1
|
Altadill M, Álvarez I, Ataya M, Heredia G, Alari‐Pahissa E, Muntasell A, Llano M, Fuchs J, Vilches C, Hengel H, Halenius A, López‐Botet M. Human Cytomegalovirus Antigen Presentation by HLA-G in Infected Cells. HLA 2025; 105:e70089. [PMID: 40347012 PMCID: PMC12065092 DOI: 10.1111/tan.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/17/2025] [Accepted: 02/08/2025] [Indexed: 05/12/2025]
Abstract
HLA-E and -G class Ib molecules were considered unrelated to viral antigen presentation. HLA-E binds nonamers from the leader sequences of other HLA-I molecules and the human cytomegalovirus (HCMV) UL40 protein, interacting with CD94/NKG2 NK cell receptors. Yet, evidence that HLA-E may present some pathogen-derived peptides to CD8+ T lymphocytes has been reported. By contrast, HLA-G binds a broad spectrum of endogenous sequences but its role in antigen presentation is unknown. An experimental approach was set up to search for HCMV antigens displayed by HLA-G in infected cells. Among the analysed peptidome, 22 sequences corresponding to 16 HCMV molecules were identified; 17 peptides were confirmed to interact in vitro with HLA-G of which 10 displayed characteristic anchor residues. As compared to the response in short-term (6 h) assays to immunodominant IE-1 and pp65 antigens, none of the HLA-G-binding peptides stimulated cytokine production by CD8+ T cells from HCMV-seropositive blood donors (n = 15). Following a 14-day peptide stimulation of PBMC and expansion with IL-2, CD8+ T cells specifically responding to a subset of these viral antigens were detected in some individuals, yet were not restricted by HLA-G in functional assays. A subset of viral peptides did bind to both HLA-G and -E but were not recognised by CD94/NKG2 NK cell receptors. Our results provide the first evidence that HLA-G may display potentially immunogenic viral peptides in HCMV-infected cells, yet do not support their ability to promote HLA-G-restricted CD8+ T cell responses nor to modulate NK cell functions.
Collapse
Affiliation(s)
- Mireia Altadill
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Iñaki Álvarez
- Department of Cell BiologyPhysiology and Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of BarcelonaBellaterraSpain
| | - Michelle Ataya
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Gemma Heredia
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | | | - Aura Muntasell
- Department of Cell BiologyPhysiology and Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of BarcelonaBellaterraSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Manuel Llano
- Biological Sciences DepartmentThe University of Texas at El PasoEl PasoUSA
| | - Jonas Fuchs
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Carlos Vilches
- Immunogenetics and Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro ‐ Segovia de AranaMadridSpain
- Organización Nacional de Trasplantes, Ministerio de SanidadMadridSpain
| | - Hartmut Hengel
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Anne Halenius
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Miguel López‐Botet
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| |
Collapse
|
2
|
Li K, Pan X, Guo H, Jiang S, Fang X. Fatal Acute Intestinal Obstruction with Hemophagocytic Lymphohistiocytosis and Multiple Organ Failure in Adult-Onset Still's Disease: A Rare Case Report. J Inflamm Res 2025; 18:5161-5171. [PMID: 40255663 PMCID: PMC12009564 DOI: 10.2147/jir.s509898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025] Open
Abstract
Background Adult-onset Still's disease (AOSD) is a systemic autoinflammatory disorder characterized by unpredictable multi-organ involvement. Although gastrointestinal complications are uncommon in AOSD, they can be life-threatening and present significant diagnostic and management challenges. Case Summary We report the case of a 68-year-old man with AOSD who developed acute intestinal obstruction, a rare and critical complication. Imaging revealed significant colonic wall thickening, with a maximum thickness of 2.6 cm on contrast-enhanced computed tomography. The clinical status of the patient deteriorated, further complicated by the onset of hemophagocytic lymphohistiocytosis (HLH) and multi-organ failure, including acute renal dysfunction. Despite receiving intensive care and aggressive treatment, including supportive measures and immunosuppressive therapy, the patient succumbed to his illness. Conclusion This case underscores the importance of recognizing rare gastrointestinal and systemic complications in patients with AOSD. Early identification and prompt multidisciplinary management of conditions such as HLH and acute intestinal obstruction are essential for improving outcomes in such critical scenarios.
Collapse
Affiliation(s)
- Kun Li
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xuejia Pan
- Department of Nursing, Hangzhou Xiaoying Community Health Service Center, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Hongyu Guo
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Saiping Jiang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xueling Fang
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
3
|
Viduka I, Štimac I, Jurić SL, Gulić T, Lisnić B, Zagorac GB, Lučin HM, Lučin P. Contribution of Sorting Nexin 3 in the Cytomegalovirus Assembly. Biomedicines 2025; 13:936. [PMID: 40299528 PMCID: PMC12024572 DOI: 10.3390/biomedicines13040936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Cytomegalovirus (CMV) infection expands early endosomes (EEs) into tubular extensions that may contribute to the control of virus replication and virion assembly. Sequential recruitment of protein coats and sorting nexins (SNXs) creates membrane zones at the EEs that serve as scaffolds for membrane tubulation and retrieval of cargo proteins, including host cell signaling proteins and viral glycoproteins. This study aims to investigate whether the SNX3-dependent zone of EEs contributes to CMV replication and assembly. Methods: Protein localization was analyzed by confocal imaging and expression by Western blot. The contribution of SNX3 to murine CMV (MCMV) replication, assembly compartment (AC) formation, and virion release was analyzed by siRNA and shRNA depletion. The impact of other downstream SNXs that act in EE tubulation was investigated by combined siRNA knockdowns of SNX1, SNX2, SNX4, SNX17, and SNX27 on cell lines expressing shRNA for SNX3. Results: The SNX3-162 isoform acting at EEs was efficiently knocked down by siRNA and shRNA. The SNX3-dependent EE zone recruited SNX27 and contributed to Rab10-dependent tubulation within the pre-AC. SNX3 was not essential for MCMV replication but contributed to the SNX27-, SNX17- and SNX4-dependent release of virions. Silencing SNX3 further reduced the release of virions after silencing SNX27, SNX4, and SNX17, three SNXs that control recycling to the plasma membrane. Conclusions: SNX3 contributes to the formation of pre-AC and MCMV assembly. It acts sequentially with SNX27, SNX4, and SNX17 along the recycling pathway in the process of the production and release of infection virions, suggesting that multiple membrane sources may contribute to the secondary envelopment of MCMV virions.
Collapse
Affiliation(s)
- Ivona Viduka
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Igor Štimac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Silvija Lukanović Jurić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Tamara Gulić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Gordana Blagojević Zagorac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
- Campus University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
- Campus University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
- Campus University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
4
|
Dunn DM, Pack LJ, Munger JC. RAF1 promotes successful human cytomegalovirus replication and is regulated by AMPK-mediated phosphorylation during infection. J Virol 2025; 99:e0186624. [PMID: 39902964 PMCID: PMC11915854 DOI: 10.1128/jvi.01866-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
RAF1 is a key player in growth factor receptor signaling, which has been linked to multiple viral infections, including human cytomegalovirus (HCMV) infection. Although HCMV remains latent in most individuals, it can cause acute infection in immunocompromised populations, such as transplant recipients, neonates, and cancer patients. Current treatments are suboptimal, highlighting the need for novel therapies. Multiple points in the growth factor signaling pathway are important for HCMV infection, but the relationship between HCMV and RAF1, a component of the mitogen-activated protein kinase (MAPK) cascade, is not well understood. The AMP-activated protein kinase (AMPK) is a known regulator of RAF1, and AMPK activity is induced by HCMV infection, which is important for productive HCMV replication. Our data indicate that HCMV infection induces AMPK-specific changes in RAF1 protein phosphorylation, including increasing phosphorylation at RAF1-Ser621, a known AMPK phospho-site, which results in increased binding to the 14-3-3 scaffolding protein, an important aspect of RAF1 protein activation. Inhibition of RAF1, either pharmacologically or via shRNA or CRISPR-mediated targeting, inhibits viral replication and spread in both fibroblasts and epithelial cells. Collectively, our data indicate that HCMV infection and AMPK activation modulate RAF1 activity, which is important for viral replication. IMPORTANCE Human cytomegalovirus (HCMV) infection is a widespread infection impacting approximately 60-90% of the global population. Although latent in healthy individuals, acute infection in immunocompromised populations, such as neonates, transplant recipients, and cancer patients, can result in retinal and gastrointestinal problems, hearing loss, and even death. Current antivirals are suboptimal due to the development of viral resistance or toxicity in patients, highlighting the need for novel treatments. Our research suggests a new potential target, RAF1, which is a regulator of cellular growth and proliferation. We find that RAF1 is phosphorylated by AMP-activated protein kinase, and that inhibition of RAF1 negatively impacts viral infection. Furthermore, drugs currently used to treat certain cancers also inhibit RAF1 and may have an additional anti-HCMV therapeutic effect in HCMV-susceptible cancer patients.
Collapse
Affiliation(s)
- Diana M. Dunn
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| | - Ludia J. Pack
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| | - Joshua C. Munger
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
5
|
Penner I, Krämer N, Hirsch J, Büscher N, Schmidt H, Plachter B. Deletion of the Human Cytomegalovirus US2 to US11 Gene Family Members Impairs the Type-I Interferon Response. Viruses 2025; 17:426. [PMID: 40143353 PMCID: PMC11945591 DOI: 10.3390/v17030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Infection of cells with the human cytomegalovirus (HCMV) triggers the expression of interferon-stimulated genes (ISGs). ISGs encode proteins with antiviral functions, such as inhibiting viral replication, promoting cell death of infected cells and enhancing immune responses. HCMV has evolved mechanisms to evade the antiviral effects of ISGs. The viral proteins encoded by the viral genes US7, US8, and US9 have been shown to interfere with interferon induction. US7 to US9 are embedded in a cluster of HCMV genes, termed US2 to US11. The individual members of this gene family interfere on multiple levels with innate and adaptive immune responses to HCMV infection. Using viral mutants with different deletions in US2 to US11, we addressed the question if genes other than US7 to US9 would also influence the IFN responses. Surprisingly, deletion of the complete US2 to US11 gene region led to reduced levels of selected ISGs. Cells infected with viruses in which individual US2 to US11 genes were deleted showed a less pronounced reduction of the selected ISGs. The experiments including RNA-seq analyses indicate that genes of the US2 to US11 gene family have a complex interaction with the IFN-ISG response which is likely regulated on the level of ISG protein stability. As US2-US11 are dispensable for replication in cell culture, the genomic region was frequently used for the insertion of bacterial artificial chromosome vectors in the process of cloning the complete HCMV genome. The results shown here must be considered when viruses derived from BACs with US2-US11 deletions are used and whether appropriate controls must be applied.
