yanbing Zhai
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
39
|
Basic pH reversed-phase liquid chromatography (bRPLC) in combination with tip-based strong cation exchange (SCX-Tip), ReST, an efficient approach for large-scale cross-linked peptide analysis. Anal Chim Acta 2021; 1179:338838. [PMID: 34535262 DOI: 10.1016/j.aca.2021.338838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 11/24/2022]
Abstract
Chemical cross-linking in combination with mass spectrometry (XL-MS) has emerged as a useful method for structural elucidation of proteins and protein complexes. Due to the low stoichiometry of cross-linked peptides, a specific enrichment method is always necessary prior to LC-MS/MS analysis, especially for complex samples. Currently, strong cation exchange chromatography (SCX), size exclusion chromatography (SEC), and affinity tag-based enrichment are among the widely used enrichment strategies. Herein, we present a two-dimensional strategy combining basic pH reversed-phase liquid chromatography (bRPLC) fractionation and tip-based SCX (SCX-Tip) enrichment, termed ReST, for the characterization of cross-linked peptides. We revealed the unbiased separation effects of the bRPLC in the cross-linked peptide fractionation. We optimized the enrichment conditions of SCX-Tip using well-designed cross-linked peptides. Taking advantage of the high resolution of bRPLC separation and the high enrichment efficiency of SCX-Tip, we were able to identify 43.6% more cross-linked peptides than the conventional SCX approach. The presented ReST is a simple and efficient approach for proteome-scale protein-protein interaction studies.
Collapse
|
40
|
Huang R, Zhu W, Xu Z, Chen J, Jiang B, Chen H, Chen W. Accurate Retention Time Prediction Based on Monolinked Peptide Information to Confidently Identify Cross-Linked Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2410-2416. [PMID: 34320809 DOI: 10.1021/jasms.1c00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cross-linking mass spectrometry methods have not been successfully applied to protein-protein interaction discovery at a proteome-wide level mainly due to the computation complexity (O (n2)) issue. In a previous report, we proposed a decision tree searching strategy (DTSS), which can reduce complexity by orders of magnitude. In this study, we further found that the monolinked peptides carry out the information on the retention time of the corresponding cross-linked pairs; therefore, the retention time of cross-linked peptide pairs can be predicted accurately. By utilizing the retention time as an extra filter, the false positive rate can be reduced by around 86% with a sensitivity loss of 10%. The method combined with DTSS (T-DTSS) not only benefits improving identification confidence but also leads to lower cutoff scores and facilitates substantially increasing inter-cross-link identification. T-DTSS was successfully applied to the identification of inter-cross-links obtained from Escherichia coli cell lysate cross-linked by a newly synthesized enrichable cross-linker, pDSBE. The approach can be applicable to both cleavable and noncleavable methods.
Collapse
Affiliation(s)
- Rong Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wei Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Zili Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Jiakang Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Wenzhang Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| |
Collapse
|
41
|
Kogut M, Gong Z, Tang C, Liwo A. Pseudopotentials for coarse-grained cross-link-assisted modeling of protein structures. J Comput Chem 2021; 42:2054-2067. [PMID: 34402552 DOI: 10.1002/jcc.26736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Pseudopotentials for the chemical cross-links comprising the glutamic- and aspartic-acid side chains bridged with adipic- (ADH) or pimelic-acid hydrazide (PDH), and the lysine side chains bridged with glutaric (BS2 G) or suberic acid (BS3 ) for coarse-grained cross-link-assisted simulations were determined by canonical molecular dynamics with the Amber14sb force field. The potentials depend on the distance between side-chain ends and on side-chain orientation, this preventing from making cross-link contacts across the globule in simulations. The potentials were implemented in the UNRES coarse-grained force field and their effect on the quality of models was assessed with 11 monomeric and 1 dimeric proteins, using synthetic or experimental cross-link data. Simulations with the new potentials resulted in improvement of the generated models compared to unrestrained simulations in more instances compared to those with the statistical potentials.
