1
|
Zheng J, Pang H, Xiao H, Zhou J, Liu Z, Chen W, Liu H. Asymmetric structure of podophage N4 from the Schitoviridae family reveals a type of tube-sheath short-tail architecture. Structure 2025:S0969-2126(25)00142-X. [PMID: 40318628 DOI: 10.1016/j.str.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
The tails of the majority of reported podophages are typically composed of an adaptor, a nozzle, and a needle, and flanked by six or twelve fibers. However, the Schitoviridae family, as represented by podophage N4, exhibits a different tail architecture that remains poorly understood. In this study, we employed cryoelectron microscopy (cryo-EM) to determine the atomic structures of mature and empty podophage N4 particles. The N4 tail, which is connected to the head by a portal and flanked by 12 fibers, comprises an adaptor, a 12-fold extended tail tube encircled by a 6-fold tail sheath, and a plug. The extended tail sheath is composed of two proteins, gp65 and gp64. Furthermore, we identified two distinct tail conformations in the mature podophage N4. Our structures provide insights into the mechanisms of ejection and early transcription of podophage N4, as well as for N4-like phages and CrAssphages.
Collapse
Affiliation(s)
- Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hao Pang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Junquan Zhou
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| |
Collapse
|
2
|
Hou P, Zhou RQ, Jiang YL, Yu RC, Du K, Gan N, Ke F, Zhang QY, Li Q, Zhou CZ. Cryo-EM structure of cyanopodophage A4 reveals a pentameric pre-ejectosome in the double-stabilized capsid. Proc Natl Acad Sci U S A 2025; 122:e2423403122. [PMID: 40163721 PMCID: PMC12002296 DOI: 10.1073/pnas.2423403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Upon infection, the podophages usually eject a couple of proteins from the capsid to form a transmembrane ejectosome on the host cell membrane that facilitates the ejection of viral genome. However, it remains unclear how these proteins of pre-ejectosome are finely assembled at the center of highly packaged genome. Here, we report the intact structure of Anabaena cyanopodophage A4, which consists of a capsid stabilized by two types of cement proteins and a short tail attached with six tail fibers. Notably, we find a pentameric pre-ejectosome at the core of capsid, which is composed of four ejection proteins wrapped into a coaxial cylinder of triple layers. Moreover, a segment of genomic DNA runs along the positively charged circular cleft formed by two ejection proteins. Based on the mortise-and-tenon architecture of pre-ejectosome in combination with previous studies, we propose a putative DNA packaging process and ejection mechanism for podophages. These findings largely enrich our knowledge on the assembly mechanism of podophages, which might facilitate the application of A4 as a chassis cyanophage in synthetic biology.
Collapse
Affiliation(s)
- Pu Hou
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Rui-Qian Zhou
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Yong-Liang Jiang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Rong-Cheng Yu
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Kang Du
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Nanqin Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fei Ke
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiong Li
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Cong-Zhao Zhou
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| |
Collapse
|
3
|
Humolli D, Piel D, Maffei E, Heyer Y, Agustoni E, Shaidullina A, Willi L, Imwinkelried P, Estermann F, Cuénod A, Buser DP, Alampi C, Chami M, Egli A, Hiller S, Dunne M, Harms A. Completing the BASEL phage collection to unlock hidden diversity for systematic exploration of phage-host interactions. PLoS Biol 2025; 23:e3003063. [PMID: 40193529 PMCID: PMC11990801 DOI: 10.1371/journal.pbio.3003063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/11/2025] [Accepted: 02/11/2025] [Indexed: 04/09/2025] Open
Abstract
Research on bacteriophages, the viruses infecting bacteria, has fueled the development of modern molecular biology and inspired their therapeutic application to combat bacterial multidrug resistance. However, most work has so far focused on a few model phages which impedes direct applications of these findings in clinics and suggests that a vast potential of powerful molecular biology has remained untapped. We have therefore recently composed the BASEL collection of Escherichia coli phages (BActeriophage SElection for your Laboratory), which made a relevant diversity of phages infecting the E. coli K-12 laboratory strain accessible to the community. These phages are widely used, but their assorted diversity has remained limited by the E. coli K-12 host. We have therefore now genetically overcome the two major limitations of E. coli K-12, its lack of O-antigen glycans and the presence of resident bacterial immunity. Restoring O-antigen expression resulted in the isolation of diverse additional viral groups like Kagunavirus, Nonanavirus, Gordonclarkvirinae, and Gamaleyavirus, while eliminating all known antiviral defenses of E. coli K-12 additionally enabled us to isolate phages of Wifcevirus genus. Even though some of these viral groups appear to be common in nature, no phages from any of them had previously been isolated using E. coli laboratory strains, and they had thus remained largely understudied. Overall, 37 new phage isolates have been added to complete the BASEL collection. These phages were deeply characterized genomically and phenotypically with regard to host receptors, sensitivity to antiviral defense systems, and host range. Our results highlighted dominant roles of the O-antigen barrier for viral host recognition and of restriction-modification systems in bacterial immunity. We anticipate that the completed BASEL collection will propel research on phage-host interactions and their molecular mechanisms, deepening our understanding of viral ecology and fostering innovations in biotechnology and antimicrobial therapy.
Collapse
Affiliation(s)
- Dorentina Humolli
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
| | - Damien Piel
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
| | - Enea Maffei
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Aisylu Shaidullina
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Aline Cuénod
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | - Carola Alampi
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | | | - Alexander Harms
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Rodriguez-Rodriguez L, Pfister J, Schuck L, Martin AE, Mercado-Santiago LM, Tagliabracci VS, Forsberg KJ. Metagenomic selections reveal diverse antiphage defenses in human and environmental microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640651. [PMID: 40060627 PMCID: PMC11888456 DOI: 10.1101/2025.02.28.640651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
To prevent phage infection, bacteria have developed an arsenal of antiphage defense systems. Using functional metagenomic selections, we identified new examples of these systems from human fecal, human oral, and grassland soil microbiomes. Our antiphage selections in Escherichia coli revealed over 200 putative defenses from 14 diverse bacterial phyla, highlighting the broad phylogenetic interoperability of these systems. Many defense systems were unrecognizable based on sequence or predicted structure, so could only be identified via functional assays. In mechanistic studies, we show that some defense systems encode nucleases that only degrade covalently modified phage DNA, but which accommodate diverse chemical modifications. We also identify outer membrane proteins that prevent phage adsorption and a set of previously unknown defense systems with diverse antiphage profiles and modalities. Most defenses acted against at least two phages, indicating that broadly acting systems are widely distributed among non-model bacteria.
Collapse
Affiliation(s)
| | - James Pfister
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Liam Schuck
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arabella E. Martin
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Vincent S. Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin J. Forsberg
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Guliy OI, Evstigneeva SS. Bacteria- and Phage-Derived Proteins in Phage Infection. FRONT BIOSCI-LANDMRK 2025; 30:24478. [PMID: 40018916 DOI: 10.31083/fbl24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 03/01/2025]
Abstract
Phages have exerted severe evolutionary pressure on prokaryotes over billions of years, resulting in major rearrangements. Without every enzyme involved in the phage-bacterium interaction being examined; bacteriophages cannot be used in practical applications. Numerous studies conducted in the past few years have uncovered a huge variety of bacterial antiphage defense systems; nevertheless, the mechanisms of most of these systems are not fully understood. Understanding the interactions between bacteriophage and bacterial proteins is important for efficient host cell infection. Phage proteins involved in these bacteriophage-host interactions often arise immediately after infection. Here, we review the main groups of phage enzymes involved in the first stage of viral infection and responsible for the degradation of the bacterial membrane. These include polysaccharide depolymerases (endosialidases, endorhamnosidases, alginate lyases, and hyaluronate lyases), and peptidoglycan hydrolases (ectolysins and endolysins). Host target proteins are inhibited, activated, or functionally redirected by the phage protein. These interactions determine the phage infection of bacteria. Proteins of interest are holins, endolysins, and spanins, which are responsible for the release of progeny during the phage lytic cycle. This review describes the main bacterial and phage enzymes involved in phage infection and analyzes the therapeutic potential of bacteriophage-derived proteins.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
6
|
Zheng J, Xiao H, Pang H, Wang L, Song J, Chen W, Cheng L, Liu H. Conformational changes in and translocation of small proteins: insights into the ejection mechanism of podophages. J Virol 2025; 99:e0124924. [PMID: 39704524 PMCID: PMC11784390 DOI: 10.1128/jvi.01249-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Podophage tails are too short to span the cell envelope during infection. Consequently, podophages initially eject the core proteins within the head for the formation of an elongated trans-envelope channel for DNA ejection. Although the core proteins of bacteriophage T7 have been resolved at near-atomic resolution, the mechanisms of core proteins and DNA ejection remain to be fully elucidated. In this study, we provided improved structures of core proteins in mature T7 and the portal-tail complex in lipopolysaccharide-induced DNA-ejected T7 to resolutions of approximately 3 Å. Using these structures, we identified three small proteins, namely gp14, gp6.7, and gp7.3, and illustrated the conformational changes in and translocation of these proteins from the mature to DNA-ejected states. Our structures indicate that gp6.7, which participates in the assembly of the core and trans-envelope channel, is a core protein, and that gp7.3 serves as a structural scaffold to assist the assembly of the nozzle into the adaptor. IMPORTANCE Podophage T7 core proteins form an elongated trans-envelope channel for genomic DNA delivery into the host cell. The structures of the core proteins within the mature T7 and assembled in the periplasmic tunnel form in the DNA-ejected T7 have been resolved previously. Here, we resolved the structures of two new structural proteins (gp6.7 and gp7.3) within mature T7 and receptor-induced DNA-ejected T7. The gp6.7 protein participates in the assembly of the core complex within mature T7 and the trans-envelope channel during T7 infection; therefore, gp6.7 is a core protein. Before T7 infection, gp7.3 plays a role in promoting the assembly of the nozzle into the adaptor.
