1
|
Chen C, Wang F, Chen N, Dong L, Zhang W, He J, Zhu F. HLA-C*01:02 and -C*04:03 May Confer Susceptibility to Treponema pallidum Infection in the Chinese Han Population. Int J Immunogenet 2025. [PMID: 40361234 DOI: 10.1111/iji.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Some associations between Treponema pallidum (TP) susceptibility and human leukocyte antigen (HLA) loci at low resolution have been reported. However, the data for TP infection and HLA alleles at high resolution are limited. The purpose of this study was to perform a high-resolution screen for HLA alleles that confer susceptibility to TP infection in the Chinese Han population. A total of 184 individuals with TP infection were included in the study, and 254 unrelated healthy blood donors were included in the control group. The samples were genotyped for the HLA-A, -C, -B, -DRB1, -DQB1 and -DPB1 loci using next-generation sequencing (NGS) technology. The correlations between TP infection and the alleles and haplotypes of HLA loci were determined by statistical analysis. Five HLA alleles, including HLA-A*32:01 (0.00% vs. 1.57%, p = 0.024), -B*52:01 (1.36% vs. 4.13%, p = 0.025), -C*01:02 (22.55% vs. 16.54%, p = 0.029), -C*04:03 (1.63% vs. 0.2%, p = 0.046) and -DQB1*05:03 (1.63% vs. 4.13%, p = 0.046), are potentially associated with TP infection. However, no significant difference was detected after p value correction. The frequency of the HLA-A*33:03-C*03:02-B*58:01-DRB1*03:01-DQB1*02:01-DPB1*05:01 haplotype in the control group was greater than that in the TP infection group (p = 0.002). In contrast, the frequency of the HLA-A*02:07-C*01:02-B*46:01-DRB1*08:03-DQB1*06:01-DPB1*02:01, HLA-A*11:01-C*03:04-B*13:01-DRB1*09:01-DQB1*03:03-DPB1*05:01, HLA-A*11:01-C*07:02-B*40:01-DRB1*08:03-DQB1*06:01-DPB1*02:01 and HLA-A*30:01-C*06:02-B*13:02-DRB1*07:01-DQB1*02:02-DPB1*02:01 haplotypes were lower in the control group than in the TP infection group (p < 0.05). HLA-C*01:02 and -C*04:03 may confer susceptibility to TP infection, whereas A*32:01, -B*52:01 and -DQB1*05:03 may protect against TP infection. These data are helpful in preventing and controlling TP transmission.
Collapse
Affiliation(s)
- Chen Chen
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
| | - Fang Wang
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
| | - Nanying Chen
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
| | - Lina Dong
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
| | - Ji He
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
| | - Faming Zhu
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Arakawa Y, Arakawa A, Vural S, He M, Vollmer S, Prinz JC. Down-Regulation of HLA-C Expression on Melanocytes May Contribute to the Therapeutic Efficacy of UVB Phototherapy in Psoriasis. Int J Mol Sci 2025; 26:2858. [PMID: 40243413 PMCID: PMC11988605 DOI: 10.3390/ijms26072858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
UVB phototherapy effectively treats psoriasis. Although it suppresses both innate and adaptive immunity, it remains unclear why UVB irradiation is primarily effective for T-cell-mediated but not inflammatory skin diseases of other etiologies. Using a Vα3S1/Vβ13S1 T-cell receptor (TCR) from a lesional psoriatic CD8+ T-cell clone, we recently demonstrated that in psoriasis, the major psoriasis risk allele HLA-C*06:02 mediates an autoimmune response of CD8+ T-cells against melanocytes by presenting a melanocyte autoantigen. We now investigate the effect of UVB irradiation on melanocyte immunogenicity using the psoriatic Vα3S1/Vβ13S1 TCR in a reporter assay. The immunogenicity of melanocytes for the Vα3S1/Vβ13S1 TCR depended on the up-regulation of HLA-C expression by IFN-γ. UVB irradiation reduced the stimulatory capacity of IFN-γ-conditioned melanocytes for the Vα3S1/Vβ13S1 TCR by suppressing key IFN-γ-induced MHC-class I transcriptional regulators (STAT1, IRF1, NLRC5), the HLA-C-specific transcription factor Oct1, and by inducing miR-148a, which specifically inhibits HLA-C expression. This resulted in the suppression of the IFN-γ-induced expression of HLA-class I molecules and, in particular, an almost complete loss of HLA-C expression. We conclude that suppression of the inflammatory increase in HLA-class I expression and antigen-presentation may contribute to the efficacy of UVB phototherapy in T-cell-mediated skin diseases. The pronounced downregulation of HLA-C on melanocytes could render psoriasis, as HLA-C-associated disease, particularly susceptible to this effect.