Collapse
Affiliation(s)
- Mateusz Kogut
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Zhou Gong
- Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
42
|
Kaake RM, Echeverria I, Kim SJ, Von Dollen J, Chesarino NM, Feng Y, Yu C, Ta H, Chelico L, Huang L, Gross J, Sali A, Krogan NJ. Characterization of an A3G-Vif HIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host-Pathogen Complexes. Mol Cell Proteomics 2021; 20:100132. [PMID: 34389466 PMCID: PMC8459920 DOI: 10.1016/j.mcpro.2021.100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 10/24/2022] Open
Abstract
Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFβ) to determine the structure of the (A3G-Vif-CRL5-CBFβ) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFβ complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yuqing Feng
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - Hai Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Linda Chelico
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - John Gross
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
43
|
Protein interaction landscapes revealed by advanced in vivo cross-linking-mass spectrometry. Proc Natl Acad Sci U S A 2021; 118:2023360118. [PMID: 34349018 DOI: 10.1073/pnas.2023360118] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Defining protein-protein interactions (PPIs) in their native environment is crucial to understanding protein structure and function. Cross-linking-mass spectrometry (XL-MS) has proven effective in capturing PPIs in living cells; however, the proteome coverage remains limited. Here, we have developed a robust in vivo XL-MS platform to facilitate in-depth PPI mapping by integrating a multifunctional MS-cleavable cross-linker with sample preparation strategies and high-resolution MS. The advancement of click chemistry-based enrichment significantly enhanced the detection of cross-linked peptides for proteome-wide analyses. This platform enabled the identification of 13,904 unique lysine-lysine linkages from in vivo cross-linked HEK 293 cells, permitting construction of the largest in vivo PPI network to date, comprising 6,439 interactions among 2,484 proteins. These results allowed us to generate a highly detailed yet panoramic portrait of human interactomes associated with diverse cellular pathways. The strategy presented here signifies a technological advancement for in vivo PPI mapping at the systems level and can be generalized for charting protein interaction landscapes in any organisms.
Collapse
|
44
|
Dudziak A, Engelhard L, Bourque C, Klink BU, Rombaut P, Kornakov N, Jänen K, Herzog F, Gatsogiannis C, Westermann S. Phospho-regulated Bim1/EB1 interactions trigger Dam1c ring assembly at the budding yeast outer kinetochore. EMBO J 2021; 40:e108004. [PMID: 34313341 PMCID: PMC8441410 DOI: 10.15252/embj.2021108004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Kinetochores form the link between chromosomes and microtubules of the mitotic spindle. The heterodecameric Dam1 complex (Dam1c) is a major component of the Saccharomyces cerevisiae outer kinetochore, assembling into 3 MDa‐sized microtubule‐embracing rings, but how ring assembly is specifically initiated in vivo remains to be understood. Here, we describe a molecular pathway that provides local control of ring assembly during the establishment of sister kinetochore bi‐orientation. We show that Dam1c and the general microtubule plus end‐associated protein (+TIP) Bim1/EB1 form a stable complex depending on a conserved motif in the Duo1 subunit of Dam1c. EM analyses reveal that Bim1 crosslinks protrusion domains of adjacent Dam1c heterodecamers and promotes the formation of oligomers with defined curvature. Disruption of the Dam1c‐Bim1 interaction impairs kinetochore localization of Dam1c in metaphase and delays mitosis. Phosphorylation promotes Dam1c‐Bim1 binding by relieving an intramolecular inhibition of the Dam1 C‐terminus. In addition, Bim1 recruits Bik1/CLIP‐170 to Dam1c and induces formation of full rings even in the absence of microtubules. Our data help to explain how new kinetochore end‐on attachments are formed during the process of attachment error correction.
Collapse
Affiliation(s)
- Alexander Dudziak
- Department of Molecular Genetics I, Center of Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Lena Engelhard
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Cole Bourque
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Björn Udo Klink
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Pascaline Rombaut
- Gene Center Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Nikolay Kornakov
- Department of Molecular Genetics I, Center of Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karolin Jänen
- Department of Molecular Genetics I, Center of Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Franz Herzog
- Gene Center Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Stefan Westermann
- Department of Molecular Genetics I, Center of Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Ueki Y, Hadders MA, Weisser MB, Nasa I, Sotelo‐Parrilla P, Cressey LE, Gupta T, Hertz EPT, Kruse T, Montoya G, Jeyaprakash AA, Kettenbach A, Lens SMA, Nilsson J. A highly conserved pocket on PP2A-B56 is required for hSgo1 binding and cohesion protection during mitosis. EMBO Rep 2021; 22:e52295. [PMID: 33973335 PMCID: PMC8256288 DOI: 10.15252/embr.202052295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023] Open
Abstract
The shugoshin proteins are universal protectors of centromeric cohesin during mitosis and meiosis. The binding of human hSgo1 to the PP2A-B56 phosphatase through a coiled-coil (CC) region mediates cohesion protection during mitosis. Here we undertook a structure function analysis of the PP2A-B56-hSgo1 complex, revealing unanticipated aspects of complex formation and function. We establish that a highly conserved pocket on the B56 regulatory subunit is required for hSgo1 binding and cohesion protection during mitosis in human somatic cells. Consistent with this, we show that hSgo1 blocks the binding of PP2A-B56 substrates containing a canonical B56 binding motif. We find that PP2A-B56 bound to hSgo1 dephosphorylates Cdk1 sites on hSgo1 itself to modulate cohesin interactions. Collectively our work provides important insight into cohesion protection during mitosis.