Collapse
Affiliation(s)
- Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hao Pang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Wang
- Department of Microbiology, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Lingpeng Cheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Subramanian S, Bergland Drarvik SM, Tinney KR, Doore SM, Parent KN. Moo19 and B2: Structures of Schitoviridae podophages with T = 9 geometry and tailspikes with esterase activity. SCIENCE ADVANCES 2024; 10:eadt0022. [PMID: 39693418 DOI: 10.1126/sciadv.adt0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Podophages are, by far, the least well studied of all the bacteriophages. Despite being classified together due to their short, noncontractile tails, there is a huge amount of diversity among members of this group. Of the podophages, the N4-like Schitoviridae family is the least well studied structurally and is quite divergent from well-characterized podophages such as T7 and P22. In this work, we isolate and fully characterize two members of the Schitoviridae family by cryo-electron microscopy, genetics, and biochemistry. We describe the capsid features of Moo19 and B2, including a decoration protein. In addition, we have fully modeled the tail machinery for both phages and identify proteins with esterase activity. Genetic knockouts of the host reveal factors specific for host attachment including key modifications to the O-antigen on the lipopolysaccharide. Moo19 and B2 are both Schitoviridae members, yet some distinct differences in the genome and structure place them into distinct clades.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Silje M Bergland Drarvik
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kendal R Tinney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah M Doore
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Zhou Q, Lok SM. Visualizing the virus world inside the cell by cryo-electron tomography. J Virol 2024; 98:e0108523. [PMID: 39494908 PMCID: PMC11650999 DOI: 10.1128/jvi.01085-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Structural studies on purified virus have revealed intricate architectures, but there is little structural information on how viruses interact with host cells in situ. Cryo-focused ion beam (FIB) milling and cryo-electron tomography (cryo-ET) have emerged as revolutionary tools in structural biology to visualize the dynamic conformational of viral particles and their interactions with host factors within infected cells. Here, we review the state-of-the-art cryo-ET technique for in situ viral structure studies and highlight exemplary studies that showcase the remarkable capabilities of cryo-ET in capturing the dynamic virus-host interaction, advancing our understanding of viral infection and pathogenesis.
Collapse
Affiliation(s)
- Qunfei Zhou
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Thung TY, Hall A, Jati AP, White ME, Bamert RS, Tan KS, Press C, Taiaroa G, Short FL, Dunstan RA, Lithgow T. Genetic variation in individuals from a population of the minimalist bacteriophage Merri-merri-uth nyilam marra-natj driving evolution of the virus. mBio 2024; 15:e0256424. [PMID: 39475328 PMCID: PMC11633184 DOI: 10.1128/mbio.02564-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
In a survey of a waterway on Wurundjeri land, two sub-populations of the bacteriophage Merri-merri-uth nyilam marra-natj (phage MMNM) were isolated on a permissive host, Klebsiella B5055 of capsule-type K2, but were distinguished by minor phenotypic differences. The variant phage MMNM(Ala134) showed an inhibited activity against Klebsiella AJ174-2, and this was used as a basis to select for further variation through experimental evolution. Over the course of an evolution experiment, 20 phages that evolved distinct phenotypes in terms of the morphologies of plaques formed when they infected host Klebsiella were subject to whole-genome sequencing. The evolved phages had mutations in a small set of proteins that contribute to the baseplate portion of the phage virion. Phages MMNM and MMNM(Ala134) are minimalist phages, with baseplates formed from only five predicted subunits, akin to other minimalist phages Pam3 and XM1. The homology between all three minimalist phages provided a structural framework to interpret the two classes of mutations derived through evolution in the presence of the semi-permissive host: those that affect the interfacial surfaces between baseplate subunits, and those in a base-plate associated tail-fiber. This study evidences that multiple small mutations can be fixed into a sub-population of phage to provide a basis for phenotypic variation that we suggest could ultimately provide for a shift of virus properties, as an alternative evolutionary scenario to the major genetic events that result in more well-studied evolutionary mechanism of phage mosaicism. IMPORTANCE Bacteriophages (phages) are viruses that prey on bacteria. This study sampled natural phage populations to test the hypothesis that untapped genetic variation within a population can be the basis for the selection of phages to diversify their host-range. Sampling of a freshwater site revealed two populations of the phage Merri-merri-uth nyilam marra-natj (phage MMNM), differing by a variant residue (Val134Ala) in the baseplate protein MMNM_26. This sequence variation modulated bacterial killing in plaques, and further evolution of the phages on a semi-permissive bacterial host led to a new generation of phages with more diverse phenotypes in killing the bacterium Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Tze Y. Thung
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Alex Hall
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Afif P. Jati
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Murray E. White
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Rebecca S. Bamert
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Kher Shing Tan
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Cara Press
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - George Taiaroa
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Australia
| | - Francesca L. Short
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Rhys A. Dunstan
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Trevor Lithgow
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
10
|
Iarema P, Kotovskaya O, Skutel M, Drobiazko A, Moiseenko A, Sokolova O, Samitova A, Korostin D, Severinov K, Isaev A. Sxt1, Isolated from a Therapeutic Phage Cocktail, Is a Broader Host Range Relative of the Phage T3. Viruses 2024; 16:1905. [PMID: 39772213 PMCID: PMC11680406 DOI: 10.3390/v16121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Using Escherichia coli BW25113 as a host, we isolated a novel lytic phage from the commercial poly-specific therapeutic phage cocktail Sextaphage® (Microgen, Russia). We provide genetic and phenotypic characterization of the phage and describe its host range on the ECOR collection of reference E. coli strains. The phage, hereafter named Sxt1, is a close relative of classical coliphage T3 and belongs to the Teetrevirus genus, yet its internal virion proteins, forming an ejectosome, differ from those of T3. In addition, the Sxt1 lateral tail fiber (LTF) protein clusters with those of the phages from the Berlinvirus genus. A comparison of T7, T3, and Sxt1 LTFs reveals the presence of insertions leading to the elongation of Sxt1 tail fibers, which, together with the difference in the HRDRs (host range-determining regions), might explain the expanded host specificity for the Sxt1.
Collapse
Affiliation(s)
- Polina Iarema
- Center for Molecular and Cellular Biology, Moscow 121205, Russia; (P.I.); (O.K.); (M.S.); (A.D.)
| | - Oksana Kotovskaya
- Center for Molecular and Cellular Biology, Moscow 121205, Russia; (P.I.); (O.K.); (M.S.); (A.D.)
| | - Mikhail Skutel
- Center for Molecular and Cellular Biology, Moscow 121205, Russia; (P.I.); (O.K.); (M.S.); (A.D.)
| | - Alena Drobiazko
- Center for Molecular and Cellular Biology, Moscow 121205, Russia; (P.I.); (O.K.); (M.S.); (A.D.)
| | - Andrei Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (A.M.); (O.S.)
| | - Olga Sokolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (A.M.); (O.S.)
| | - Alina Samitova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; (A.S.); (D.K.)
| | - Dmitriy Korostin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; (A.S.); (D.K.)
| | | | - Artem Isaev
- Center for Molecular and Cellular Biology, Moscow 121205, Russia; (P.I.); (O.K.); (M.S.); (A.D.)
| |
Collapse
|
11
|
Pang H, Fan F, Zheng J, Xiao H, Tan Z, Song J, Kan B, Liu H. Three-dimensional structures of Vibrio cholerae typing podophage VP1 in two states. Structure 2024; 32:2364-2374.e2. [PMID: 39471801 DOI: 10.1016/j.str.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Lytic podophages (VP1-VP5) play crucial roles in subtyping Vibrio cholerae O1 biotype El Tor. However, until now no structures of these phages have been available, which hindered our understanding of the molecular mechanisms of infection and DNA release. Here, we determined the cryoelectron microscopy (cryo-EM) structures of mature and DNA-ejected VP1 structures at near-atomic and subnanometer resolutions, respectively. The VP1 head is composed of 415 copies of the major capsid protein gp7 and 11 turret-shaped spikes. The VP1 tail consists of an adapter, a nozzle, a slender ring, and a tail needle, and is flanked by three extended fibers I and six trimeric fibers II. Conformational changes of fiber II in DNA-ejected VP1 may cause the release of the tail needle and core proteins, forming an elongated tail channel. Our structures provide insights into the molecular mechanisms of infection and DNA release for podophages with a tail needle.
Collapse
Affiliation(s)
- Hao Pang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Fenxia Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Zhixue Tan
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| |
Collapse
|
12
|
Iglesias SM, Li F, Briani F, Cingolani G. Viral Genome Delivery Across Bacterial Cell Surfaces. Annu Rev Microbiol 2024; 78:125-145. [PMID: 38986128 DOI: 10.1146/annurev-micro-041222-124727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In 1952, Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Over 70 years later, our understanding of bacteriophage structure has grown dramatically, mainly thanks to the cryogenic electron microscopy revolution. In stark contrast, phage genome delivery in prokaryotes remains poorly understood, mainly due to the inherent challenge of studying such a transient and complex process. Here, we review the current literature on viral genome delivery across bacterial cell surfaces. We focus on icosahedral bacterial viruses that we arbitrarily sort into three groups based on the presence and size of a tail apparatus. We inventory the building blocks implicated in genome delivery and critically analyze putative mechanisms of genome ejection. Bacteriophage genome delivery into bacteria is a topic of growing interest, given the renaissance of phage therapy in Western medicine as a therapeutic alternative to face the antibiotic resistance crisis.