Collapse
Affiliation(s)
- Yukiyasu Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Akiko Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Seçil Vural
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Mengwen He
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Sigrid Vollmer
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Jörg C Prinz
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| |
Collapse
|
3
|
Arias-Murillo YR, Salinas-Nova MA, Toloza-Pérez YG, Castro-Jiménez MÁ. Ten years of the immunogenetics laboratory performance assessment programme and its impact on the donor and transplant network. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:155-167. [PMID: 39836833 PMCID: PMC11991689 DOI: 10.7705/biomedica.7589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/10/2024] [Indexed: 01/23/2025]
Abstract
Introduction. The use of immunological tests before solid organ transplantation is essential to reduce the risk of rejection and post-transplant complications. Therefore, quality control systems in laboratories performing them are necessary for clinical practice. The Colombian Instituto Nacional de Salud implemented the external evaluation program of transplant immunogenetics laboratory performance in 2014. Objective. To evaluate the performance of the laboratories that carried out five of the immunological tests for transplants in Colombia between 2014 and 2023, according to information from the external evaluation program of transplant immunogenetics laboratory performance. Materials and methods. We conducted a study of laboratory performance considering five immunological tests for transplantation: HLA, qualitative and quantitative PRA (Panel Reactive Antibodies), isolated antigen, and cross-matching tests. We collected data from reports of each laboratory. Based on the comparisons between laboratories, their performance was rated as “good”, “acceptable”, or “unacceptable” for each test. We calculated proportions and an analysis of predicted values with a 95% confidence interval. Results. The number of participating laboratories varied between 5 and 12, depending on the test. The proportion of laboratories with “good” performance was lower in the first year. The best performance was for qualitative PRA, rated as good in all the laboratories for eight years. In HLA (2014), qualitative PRA (2017 and 2019), crossmatch tests (2019), and single antigen (2017 and 2019) tests, the laboratories had a lower percentage of “good” performance than expected. Conclusion. “Good” performance was observed in all the laboratories in each test during the last three years, except for HLA and quantitative PRA.
Collapse
Affiliation(s)
- Yazmín Rocío Arias-Murillo
- Grupo Red de Donación y Trasplantes, Instituto Nacional de Salud, Bogotá, D. C., ColombiaInstituto Nacional de SaludGrupo Red de Donación y TrasplantesInstituto Nacional de SaludBogotá, D. C.Colombia
| | - María Angélica Salinas-Nova
- Grupo Red de Donación y Trasplantes, Instituto Nacional de Salud, Bogotá, D. C., ColombiaInstituto Nacional de SaludGrupo Red de Donación y TrasplantesInstituto Nacional de SaludBogotá, D. C.Colombia
| | - Yesith Guillermo Toloza-Pérez
- Programa de Entrenamiento en Epidemiología de Campo - FETP, Instituto Nacional de Salud, Bogotá, D. C., ColombiaInstituto Nacional de SaludPrograma de Entrenamiento en Epidemiología de Campo - FETPInstituto Nacional de SaludBogotá, D. C.Colombia
| | - Miguel Ángel Castro-Jiménez
- Grupo Red de Donación y Trasplantes, Instituto Nacional de Salud, Bogotá, D. C., ColombiaInstituto Nacional de SaludGrupo Red de Donación y TrasplantesInstituto Nacional de SaludBogotá, D. C.Colombia
| |
Collapse
|
4
|
Mack SJ, Single RM, Solberg OD, Thomson G, Erlich HA. Population genetic dissection of HLA-DPB1 amino acid polymorphism to infer selection. Hum Immunol 2024; 85:111151. [PMID: 39413638 PMCID: PMC11827675 DOI: 10.1016/j.humimm.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Although allele frequency data for most HLA loci provide strong evidence for balancing selection at the allele level, the DPB1 locus is a notable exception, with allele frequencies compatible with neutral evolution (genetic drift) or directional selection in most populations. This discrepancy is especially interesting as evidence for balancing selection has been seen at the nucleotide and amino acid (AA) sequence levels for DPB1. We describe methods used to examine the global distribution of DPB1 alleles and their constituent AA sequences. These methods allow investigation of the influence of natural selection in shaping DPβ diversity in a hierarchical fashion for DPB1 alleles, all polymorphic DPB1 exon 2-encoded AA positions, as well as all pairs and trios of these AA positions. In addition, we describe how asymmetric linkage disequilibrium for all DPB1 exon 2-encoded AA pairs can be used to complement other methods. Application of these methods provides strong evidence for the operation of balancing selection on AA positions 56, 85-87, 36, 55 and 84 (listed in decreasing order of the strength of selection), but no evidence for balancing selection on DPB1 alleles.