Collapse
Affiliation(s)
- Yumi Ueki
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Michael A Hadders
- Oncode Institute and Center for Molecular MedicineUniversity Medical Center UtrechUtrecht UniversityUtrechtThe Netherlands
| | - Melanie B Weisser
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Isha Nasa
- Biochemistry and Cell BiologyGeisel School of Medicine at Dartmouth CollegeHanoverNHUSA
| | | | - Lauren E Cressey
- Biochemistry and Cell BiologyGeisel School of Medicine at Dartmouth CollegeHanoverNHUSA
| | - Tanmay Gupta
- Wellcome Center for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Emil P T Hertz
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Thomas Kruse
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Guillermo Montoya
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| | | | - Arminja Kettenbach
- Biochemistry and Cell BiologyGeisel School of Medicine at Dartmouth CollegeHanoverNHUSA
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular MedicineUniversity Medical Center UtrechUtrecht UniversityUtrechtThe Netherlands
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
46
|
Low TY, Syafruddin SE, Mohtar MA, Vellaichamy A, A Rahman NS, Pung YF, Tan CSH. Recent progress in mass spectrometry-based strategies for elucidating protein-protein interactions. Cell Mol Life Sci 2021; 78:5325-5339. [PMID: 34046695 PMCID: PMC8159249 DOI: 10.1007/s00018-021-03856-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Protein-protein interactions are fundamental to various aspects of cell biology with many protein complexes participating in numerous fundamental biological processes such as transcription, translation and cell cycle. MS-based proteomics techniques are routinely applied for characterising the interactome, such as affinity purification coupled to mass spectrometry that has been used to selectively enrich and identify interacting partners of a bait protein. In recent years, many orthogonal MS-based techniques and approaches have surfaced including proximity-dependent labelling of neighbouring proteins, chemical cross-linking of two interacting proteins, as well as inferring PPIs from the co-behaviour of proteins such as the co-fractionating profiles and the thermal solubility profiles of proteins. This review discusses the underlying principles, advantages, limitations and experimental considerations of these emerging techniques. In addition, a brief account on how MS-based techniques are used to investigate the structural and functional properties of protein complexes, including their topology, stoichiometry, copy number and dynamics, are discussed.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia.
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | | | - Nisa Syakila A Rahman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Chris Soon Heng Tan
- Department of Chemistry, College of Science , Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
47
|
Lee E, Kang C, Purhonen P, Hebert H, Bouazoune K, Hohng S, Song JJ. A Novel N-terminal Region to Chromodomain in CHD7 is Required for the Efficient Remodeling Activity. J Mol Biol 2021; 433:167114. [PMID: 34161779 DOI: 10.1016/j.jmb.2021.167114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Chromodomain-Helicase DNA binding protein 7 (CHD7) is an ATP dependent chromatin remodeler involved in maintaining open chromatin structure. Mutations of CHD7 gene causes multiple developmental disorders, notably CHARGE syndrome. However, there is not much known about the molecular mechanism by which CHD7 remodels nucleosomes. Here, we performed biochemical and biophysical analysis on CHD7 chromatin remodeler and uncover that N-terminal to the Chromodomain (N-CRD) interacts with nucleosome and contains a high conserved arginine stretch, which is reminiscent of arginine anchor. Importantly, this region is required for efficient ATPase stimulation and nucleosome remodeling activity of CHD7. Furthermore, smFRET analysis shows the mutations in the N-CRD causes the defects in remodeling activity. Collectively, our results uncover the functional importance of a previously unidentified N-terminal region in CHD7 and implicate that the multiple domains in chromatin remodelers are involved in regulating their activities.
Collapse
Affiliation(s)
- Eunhye Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute of BioCentury, Daejeon 34141, Korea
| | - Chanshin Kang
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Pasi Purhonen
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, S-141 52 Huddinge, Sweden
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, S-141 52 Huddinge, Sweden
| | - Karim Bouazoune
- Institut für Molekularbiologie und Tumorforschung (IMT), Biomedizinisches Forschungszentrum, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea.
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute of BioCentury, Daejeon 34141, Korea.
| |
Collapse
|
48
|
Zamel J, Cohen S, Zohar K, Kalisman N. Facilitating In Situ Cross-Linking and Mass Spectrometry by Antibody-Based Protein Enrichment. J Proteome Res 2021; 20:3701-3708. [PMID: 34151562 DOI: 10.1021/acs.jproteome.1c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross-linking of living cells followed by mass spectrometry identification of cross-linked peptides (in situ CLMS) is an emerging technology to study protein structures in their native environment. One of the inherent difficulties of this technology is the high complexity of the samples following cell lysis. Currently, this difficulty largely limits the identification of cross-links to the more abundant proteins in the cell. Here, we describe a targeted approach in which an antibody is used to purify a specific protein-of-interest out of the cell lysate. Mass spectrometry analysis of the protein material that binds to the antibody can then identify considerably more cross-links on the target protein. By using an antibody against the CCT chaperonin, we identified over 200 cross-links that provide in situ evidence for the subunit arrangement of the CCT particle and its interactions with prefoldin. Similar targeting with an antibody against tubulin provided in situ evidence for the structure of the microtubule. Finally, the approach was also successful in identifying cross-links within a protein that expresses at a low level. These results demonstrate the general utility of antibody-based sample simplification for in situ CLMS and greatly expand the scope of protein systems that are amenable to in situ structural studies.