Collapse
Affiliation(s)
- Stephano M Iglesias
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy;
| | - Gino Cingolani
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| |
Collapse
|
13
|
Gaborieau B, Vaysset H, Tesson F, Charachon I, Dib N, Bernier J, Dequidt T, Georjon H, Clermont O, Hersen P, Debarbieux L, Ricard JD, Denamur E, Bernheim A. Prediction of strain level phage-host interactions across the Escherichia genus using only genomic information. Nat Microbiol 2024; 9:2847-2861. [PMID: 39482383 DOI: 10.1038/s41564-024-01832-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/13/2024] [Indexed: 11/03/2024]
Abstract
Predicting bacteriophage infection of specific bacterial strains promises advancements in phage therapy and microbial ecology. Whether the dynamics of well-established phage-host model systems generalize to the wide diversity of microbes is currently unknown. Here we show that we could accurately predict the outcomes of phage-bacteria interactions at the strain level in natural isolates from the genus Escherichia using only genomic data (area under the receiver operating characteristic curve (AUROC) of 86%). We experimentally established a dataset of interactions between 403 diverse Escherichia strains and 96 phages. Most interactions are explained by adsorption factors as opposed to antiphage systems which play a marginal role. We trained predictive algorithms and pinpoint poorly predicted interactions to direct future research efforts. Finally, we established a pipeline to recommend tailored phage cocktails, demonstrating efficiency on 100 pathogenic E. coli isolates. This work provides quantitative insights into phage-host specificity and supports the use of predictive algorithms in phage therapy.
Collapse
Affiliation(s)
- Baptiste Gaborieau
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France.
- AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France.
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France.
| | - Hugo Vaysset
- AgroParisTech, Université Paris-Saclay, Paris, France
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Florian Tesson
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France
| | - Inès Charachon
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
| | - Nicolas Dib
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
| | | | - Tanguy Dequidt
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France
| | - Héloïse Georjon
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France
| | | | - Pascal Hersen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France
| | - Jean-Damien Ricard
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
- AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Erick Denamur
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Aude Bernheim
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France.
| |
Collapse
|
14
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
15
|
Eruera AR, Hodgkinson-Bean J, Rutter GL, Hills FR, Kumaran R, Crowe AJM, Jadav N, Chang F, McJarrow-Keller K, Jorge F, Hyun J, Kim H, Ryu B, Bostina M. Ejectosome of Pectobacterium bacteriophage ΦM1. PNAS NEXUS 2024; 3:pgae416. [PMID: 39351541 PMCID: PMC11440229 DOI: 10.1093/pnasnexus/pgae416] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Podophages that infect gram-negative bacteria, such as Pectobacterium pathogen ΦM1, encode tail assemblies too short to extend across the complex gram-negative cell wall. To overcome this, podophages encode a large protein complex (ejectosome) packaged inside the viral capsid and correspondingly ejected during infection to form a transient channel that spans the periplasmic space. Here, we describe the ejectosome of bacteriophage ΦM1 to a resolution of 3.32 Å by single-particle cryo-electron microscopy (cryo-EM). The core consists of tetrameric and octameric ejection proteins which form a ∼1.5-MDa ejectosome that must transition through the ∼30 Å aperture created by the short tail nozzle assembly that acts as the conduit for the passage of DNA during infection. The ejectosome forms several grooves into which coils of genomic DNA are fit before the DNA sharply turns and goes down the tunnel and into the portal. In addition, we reconstructed the icosahedral capsid and hybrid tail apparatus to resolutions between 3.04 and 3.23 Å, and note an uncommon fold adopted by the dimerized decoration proteins which further emphasize the structural diversity of podophages. These reconstructions have allowed the generation of a complete atomic model of the ΦM1, uncovering two distinct decoration proteins and highlighting the exquisite structural diversity of tailed bacteriophages.
Collapse
Affiliation(s)
- Alice-Roza Eruera
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand
| | - James Hodgkinson-Bean
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand
| | - Georgia L Rutter
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand
| | - Francesca R Hills
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand
| | - Rosheny Kumaran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand
| | - Alexander J M Crowe
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand
| | - Nickhil Jadav
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand
| | - Fangfang Chang
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand
| | | | - Fátima Jorge
- Otago Micro and Nanoscale Imaging, University of Otago, Dunedin 9001, New Zealand
| | - Jaekyung Hyun
- School of Pharmacy, Sungkyunkwan University (성균관대학교), Suwon 16419, South Korea
| | - Hyejin Kim
- Research Solution Center, Institute for Basic Science (기초과학연구원), Daejeon 34126, South Korea
| | - Bumhan Ryu
- Research Solution Center, Institute for Basic Science (기초과학연구원), Daejeon 34126, South Korea
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand
| |
Collapse
|
16
|
Gambino M, Kushwaha SK, Wu Y, van Haastrecht P, Klein-Sousa V, Lutz VT, Bejaoui S, Jensen CMC, Bojer MS, Song W, Xiao M, Taylor NMI, Nobrega FL, Brøndsted L. Diversity and phage sensitivity to phages of porcine enterotoxigenic Escherichia coli. Appl Environ Microbiol 2024; 90:e0080724. [PMID: 38940562 PMCID: PMC11267873 DOI: 10.1128/aem.00807-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a diverse and poorly characterized E. coli pathotype that causes diarrhea in humans and animals. Phages have been proposed for the veterinary biocontrol of ETEC, but effective solutions require understanding of porcine ETEC diversity that affects phage infection. Here, we sequenced and analyzed the genomes of the PHAGEBio ETEC collection, gathering 79 diverse ETEC strains isolated from European pigs with post-weaning diarrhea (PWD). We identified the virulence factors characterizing the pathotype and several antibiotic resistance genes on plasmids, while phage resistance genes and other virulence factors were mostly chromosome encoded. We experienced that ETEC strains were highly resistant to Enterobacteriaceae phage infection. It was only by enrichment of numerous diverse samples with different media and conditions, using the 41 ETEC strains of our collection as hosts, that we could isolate two lytic phages that could infect a large part of our diverse ETEC collection: vB_EcoP_ETEP21B and vB_EcoS_ETEP102. Based on genome and host range analyses, we discussed the infection strategies of the two phages and identified components of lipopolysaccharides ( LPS) as receptors for the two phages. Our detailed computational structural analysis highlights several loops and pockets in the tail fibers that may allow recognition and binding of ETEC strains, also in the presence of O-antigens. Despite the importance of receptor recognition, the diversity of the ETEC strains remains a significant challenge for isolating ETEC phages and developing sustainable phage-based products to address ETEC-induced PWD.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC)-induced post-weaning diarrhea is a severe disease in piglets that leads to weight loss and potentially death, with high economic and animal welfare costs worldwide. Phage-based approaches have been proposed, but available data are insufficient to ensure efficacy. Genome analysis of an extensive collection of ETEC strains revealed that phage defense mechanisms were mostly chromosome encoded, suggesting a lower chance of spread and selection by phage exposure. The difficulty in isolating lytic phages and the molecular and structural analyses of two ETEC phages point toward a multifactorial resistance of ETEC to phage infection and the importance of extensive phage screenings specifically against clinically relevant strains. The PHAGEBio ETEC collection and these two phages are valuable tools for the scientific community to expand our knowledge on the most studied, but still enigmatic, bacterial species-E. coli.
Collapse
Affiliation(s)
- Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Conservation, The Royal Danish Academy, Copenhagen, Denmark
| | - Simran Krishnakant Kushwaha
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Yi Wu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Pauline van Haastrecht
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Victor Klein-Sousa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Veronika T. Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Semeh Bejaoui
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Martin S. Bojer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Nicholas M. I. Taylor
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Franklin L. Nobrega
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
17
|
Nagakubo T, Nishiyama T, Yamamoto T, Nomura N, Toyofuku M. Contractile injection systems facilitate sporogenic differentiation of Streptomyces davawensis through the action of a phage tapemeasure protein-related effector. Nat Commun 2024; 15:4442. [PMID: 38789435 PMCID: PMC11126660 DOI: 10.1038/s41467-024-48834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Contractile injection systems (CISs) are prokaryotic phage tail-like nanostructures loading effector proteins that mediate various biological processes. Although CIS functions have been diversified through evolution and hold the great potential as protein delivery systems, the functional characterisation of CISs and their effectors is currently limited to a few CIS lineages. Here, we show that the CISs of Streptomyces davawensis belong to a unique group of bacterial CISs distributed across distant phyla and facilitate sporogenic differentiation of this bacterium. CIS loss results in decreases in extracellular DNA release, biomass accumulation, and spore formation in S. davawensis. CISs load an effector, which is a remote homolog of phage tapemeasure proteins, and its C-terminal domain has endonuclease activity responsible for the CIS-associated phenotypes. Our findings illustrate that CISs can contribute to the reproduction of bacteria through the action of the effector and suggest an evolutionary link between CIS effectors and viral cargos.
Collapse
Affiliation(s)
- Toshiki Nagakubo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan.
| | - Tatsuya Nishiyama
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Chiyoda, Japan
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, University of Tsukuba, Tsukuba, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
18
|
Needham P, Page RC, Yehl K. Phage-layer interferometry: a companion diagnostic for phage therapy and a bacterial testing platform. Sci Rep 2024; 14:6026. [PMID: 38472239 PMCID: PMC10933294 DOI: 10.1038/s41598-024-55776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
The continuing and rapid emergence of antibiotic resistance (AMR) calls for innovations in antimicrobial therapies. A promising, 're-emerging' approach is the application of bacteriophage viruses to selectively infect and kill pathogenic bacteria, referred to as phage therapy. In practice, phage therapy is personalized and requires companion diagnostics to identify efficacious phages, which are then formulated into a therapeutic cocktail. The predominant means for phage screening involves optical-based assays, but these methods cannot be carried out in complex media, such as colored solutions, inhomogeneous mixtures, or high-viscosity samples, which are often conditions encountered in vivo. Moreover, these assays cannot distinguish phage binding and lysis parameters, which are important for standardizing phage cocktail formulation. To address these challenges, we developed Phage-layer Interferometry (PLI) as a companion diagnostic. Herein, PLI is assessed as a quantitative phage screening method and prototyped as a bacterial detection platform. Importantly, PLI is amenable to automation and is functional in complex, opaque media, such as baby formula. Due to these newfound capabilities, we foresee immediate and broad impact of PLI for combating AMR and protecting against foodborne illnesses.