Collapse
Affiliation(s)
- Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States.
| | - Richard M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Owen D Solberg
- Bioinformatics and Biostatistics, Monogram Biosciences, South San Francisco, CA, United States
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Henry A Erlich
- Center for Genetics, Children's Hospital & Research Center Oakland, Oakland, CA, United States
| |
Collapse
|
5
|
Single RM, Mack SJ, Solberg OD, Thomson G, Erlich HA. Natural Selection on HLA-DPB1 Amino Acids Operates Primarily on DP Serologic Categories. Hum Immunol 2024; 85:111153. [PMID: 39461275 PMCID: PMC12022158 DOI: 10.1016/j.humimm.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The DPB1 locus is notable among the classical HLA loci in that allele frequencies at this locus are consistent with genetic drift, whereas the frequencies of specific DPβ amino acids are consistent with the action of balancing selection. We investigated the influence of natural selection in shaping the diversity of three functional categories of DPB1 diversity defined by specific amino acid motifs, DPB1 T-cell epitopes, DPB1 supertypes and DP1-DP4 serologic categories (SCs), via Ewens-Watterson (EW) selective neutrality and asymmetric Linkage Disequilibrium (ALD) analyses in a worldwide sample of 136 populations. These EW analyses provide strong evidence for the operation of balancing selection on DP SCs, but no evidence for balancing selection on T-cell epitopes or supertypes. We further investigated the global distribution of SCs. Each SC is common in a different region of the world, with the DP1 SC most common in Southeast Asia and Oceania, the DP2 SC in North and South America, the DP3 SC in South America, and the DP4 SC in Europe. The DP2 SC is present in all populations, while 14% of populations are missing at least one DP1, DP3, or DP4 SC. We observed consistent DPA1∼DP SC haplotype associations across 10 populations from five global regions, and found that asymmetric linkage disequilibrium (LD) between the DPB1 locus and the four most-common DPA1 alleles (DPA1*01:03, *02:01, *02:02 and *03:01) is determined by variation at DPβ AA positions 85-87. These positions are in LD with both DPα positions 31 and 50. We conclude from these EW analyses that natural selection is primarily operating to maintain population-level diversity of DP SCs, rather than DPB1 alleles or other functional categories of DPB1 diversity.
Collapse
Affiliation(s)
- Richard M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States.
| | - Owen D Solberg
- Bioinformatics and Biostatistics, Monogram Biosciences, South San Francisco, CA, United States
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Henry A Erlich
- Center for Genetics, Children's Hospital & Research Center Oakland, Oakland, CA, United States
| |
Collapse
|
6
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Olp MD, Laufer VA, Valesano AL, Zimmerman A, Woodside KJ, Lu Y, Lauring AS, Cusick MF. HLA-C Peptide Repertoires as Predictors of Clinical Response during Early SARS-CoV-2 Infection. Life (Basel) 2024; 14:1181. [PMID: 39337964 PMCID: PMC11433606 DOI: 10.3390/life14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Vincent A Laufer
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrew L Valesano
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrea Zimmerman
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Kenneth J Woodside
- Sharing Hope of South Carolina, Charleston, SC 29414, USA
- Gift of Life Michigan, Ann Arbor, MI 48108, USA
- Academia Invisus LLC, Ann Arbor, MI 48107, USA
| | - Yee Lu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew F Cusick
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Arumugam T, Adimulam T, Gokul A, Ramsuran V. Variation within the non-coding genome influences genetic and epigenetic regulation of the human leukocyte antigen genes. Front Immunol 2024; 15:1422834. [PMID: 39355248 PMCID: PMC11442197 DOI: 10.3389/fimmu.2024.1422834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Variation within the non-coding genome may influence the regulation and expression of important genes involved in immune control such as the human leukocyte antigen (HLA) system. Class I and Class II HLA molecules are essential for peptide presentation which is required for T lymphocyte activation. Single nucleotide polymorphisms within non-coding regions of HLA Class I and Class II genes may influence the expression of these genes by affecting the binding of transcription factors and chromatin modeling molecules. Furthermore, an interplay between genetic and epigenetic factors may also influence HLA expression. Epigenetic factors such as DNA methylation and non-coding RNA, regulate gene expression without changing the DNA sequence. However, genetic variation may promote or allow genes to escape regulation by epigenetic factors, resulting in altered expression. The HLA system is central to most diseases, therefore, understanding the role of genetics and epigenetics on HLA regulation will tremendously impact healthcare. The knowledge gained from these studies may lead to novel and cost-effective diagnostic approaches and therapeutic interventions. This review discusses the role of non-coding variants on HLA regulation. Furthermore, we discuss the interplay between genetic and epigenetic factors on the regulation of HLA by evaluating literature based on polymorphisms within DNA methylation and miRNA regulatory sites within class I and Class II HLA genes. We also provide insight into the importance of the HLA non-coding genome on disease, discuss ethnic-specific differences across the HLA region and provide guidelines for future HLA studies.