Collapse
|
6
|
Korzeniowska A, Bryl E. Infectious agents in the pathogenesis of autoimmune rheumatic diseases. Transl Res 2025; 276:39-45. [PMID: 39742962 DOI: 10.1016/j.trsl.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Autoimmune rheumatic diseases (AIRDs) are diseases with complex outset and courses, in which both genetic and environmental factors participate. Many environmental factors can be committed to AIRDs outset and development. The most popular of them, with confirmed impact, are smoking, age, gender, and microorganisms. In light of recent research an assumption about the importance of various microorganisms in the pathogenesis of AIRDs is growing in popularity. The human immune system has various protective mechanisms against infectious antigens which in normal cases let organism manage potential infection faster and more effectively. Unfortunately in some situations, specific errors in those mechanisms can cause an autoreactive response despite mitigation of infection. Viruses including EBV, CMV, and even SARS-CoV2 can cause these errors. This in combination with genetic factors can lead to rheumatic disease development. This research aims to provide a brief review of the role of viruses in the outset and development of AIRDs.
Collapse
Affiliation(s)
| | - Ewa Bryl
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| |
Collapse
|
7
|
Manska S, Hagemann A, Magana J, Rossetto CC, Verma SC. Characterization of Human Cytomegalovirus (HCMV) Long Non-Coding RNA1.2 During Lytic Replication. Viruses 2025; 17:149. [PMID: 40006904 PMCID: PMC11860937 DOI: 10.3390/v17020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
During lytic replication of human cytomegalovirus (HCMV), the most abundant viral transcripts are long non-coding RNAs (lncRNAs). Viral lncRNAs can have a variety of functions, some of which are necessary for viral production and the modulation of host processes during infection. HCMV produces four lncRNAs, Beta2.7 (RNA2.7), RNA4.9, RNA5.0 and RNA1.2. While there has been research on these viral lncRNAs, many of their functions remain uncharacterized. To determine the function of RNA1.2, we explored its requirement during lytic infection by generating viral mutants containing either a full or partial deletion of the RNA1.2 locus. Within permissive fibroblasts, the RNA1.2 deletion mutants showed no defects in viral DNA synthesis, transcript expression, protein production, or generation of viral progeny. Further investigation to identify potential cellular and viral protein binding partners of RNA1.2 was performed using liquid chromatography-mass spectrometry (LC-MS). A significant number of cellular proteins were identified and associated with RNA1.2. Specifically those associated with the innate immune response, mitochondrial processes, and cell cycle regulation. While RNA1.2 is dispensable for lytic replication, these findings suggest it may play a pivotal role in modulating the host response.
Collapse
Affiliation(s)
| | | | | | | | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA; (S.M.); (A.H.); (J.M.); (C.C.R.)
| |
Collapse
|
8
|
Venturini C, Breuer J. Cytomegalovirus Genetic Diversity and Evolution: Insights into Genotypes and Their Role in Viral Pathogenesis. Pathogens 2025; 14:50. [PMID: 39861011 PMCID: PMC11768282 DOI: 10.3390/pathogens14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus that infects most of the human population and causes significant morbidity and mortality, particularly among immunocompromised individuals. Understanding CMV's genetic diversity and evolutionary dynamics is crucial for elucidating its pathogenesis and developing effective therapeutic interventions. This review provides a comprehensive examination of CMV's genetic diversity and evolution, focussing on the role of different genotypes in viral pathogenesis.
Collapse
Affiliation(s)
- Cristina Venturini
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
| | | |
Collapse
|
9
|
Luo X, Quan L, Lin Q, Rong H, Liu Y, Meng J, You X. Integrating clinical data and genetic susceptibility to elucidate the relationship between systemic lupus erythematosus and human cytomegalovirus infection. Virol J 2024; 21:311. [PMID: 39614342 PMCID: PMC11607911 DOI: 10.1186/s12985-024-02578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Viral infections are known to induce the occurrence and pathogenesis of systemic lupus erythematosus (SLE). Previous studies have indicated a possible relationship between SLE and human cytomegalovirus (HCMV) infection and have attributed HCMV to be associated with various autoantibodies; however, these studies were constrained by variations in sample size and potential selection bias. Therefore, in the present study, we aimed to elucidate the relationship between HCMV and autoantibodies in patients with SLE by integrating clinical data and genetic susceptibility. METHODS Using various statistical methods, we conducted a retrospective analysis of the spectrum of SLE autoantibodies and HCMV infections among patients hospitalized at our center over the past 10 years. Machine learning modeling was used to predict active HCMV infections based on the antinuclear (ANA) spectrum. Moreover, Mendelian randomization (MR) was used to investigate the causal relationship between SLE and HCMV infection. RESULTS In the HCMV group, the levels of ANA, anti-dsDNA, anti-histone antibody (AHA), and anti-nucleosome antibody (ANuA) were significantly increased (P < 0.001) and were linked to the presence of CMV-pp65-antigen-positive polymorphonuclear leukocytes (P < 0.001). A weak correlation was observed between the titers of anti-CMV IgM and ANA (P < 0.001). The ANA spectrum demonstrated a strong predictive performance for active HCMV infection based on principal component analysis (Adonis and ANOSIM P < 0.001) as well as support vector machine and extreme gradient boosting modeling. MR analyses of inverse-variance weighted, weighted mean, MR-Egger, and weighted mode revealed that patients with SLE were at a higher risk of developing HCMV infection (P < 0.05). However, HCMV infection did not have a causal effect on SLE (P > 0.05). CONCLUSION The ANA spectrum in patients with SLE can be used to predict HCMV infection status. Due to the inherent susceptibility of patients with SLE to HCMV infection, we propose for the first time that if a patient with SLE exhibits high serum titers of ANA, anti-dsDNA, ANuA, and AHA, caution should be exercised for HCMV infection, which can contribute to the clinical assessment of SLE and improve patient prognosis.
Collapse
Affiliation(s)
- Xin Luo
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Key Laboratory of Rheumatology & Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Liuliu Quan
- Department of Medical Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingting Lin
- Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huiteng Rong
- University of International Business and Economics, Beijing, China
| | - Yue Liu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaqi Meng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Key Laboratory of Rheumatology & Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.
| |
Collapse
|
10
|
Soh TK, Ognibene S, Sanders S, Schäper R, Kaufer BB, Bosse JB. A proteome-wide structural systems approach reveals insights into protein families of all human herpesviruses. Nat Commun 2024; 15:10230. [PMID: 39592652 PMCID: PMC11599850 DOI: 10.1038/s41467-024-54668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Structure predictions have become invaluable tools, but viral proteins are absent from the EMBL/DeepMind AlphaFold database. Here, we provide proteome-wide structure predictions for all nine human herpesviruses and analyze them in depth with explicit scoring thresholds. By clustering these predictions into structural similarity groups, we identified new families, such as the HCMV UL112-113 cluster, which is conserved in alpha- and betaherpesviruses. A domain-level search found protein families consisting of subgroups with varying numbers of duplicated folds. Using large-scale structural similarity searches, we identified viral proteins with cellular folds, such as the HSV-1 US2 cluster possessing dihydrofolate reductase folds and the EBV BMRF2 cluster that might have emerged from cellular equilibrative nucleoside transporters. Our HerpesFolds database is available at https://www.herpesfolds.org/herpesfolds and displays all models and clusters through an interactive web interface. Here, we show that system-wide structure predictions can reveal homology between viral species and identify potential protein functions.
Collapse
Affiliation(s)
- Timothy K Soh
- Hannover Medical School, Institute of Virology, Hanover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hanover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Sofia Ognibene
- Hannover Medical School, Institute of Virology, Hanover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hanover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Saskia Sanders
- Hannover Medical School, Institute of Virology, Hanover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hanover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Robin Schäper
- Hannover Medical School, Institute of Virology, Hanover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hanover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Benedikt B Kaufer
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Jens B Bosse
- Hannover Medical School, Institute of Virology, Hanover, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hanover, Germany.
- Leibniz Institute of Virology (LIV), Hamburg, Germany.
| |
Collapse
|
11
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
12
|
Mocarski ES. Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens. Viruses 2024; 16:1820. [PMID: 39772130 PMCID: PMC11680106 DOI: 10.3390/v16121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny. Cell death also naturally terminates replication during the final stages of replication. Over the past two decades, the host defense potential of known programmed cell death pathways (apoptosis, necroptosis, and pyroptosis), as well as a novel mitochondrial serine protease pathway have been defined through studies of cytomegalovirus-encoded cell death suppressors. Such virus-encoded inhibitors prevent virus-induced, cytokine-induced, and stress-induced death of infected cells while also moderating inflammation. By evading cell death and consequent inflammation as well as innate and adaptive immune clearance, cytomegaloviruses represent successful pathogens that become a critical disease threat when the host immune system is compromised. This review will discuss cell death programs acquired for mammalian host defense against cytomegaloviruses and enumerate the range of modulatory strategies this type of virus employs to balance host defense in favor of lifelong persistence.