Collapse
Affiliation(s)
- Patrick Needham
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA
| | - Kevin Yehl
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA.
| |
Collapse
|
19
|
Leavitt JC, Woodbury BM, Gilcrease EB, Bridges CM, Teschke CM, Casjens SR. Bacteriophage P22 SieA-mediated superinfection exclusion. mBio 2024; 15:e0216923. [PMID: 38236051 PMCID: PMC10883804 DOI: 10.1128/mbio.02169-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/10/2023] [Indexed: 01/19/2024] Open
Abstract
Many temperate phages encode prophage-expressed functions that interfere with superinfection of the host bacterium by external phages. Salmonella phage P22 has four such systems that are expressed from the prophage in a lysogen that are encoded by the c2 (repressor), gtrABC, sieA, and sieB genes. Here we report that the P22-encoded SieA protein is necessary and sufficient for exclusion by the SieA system and that it is an inner membrane protein that blocks DNA injection by P22 and its relatives, but has no effect on infection by other tailed phage types. The P22 virion injects its DNA through the host cell membranes and periplasm via a conduit assembled from three "ejection proteins" after their release from the virion. Phage P22 mutants that overcome the SieA block were isolated, and they have amino acid changes in the C-terminal regions of the gene 16 and 20 encoded ejection proteins. Three different single-amino acid changes in these proteins are required to obtain nearly full resistance to SieA. Hybrid P22 phages that have phage HK620 ejection protein genes are also partially resistant to SieA. There are three sequence types of extant phage-encoded SieA proteins that are less than 30% identical to one another, yet comparison of two of these types found no differences in phage target specificity. Our data strongly suggest a model in which the inner membrane protein SieA interferes with the assembly or function of the periplasmic gp20 and membrane-bound gp16 DNA delivery conduit.IMPORTANCEThe ongoing evolutionary battle between bacteria and the viruses that infect them is a critical feature of bacterial ecology on Earth. Viruses can kill bacteria by infecting them. However, when their chromosomes are integrated into a bacterial genome as a prophage, viruses can also protect the host bacterium by expressing genes whose products defend against infection by other viruses. This defense property is called "superinfection exclusion." A significant fraction of bacteria harbor prophages that encode such protective systems, and there are many different molecular strategies by which superinfection exclusion is mediated. This report is the first to describe the mechanism by which bacteriophage P22 SieA superinfection exclusion protein protects its host bacterium from infection by other P22-like phages. The P22 prophage-encoded inner membrane SieA protein prevents infection by blocking transport of superinfecting phage DNA across the inner membrane during injection.
Collapse
Affiliation(s)
- Justin C Leavitt
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Brianna M Woodbury
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Charles M Bridges
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Sherwood R Casjens
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
Subramanian S, Bergland Drarvik SM, Tinney KR, Parent KN. Cryo-EM structure of a Shigella podophage reveals a hybrid tail and novel decoration proteins. Structure 2024; 32:24-34.e4. [PMID: 37909043 PMCID: PMC10842012 DOI: 10.1016/j.str.2023.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
There is a paucity of high-resolution structures of phages infecting Shigella, a human pathogen and a serious threat to global health. HRP29 is a Shigella podophage belonging to the Autographivirinae family, and has very low sequence identity to other known phages. Here, we resolved the structure of the entire HRP29 virion by cryo-EM. Phage HRP29 has a highly unusual tail that is a fusion of a T7-like tail tube and P22-like tailspikes mediated by interactions from a novel tailspike adaptor protein. Understanding phage tail structures is critical as they mediate hosts interactions. Furthermore, we show that the HRP29 capsid is stabilized by two novel, and essential decoration proteins, gp47 and gp48. Only one high resolution structure is currently available for Shigella podophages. The presence of a hybrid tail and an adapter protein suggests that it may be a product of horizontal gene transfer, and may be prevalent in other phages.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Silje M Bergland Drarvik
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kendal R Tinney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
21
|
van Raaij MJ. Bacteriophage Receptor Recognition and Nucleic Acid Transfer. Subcell Biochem 2024; 105:593-628. [PMID: 39738959 DOI: 10.1007/978-3-031-65187-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Correct host cell recognition is important in the replication cycle for any virus, including bacterial viruses. This essential step should occur before the bacteriophage commits to transferring its genomic material into the target bacterium. In this chapter, we will discuss the mechanisms and proteins bacteriophages use for receptor recognition (just before full commitment to infection) and nucleic acid injection, which occurs just after commitment. Some bacteriophages use proteins of the capsid proper for host cell recognition, others use specialised spikes or fibres. Usually, several identical recognition events take place, and the information that a suitable host cell has been encountered is somehow transferred to the part of the bacteriophage capsid involved in nucleic acid transfer. The main part of the capsids of bacteriophages stays on the cell surface after transferring their genome, although a few specialised proteins move with the DNA, either forming a conduit, protecting the nucleic acids after transfer and/or functioning in the process of transcription and translation.
Collapse
Affiliation(s)
- Mark J van Raaij
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
22
|
Chen M, Sahoo B, Mou Z, Song X, Tsai T, Dai X. Genome organization in double-stranded DNA viruses observed by cryoET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571939. [PMID: 38168199 PMCID: PMC10760162 DOI: 10.1101/2023.12.15.571939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Double-stranded DNA (dsDNA) viruses package their genetic material into protein cages with diameters usually a few hundred times smaller than the length of their genome. Compressing the relatively stiff and highly negatively charged dsDNA into a small volume is energetically costly and mechanistically enigmatic. Multiple models of dsDNA packaging have been proposed based on various experimental evidence and simulation methods, but direct observation of any viral genome organization is lacking. Here, using cryoET and an improved data processing scheme that utilizes information from the encaging protein shell, we present 3D views of dsDNA genome inside individual viral particles at resolution that densities of neighboring DNA duplexes are readily separable. These cryoET observations reveal a "rod-and-coil" fold of the dsDNA that is conserved among herpes simplex virus type 1 (HSV-1) with a spherical capsid, bacteriophage T4 with a prolate capsid, and bacteriophage T7 with a proteinaceous core inside the capsid. Finally, inspired by the genome arrangement in partially packaged T4 particles, we propose a mechanism for the genome packaging process in dsDNA viruses.
Collapse
Affiliation(s)
- Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Bibekananda Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiyong Song
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tiffany Tsai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
- Lead contact
| |
Collapse
|
23
|
Letarov AV. Bacterial Virus Forcing of Bacterial O-Antigen Shields: Lessons from Coliphages. Int J Mol Sci 2023; 24:17390. [PMID: 38139217 PMCID: PMC10743462 DOI: 10.3390/ijms242417390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In most Gram-negative bacteria, outer membrane (OM) lipopolysaccharide (LPS) molecules carry long polysaccharide chains known as the O antigens or O polysaccharides (OPS). The OPS structure varies highly from strain to strain, with more than 188 O serotypes described in E. coli. Although many bacteriophages recognize OPS as their primary receptors, these molecules can also screen OM proteins and other OM surface receptors from direct interaction with phage receptor-binding proteins (RBP). In this review, I analyze the body of evidence indicating that most of the E. coli OPS types robustly shield cells completely, preventing phage access to the OM surface. This shield not only blocks virulent phages but also restricts the acquisition of prophages. The available data suggest that OPS-mediated OM shielding is not merely one of many mechanisms of bacterial resistance to phages. Rather, it is an omnipresent factor significantly affecting the ecology, phage-host co-evolution and other related processes in E. coli and probably in many other species of Gram-negative bacteria. The phages, in turn, evolved multiple mechanisms to break through the OPS layer. These mechanisms rely on the phage RBPs recognizing the OPS or on using alternative receptors exposed above the OPS layer. The data allow one to forward the interpretation that, regardless of the type of receptors used, primary receptor recognition is always followed by the generation of a mechanical force driving the phage tail through the OPS layer. This force may be created by molecular motors of enzymatically active tail spikes or by virion structural re-arrangements at the moment of infection.
Collapse
Affiliation(s)
- Andrey V Letarov
- Winogradsky Institute of Micrbiology, Research Center Fundamentals of Biotechnology RAS, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow 117312, Russia
| |
Collapse
|
24
|
Xiao H, Tan L, Tan Z, Zhang Y, Chen W, Li X, Song J, Cheng L, Liu H. Structure of the siphophage neck-Tail complex suggests that conserved tail tip proteins facilitate receptor binding and tail assembly. PLoS Biol 2023; 21:e3002441. [PMID: 38096144 PMCID: PMC10721106 DOI: 10.1371/journal.pbio.3002441] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Siphophages have a long, flexible, and noncontractile tail that connects to the capsid through a neck. The phage tail is essential for host cell recognition and virus-host cell interactions; moreover, it serves as a channel for genome delivery during infection. However, the in situ high-resolution structure of the neck-tail complex of siphophages remains unknown. Here, we present the structure of the siphophage lambda "wild type," the most widely used, laboratory-adapted fiberless mutant. The neck-tail complex comprises a channel formed by stacked 12-fold and hexameric rings and a 3-fold symmetrical tip. The interactions among DNA and a total of 246 tail protein molecules forming the tail and neck have been characterized. Structural comparisons of the tail tips, the most diversified region across the lambda and other long-tailed phages or tail-like machines, suggest that their tail tip contains conserved domains, which facilitate tail assembly, receptor binding, cell adsorption, and DNA retaining/releasing. These domains are distributed in different tail tip proteins in different phages or tail-like machines. The side tail fibers are not required for the phage particle to orient itself vertically to the surface of the host cell during attachment.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Le Tan
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Zhixue Tan
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Yewei Zhang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Xiaowu Li
- School of Electronics and Information Engineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingpeng Cheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| |
Collapse
|
25
|
Zhu D, Cao D, Zhang X. Virus structures revealed by advanced cryoelectron microscopy methods. Structure 2023; 31:1348-1359. [PMID: 37797619 DOI: 10.1016/j.str.2023.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023]
Abstract
Before the resolution revolution, cryoelectron microscopy (cryo-EM) single-particle analysis (SPA) already achieved resolutions beyond 4 Å for certain icosahedral viruses, enabling ab initio atomic model building of these viruses. As the only samples that achieved such high resolution at that time, cryo-EM method development was closely intertwined with the improvement of reconstructions of symmetrical viruses. Viral morphology exhibits significant diversity, ranging from small to large, uniform to non-uniform, and from containing single symmetry to multiple symmetries. Furthermore, viruses undergo conformational changes during their life cycle. Several methods, such as asymmetric reconstruction, Ewald sphere correction, cryoelectron tomography (cryo-ET), and sub-tomogram averaging (STA), have been developed and applied to determine virus structures in vivo and in vitro. This review outlines current advanced cryo-EM methods for high-resolution structure determination of viruses and summarizes accomplishments obtained with these approaches. Moreover, persisting challenges in comprehending virus structures are discussed and we propose potential solutions.