Collapse
Affiliation(s)
- Joanna Zamel
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shon Cohen
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Keren Zohar
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nir Kalisman
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
49
|
Rathor N, Chung HK, Song JL, Wang SR, Wang JY, Rao JN. TRPC1-mediated Ca 2+ signaling enhances intestinal epithelial restitution by increasing α4 association with PP2Ac after wounding. Physiol Rep 2021; 9:e14864. [PMID: 33991460 PMCID: PMC8123541 DOI: 10.14814/phy2.14864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 11/24/2022] Open
Abstract
Gut epithelial restitution after superficial wounding is an important repair modality regulated by numerous factors including Ca2+ signaling and cellular polyamines. Transient receptor potential canonical-1 (TRPC1) functions as a store-operated Ca2+ channel in intestinal epithelial cells (IECs) and its activation increases epithelial restitution by inducing Ca2+ influx after acute injury. α4 is a multiple functional protein and implicated in many aspects of cell functions by modulating protein phosphatase 2A (PP2A) stability and activity. Here we show that the clonal populations of IECs stably expressing TRPC1 (IEC-TRPC1) exhibited increased levels of α4 and PP2A catalytic subunit (PP2Ac) and that TRPC1 promoted intestinal epithelial restitution by increasing α4/PP2Ac association. The levels of α4 and PP2Ac proteins increased significantly in stable IEC-TRPC1 cells and this induction in α4/PP2Ac complexes was accompanied by an increase in IEC migration after wounding. α4 silencing by transfection with siRNA targeting α4 (siα4) or PP2Ac silencing destabilized α4/PP2Ac complexes in stable IEC-TRPC1 cells and repressed cell migration over the wounded area. Increasing the levels of cellular polyamines by stable transfection with the Odc gene stimulated α4 and PP2Ac expression and enhanced their association, thus also promoting epithelial restitution after wounding. In contrast, depletion of cellular polyamines by treatment with α-difluoromethylornithine reduced α4/PP2Ac complexes and repressed cell migration. Ectopic overexpression of α4 partially rescued rapid epithelial repair in polyamine-deficient cells. These results indicate that activation of TRPC1-mediated Ca2+ signaling enhances cell migration primarily by increasing α4/PP2Ac associations after wounding and this pathway is tightly regulated by cellular polyamines.
Collapse
Affiliation(s)
- Navneeta Rathor
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jia-Le Song
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shelley R Wang
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| |
Collapse
|
50
|
Gutierrez C, Salituro LJ, Yu C, Wang X, DePeter SF, Rychnovsky SD, Huang L. Enabling Photoactivated Cross-Linking Mass Spectrometric Analysis of Protein Complexes by Novel MS-Cleavable Cross-Linkers. Mol Cell Proteomics 2021; 20:100084. [PMID: 33915260 PMCID: PMC8214149 DOI: 10.1016/j.mcpro.2021.100084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cross-linking mass spectrometry (XL-MS) is a powerful tool for studying protein-protein interactions and elucidating architectures of protein complexes. While residue-specific XL-MS studies have been very successful, accessibility of interaction regions nontargetable by specific chemistries remain difficult. Photochemistry has shown great potential in capturing those regions because of nonspecific reactivity, but low yields and high complexities of photocross-linked products have hindered their identification, limiting current studies predominantly to single proteins. Here, we describe the development of three novel MS-cleavable heterobifunctional cross-linkers, namely SDASO (Succinimidyl diazirine sulfoxide), to enable fast and accurate identification of photocross-linked peptides by MSn. The MSn-based workflow allowed SDASO XL-MS analysis of the yeast 26S proteasome, demonstrating the feasibility of photocross-linking of large protein complexes for the first time. Comparative analyses have revealed that SDASO cross-linking is robust and captures interactions complementary to residue-specific reagents, providing the foundation for future applications of photocross-linking in complex XL-MS studies.
Collapse
Affiliation(s)
- Craig Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Leah J Salituro
- Department of Chemistry, University of California, Irvine, California, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Sadie F DePeter
- Department of Chemistry, University of California, Irvine, California, USA
| | - Scott D Rychnovsky
- Department of Chemistry, University of California, Irvine, California, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, California, USA.
| |
Collapse
|