Collapse
Affiliation(s)
- Edward S. Mocarski
- Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA;
- Department of Microbiology & Immunology, Emory Medical School, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Inaam N, Othman S, Fryad H, Faqi S. Seroprevalence and Molecular Detection of Cytomegalovirus UL146 and US28 Gene Expression in Women With Recurrent Pregnancy Loss. Cureus 2024; 16:e73039. [PMID: 39640126 PMCID: PMC11620713 DOI: 10.7759/cureus.73039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Human cytomegalovirus (CMV) is a global herpesvirus that is highly prevalent worldwide and is able to establish lifelong latency after initial infection. The infection is highly frequent during pregnancy in human beings, which leads to preterm birth in some cases. Circulating strains of CMV carry a high number of variable or disrupted genes. Some of these like UL146, a highly diverse gene, and the US28 gene are involved in viral dissemination. This study aims to determine the seroprevalence of CMV and to investigate whether the highly variable UL146 and US28 genes, isolated from the blood of seropositive women, are associated with recurrent pregnancy loss. Material and methods This cross-sectional study was carried out in Erbil City, Iraq from October 2022 to July 2023. A total of 150 women at their reproductive age with a history of miscarriage who attended Maternity Teaching Hospital were enrolled. Anti-CMV IgG and IgM antibodies were assessed by enzyme-linked immunosorbent assay (ELISA). Highly variable UL146 and US28 genes of CMV from seropositive samples were amplified by conventional polymerase chain reaction (PCR), and the results were visualized on a UV-transilluminator. SPSS version 22 (IBM Corp., Armonk, NY, USA) was used for data entry and analysis. The p-value less than 0.05 was regarded as statistically significant. Results Anti-CMV IgG and IgM were seropositive in 103 (53.3%) and 13 (8.7%) women, respectively, and only 10 (6.7%) of them for both anti-CMV IgG and IgM. Significant associations of CMV and history of miscarriage, age, educational level, and gestational age of miscarriages were observed (p-value less than 0.05). On the other hand, no statistically significant association between CMV and socioeconomic level or residency was observed. The frequencies of genetic analysis of UL146 and US28 of the 103 seropositive tested samples of women with a history of miscarriage were 31 (30.1%) and nine (8.7%), respectively. A significant association between recurrent miscarriage and UL146 gene expression was observed. PCR targeting the UL146 demonstrated greater sensitivity for diagnosing CMV. Conclusion The seroprevalence of CMV is relatively high in Erbil, and the UL146 and US28 genes can act as factors in the initial level of CMV. Therefore, molecular detection of these genes can aid in determining the virulence of CMV strains.
Collapse
Affiliation(s)
- Niyan Inaam
- Basic Medical Science, College of Medicine of Hawler Medical University, Erbil, IRQ
| | - Samir Othman
- Community Medicine, College of Medicine of Hawler Medical University, Erbil, IRQ
| | - Hataw Fryad
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, IRQ
| | - Shler Faqi
- Basic Medical Science, College of Medicine, University of Sulaimani, Erbil, IRQ
| |
Collapse
|
14
|
Hwang SY, Kim H, Denisko D, Zhao B, Lee D, Jeong J, Kim J, Park K, Park J, Jeong D, Park S, Choi HJ, Kim S, Lee EA, Ahn K. Human cytomegalovirus harnesses host L1 retrotransposon for efficient replication. Nat Commun 2024; 15:7640. [PMID: 39223139 PMCID: PMC11369119 DOI: 10.1038/s41467-024-51961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic parasites, including viruses and transposons, exploit components from the host for their own replication. However, little is known about virus-transposon interactions within host cells. Here, we discover a strategy where human cytomegalovirus (HCMV) hijacks L1 retrotransposon encoded protein during its replication cycle. HCMV infection upregulates L1 expression by enhancing both the expression of L1-activating transcription factors, YY1 and RUNX3, and the chromatin accessibility of L1 promoter regions. Increased L1 expression, in turn, promotes HCMV replicative fitness. Affinity proteomics reveals UL44, HCMV DNA polymerase subunit, as the most abundant viral binding protein of the L1 ribonucleoprotein (RNP) complex. UL44 directly interacts with L1 ORF2p, inducing DNA damage responses in replicating HCMV compartments. While increased L1-induced mutagenesis is not observed in HCMV for genetic adaptation, the interplay between UL44 and ORF2p accelerates viral DNA replication by alleviating replication stress. Our findings shed light on how HCMV exploits host retrotransposons for enhanced viral fitness.
Collapse
Affiliation(s)
- Sung-Yeon Hwang
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyewon Kim
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Danielle Denisko
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Dohoon Lee
- Bioinformatics Institute, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 FOUR Intelligence Computing, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiseok Jeong
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinuk Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kiwon Park
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junhyun Park
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongjoon Jeong
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sehong Park
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Jung Choi
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
15
|
Bost P, Drayman N. Dissecting viral infections, one cell at a time, by single-cell technologies. Microbes Infect 2024; 26:105268. [PMID: 38008398 PMCID: PMC11161131 DOI: 10.1016/j.micinf.2023.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
The meteoric rise of single-cell genomic technologies, especially of single-cell RNA-sequencing (scRNA-seq), has revolutionized several fields of cellular biology, especially immunology, oncology, neuroscience and developmental biology. While the field of virology has been relatively slow to adopt these technological advances, many works have shed new light on the fascinating interactions of viruses with their hosts using single cell technologies. One clear example is the multitude of studies dissecting viral infections by single-cell sequencing technologies during the recent COVID-19 pandemic. In this review we will detail the advantages of studying viral infections at a single-cell level, how scRNA-seq technologies can be used to achieve this goal and the associated technical limitations, challenges and solutions. We will highlight recent biological discoveries and breakthroughs in virology enabled by single-cell analyses and will end by discussing possible future directions of the field. Given the rate of publications in this exciting new frontier of virology, we have likely missed some important works and we apologize in advance to the researchers whose work we have failed to cite.
Collapse
Affiliation(s)
- Pierre Bost
- University of Zurich, Department of Quantitative Biomedicine, Zurich, 8057, Switzerland; ETH Zurich, Institute for Molecular Health Sciences, Zurich, 8093 Switzerland.
| | - Nir Drayman
- The Department of Molecular Biology and Biochemistry, The Center for Virus Research and The Center for Complex Biological Systems, The University of California, Irvine, CA, 92697, USA
| |
Collapse
|
16
|
Shekhar R, O'Grady T, Keil N, Feswick A, Amador DM, Tibbetts S, Flemington E, Renne R. High-density resolution of the Kaposi's sarcoma associated herpesvirus transcriptome identifies novel transcript isoforms generated by long-range transcription and alternative splicing. Nucleic Acids Res 2024; 52:7720-7739. [PMID: 38922687 PMCID: PMC11260491 DOI: 10.1093/nar/gkae540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus is the etiologic agent of Kaposi's sarcoma and two B-cell malignancies. Recent advancements in sequencing technologies have led to high resolution transcriptomes for several human herpesviruses that densely encode genes on both strands. However, for KSHV progress remained limited due to the overall low percentage of KSHV transcripts, even during lytic replication. To address this challenge, we have developed a target enrichment method to increase the KSHV-specific reads for both short- and long-read sequencing platforms. Furthermore, we combined this approach with the Transcriptome Resolution through Integration of Multi-platform Data (TRIMD) pipeline developed previously to annotate transcript structures. TRIMD first builds a scaffold based on long-read sequencing and validates each transcript feature with supporting evidence from Illumina RNA-Seq and deepCAGE sequencing data. Our stringent innovative approach identified 994 unique KSHV transcripts, thus providing the first high-density KSHV lytic transcriptome. We describe a plethora of novel coding and non-coding KSHV transcript isoforms with alternative untranslated regions, splice junctions and open-reading frames, thus providing deeper insights on gene expression regulation of KSHV. Interestingly, as described for Epstein-Barr virus, we identified transcription start sites that augment long-range transcription and may increase the number of latency-associated genes potentially expressed in KS tumors.
Collapse
Affiliation(s)
- Ritu Shekhar
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Tina O'Grady
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Netanya Keil
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - April Feswick
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - David A Moraga Amador
- UF Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | | | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Riedl A, Bojková D, Tan J, Jeney Á, Larsen PK, Jeney C, Full F, Kalinke U, Ruzsics Z. Construction and Characterization of a High-Capacity Replication-Competent Murine Cytomegalovirus Vector for Gene Delivery. Vaccines (Basel) 2024; 12:791. [PMID: 39066429 PMCID: PMC11281640 DOI: 10.3390/vaccines12070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
We investigated the basic characteristics of a new murine cytomegalovirus (MCMV) vector platform. Using BAC technology, we engineered replication-competent recombinant MCMVs with deletions of up to 26% of the wild-type genome. To this end, we targeted five gene blocks (m01-m17, m106-m109, m129-m141, m144-m158, and m159-m170). BACs featuring deletions from 18% to 26% of the wild-type genome exhibited delayed virus reconstitution, while smaller deletions (up to 16%) demonstrated reconstitution kinetics similar to those of the wild type. Utilizing an innovative methodology, we introduced large genomic DNA segments, up to 35 kbp, along with reporter genes into a newly designed vector with a potential cloning capacity of 46 kbp (Q4). Surprisingly, the insertion of diverse foreign DNAs alleviated the delayed plaque formation phenotype of Q4, and these large inserts remained stable through serial in vitro passages. With reporter-gene-expressing recombinant MCMVs, we successfully transduced not only mouse cell lines but also non-rodent mammalian cells, including those of human, monkey, bovine, and bat origin. Remarkably, even non-mammalian cell lines derived from chickens exhibited successful transduction.
Collapse
Affiliation(s)
- André Riedl
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Denisa Bojková
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital, 60596 Frankfurt am Main, Germany
| | - Jiang Tan
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ábris Jeney
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pia-Katharina Larsen
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Institute for Experimental Infection Research, 30625 Hanover, Germany
| | - Csaba Jeney
- Department of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Full
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Institute for Experimental Infection Research, 30625 Hanover, Germany
| | - Zsolt Ruzsics
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Gerke C, Bauersfeld L, Schirmeister I, Mireisz CNM, Oberhardt V, Mery L, Wu D, Jürges CS, Spaapen RM, Mussolino C, Le-Trilling VTK, Trilling M, Dölken L, Paster W, Erhard F, Hofmann M, Schlosser A, Hengel H, Momburg F, Halenius A. Multimodal HLA-I genotype regulation by human cytomegalovirus US10 and resulting surface patterning. eLife 2024; 13:e85560. [PMID: 38900146 PMCID: PMC11189632 DOI: 10.7554/elife.85560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Human leucocyte antigen class I (HLA-I) molecules play a central role for both NK and T-cell responses that prevent serious human cytomegalovirus (HCMV) disease. To create opportunities for viral spread, several HCMV-encoded immunoevasins employ diverse strategies to target HLA-I. Among these, the glycoprotein US10 is so far insufficiently studied. While it was reported that US10 interferes with HLA-G expression, its ability to manipulate classical HLA-I antigen presentation remains unknown. In this study, we demonstrate that US10 recognizes and binds to all HLA-I (HLA-A, -B, -C, -E, -G) heavy chains. Additionally, impaired recruitment of HLA-I to the peptide loading complex was observed. Notably, the associated effects varied significantly dependending on HLA-I genotype and allotype: (i) HLA-A molecules evaded downregulation by US10, (ii) tapasin-dependent HLA-B molecules showed impaired maturation and cell surface expression, and (iii) β2m-assembled HLA-C, in particular HLA-C*05:01 and -C*12:03, and HLA-G were strongly retained in complex with US10 in the endoplasmic reticulum. These genotype-specific effects on HLA-I were confirmed through unbiased HLA-I ligandome analyses. Furthermore, in HCMV-infected fibroblasts inhibition of overlapping US10 and US11 transcription had little effect on HLA-A, but induced HLA-B antigen presentation. Thus, the US10-mediated impact on HLA-I results in multiple geno- and allotypic effects in a so far unparalleled and multimodal manner.