Collapse
Affiliation(s)
- Dongjie Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Zheng J, Chen W, Xiao H, Yang F, Song J, Cheng L, Liu H. Asymmetric Structure of Podophage GP4 Reveals a Novel Architecture of Three Types of Tail Fibers. J Mol Biol 2023; 435:168258. [PMID: 37660940 DOI: 10.1016/j.jmb.2023.168258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Bacteriophage tail fibers (or called tail spikes) play a critical role in the early stage of infection by binding to the bacterial surface. Podophages with known structures usually possess one or two types of fibers. Here, we resolved an asymmetric structure of the podophage GP4 to near-atomic resolution by cryo-EM. Our structure revealed a symmetry-mismatch relationship between the components of the GP4 tail with previously unseen topologies. In detail, two dodecameric adaptors (adaptors I and II), a hexameric nozzle, and a tail needle form a conserved tail body connected to a dodecameric portal occupying a unique vertex of the icosahedral head. However, five chain-like extended fibers (fiber I) and five tulip-like short fibers (fiber II) are anchored to a 15-fold symmetric fiber-tail adaptor, encircling the adaptor I, and six bamboo-like trimeric fibers (fiber III) are connected to the nozzle. Five fibers I, each composed of five dimers of the protein gp80 linked by an elongated rope protein, are attached to the five edges of the tail vertex of the icosahedral head. In this study, we identified a new structure of the podophage with three types of tail fibers, and such phages with different types of fibers may have a broad host range and/or infect host cells with considerably high efficiency, providing evolutionary advantages in harsh environments.
Collapse
Affiliation(s)
- Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China; State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Fan Yang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Jingdong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Lingpeng Cheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| |
Collapse
|
27
|
Cai L, Liu H, Zhang W, Xiao S, Zeng Q, Dang S. Cryo-EM structure of cyanophage P-SCSP1u offers insights into DNA gating and evolution of T7-like viruses. Nat Commun 2023; 14:6438. [PMID: 37833330 PMCID: PMC10575957 DOI: 10.1038/s41467-023-42258-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Cyanophages, together with their host cyanobacteria, play important roles in marine biogeochemical cycles and control of marine food webs. The recently identified MPP-C (Marine Picocyanobacteria Podovirus clade C) cyanophages, belonging to the T7-like podoviruses, contain the smallest genomes among cyanopodoviruses and exhibit distinct infection kinetics. However, understanding of the MPP-C cyanophage infection process is hindered by the lack of high-resolution structural information. Here, we report the cryo-EM structure of the cyanophage P-SCSP1u, a representative member of the MPP-C phages, in its native form at near-atomic resolution, which reveals the assembly mechanism of the capsid and molecular interaction of the portal-tail complex. Structural comparison of the capsid proteins of P-SCSP1u and other podoviruses with known structures provides insights into the evolution of T7-like viruses. Furthermore, our study provides the near-atomic resolution structure of portal-tail complex for T7-like viruses. On the basis of previously reported structures of phage T7, we identify an additional valve and gate to explain the DNA gating mechanism for the T7-like viruses.
Collapse
Affiliation(s)
- Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Hang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wen Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shiwei Xiao
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China.
- Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- HKUST-Shenzhen Research Institute, Nanshan, Shenzhen 518057, China.
| |
Collapse
|
28
|
Leavitt JC, Woodbury BM, Gilcrease EB, Bridges CM, Teschke CM, Casjens SR. Bacteriophage P22 SieA mediated superinfection exclusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553423. [PMID: 37645741 PMCID: PMC10461980 DOI: 10.1101/2023.08.15.553423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Many temperate phages encode prophage-expressed functions that interfere with superinfection of the host bacterium by external phages. Salmonella phage P22 has four such systems that are expressed from the prophage in a lysogen that are encoded by the c2 (repressor), gtrABC, sieA, and sieB genes. Here we report that the P22-encoded SieA protein is the only phage protein required for exclusion by the SieA system, and that it is an inner membrane protein that blocks DNA injection by P22 and its relatives, but has no effect on infection by other tailed phage types. The P22 virion injects its DNA through the host cell membranes and periplasm via a conduit assembled from three "ejection proteins" after their release from the virion. Phage P22 mutants were isolated that overcome the SieA block, and they have amino acid changes in the C-terminal regions of the gene 16 and 20 encoded ejection proteins. Three different single amino acid changes in these proteins are required to obtain nearly full resistance to SieA. Hybrid P22 phages that have phage HK620 ejection protein genes are also partially resistant to SieA. There are three sequence types of extant phage-encoded SieA proteins that are less than 30% identical to one another, yet comparison of two of these types found no differences in target specificity. Our data are consistent with a model in which the inner membrane protein SieA interferes with the assembly or function of the periplasmic gp20 and membrane-bound gp16 DNA delivery conduit.
Collapse
Affiliation(s)
- Justin C. Leavitt
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
- Current address: Green Raccoon Scientific, Gunlock UT 84733 USA
| | - Brianna M. Woodbury
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Current address: York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Eddie B. Gilcrease
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Current address: Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112 USA
| | - Charles M. Bridges
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269 USA
| | - Sherwood R. Casjens
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| |
Collapse
|
29
|
Bohmer M, Bhullar AS, Weitao T, Zhang L, Lee JH, Guo P. Revolving hexameric ATPases as asymmetric motors to translocate double-stranded DNA genome along one strand. iScience 2023; 26:106922. [PMID: 37305704 PMCID: PMC10250835 DOI: 10.1016/j.isci.2023.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
DsDNA translocation through nanoscale pores is generally accomplished by ATPase biomotors. The discovery of the revolving dsDNA translocation mechanism, as opposed to rotation, in bacteriophage phi29 elucidated how ATPase motors move dsDNA. Revolution-driven, hexameric dsDNA motors have been reported in herpesvirus, bacterial FtsK, Streptomyces TraB, and T7 phage. This review explores the common relationship between their structure and mechanisms. Commonalities include moving along the 5'→3' strand, inchworm sequential action leading to an asymmetrical structure, channel chirality, channel size, and 3-step channel gating for controlling motion direction. The revolving mechanism and contact with one of the dsDNA strands addresses the historic controversy of dsDNA packaging using nicked, gapped, hybrid, or chemically modified DNA. These controversies surrounding dsDNA packaging activity using modified materials can be answered by whether the modification was introduced into the 3'→5' or 5'→3' strand. Perspectives concerning solutions to the controversy of motor structure and stoichiometry are also discussed.
Collapse
Affiliation(s)
- Margaret Bohmer
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Abhjeet S. Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| | - Tao Weitao
- Center for the Genetics of Host Defense UT Southwestern Medical Center, Dallas, TX, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jing-Huei Lee
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
30
|
d’Acapito A, Roret T, Zarkadas E, Mocaër PY, Lelchat F, Baudoux AC, Schoehn G, Neumann E. Structural Study of the Cobetia marina Bacteriophage 1 (Carin-1) by Cryo-EM. J Virol 2023; 97:e0024823. [PMID: 36943070 PMCID: PMC10134823 DOI: 10.1128/jvi.00248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/23/2023] Open
Abstract
Most of studied bacteriophages (phages) are terrestrial viruses. However, marine phages are shown to be highly involved in all levels of oceanic regulation. They are, however, still largely overlooked by the scientific community. By inducing cell lysis on half of the bacterial population daily, their role and influence on the bacterial biomass and evolution, as well as their impact in the global biogeochemical cycles, is undeniable. Cobetia marina virus 1 (Carin-1) is a member of the Podoviridae family infecting the γ-protoabacteria C. marina. Here, we present the almost complete, nearly-atomic resolution structure of Carin-1 comprising capsid, portal, and tail machineries at 3.5 Å, 3.8 Å and 3.9 Å, respectively, determined by cryo-electron microscopy (cryo-EM). Our experimental results, combined with AlphaFold2 (AF), allowed us to obtain the nearly-atomic structure of Carin-1 by fitting and refining the AF atomic models in the high resolution cryo-EM map, skipping the bottleneck of de-novo manual building and speeding up the structure determination process. Our structural results highlighted the T7-like nature of Carin1, as well as several novel structural features like the presence of short spikes on the capsid, reminiscent those described for Rhodobacter capsulatus gene transfer agent (RcGTA). This is, to our knowledge, the first time such assembly is described for a bacteriophage, shedding light into the common evolution and shared mechanisms between gene transfer agents and phages. This first full structure determined for a marine podophage allowed to propose an infection mechanism different than the one proposed for the archetypal podophage T7. IMPORTANCE Oceans play a central role in the carbon cycle on Earth and on the climate regulation (half of the planet's CO2 is absorbed by phytoplankton photosynthesis in the oceans and just as much O2 is liberated). The understanding of the biochemical equilibriums of marine biology represents a major goal for our future. By lysing half of the bacterial population every day, marine bacteriophages are key actors of these equilibriums. Despite their importance, these marine phages have, so far, only been studied a little and, in particular, structural insights are currently lacking, even though they are fundamental for the understanding of the molecular mechanisms of their mode of infection. The structures described in our manuscript allow us to propose an infection mechanism that differs from the one proposed for the terrestrial T7 virus, and might also allow us to, in the future, better understand the way bacteriophages shape the global ecosystem.
Collapse
Affiliation(s)
| | - Thomas Roret
- Station Biologique de Roscoff (SBR), CNRS FR2424, Sorbonne Université, Roscoff, France
| | | | - Pierre-Yves Mocaër
- Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff, Roscoff, France
| | | | - Anne-Claire Baudoux
- Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff, Roscoff, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | | |
Collapse
|
31
|
Degroux S, Effantin G, Linares R, Schoehn G, Breyton C. Deciphering Bacteriophage T5 Host Recognition Mechanism and Infection Trigger. J Virol 2023; 97:e0158422. [PMID: 36779755 PMCID: PMC10062170 DOI: 10.1128/jvi.01584-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023] Open
Abstract
Bacteriophages, viruses infecting bacteria, recognize their host with high specificity, binding to either saccharide motifs or proteins of the cell wall of their host. In the majority of bacteriophages, this host recognition is performed by receptor binding proteins (RBPs) located at the extremity of a tail. Interaction between the RBPs and the host is the trigger for bacteriophage infection, but the molecular details of the mechanisms are unknown for most bacteriophages. Here, we present the electron cryomicroscopy (cryo-EM) structure of bacteriophage T5 RBPpb5 in complex with its Escherichia coli receptor, the iron ferrichrome transporter FhuA. Monomeric RBPpb5 is located at the extremity of T5's long flexible tail, and its irreversible binding to FhuA commits T5 to infection. Analysis of the structure of RBPpb5 within the complex, comparison with its AlphaFold2-predicted structure, and its fit into a previously determined map of the T5 tail tip in complex with FhuA allow us to propose a mechanism of transmission of the RBPpb5 receptor binding to the straight fiber, initiating the cascade of events that commits T5 to DNA ejection. IMPORTANCE Tailed bacteriophages specifically recognize their bacterial host by interaction of their receptor binding protein(s) (RBPs) with saccharides and/or proteins located at the surface of their prey. This crucial interaction commits the virus to infection, but the molecular details of this mechanism are unknown for the majority of bacteriophages. We determined the structure of bacteriophage T5 RBPpb5 in complex with its E. coli receptor, FhuA, by cryo-EM. This first structure of an RBP bound to its protein receptor allowed us to propose a mechanism of transmission of host recognition to the rest of the phage, ultimately opening the capsid and perforating the cell wall and, thus, allowing safe channeling of the DNA into the host cytoplasm.
Collapse
Affiliation(s)
| | | | - Romain Linares
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Guy Schoehn
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Cécile Breyton
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| |
Collapse
|
32
|
Taslem Mourosi J, Awe A, Guo W, Batra H, Ganesh H, Wu X, Zhu J. Understanding Bacteriophage Tail Fiber Interaction with Host Surface Receptor: The Key "Blueprint" for Reprogramming Phage Host Range. Int J Mol Sci 2022; 23:12146. [PMID: 36292999 PMCID: PMC9603124 DOI: 10.3390/ijms232012146] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages (phages), as natural antibacterial agents, are being rediscovered because of the growing threat of multi- and pan-drug-resistant bacterial pathogens globally. However, with an estimated 1031 phages on the planet, finding the right phage to recognize a specific bacterial host is like looking for a needle in a trillion haystacks. The host range of a phage is primarily determined by phage tail fibers (or spikes), which initially mediate reversible and specific recognition and adsorption by susceptible bacteria. Recent significant advances at single-molecule and atomic levels have begun to unravel the structural organization of tail fibers and underlying mechanisms of phage-host interactions. Here, we discuss the molecular mechanisms and models of the tail fibers of the well-characterized T4 phage's interaction with host surface receptors. Structure-function knowledge of tail fibers will pave the way for reprogramming phage host range and will bring future benefits through more-effective phage therapy in medicine. Furthermore, the design strategies of tail fiber engineering are briefly summarized, including machine-learning-assisted engineering inspired by the increasingly enormous amount of phage genetic information.
Collapse
Affiliation(s)
- Jarin Taslem Mourosi
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Ayobami Awe
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Wenzheng Guo
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Himanshu Batra
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harrish Ganesh
- VCU Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
33
|
Imaging the Infection Cycle of T7 at the Single Virion Level. Int J Mol Sci 2022; 23:ijms231911252. [PMID: 36232552 PMCID: PMC9569847 DOI: 10.3390/ijms231911252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
T7 phages are E. coli-infecting viruses that find and invade their target with high specificity and efficiency. The exact molecular mechanisms of the T7 infection cycle are yet unclear. As the infection involves mechanical events, single-particle methods are to be employed to alleviate the problems of ensemble averaging. Here we used TIRF microscopy to uncover the spatial dynamics of the target recognition and binding by individual T7 phage particles. In the initial phase, T7 virions bound reversibly to the bacterial membrane via two-dimensional diffusive exploration. Stable bacteriophage anchoring was achieved by tail-fiber complex to receptor binding which could be observed in detail by atomic force microscopy (AFM) under aqueous buffer conditions. The six anchored fibers of a given T7 phage-displayed isotropic spatial orientation. The viral infection led to the onset of an irreversible structural program in the host which occurred in three distinct steps. First, bacterial cell surface roughness, as monitored by AFM, increased progressively. Second, membrane blebs formed on the minute time scale (average ~5 min) as observed by phase-contrast microscopy. Finally, the host cell was lysed in a violent and explosive process that was followed by the quick release and dispersion of the phage progeny. DNA ejection from T7 could be evoked in vitro by photothermal excitation, which revealed that genome release is mechanically controlled to prevent premature delivery of host-lysis genes. The single-particle approach employed here thus provided an unprecedented insight into the details of the complete viral cycle.
Collapse
|
34
|
Tian Y, Xue C, Zhang W, Chen C, Ma L, Niu Q, Wu L, Yan X. Refractive Index Determination of Individual Viruses and Small Extracellular Vesicles in Aqueous Media Using Nano-Flow Cytometry. Anal Chem 2022; 94:14299-14307. [DOI: 10.1021/acs.analchem.2c02833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ye Tian
- Department of Chemical Biology, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Chengfeng Xue
- Department of Chemical Biology, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Wenqiang Zhang
- Department of Chemical Biology, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Chaoxiang Chen
- Department of Chemical Biology, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Ling Ma
- Department of Chemical Biology, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Qian Niu
- Department of Chemical Biology, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Lina Wu
- Department of Chemical Biology, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| |
Collapse
|
35
|
Raza S, Folga M, Łoś M, Foltynowicz Z, Paczesny J. The Effect of Zero-Valent Iron Nanoparticles (nZVI) on Bacteriophages. Viruses 2022; 14:867. [PMID: 35632609 PMCID: PMC9144403 DOI: 10.3390/v14050867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/05/2022] Open
Abstract
Bacteriophages are viruses that attack and usually kill bacteria. Their appearance in the industrial facilities using bacteria to produce active compounds (e.g., drugs, food, cosmetics, etc.) causes considerable financial losses. Instances of bacteriophage resistance towards disinfectants and decontamination procedures (such as thermal inactivation and photocatalysis) have been reported. There is a pressing need to explore new ways of phage inactivation that are environmentally neutral, inexpensive, and more efficient. Here, we study the effect of zero-valent iron nanoparticles (nZVI) on four different bacteriophages (T4, T7, MS2, M13). The reduction of plaque-forming units (PFU) per mL varies from greater than 7log to around 0.5log depending on bacteriophages (M13 and T7, respectively). A comparison of the importance of oxidation of nZVI versus the release of Fe2+/Fe3+ ions is shown. The mechanism of action is proposed in connection to redox reactions, adsorption of virions on nZVI, and the effect of released iron ions. The nZVI constitutes a critical addition to available antiphagents (i.e., anti-bacteriophage agents).
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (M.F.)
| | - Michał Folga
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (M.F.)
| | - Marcin Łoś
- Department of Molecular Genetics of Bacteria, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Phage Consultants, Partyzantów 10/18, 80-254 Gdańsk, Poland
| | - Zenon Foltynowicz
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (M.F.)
| |
Collapse
|
36
|
Hungaro HM, Vidigal PMP, do Nascimento EC, Gomes da Costa Oliveira F, Gontijo MTP, Lopez MES. Genomic Characterisation of UFJF_PfDIW6: A Novel Lytic Pseudomonas fluorescens-Phage with Potential for Biocontrol in the Dairy Industry. Viruses 2022; 14:v14030629. [PMID: 35337036 PMCID: PMC8951688 DOI: 10.3390/v14030629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we have presented the genomic characterisation of UFJF_PfDIW6, a novel lytic Pseudomonas fluorescens-phage with potential for biocontrol in the dairy industry. This phage showed a short linear double-stranded DNA genome (~42 kb) with a GC content of 58.3% and more than 50% of the genes encoding proteins with unknown functions. Nevertheless, UFJF_PfDIW6’s genome was organised into five functional modules: DNA packaging, structural proteins, DNA metabolism, lysogenic, and host lysis. Comparative genome analysis revealed that the UFJF_PfDIW6’s genome is distinct from other viral genomes available at NCBI databases, displaying maximum coverages of 5% among all alignments. Curiously, this phage showed higher sequence coverages (38–49%) when aligned with uncharacterised prophages integrated into Pseudomonas genomes. Phages compared in this study share conserved locally collinear blocks comprising genes of the modules’ DNA packing and structural proteins but were primarily differentiated by the composition of the DNA metabolism and lysogeny modules. Strategies for taxonomy assignment showed that UFJF_PfDIW6 was clustered into an unclassified genus in the Podoviridae clade. Therefore, our findings indicate that this phage could represent a novel genus belonging to the Podoviridae family.