Collapse
Affiliation(s)
- Carolin Gerke
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Spemann Graduate School of Biology and Medicine (SGBM), University of FreiburgFreiburgGermany
- Faculty of Biology, University of FreiburgFreiburgGermany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Ivo Schirmeister
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Chiara Noemi-Marie Mireisz
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | - Valerie Oberhardt
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center University of FreiburgFreiburgGermany
| | - Lea Mery
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Di Wu
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | | | - Robbert M Spaapen
- Department of Immunopathology, Sanquin ResearchAmsterdamNetherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Claudio Mussolino
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center University of FreiburgFreiburgGermany
- Center for Chronic Immunodeficiency, Medical Center University of FreiburgFreiburgGermany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-EssenEssenGermany
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital EssenEssenGermany
| | - Lars Dölken
- Institute for Virology and Immunobiology, University of WürzburgWürzburgGermany
- Institute of Virology, Hannover Medical SchoolHannoverGermany
| | - Wolfgang Paster
- St. Anna Children’s Cancer Research Institute (CCRI)ViennaAustria
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of WürzburgWürzburgGermany
| | - Maike Hofmann
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center University of FreiburgFreiburgGermany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | - Hartmut Hengel
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, National Center for Tumor Diseases (NCT), Heidelberg University HospitalHeidelbergGermany
| | - Anne Halenius
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| |
Collapse
|
19
|
Belean A, Xue E, Cisneros B, Roberson EDO, Paley MA, Bigley TM. Transcriptomic profiling of thymic dysregulation and viral tropism after neonatal roseolovirus infection. Front Immunol 2024; 15:1375508. [PMID: 38895117 PMCID: PMC11183875 DOI: 10.3389/fimmu.2024.1375508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.
Collapse
Affiliation(s)
- Andrei Belean
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Eden Xue
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Cisneros
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisha D. O. Roberson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael A. Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
20
|
Santamorena MM, Tischer-Zimmermann S, Bonifacius A, Mireisz CNM, Costa B, Khan F, Kulkarni U, Lauruschkat CD, Sampaio KL, Stripecke R, Blasczyk R, Maecker-Kolhoff B, Kraus S, Schlosser A, Cicin-Sain L, Kalinke U, Eiz-Vesper B. Engineered HCMV-infected APCs enable the identification of new immunodominant HLA-restricted epitopes of anti-HCMV T-cell immunity. HLA 2024; 103:e15541. [PMID: 38923358 DOI: 10.1111/tan.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.
Collapse
Affiliation(s)
- Maria Michela Santamorena
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - Chiara Noemi-Marie Mireisz
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Fawad Khan
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Renata Stripecke
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Institute of Translational Immuno-oncology, Cologne, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Britta Maecker-Kolhoff
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Luka Cicin-Sain
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
21
|
Collins-McMillen D, De Oliveira Pessoa D, Zarrella K, Parkins CJ, Daily M, Moorman NJ, Kamil JP, Caposio P, Padi M, Goodrum FD. Viral and host network analysis of the human cytomegalovirus transcriptome in latency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.594597. [PMID: 38826434 PMCID: PMC11142044 DOI: 10.1101/2024.05.21.594597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
HCMV genes UL135 and UL138 play opposing roles regulating latency and reactivation in CD34+ human progenitor cells (HPCs). Using the THP-1 cell line model for latency and reactivation, we designed an RNA sequencing study to compare the transcriptional profile of HCMV infection in the presence and absence of these genes. The loss of UL138 results in elevated levels of viral gene expression and increased differentiation of cell populations that support HCMV gene expression and genome synthesis. The loss of UL135 results in diminished viral gene expression during an initial burst that occurs as latency is established and no expression of eleven viral genes from the ULb' region even following stimulation for differentiation and reactivation. Transcriptional network analysis revealed host transcription factors with potential to regulate the ULb' genes in coordination with pUL135. These results reveal roles for UL135 and UL138 in regulation of viral gene expression and potentially hematopoietic differentiation.
Collapse
Affiliation(s)
- Donna Collins-McMillen
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Diogo De Oliveira Pessoa
- Bioinformatics Shared Resource, Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Kristen Zarrella
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health Science University, Beaverton, Oregon, United States of America
| | - Michael Daily
- Vaccine and Gene Therapy Institute, Oregon Health Science University, Beaverton, Oregon, United States of America
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health Science University, Beaverton, Oregon, United States of America
| | - Megha Padi
- Bioinformatics Shared Resource, Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Felicia D. Goodrum
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
22
|
Li H, Fletcher-Etherington A, Hunter LM, Keshri S, Fielding CA, Nightingale K, Ravenhill B, Nobre L, Potts M, Antrobus R, Crump CM, Rubinsztein DC, Stanton RJ, Weekes MP. Human cytomegalovirus degrades DMXL1 to inhibit autophagy, lysosomal acidification, and viral assembly. Cell Host Microbe 2024; 32:466-478.e11. [PMID: 38479395 DOI: 10.1016/j.chom.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 04/13/2024]
Abstract
Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.
Collapse
Affiliation(s)
- Hanqi Li
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Alice Fletcher-Etherington
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Leah M Hunter
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Swati Keshri
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Institute, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Ceri A Fielding
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Benjamin Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Colin M Crump
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Institute, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Richard J Stanton
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
23
|
Wu TY, Li YR, Chang KJ, Fang JC, Urano D, Liu MJ. Modeling alternative translation initiation sites in plants reveals evolutionarily conserved cis-regulatory codes in eukaryotes. Genome Res 2024; 34:272-285. [PMID: 38479836 PMCID: PMC10984385 DOI: 10.1101/gr.278100.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
mRNA translation relies on identifying translation initiation sites (TISs) in mRNAs. Alternative TISs are prevalent across plant transcriptomes, but the mechanisms for their recognition are unclear. Using ribosome profiling and machine learning, we developed models for predicting alternative TISs in the tomato (Solanum lycopersicum). Distinct feature sets were predictive of AUG and nonAUG TISs in 5' untranslated regions and coding sequences, including a novel CU-rich sequence that promoted plant TIS activity, a translational enhancer found across dicots and monocots, and humans and viruses. Our results elucidate the mechanistic and evolutionary basis of TIS recognition, whereby cis-regulatory RNA signatures affect start site selection. The TIS prediction model provides global estimates of TISs to discover neglected protein-coding genes across plant genomes. The prevalence of cis-regulatory signatures across plant species, humans, and viruses suggests their broad and critical roles in reprogramming the translational landscape.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Kai-Jyun Chang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan;
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
24
|
Mokry RL, Monti CE, Rosas-Rogers S, Schumacher ML, Dash RK, Terhune SS. Replication efficiencies of human cytomegalovirus-infected epithelial cells are dependent on source of virus production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585739. [PMID: 38562837 PMCID: PMC10983881 DOI: 10.1101/2024.03.19.585739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Human cytomegalovirus (HCMV) is a prevalent betaherpesvirus, and infection can lead to a range of symptomatology from mononucleosis to sepsis in immunocompromised individuals. HCMV is also the leading viral cause of congenital birth defects. Lytic replication is supported by many cell types with different kinetics and efficiencies leading to a plethora of pathologies. The goal of these studies was to elucidate HCMV replication efficiencies for viruses produced on different cell types upon infection of epithelial cells by combining experimental approaches with data-driven computational modeling. HCMV was generated from a common genetic background of TB40-BAC4, propagated on fibroblasts (TB40Fb) or epithelial cells (TB40Epi), and used to infect epithelial cells. We quantified cell-associated viral genomes (vDNA), protein levels (pUL44, pp28), and cell-free titers over time for each virus at different multiplicities of infection. We combined experimental quantification with data-driven simulations and determined that parameters describing vDNA synthesis were similar between sources. We found that pUL44 accumulation was higher in TB40Fb than TB40Epi. In contrast, pp28 accumulation was higher in TB40Epi which coincided with a significant increase in titer for TB40Epi over TB40Fb. These differences were most evident during live-cell imaging, which revealed syncytia-like formation during infection by TB40Epi. Simulations of the late lytic replication cycle yielded a larger synthesis constant for pp28 in TB40Epi along with increase in virus output despite similar rates of genome synthesis. By combining experimental and computational modeling approaches, our studies demonstrate that the cellular source of propagated virus impacts viral replication efficiency in target cell types.
Collapse
Affiliation(s)
- Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI-53226
| | - Christopher E. Monti
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI-53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI-53226
| | - Suzette Rosas-Rogers
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI-53226
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI-53226
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI-53226
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI-53226
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI-53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI-53226
| |
Collapse
|
25
|
Eberhage J, Bresch IP, Ramani R, Viohl N, Buchta T, Rehfeld CL, Hinse P, Reubold TF, Brinkmann MM, Eschenburg S. Crystal structure of the tegument protein UL82 (pp71) from human cytomegalovirus. Protein Sci 2024; 33:e4915. [PMID: 38358250 PMCID: PMC10868460 DOI: 10.1002/pro.4915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen that infects a majority of the world population. It may cause severe disease in immunocompromised people and lead to pregnancy loss or grave disabilities of the fetus upon congenital infection. For effective replication and lifelong persistence in its host, HCMV relies on diverse functions of its tegument protein UL82, also known as pp71. Up to now, little is known about the molecular mechanisms underlying the multiple functions of this crucial viral protein. Here, we describe the X-ray structure of full-length UL82 to a resolution of 2.7 Å. A single polypeptide chain of 559 amino acids mainly folds into three ß-barrels. We show that UL82 forms a dimer in the crystal as well as in solution. We identify point mutations that disturb the dimerization interface and show that the mutant protein is monomeric in solution and upon expression in human cells. On the basis of the three-dimensional structure, we identify structural homologs of UL82 from other herpesviruses and analyze whether their functions are preserved in UL82. We demonstrate that UL82, despite its structural homology to viral deoxyuridinetriphosphatases (dUTPases), does not possess dUTPase activity. Prompted by the structural homology of UL82 to the ORF10 protein of murine herpesvirus 68 (MHV68), which is known to interact with the RNA export factor ribonucleic acid export 1 (Rae1), we performed coimmunoprecipitations and demonstrated that UL82 indeed interacts with Rae1. This suggests that HCMV UL82 may play a role in mRNA export from the nucleus similar to ORF10 encoded by the gammaherpesviruses MHV68.