Collapse
Affiliation(s)
- Humberto Moreira Hungaro
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
- Correspondence: (H.M.H.); (M.E.S.L.); Tel.: +55-32-2102-3804 (H.M.H.); +57-310-469-02-04 (M.E.S.L.)
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Campus da UFV, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Edilane Cristina do Nascimento
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
| | - Felipe Gomes da Costa Oliveira
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
| | - Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil;
| | - Maryoris Elisa Soto Lopez
- Departamento de Engenharia de Alimentos, Universidade de Córdoba (UNICORDOBA), Córdoba 230002, Colombia
- Correspondence: (H.M.H.); (M.E.S.L.); Tel.: +55-32-2102-3804 (H.M.H.); +57-310-469-02-04 (M.E.S.L.)
| |
Collapse
|
37
|
Swanson NA, Hou CFD, Cingolani G. Viral Ejection Proteins: Mosaically Conserved, Conformational Gymnasts. Microorganisms 2022; 10:microorganisms10030504. [PMID: 35336080 PMCID: PMC8954989 DOI: 10.3390/microorganisms10030504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial viruses (or bacteriophages) have developed formidable ways to deliver their genetic information inside bacteria, overcoming the complexity of the bacterial-cell envelope. In short-tailed phages of the Podoviridae superfamily, genome ejection is mediated by a set of mysterious internal virion proteins, also called ejection or pilot proteins, which are required for infectivity. The ejection proteins are challenging to study due to their plastic structures and transient assembly and have remained less characterized than classical components such as the phage coat protein or terminase subunit. However, a spate of recent cryo-EM structures has elucidated key features underscoring these proteins' assembly and conformational gymnastics that accompany their expulsion from the virion head through the portal protein channel into the host. In this review, we will use a phage-T7-centric approach to critically review the status of the literature on ejection proteins, decipher the conformational changes of T7 ejection proteins in the pre- and post-ejection conformation, and predict the conservation of these proteins in other Podoviridae. The challenge is to relate the structure of the ejection proteins to the mechanisms of genome ejection, which are exceedingly complex and use the host's machinery.
Collapse
Affiliation(s)
- Nicholas A. Swanson
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (N.A.S.); (C.-F.D.H.)
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Chun-Feng D. Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (N.A.S.); (C.-F.D.H.)
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (N.A.S.); (C.-F.D.H.)
- Correspondence: ; Tel.: +01-(215)-503-4573
| |
Collapse
|
38
|
Boeckman J, Korn A, Yao G, Ravindran A, Gonzalez C, Gill J. Sheep in wolves’ clothing: Temperate T7-like bacteriophages and the origins of the Autographiviridae. Virology 2022; 568:86-100. [DOI: 10.1016/j.virol.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/25/2022]
|
39
|
Major tail proteins of bacteriophages of the order Caudovirales. J Biol Chem 2021; 298:101472. [PMID: 34890646 PMCID: PMC8718954 DOI: 10.1016/j.jbc.2021.101472] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Technological advances in cryo-EM in recent years have given rise to detailed atomic structures of bacteriophage tail tubes-a class of filamentous protein assemblies that could previously only be studied on the atomic scale in either their monomeric form or when packed within a crystal lattice. These hollow elongated protein structures, present in most bacteriophages of the order Caudovirales, connect the DNA-containing capsid with a receptor function at the distal end of the tail and consist of helical and polymerized major tail proteins. However, the resolution of cryo-EM data for these systems differs enormously between different tail tube types, partly inhibiting the building of high-fidelity models and barring a combination with further structural biology methods. Here, we review the structural biology efforts within this field and highlight the role of integrative structural biology approaches that have proved successful for some of these systems. Finally, we summarize the structural elements of major tail proteins and conceptualize how different amounts of tail tube flexibility confer heterogeneity within cryo-EM maps and, thus, limit high-resolution reconstructions.
Collapse
|
40
|
Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, Thaler DS, Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol 2021; 19:e3001424. [PMID: 34784345 PMCID: PMC8594841 DOI: 10.1371/journal.pbio.3001424] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage-host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage-host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages' host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - David S. Thaler
- Biozentrum, University of Basel, Basel, Switzerland
- Program for the Human Environment, Rockefeller University, New York City, New York, United States of America
| | | |
Collapse
|
41
|
Turzynski V, Monsees I, Moraru C, Probst AJ. Imaging Techniques for Detecting Prokaryotic Viruses in Environmental Samples. Viruses 2021; 13:2126. [PMID: 34834933 PMCID: PMC8622608 DOI: 10.3390/v13112126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Viruses are the most abundant biological entities on Earth with an estimate of 1031 viral particles across all ecosystems. Prokaryotic viruses-bacteriophages and archaeal viruses-influence global biogeochemical cycles by shaping microbial communities through predation, through the effect of horizontal gene transfer on the host genome evolution, and through manipulating the host cellular metabolism. Imaging techniques have played an important role in understanding the biology and lifestyle of prokaryotic viruses. Specifically, structure-resolving microscopy methods, for example, transmission electron microscopy, are commonly used for understanding viral morphology, ultrastructure, and host interaction. These methods have been applied mostly to cultivated phage-host pairs. However, recent advances in environmental genomics have demonstrated that the majority of viruses remain uncultivated, and thus microscopically uncharacterized. Although light- and structure-resolving microscopy of viruses from environmental samples is possible, quite often the link between the visualization and the genomic information of uncultivated prokaryotic viruses is missing. In this minireview, we summarize the current state of the art of imaging techniques available for characterizing viruses in environmental samples and discuss potential links between viral imaging and environmental genomics for shedding light on the morphology of uncultivated viruses and their lifestyles in Earth's ecosystems.
Collapse
Affiliation(s)
- Victoria Turzynski
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
| | - Indra Monsees
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany;
| | - Alexander J. Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
42
|
Yu H, Khokhlatchev AV, Chew C, Illendula A, Conaway M, Dryden K, Maeda DLNF, Rajasekaran V, Kester M, Zeichner SL. Minicells from Highly Genome Reduced Escherichia coli: Cytoplasmic and Surface Expression of Recombinant Proteins and Incorporation in the Minicells. ACS Synth Biol 2021; 10:2465-2477. [PMID: 34516078 DOI: 10.1021/acssynbio.1c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Minicells, small cells lacking a chromosome, produced by bacteria with mutated min genes, which control cell division septum placement, have many potential uses. Minicells have contributed to basic bacterial physiology studies and can enable new biotechnological applications, including drug delivery and vaccines. Genome-reduced bacteria are another informative area of investigation. Investigators identified that with even almost 30% of the E. coli genome deleted, the bacteria still live. In biotechnology and synthetic biology, genome-reduced bacteria offer certain advantages. With genome-reduced bacteria, more recombinant genes can be placed into genome-reduced chromosomes and fewer cell resources are devoted to purposes apart from biotechnological goals. Here, we show that these two technologies can be combined: min mutants can be made in genome-reduced E. coli. The minC minD mutant genome-reduced E. coli produce minicells that concentrate engineered recombinant proteins within these spherical delivery systems. We expressed recombinant GFP protein in the cytoplasm of genome-reduced bacteria and showed that it is concentrated within the minicells. We also expressed proteins on the surfaces of minicells made from genome-reduced bacteria using a recombinant Gram-negative AIDA-I autotransporter expression cassette. Some autotransporters, like AIDA-I, are concentrated at the bacterial poles, where minicells bud. Recombinant proteins expressed on surfaces of the genome-reduced bacteria are concentrated on the minicells. Minicells made from genome-reduced bacteria may enable useful biotechnological innovations, such as drug delivery vehicles and vaccine immunogens.
Collapse
Affiliation(s)
- Hanna Yu
- Department of Pediatrics and Child Health Research Institute, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Andrei V. Khokhlatchev
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Claude Chew
- School of Medicine ORCA, Flow Cytometry Core Facility, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Anuradha Illendula
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Mark Conaway
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Kelly Dryden
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia 22903, United States
| | | | - Vignesh Rajasekaran
- Department of Pediatrics and Child Health Research Institute, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, United States
- Director, nanoSTAR Institute, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Steven L. Zeichner
- Department of Pediatrics and Child Health Research Institute, University of Virginia, Charlottesville, Virginia 22903, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
43
|
Structural changes in bacteriophage T7 upon receptor-induced genome ejection. Proc Natl Acad Sci U S A 2021; 118:2102003118. [PMID: 34504014 DOI: 10.1073/pnas.2102003118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Many tailed bacteriophages assemble ejection proteins and a portal-tail complex at a unique vertex of the capsid. The ejection proteins form a transenvelope channel extending the portal-tail channel for the delivery of genomic DNA in cell infection. Here, we report the structure of the mature bacteriophage T7, including the ejection proteins, as well as the structures of the full and empty T7 particles in complex with their cell receptor lipopolysaccharide. Our near-atomic-resolution reconstruction shows that the ejection proteins in the mature T7 assemble into a core, which comprises a fourfold gene product 16 (gp16) ring, an eightfold gp15 ring, and a putative eightfold gp14 ring. The gp15 and gp16 are mainly composed of helix bundles, and gp16 harbors a lytic transglycosylase domain for degrading the bacterial peptidoglycan layer. When interacting with the lipopolysaccharide, the T7 tail nozzle opens. Six copies of gp14 anchor to the tail nozzle, extending the nozzle across the lipopolysaccharide lipid bilayer. The structures of gp15 and gp16 in the mature T7 suggest that they should undergo remarkable conformational changes to form the transenvelope channel. Hydrophobic α-helices were observed in gp16 but not in gp15, suggesting that gp15 forms the channel in the hydrophilic periplasm and gp16 forms the channel in the cytoplasmic membrane.