Collapse
Affiliation(s)
- Jan Eberhage
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Ian P. Bresch
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Ramya Ramani
- Institute of GeneticsTechnische Universität BraunschweigGermany
- Virology and Innate Immunity Research GroupHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Niklas Viohl
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Thalea Buchta
- Institute of GeneticsTechnische Universität BraunschweigGermany
| | - Christopher L. Rehfeld
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Petra Hinse
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
| | - Thomas F. Reubold
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
| | - Melanie M. Brinkmann
- Institute of GeneticsTechnische Universität BraunschweigGermany
- Virology and Innate Immunity Research GroupHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Susanne Eschenburg
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| |
Collapse
|
26
|
Zimmermann C, Watson GM, Bauersfeld L, Berry R, Ciblis B, Lan H, Gerke C, Oberhardt V, Fuchs J, Hofmann M, Freund C, Rossjohn J, Momburg F, Hengel H, Halenius A. Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids. Proc Natl Acad Sci U S A 2024; 121:e2315985121. [PMID: 38377192 PMCID: PMC10907249 DOI: 10.1073/pnas.2315985121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.
Collapse
Affiliation(s)
- Cosima Zimmermann
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Gabrielle M. Watson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Liane Bauersfeld
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Barbara Ciblis
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Huan Lan
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195Berlin, Germany
| | - Carolin Gerke
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Valerie Oberhardt
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Jonas Fuchs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195Berlin, Germany
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, 69120Heidelberg, Germany
| | - Hartmut Hengel
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Anne Halenius
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| |
Collapse
|
27
|
Miller MJ, Akter D, Mahmud J, Chan GC. Human cytomegalovirus modulates mTORC1 to redirect mRNA translation within quiescently infected monocytes. J Virol 2024; 98:e0188823. [PMID: 38289104 PMCID: PMC10878035 DOI: 10.1128/jvi.01888-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/21/2024] Open
Abstract
Human cytomegalovirus (HCMV) utilizes peripheral blood monocytes as a means to systemically disseminate throughout the host. Following viral entry, HCMV stimulates non-canonical Akt signaling leading to the activation of mTORC1 and the subsequent translation of select antiapoptotic proteins within infected monocytes. However, the full extent to which the HCMV-initiated Akt/mTORC1 signaling axis reshapes the monocyte translatome is unclear. We found HCMV entry alone was able to stimulate widescale changes to mRNA translation levels and that inhibition of mTOR, a component of mTORC1, dramatically attenuated HCMV-induced protein synthesis. Although monocytes treated with normal myeloid growth factors also exhibited increased levels of translation, mTOR inhibition had no effect, suggesting HCMV activation of mTOR stimulates the acquisition of a unique translatome within infected monocytes. Indeed, polyribosomal profiling of HCMV-infected monocytes identified distinct prosurvival transcripts that were preferentially loaded with ribosomes when compared to growth factor-treated cells. Sirtuin 1 (SIRT1), a deacetylase that exerts prosurvival effects through regulation of the PI3K/Akt pathway, was found to be highly enriched following HCMV infection in an mTOR-dependent manner. Importantly, SIRT1 inhibition led to the death of HCMV-infected monocytes while having minimal effect on uninfected cells. SIRT1 also supported a positive feedback loop to sustain Akt/mTORC1 signaling following viral entry. Taken together, HCMV profoundly reshapes mRNA translation in an mTOR-dependent manner to enhance the synthesis of select factors necessary for the survival of infected monocytes.IMPORTANCEHuman cytomegalovirus (HCMV) infection is a significant cause of morbidity and mortality among the immunonaïve and immunocompromised. Peripheral blood monocytes are a major cell type responsible for disseminating the virus from the initial site of infection. In order for monocytes to mediate viral spread within the host, HCMV must subvert the naturally short lifespan of these cells. In this study, we performed polysomal profiling analysis, which demonstrated HCMV to globally redirect mRNA translation toward the synthesis of cellular prosurvival factors within infected monocytes. Specifically, HCMV entry into monocytes induced the translation of cellular SIRT1 to generate an antiapoptotic state. Defining the precise mechanisms through which HCMV stimulates survival will provide insight into novel anti-HCMV drugs able to target infected monocytes.
Collapse
Affiliation(s)
- Michael J. Miller
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Dilruba Akter
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jamil Mahmud
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Gary C. Chan
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
28
|
Mao Y, Qian SB. Making sense of mRNA translational "noise". Semin Cell Dev Biol 2024; 154:114-122. [PMID: 36925447 PMCID: PMC10500040 DOI: 10.1016/j.semcdb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
The importance of translation fidelity has been apparent since the discovery of genetic code. It is commonly believed that translation deviating from the main coding region is to be avoided at all times inside cells. However, ribosome profiling and mass spectrometry have revealed pervasive noncanonical translation. Both the scope and origin of translational "noise" are just beginning to be appreciated. Although largely overlooked, those translational "noises" are associated with a wide range of cellular functions, such as producing unannotated protein products. Furthermore, the dynamic nature of translational "noise" is responsive to stress conditions, highlighting the beneficial effect of translational "noise" in stress adaptation. Mechanistic investigation of translational "noise" will provide better insight into the mechanisms of translational regulation. Ultimately, they are not "noise" at all but represent a signature of cellular activities under pathophysiological conditions. Deciphering translational "noise" holds the therapeutic and diagnostic potential in a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
29
|
Grgic I, Gorenec L. Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review. Trop Med Infect Dis 2024; 9:49. [PMID: 38393138 PMCID: PMC10892457 DOI: 10.3390/tropicalmed9020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a pathogen with high prevalence in the general population that is responsible for high morbidity and mortality in immunocompromised individuals and newborns, while remaining mainly asymptomatic in healthy individuals. The HCMV genome is 236,000 nucleotides long and encodes approximately 200 genes in more than 170 open reading frames, with the highest rate of genetic polymorphisms occurring in the envelope glycoproteins. HCMV infection is treated with antiviral drugs such as ganciclovir, valganciclovir, cidofovir, foscarnet, letermovir and maribavir targeting viral enzymes, DNA polymerase, kinase and the terminase complex. One of the obstacles to successful therapy is the emergence of drug resistance, which can be tested phenotypically or by genotyping using Sanger sequencing, which is a widely available but less sensitive method, or next-generation sequencing performed in samples with a lower viral load to detect minority variants, those representing approximately 1% of the population. The prevalence of drug resistance depends on the population tested, as well as the drug, and ranges from no mutations detected to up to almost 50%. A high prevalence of resistance emphasizes the importance of testing the patient whenever resistance is suspected, which requires the development of more sensitive and rapid tests while also highlighting the need for alternative therapeutic targets, strategies and the development of an effective vaccine.
Collapse
Affiliation(s)
- Ivana Grgic
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Lana Gorenec
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| |
Collapse
|
30
|
Dickmander B, Hale A, Sanders W, Lenarcic E, Ziehr B, Moorman NJ. Specific RNA structures in the 5' untranslated region of the human cytomegalovirus major immediate early transcript are critical for efficient virus replication. mBio 2024; 15:e0262123. [PMID: 38165154 PMCID: PMC10865803 DOI: 10.1128/mbio.02621-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Human cytomegalovirus (HCMV) requires the robust expression of two immediate early proteins, IE1 and IE2, immediately upon infection to suppress the antiviral response and promote viral gene expression. While transcriptional control of IE1 and IE2 has been extensively studied, the role of post-transcriptional regulation of IE1 and IE2 expression is relatively unexplored. We previously found that the shared major immediate early 5' untranslated region (MIE 5' UTR) of the mature IE1 and IE2 transcripts plays a critical role in facilitating the translation of the IE1 and IE2 mRNAs. As RNA secondary structure in 5' UTRs can regulate mRNA translation efficiency, we used selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) to identify RNA structures in the shared MIE 5' UTR. We found that the MIE 5' UTR contains three stable stem loop structures. Using a series of recombinant viruses to investigate the role of each stem loop in IE1 and IE2 protein synthesis, we found that the stem loop closest to the 5' end of the MIE 5' UTR (SL1) is both necessary and sufficient for efficient IE1 and IE2 mRNA translation and HCMV replication. The positive effect of SL1 on mRNA translation and virus replication was dependent on its location within the 5' UTR. Surprisingly, a synthetic stem loop with the same free energy as SL1 in its native location also supported wild type levels of IE1 and IE2 mRNA translation and virus replication, suggesting that the presence of RNA structure at a specific location in the 5' UTR, rather than the primary sequence of the RNA, is critical for efficient IE1 and IE2 protein synthesis. These data reveal a novel post-transcriptional regulatory mechanism controlling IE1 and IE2 expression and reinforce the critical role of RNA structure in regulating HCMV protein synthesis and replication.IMPORTANCEThese results reveal a new aspect of immediate early gene regulation controlled by non-coding RNA structures in viral mRNAs. Previous studies have largely focused on understanding viral gene expression at the level of transcriptional control. Our results show that a complete understanding of the control of viral gene expression must include an understanding of viral mRNA translation, which is driven in part by RNA structure(s) in the 5' UTR of viral mRNAs. Our results illustrate the importance of these additional layers of regulation by defining specific 5' UTR RNA structures regulating immediate early gene expression in the context of infection and identify important features of RNA structure that govern viral mRNA translation efficiency. These results may therefore broadly impact current thinking on how viral gene expression is regulated for human cytomegalovirus and other DNA viruses.
Collapse
Affiliation(s)
- Bekah Dickmander
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew Hale
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erik Lenarcic
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ben Ziehr
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
Rein AF, Lauruschkat CD, Muchsin I, Köchel C, Tischer-Zimmermann S, Bauersfeld L, Nelde A, Lübke M, Prusty BK, Schlosser A, Halenius A, Eiz-Vesper B, Dölken L, Grigoleit GU, Einsele H, Erhard F, Kraus S. Identification of novel canonical and cryptic HCMV-specific T-cell epitopes for HLA-A∗03 and HLA-B∗15 via peptide-PRISM. Blood Adv 2024; 8:712-724. [PMID: 38127299 PMCID: PMC10845030 DOI: 10.1182/bloodadvances.2023011120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
ABSTRACT Human cytomegalovirus (HCMV) reactivation poses a substantial risk to patients receiving tranplants. Effective risk stratification and vaccine development is hampered by a lack of HCMV-derived immunogenic peptides in patients with common HLA-A∗03:01 and HLA-B∗15:01 haplotypes. This study aimed to discover novel HCMV immunogenic peptides for these haplotypes by combining ribosome sequencing (Ribo-seq) and mass spectrometry with state-of-the-art computational tools, Peptide-PRISM and Probabilistic Inference of Codon Activities by an EM Algorithm. Furthermore, using machine learning, an algorithm was developed to predict immunogenicity based on translational activity, binding affinity, and peptide localization within small open reading frames to identify the most promising peptides for in vitro validation. Immunogenicity of these peptides was subsequently tested by analyzing peptide-specific T-cell responses of HCMV-seropositive and -seronegative healthy donors as well as patients with transplants. This resulted in the direct identification of 3 canonical and 1 cryptic HLA-A∗03-restricted immunogenic peptides as well as 5 canonical and 1 cryptic HLA-B∗15-restricted immunogenic peptide, with a specific interferon gamma-positive (IFN-γ+)/CD8+ T-cell response of ≥0.02%. High T-cell responses were detected against 2 HLA-A∗03-restricted and 3 HLA-B∗15-restricted canonical peptides with frequencies of up to 8.77% IFN-γ+/CD8+ T cells in patients after allogeneic stem cell transplantation. Therefore, our comprehensive strategy establishes a framework for efficient identification of novel immunogenic peptides from both existing and novel Ribo-seq data sets.
Collapse
Affiliation(s)
- Alice Felicitas Rein
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | - Ihsan Muchsin
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carolin Köchel
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Liane Bauersfeld
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies,” University of Tübingen, Tübingen, Germany
| | - Maren Lübke
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Bhupesh Kumar Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center - Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Anne Halenius
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Götz Ulrich Grigoleit
- Department of Hematology, Oncology and Immunology, Helios Hospital Duisburg, Duisburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
33
|
Raymonda MH, Rodríguez-Sánchez I, Schafer XL, Smorodintsev-Schiller L, Harris IS, Munger J. Cytomegalovirus-induced inactivation of TSC2 disrupts the coupling of fatty acid biosynthesis to glucose availability resulting in a vulnerability to glucose starvation. mBio 2024; 15:e0303123. [PMID: 38117060 PMCID: PMC10790783 DOI: 10.1128/mbio.03031-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Viruses modulate host cell metabolism to support the mass production of viral progeny. For human cytomegalovirus, we find that the viral UL38 protein is critical for driving these pro-viral metabolic changes. However, our results indicate that these changes come at a cost, as UL38 induces an anabolic rigidity that leads to a metabolic vulnerability. We find that UL38 decouples the link between glucose availability and fatty acid biosynthetic activity. Normal cells respond to glucose limitation by down-regulating fatty acid biosynthesis. Expression of UL38 results in the inability to modulate fatty acid biosynthesis in response to glucose limitation, which results in cell death. We find this vulnerability in the context of viral infection, but this linkage between fatty acid biosynthesis, glucose availability, and cell death could have broader implications in other contexts or pathologies that rely on glycolytic remodeling, for example, oncogenesis.
Collapse
Affiliation(s)
- Matthew H. Raymonda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Irene Rodríguez-Sánchez
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Xenia L. Schafer
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Leonid Smorodintsev-Schiller
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, USA
| | - Isaac S. Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
34
|
Karousis ED, Schubert K, Ban N. Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective. EMBO J 2024; 43:151-167. [PMID: 38200146 PMCID: PMC10897431 DOI: 10.1038/s44318-023-00019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Aguirre J, Guantes R. Virus-host protein co-expression networks reveal temporal organization and strategies of viral infection. iScience 2023; 26:108475. [PMID: 38077135 PMCID: PMC10698274 DOI: 10.1016/j.isci.2023.108475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Accepted: 11/14/2023] [Indexed: 04/14/2025] Open
Abstract
Viral replication is a complex dynamical process involving the global remodeling of the host cellular machinery across several stages. In this study, we provide a unified view of the virus-host interaction at the proteome level reconstructing protein co-expression networks from quantitative temporal data of four large DNA viruses. We take advantage of a formal framework, the theory of competing networks, to describe the viral infection as a dynamical system taking place on a network of networks where perturbations induced by viral proteins spread to hijack the host proteome for the virus benefit. Our methodology demonstrates how the viral replication cycle can be effectively examined as a complex interaction between protein networks, providing useful insights into the viral and host's temporal organization and strategies, key protein nodes targeted by the virus and dynamical bottlenecks during the course of the infection.
Collapse
Affiliation(s)
- Jacobo Aguirre
- Centro de Astrobiología (CAB), CSIC-INTA, ctra. de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Raúl Guantes
- Department of Condensed Matter Physics and Material Science Institute ‘Nicolás Cabrera’, Science Faculty, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Science Faculty, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
36
|
Kim J, Youn D, Choi S, Lee YW, Sumberzul D, Yoon J, Lee H, Bae JW, Noh H, On D, Hong SM, An SH, Jang HJ, Kim SY, Kim YB, Hwang JY, Lee HJ, Bin Kim H, Park JW, Yun JW, Shin JS, Seo JY, Nam KT, Choi KS, Lee HY, Chang H, Seong JK, Cho J. SARS-CoV-2 infection engenders heterogeneous ribonucleoprotein interactions to impede translation elongation in the lungs. Exp Mol Med 2023; 55:2541-2552. [PMID: 37907741 PMCID: PMC10767024 DOI: 10.1038/s12276-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 11/02/2023] Open
Abstract
Translational regulation in tissue environments during in vivo viral pathogenesis has rarely been studied due to the lack of translatomes from virus-infected tissues, although a series of translatome studies using in vitro cultured cells with viral infection have been reported. In this study, we exploited tissue-optimized ribosome profiling (Ribo-seq) and severe-COVID-19 model mice to establish the first temporal translation profiles of virus and host genes in the lungs during SARS-CoV-2 pathogenesis. Our datasets revealed not only previously unknown targets of translation regulation in infected tissues but also hitherto unreported molecular signatures that contribute to tissue pathology after SARS-CoV-2 infection. Specifically, we observed gradual increases in pseudoribosomal ribonucleoprotein (RNP) interactions that partially overlapped the trails of ribosomes, being likely involved in impeding translation elongation. Contemporaneously developed ribosome heterogeneity with predominantly dysregulated 5 S rRNP association supported the malfunction of elongating ribosomes. Analyses of canonical Ribo-seq reads (ribosome footprints) highlighted two obstructive characteristics to host gene expression: ribosome stalling on codons within transmembrane domain-coding regions and compromised translation of immunity- and metabolism-related genes with upregulated transcription. Our findings collectively demonstrate that the abrogation of translation integrity may be one of the most critical factors contributing to pathogenesis after SARS-CoV-2 infection of tissues.
Collapse
Affiliation(s)
- Junsoo Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Daehwa Youn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seunghoon Choi
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Youn Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dulguun Sumberzul
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jeongeun Yoon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hanju Lee
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Jong Woo Bae
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyuna Noh
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Dain On
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung-Min Hong
- Laboratory of Avian Diseases, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se-Hee An
- Laboratory of Avian Diseases, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seo Yeon Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Been Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeon-Soo Shin
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Department of Nuclear Medicine, Seoul National University, College of Medicine, Seoul, Republic of Korea.
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Je Kyung Seong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea.
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program and BIO MAX Institute, Seoul National University, Seoul, Republic of Korea.
| | - Jun Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
37
|
Pantalone MR, Almazan NM, Lattanzio R, Taher C, De Fabritiis S, Valentinuzzi S, Bishehsari F, Mahdavinia M, Verginelli F, Rahbar A, Mariani-Costantini R, Söderberg-Naucler C. Human cytomegalovirus infection enhances 5‑lipoxygenase and cycloxygenase‑2 expression in colorectal cancer. Int J Oncol 2023; 63:116. [PMID: 37654195 PMCID: PMC10546380 DOI: 10.3892/ijo.2023.5564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal types of cancer. Inflammation promotes CRC development, however, the underlying etiological factors are unknown. Human cytomegalovirus (HCMV), a virus that induces inflammation and other cancer hallmarks, has been detected in several types of malignancy, including CRC. The present study investigated whether HCMV infection was associated with expression of the pro‑inflammatory enzymes 5‑lipoxygenase (5‑LO) and cyclooxygenase‑2 (COX‑2) and other molecular, genetic and clinicopathological CRC features. The present study assessed 146 individual paraffin‑embedded CRC tissue microarray (TMA) cores already characterized for TP53 and KRAS mutations, microsatellite instability (MSI) status, Ki‑67 index and EGFR by immunohistochemistry (IHC). The cores were further analyzed by IHC for the expression of two HCMV proteins (Immediate Early, IE and pp65) and the inflammatory markers 5‑LO and COX‑2. The CRC cell lines Caco‑2 and LS‑174T were infected with HCMV strain VR1814, treated with antiviral drug ganciclovir (GCV) and/or anti‑inflammatory drug celecoxib (CCX) and analyzed by reverse transcription‑quantitative PCR and immunofluorescence for 5‑LO, COX‑2, IE and pp65 transcripts and proteins. HCMV IE and pp65 proteins were detected in ~90% of the CRC cases tested; this was correlated with COX‑2, 5‑LO and KI‑67 expression, but not with EGFR immunostaining, TP53 and KRAS mutations or MSI status. In vitro, HCMV infection upregulated 5‑LO and COX‑2 transcript and proteins in both Caco‑2 and LS‑174T cells and enhanced cell proliferation as determined by MTT assay. Treatment with GCV and CCX significantly decreased the transcript levels of COX‑2, 5‑LO, HCMV IE and pp65 in infected cells. HCMV was widely expressed in CRC and may promote inflammation and serve as a potential new target for CRC therapy.