Collapse
|
44
|
Li S. Cryo-electron tomography of enveloped viruses. Trends Biochem Sci 2021; 47:173-186. [PMID: 34511334 DOI: 10.1016/j.tibs.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Viruses are macromolecular machineries that hijack cellular metabolism for replication. Enveloped viruses comprise a large variety of RNA and DNA viruses, many of which are notorious human or animal pathogens. Despite their importance, the presence of lipid bilayers in their assembly has made most enveloped viruses too pleomorphic to be reconstructed as a whole by traditional structural biology methods. Furthermore, structural biology of the viral lifecycle was hindered by the sample thickness. Here, I review the recent advances in the applications of cryo-electron tomography (cryo-ET) on enveloped viral structures and intracellular viral activities.
Collapse
Affiliation(s)
- Sai Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
45
|
Assisted assembly of bacteriophage T7 core components for genome translocation across the bacterial envelope. Proc Natl Acad Sci U S A 2021; 118:2026719118. [PMID: 34417311 DOI: 10.1073/pnas.2026719118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In most bacteriophages, genome transport across bacterial envelopes is carried out by the tail machinery. In viruses of the Podoviridae family, in which the tail is not long enough to traverse the bacterial wall, it has been postulated that viral core proteins assembled inside the viral head are translocated and reassembled into a tube within the periplasm that extends the tail channel. Bacteriophage T7 infects Escherichia coli, and despite extensive studies, the precise mechanism by which its genome is translocated remains unknown. Using cryo-electron microscopy, we have resolved the structure of two different assemblies of the T7 DNA translocation complex composed of the core proteins gp15 and gp16. Gp15 alone forms a partially folded hexamer, which is further assembled upon interaction with gp16 into a tubular structure, forming a channel that could allow DNA passage. The structure of the gp15-gp16 complex also shows the location within gp16 of a canonical transglycosylase motif involved in the degradation of the bacterial peptidoglycan layer. This complex docks well in the tail extension structure found in the periplasm of T7-infected bacteria and matches the sixfold symmetry of the phage tail. In such cases, gp15 and gp16 that are initially present in the T7 capsid eightfold-symmetric core would change their oligomeric state upon reassembly in the periplasm. Altogether, these results allow us to propose a model for the assembly of the core translocation complex in the periplasm, which furthers understanding of the molecular mechanism involved in the release of T7 viral DNA into the bacterial cytoplasm.
Collapse
|
46
|
Intravirion DNA Can Access the Space Occupied by the Bacteriophage P22 Ejection Proteins. Viruses 2021; 13:v13081504. [PMID: 34452369 PMCID: PMC8402733 DOI: 10.3390/v13081504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Tailed double-stranded DNA bacteriophages inject some proteins with their dsDNA during infection. Phage P22 injects about 12, 12, and 30 molecules of the proteins encoded by genes 7, 16 and 20, respectively. After their ejection from the virion, they assemble into a trans-periplasmic conduit through which the DNA passes to enter the cytoplasm. The location of these proteins in the virion before injection is not well understood, although we recently showed they reside near the portal protein barrel in DNA-filled heads. In this report we show that when these proteins are missing from the virion, a longer than normal DNA molecule is encapsidated by the P22 headful DNA packaging machinery. Thus, the ejection proteins occupy positions within the virion that can be occupied by packaged DNA when they are absent.
Collapse
|
47
|
Swanson NA, Lokareddy RK, Li F, Hou CFD, Leptihn S, Pavlenok M, Niederweis M, Pumroy RA, Moiseenkova-Bell VY, Cingolani G. Cryo-EM structure of the periplasmic tunnel of T7 DNA-ejectosome at 2.7 Å resolution. Mol Cell 2021; 81:3145-3159.e7. [PMID: 34214465 DOI: 10.1016/j.molcel.2021.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/27/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022]
Abstract
Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria. Here, we reconstitute the phage T7 DNA-ejectosome components gp14, gp15, and gp16 and solve the periplasmic tunnel structure at 2.7 Å resolution. We find that gp14 forms an outer membrane pore, gp15 assembles into a 210 Å hexameric DNA tube spanning the host periplasm, and gp16 extends into the host cytoplasm forming a ∼4,200 residue hub. Gp16 promotes gp15 oligomerization, coordinating peptidoglycan hydrolysis, DNA binding, and lipid insertion. The reconstituted gp15:gp16 complex lacks channel-forming activity, suggesting that the pore for DNA passage forms only transiently during genome ejection.
Collapse
Affiliation(s)
- Nicholas A Swanson
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Hangzhou, China
| | - Mikhail Pavlenok
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
48
|
Seul A, Brasilès S, Petitpas I, Lurz R, Campanacci V, Cambillau C, Weise F, Zairi M, Tavares P, Auzat I. Biogenesis of a Bacteriophage Long Non-Contractile Tail. J Mol Biol 2021; 433:167112. [PMID: 34153288 DOI: 10.1016/j.jmb.2021.167112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/22/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Siphoviruses are main killers of bacteria. They use a long non-contractile tail to recognize the host cell and to deliver the genome from the viral capsid to the bacterial cytoplasm. Here, we define the molecular organization of the Bacillus subtilis bacteriophage SPP1 ~ 6.8 MDa tail and uncover its biogenesis mechanisms. A complex between gp21 and the tail distal protein (Dit) gp19.1 is assembled first to build the tail cap (gp19.1-gp21Nter) connected by a flexible hinge to the tail fiber (gp21Cter). The tip of the gp21Cter fiber is loosely associated to gp22. The cap provides a platform where tail tube proteins (TTPs) initiate polymerization around the tape measure protein gp18 (TMP), a reaction dependent on the non-structural tail assembly chaperones gp17.5 and gp17.5* (TACs). Gp17.5 is essential for stability of gp18 in the cell. Helical polymerization stops at a precise tube length followed by binding of proteins gp16.1 (TCP) and gp17 (THJP) to build the tail interface for attachment to the capsid portal system. This finding uncovers the function of the extensively conserved gp16.1-homologs in assembly of long tails. All SPP1 tail components, apart from gp22, share homology to conserved proteins whose coding genes' synteny is broadly maintained in siphoviruses. They conceivably represent the minimal essential protein set necessary to build functional long tails. Proteins homologous to SPP1 tail building blocks feature a variety of add-on modules that diversify extensively the tail core structure, expanding its capability to bind host cells and to deliver the viral genome to the bacterial cytoplasm.
Collapse
Affiliation(s)
- Anait Seul
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France
| | - Sandrine Brasilès
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Isabelle Petitpas
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France
| | - Rudi Lurz
- Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Valérie Campanacci
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, Marseille, France
| | - Frank Weise
- Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Mohamed Zairi
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France
| | - Paulo Tavares
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France.
| | - Isabelle Auzat
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
49
|
The Development of Bacteriophage Resistance in Vibrio alginolyticus Depends on a Complex Metabolic Adaptation Strategy. Viruses 2021; 13:v13040656. [PMID: 33920240 PMCID: PMC8069663 DOI: 10.3390/v13040656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Lytic bacteriophages have been well documented to play a pivotal role in microbial ecology due to their complex interactions with bacterial species, especially in aquatic habitats. Although the use of phages as antimicrobial agents, known as phage therapy, in the aquatic environment has been increasing, recent research has revealed drawbacks due to the development of phage-resistant strains among Gram-negative species. Acquired phage resistance in marine Vibrios has been proven to be a very complicated process utilizing biochemical, metabolic, and molecular adaptation strategies. The results of our multi-omics approach, incorporating transcriptome and metabolome analyses of Vibrio alginolyticus phage-resistant strains, corroborate this prospect. Our results provide insights into phage-tolerant strains diminishing the expression of phage receptors ompF, lamB, and btuB. The same pattern was observed for genes encoding natural nutrient channels, such as rbsA, ptsG, tryP, livH, lysE, and hisp, meaning that the cell needs to readjust its biochemistry to achieve phage resistance. The results showed reprogramming of bacterial metabolism by transcript regulations in key-metabolic pathways, such as the tricarboxylic acid cycle (TCA) and lysine biosynthesis, as well as the content of intracellular metabolites belonging to processes that could also significantly affect the cell physiology. Finally, SNP analysis in resistant strains revealed no evidence of amino acid alterations in the studied putative bacterial phage receptors, but several SNPs were detected in genes involved in transcriptional regulation. This phenomenon appears to be a phage-specific, fine-tuned metabolic engineering, imposed by the different phage genera the bacteria have interacted with, updating the role of lytic phages in microbial marine ecology.
Collapse
|
50
|
Dunne M, Prokhorov NS, Loessner MJ, Leiman PG. Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins. Curr Opin Biotechnol 2021; 68:272-281. [PMID: 33744824 PMCID: PMC10163921 DOI: 10.1016/j.copbio.2021.02.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023]
Abstract
Bacteriophages (phages) use specialized tail machinery to deliver proteins and genetic material into a bacterial cell during infection. Attached at the distal ends of their tails are receptor binding proteins (RBPs) that recognize specific molecules exposed on host bacteria surfaces. Since the therapeutic capacity of naturally occurring phages is often limited by narrow host ranges, there is significant interest in expanding their host range via directed evolution or structure-guided engineering of their RBPs. Here, we describe the design principles of different RBP engineering platforms and draw attention to the mechanisms linking RBP binding and the correct spatial and temporal attachment of the phage to the bacterial surface. A deeper understanding of these mechanisms will directly benefit future engineering of more effective phage-based therapeutics.
Collapse
Affiliation(s)
- Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.
| | - Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| |
Collapse
|