Collapse
Affiliation(s)
- Mattia Russel Pantalone
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Nerea Martin Almazan
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Laboratory Medicine, Unit of Microbial Pathogenesis, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rossano Lattanzio
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Chato Taher
- Department of Basic Sciences, Hawler Medical University, Erbil 44001, Iraq
| | - Simone De Fabritiis
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Faraz Bishehsari
- Division of Digestive Diseases, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14114, Iran
| | - Mahboobeh Mahdavinia
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14114, Iran
- Department of Internal Medicine, Division of Allergy and Immunology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fabio Verginelli
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Afsar Rahbar
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
| | | | - Cecilia Söderberg-Naucler
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
- MediCity Research Laboratory, University of Turku, FI-20014 Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
38
|
O'Brien BS, Mokry RL, Schumacher ML, Rosas-Rogers S, Terhune SS, Ebert AD. Neutralizing antibodies with neurotropic factor treatment maintain neurodevelopmental gene expression upon exposure to human cytomegalovirus. J Virol 2023; 97:e0069623. [PMID: 37796129 PMCID: PMC10653813 DOI: 10.1128/jvi.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Human cytomegalovirus (HCMV) infection is the leading cause of non-heritable birth defects worldwide. HCMV readily infects the early progenitor cell population of the developing brain, and we have found that infection leads to significantly downregulated expression of key neurodevelopmental transcripts. Currently, there are no approved therapies to prevent or mitigate the effects of congenital HCMV infection. Therefore, we used human-induced pluripotent stem cell-derived organoids and neural progenitor cells to elucidate the glycoproteins and receptors used in the viral entry process and whether antibody neutralization was sufficient to block viral entry and prevent disruption of neurodevelopmental gene expression. We found that blocking viral entry alone was insufficient to maintain the expression of key neurodevelopmental genes, but neutralization combined with neurotrophic factor treatment provided robust protection. Together, these studies offer novel insight into mechanisms of HCMV infection in neural tissues, which may aid future therapeutic development.
Collapse
Affiliation(s)
- Benjamin S. O'Brien
- Department of Cell Biology, Neurobiology, and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Suzette Rosas-Rogers
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Marquette University and Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
39
|
Weingarten-Gabbay S, Bauer MR, Stanton AC, Klaeger S, Verzani EK, López D, Clauser KR, Carr SA, Abelin JG, Rice CM, Sabeti PC. Pan-viral ORFs discovery using Massively Parallel Ribosome Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559641. [PMID: 37808651 PMCID: PMC10557741 DOI: 10.1101/2023.09.26.559641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Unveiling the complete proteome of viruses is crucial to our understanding of the viral life cycle and interaction with the host. We developed Massively Parallel Ribosome Profiling (MPRP) to experimentally determine open reading frames (ORFs) in 20,170 designed oligonucleotides across 679 human-associated viral genomes. We identified 5,381 ORFs, including 4,208 non-canonical ORFs, and show successful detection of both annotated coding sequences (CDSs) and reported non-canonical ORFs. By examining immunopeptidome datasets of infected cells, we found class I human leukocyte antigen (HLA-I) peptides originating from non-canonical ORFs identified through MPRP. By inspecting ribosome occupancies on the 5'UTR and CDS regions of annotated viral genes, we identified hundreds of upstream ORFs (uORFs) that negatively regulate the synthesis of canonical viral proteins. The unprecedented source of viral ORFs across a wide range of viral families, including highly pathogenic viruses, expands the repertoire of vaccine targets and exposes new cis-regulatory sequences in viral genomes.
Collapse
|
40
|
Syrigos GV, Feige M, Dirlam A, Businger R, Gruska I, Wiebusch L, Hamprecht K, Schindler M. Abemaciclib restricts HCMV replication by suppressing pUL97-mediated phosphorylation of SAMHD1. Antiviral Res 2023; 217:105689. [PMID: 37516154 DOI: 10.1016/j.antiviral.2023.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that causes life-threatening infections in newborns or immunosuppressed patients. For viral replication, HCMV establishes a network of cellular interactions, among others cyclin-dependent kinases (CDK). Furthermore, HCMV encodes pUL97, a viral kinase, which is a CDK-homologue. HCMV uses pUL97 in order to phosphorylate and thereby antagonize SAMHD1, an antiviral host cell factor. Since HCMV has several mechanisms to evade restriction by SAMHD1, we first analyzed the kinetics of SAMHD1-inactivation and found that phosphorylation of SAMHD1 by pUL97 occurs directly after infection of macrophages. We hence hypothesized that inhibition of this process qualifies as efficient antiviral target and FDA approved CDK-inhibitors (CDKIs) might be potent antivirals that prevent the inactivation of SAMHD1. Indeed, Abemaciclib, a 2nd generation CDKI exhibited superior IC50s against HCMV in infected macrophages and the antiviral activity largely relied on its ability to block pUL97-mediated SAMHD1-phosphorylation. Altogether, our study highlights the therapeutic potential of clinically-approved CDKIs as antivirals against HCMV, sheds light on their mode of action and establishes SAMHD1 as a valid and highly potent therapeutic target.
Collapse
Affiliation(s)
- Georgios Vavouras Syrigos
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Feige
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Alicia Dirlam
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Ramona Businger
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Iris Gruska
- Laboratory of Molecular Pediatrics, Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lüder Wiebusch
- Laboratory of Molecular Pediatrics, Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Hamprecht
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
41
|
Moy MA, Collins-McMillen D, Crawford L, Parkins C, Zeltzer S, Caviness K, Zaidi SSA, Caposio P, Goodrum F. Stabilization of the human cytomegalovirus UL136p33 reactivation determinant overcomes the requirement for UL135 for replication in hematopoietic cells. J Virol 2023; 97:e0014823. [PMID: 37565749 PMCID: PMC10506481 DOI: 10.1128/jvi.00148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a beta herpesvirus that persists indefinitely in the human host through a latent infection. The polycistronic UL133-UL138 gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction and is required for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple proteins with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in HPCs; viruses failing to express either protein are unresponsive to reactivation stimuli. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency, and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for replication. We generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact the replication of the UL135 mutant virus in fibroblasts. However, in the context of infection in HPCs, stabilization of UL136p33 strikingly compensated for the loss of UL135, resulting in increased replication in CD34+ HPCs and in humanized NOD-scid IL2Rγcnull (huNSG) mice. This finding suggests that while UL135 is essential for replication in HPCs, it functions largely at steps preceding the accumulation of UL136p33, and that stabilized expression of UL136p33 largely overcomes the requirement for UL135. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135, whereby UL135 may initiate events early in reactivation that drive the accumulation of UL136p33 to a threshold required for productive reactivation. IMPORTANCE Human cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a lifelong latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immunocompromised. Defining viral genes important in the establishment of or reactivation from latency is important to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cells and humanized mouse models.
Collapse
Affiliation(s)
- Melissa A. Moy
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Donna Collins-McMillen
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Lindsey Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Christopher Parkins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Sebastian Zeltzer
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Katie Caviness
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| | | | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Felicia Goodrum
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
42
|
Rubina A, Patel M, Nightingale K, Potts M, Fielding CA, Kollnberger S, Lau B, Ladell K, Miners KL, Nichols J, Nobre L, Roberts D, Trinca TM, Twohig JP, Vlahava VM, Davison AJ, Price DA, Tomasec P, Wilkinson GWG, Weekes MP, Stanton RJ, Wang ECY. ADAM17 targeting by human cytomegalovirus remodels the cell surface proteome to simultaneously regulate multiple immune pathways. Proc Natl Acad Sci U S A 2023; 120:e2303155120. [PMID: 37561786 PMCID: PMC10438378 DOI: 10.1073/pnas.2303155120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defenses. In exploring the finding that HCMV infection up-regulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory antiviral cytokine TNFα, we found that the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype 'sheddase', a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its UL/b' region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with an HCMV double-deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (P < 0.05) in an ADAM17-dependent fashion. These included reported substrates of ADAM17 with established immunological functions such as TNFR2 and jagged1, but also numerous unreported host and viral targets, such as nectin1, UL8, and UL144. Regulation of TNFα-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation.
Collapse
Affiliation(s)
- Anzelika Rubina
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Mihil Patel
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, United Kingdom
- Department of Medicine, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Ceri A. Fielding
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Simon Kollnberger
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Betty Lau
- Centre for Virus Research, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Kelly L. Miners
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Jenna Nichols
- Centre for Virus Research, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Dawn Roberts
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Terrence M. Trinca
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Jason P. Twohig
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Virginia-Maria Vlahava
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Andrew J. Davison
- Centre for Virus Research, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - David A. Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Peter Tomasec
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Gavin W. G. Wilkinson
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, United Kingdom
- Department of Medicine, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Eddie C. Y. Wang
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| |
Collapse
|
43
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
44
|
Bogaert A, Fijalkowska D, Staes A, Van de Steene T, Vuylsteke M, Stadler C, Eyckerman S, Spirohn K, Hao T, Calderwood MA, Gevaert K. N-terminal proteoforms may engage in different protein complexes. Life Sci Alliance 2023; 6:e202301972. [PMID: 37316325 PMCID: PMC10267514 DOI: 10.26508/lsa.202301972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
Alternative translation initiation and alternative splicing may give rise to N-terminal proteoforms, proteins that differ at their N-terminus compared with their canonical counterparts. Such proteoforms can have altered localizations, stabilities, and functions. Although proteoforms generated from splice variants can be engaged in different protein complexes, it remained to be studied to what extent this applies to N-terminal proteoforms. To address this, we mapped the interactomes of several pairs of N-terminal proteoforms and their canonical counterparts. First, we generated a catalogue of N-terminal proteoforms found in the HEK293T cellular cytosol from which 22 pairs were selected for interactome profiling. In addition, we provide evidence for the expression of several N-terminal proteoforms, identified in our catalogue, across different human tissues, as well as tissue-specific expression, highlighting their biological relevance. Protein-protein interaction profiling revealed that the overlap of the interactomes for both proteoforms is generally high, showing their functional relation. We also showed that N-terminal proteoforms can be engaged in new interactions and/or lose several interactions compared with their canonical counterparts, thus further expanding the functional diversity of proteomes.
Collapse
Affiliation(s)
- Annelies Bogaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Daria Fijalkowska
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tessa Van de Steene
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Charlotte Stadler
- Department of Protein Science, KTH Royal Institute of Technology and Science for Life Laboratories, Stockholm, Sweden
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Dunn DM, Pack LJ, Munger JC. Raf1 promotes successful Human Cytomegalovirus replication and is regulated by AMPK-mediated phosphorylation during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550702. [PMID: 37546879 PMCID: PMC10402018 DOI: 10.1101/2023.07.26.550702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Raf1 is a key player in growth factor receptor signaling, which has been linked to multiple viral infections, including Human Cytomegalovirus (HCMV) infection. Although HCMV remains latent in most individuals, it can cause acute infection in immunocompromised populations such as transplant recipients, neonates, and cancer patients. Current treatments are suboptimal, highlighting the need for novel treatments. Multiple points in the growth factor signaling pathway are important for HCMV infection, but the relationship between HCMV and Raf1, a component of the mitogen-activated protein kinase (MAPK) cascade, is not well understood. The AMP-activated protein kinase (AMPK) is a known regulator of Raf1, and AMPK activity is both induced by infection and important for HCMV replication. Our data indicate that HCMV infection induces AMPK-specific changes in Raf1 phosphorylation, including increasing phosphorylation at Raf1-Ser621, a known AMPK phospho-site, which results in increased binding to the 14-3-3 scaffolding protein, an important aspect of Raf1 activation. Inhibition of Raf1, either pharmacologically or via shRNA or CRISPR-mediated targeting, inhibits viral replication and spread in both fibroblasts and epithelial cells. Collectively, our data indicate that HCMV infection and AMPK activation modulate Raf1 activity, which are important for viral replication.
Collapse
Affiliation(s)
- Diana M. Dunn
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - Ludia J. Pack
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - Joshua C. Munger
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| |
Collapse
|
46
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T-cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. PLoS Pathog 2023; 19:e1011032. [PMID: 37498934 PMCID: PMC10409285 DOI: 10.1371/journal.ppat.1011032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/08/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but the T-cell response to seasonal coronaviruses remains largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal coronavirus OC43. We identified MHC-bound peptides derived from each of the viral structural proteins (spike, nucleoprotein, hemagglutinin-esterase, membrane, and envelope) as well as non-structural proteins nsp3, nsp5, nsp6, and nsp12. Eighty MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. Fewer and less abundant MHC-I bound OC43-derived peptides were observed, possibly due to MHC-I downregulation induced by OC43 infection. The MHC-II peptides elicited low-abundance recall T-cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T-cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T-cell lines. Among the validated epitopes, spike protein S903-917 presented by DPA1*01:03/DPB1*04:01 and S1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. Nucleoprotein N54-68 and hemagglutinin-esterase HE128-142 presented by DRB1*15:01 and HE259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow CD4 T-cell cross-reactivity after infection or vaccination, and to guide selection of epitopes for inclusion in pan-coronavirus vaccines.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
47
|
Yu C, He S, Zhu W, Ru P, Ge X, Govindasamy K. Human cytomegalovirus in cancer: the mechanism of HCMV-induced carcinogenesis and its therapeutic potential. Front Cell Infect Microbiol 2023; 13:1202138. [PMID: 37424781 PMCID: PMC10327488 DOI: 10.3389/fcimb.2023.1202138] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Human cytomegalovirus (HCMV), a well-studied herpesvirus, has been implicated in malignancies derived from breast, colorectal muscle, brain, and other cancers. Intricate host-virus interactions are responsible for the cascade of events that have the potential to result in the transformed phenotype of normal cells. The HCMV genome contains oncogenes that may initiate these types of cancers, and although the primary HCMV infection is usually asymptomatic, the virus remains in the body in a latent or persistent form. Viral reactivation causes severe health issues in immune-compromised individuals, including cancer patients, organ transplants, and AIDS patients. This review focuses on the immunologic mechanisms and molecular mechanisms of HCMV-induced carcinogenesis, methods of HCMV treatment, and other studies. Studies show that HCMV DNA and virus-specific antibodies are present in many types of cancers, implicating HCMV as an important player in cancer progression. Importantly, many clinical trials have been initiated to exploit HCMV as a therapeutic target for the treatment of cancer, particularly in immunotherapy strategies in the treatment of breast cancer and glioblastoma patients. Taken together, these findings support a link between HCMV infections and cellular growth that develops into cancer. More importantly, HCMV is the leading cause of birth defects in newborns, and infection with HCMV is responsible for abortions in pregnant women.
Collapse
Affiliation(s)
- Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Suna He
- Department of Pharmaceutical Sciences, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Penghui Ru
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kavitha Govindasamy
- School of Arts and Science, Rutgers, the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
48
|
Panda K, Parashar D, Viswanathan R. An Update on Current Antiviral Strategies to Combat Human Cytomegalovirus Infection. Viruses 2023; 15:1358. [PMID: 37376657 PMCID: PMC10303229 DOI: 10.3390/v15061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) remains an essential global concern due to its distinct life cycle, mutations and latency. As HCMV is a herpesvirus, it establishes a lifelong persistence in the host through a chronic state of infection. Immunocompromised individuals are at risk of significant morbidity and mortality from the virus. Until now, no effective vaccine has been developed to combat HCMV infection. Only a few antivirals targeting the different stages of the virus lifecycle and viral enzymes are licensed to manage the infection. Therefore, there is an urgent need to find alternate strategies to combat the infection and manage drug resistance. This review will provide an insight into the clinical and preclinical antiviral approaches, including HCMV antiviral drugs and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Deepti Parashar
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Rajlakshmi Viswanathan
- Bacteriology Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| |
Collapse
|
49
|
Raymonda MH, Rodríguez-Sánchez I, Schafer XL, Smorodintsev-Schiller L, Harris IS, Munger J. Cytomegalovirus-induced inactivation of TSC2 disrupts the coupling of fatty acid biosynthesis to glucose availability resulting in a vulnerability to glucose limitation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541212. [PMID: 37292722 PMCID: PMC10245705 DOI: 10.1101/2023.05.17.541212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human cytomegalovirus (HCMV) modulates cellular metabolism to support productive infection, and the HCMV UL38 protein drives many aspects of this HCMV-induced metabolic program. However, it remains to be determined whether virally-induced metabolic alterations might induce novel therapeutic vulnerabilities in virally infected cells. Here, we explore how HCMV infection and the UL38 protein modulate cellular metabolism and how these changes alter the response to nutrient limitation. We find that expression of UL38, either in the context of HCMV infection or in isolation, sensitizes cells to glucose limitation resulting in cell death. This sensitivity is mediated through UL38's inactivation of the TSC complex subunit 2 (TSC2) protein, a central metabolic regulator that possesses tumor-suppressive properties. Further, expression of UL38 or the inactivation of TSC2 results in anabolic rigidity in that the resulting increased levels of fatty acid biosynthesis are insensitive to glucose limitation. This failure to regulate fatty acid biosynthesis in response to glucose availability sensitizes cells to glucose limitation, resulting in cell death unless fatty acid biosynthesis is inhibited. These experiments identify a regulatory circuit between glycolysis and fatty acid biosynthesis that is critical for cell survival upon glucose limitation and highlight a metabolic vulnerability associated with viral infection and the inactivation of normal metabolic regulatory controls.
Collapse
Affiliation(s)
- Matthew H. Raymonda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Irene Rodríguez-Sánchez
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Xenia L. Schafer
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Leonid Smorodintsev-Schiller
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, USA
| | - Isaac S. Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
50
|
Ruan Y, Wen Z, Chen K, Xi J, Wu B, Xu Z, Jiang M, Zhang J, Chen Y, Liu Q. Exogenous Interleukin-37 Alleviates Hepatitis with Reduced Dendritic Cells and Induced Regulatory T Cells in Acute Murine Cytomegalovirus Infection. J Immunol Res 2023; 2023:1462048. [PMID: 37215069 PMCID: PMC10198762 DOI: 10.1155/2023/1462048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is globally distributed, and the liver is one of the major targeting organs. So far, the mechanisms for cell and organ damage have not fully been elucidated and the treatments for the infection are mainly at symptoms. IL-37 has shown a protective role in certain inflammatory diseases. In the present study, potential protective effect of exogenous IL-37 on murine cytomegalovirus- (MCMV-) infected hepatitis was evaluated through analyses of serum transaminases, the liver histopathology and cytokine expression, and functional state of dendritic cells (DCs) and regulatory T cells (Tregs). These analyses showed a significant decrease in serum transaminase levels and a lower Ishak histopathologic score at the early stage of MCMV-infected mice with exogenous IL-37 pretreatment. The frequencies of MHC-Ⅱ, CD40, CD80, and CD86 positive DCs in the liver and spleen were decreased significantly at 7 days postinfection (dpi) in MCMV-infected mice with IL-37 pretreatment when compared with those without the pretreatment, while the total number of DCs in the liver was reduced in IL-37-pretreated mice. The induction of Tregs in the spleen was enhanced at dpi 3 with IL-37 pretreatment in MCMV-infected mice. The mRNA expression levels of cytokines in the liver were decreased significantly (IL-1β, IL-6, IL-10, IL-4) or to some extent (TGF-β and TNF-α). The present study suggested that exogenous IL-37 can alleviate MCMV-infected hepatitis, likely through reduced DCs and induced Tregs with a weaker cytokine storm, demonstrating its potential value in clinical management for HCMV-infected hepatitis.
Collapse
Affiliation(s)
- Yufei Ruan
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
- Department of Emergency, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhengwang Wen
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
| | - Ke Chen
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
| | - Jianan Xi
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
| | - Bo Wu
- School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Zhiyong Xu
- School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Minzhi Jiang
- School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Junling Zhang
- School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Yiping Chen
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
| | - Qi Liu
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
| |
Collapse
|