Collapse
Affiliation(s)
- Thilona Arumugam
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Anmol Gokul
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
9
|
Pymm P, Saunders PM, Anand S, MacLachlan BJ, Faoro C, Hitchen C, Rossjohn J, Brooks AG, Vivian JP. The Structural Basis for Recognition of Human Leukocyte Antigen Class I Molecules by the Pan-HLA Antibody W6/32. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:876-885. [PMID: 39093013 DOI: 10.4049/jimmunol.2400328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The central immunological role of HLA class I (HLA-I) in presenting peptide Ags to cellular components of the immune system has been the focus of intense study for >60 y. A confounding factor in the study of HLA-I has been the extreme polymorphism of these molecules. The mAb W6/32 has been a fundamental reagent bypassing the issue of polymorphism by recognizing an epitope that is conserved across diverse HLA-I allotypes. However, despite the widespread use of W6/32, the epitope of this Ab has not been definitively mapped. In this study, we present the crystal structure of the Fab fragment of W6/32 in complex with peptide-HLA-B*27:05. W6/32 bound to HLA-B*27:05 beneath the Ag-binding groove, recognizing a discontinuous epitope comprised of the α1, α2, and α3 domains of HLA-I and β2-microglobulin. The epitope comprises a region of low polymorphism reflecting the pan-HLA-I nature of the binding. Notably, the W6/32 epitope neither overlaps the HLA-I binding sites of either T cell Ag receptors or killer cell Ig-like receptors. However, it does coincide with the binding sites for leukocyte Ig-like receptors and CD8 coreceptors. Consistent with this, the use of W6/32 to block the interaction of NK cells with HLA-I only weakly impaired inhibition mediated by KIR3DL1, but impacted HLA-LILR recognition.
Collapse
Affiliation(s)
- Phillip Pymm
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Sushma Anand
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Bruce J MacLachlan
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Camilla Faoro
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Corinne Hitchen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Juanes-Velasco P, Arias-Hidalgo C, García-Vaquero ML, Sotolongo-Ravelo J, Paíno T, Lécrevisse Q, Landeira-Viñuela A, Góngora R, Hernández ÁP, Fuentes M. Crucial Parameters for Immunopeptidome Characterization: A Systematic Evaluation. Int J Mol Sci 2024; 25:9564. [PMID: 39273511 PMCID: PMC11395153 DOI: 10.3390/ijms25179564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Immunopeptidomics is the area of knowledge focused on the study of peptides assembled in the major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, which could activate the immune response via specific and selective T cell recognition. Advances in high-sensitivity mass spectrometry have enabled the detailed identification and quantification of the immunopeptidome, significantly impacting fields like oncology, infections, and autoimmune diseases. Current immunopeptidomics approaches primarily focus on workflows to identify immunopeptides from HLA molecules, requiring the isolation of the HLA from relevant cells or tissues. Common critical steps in these workflows, such as cell lysis, HLA immunoenrichment, and peptide isolation, significantly influence outcomes. A systematic evaluation of these steps led to the creation of an 'Immunopeptidome Score' to enhance the reproducibility and robustness of these workflows. This score, derived from LC-MS/MS datasets (ProteomeXchange identifier PXD038165), in combination with available information from public databases, aids in optimizing the immunopeptidome characterization process. The 'Immunopeptidome Score' has been applied in a systematic analysis of protein extraction, HLA immunoprecipitation, and peptide recovery yields across several tumor cell lines enabling the selection of peptides with optimal features and, therefore, the identification of potential biomarker and therapeutic targets.
Collapse
Affiliation(s)
- Pablo Juanes-Velasco
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlota Arias-Hidalgo
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marina L García-Vaquero
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Janet Sotolongo-Ravelo
- Oncohematology Group, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Teresa Paíno
- Oncohematology Group, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Quentin Lécrevisse
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alicia Landeira-Viñuela
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Góngora
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángela-Patricia Hernández
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pharmaceutical Sciences, Organic Chemistry, Faculty of Pharmacy, University of Salamanca, CIETUS, IBSAL, 37007 Salamanca, Spain
| | - Manuel Fuentes
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Proteomics Unit-IBSAL, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, (IBSAL/USAL), 37007 Salamanca, Spain
| |
Collapse
|
11
|
Talks BJ, Mather MW, Chahal M, Coates M, Clatworthy MR, Haniffa M. Mapping Human Immunity and the Education of Waldeyer's Ring. Annu Rev Genomics Hum Genet 2024; 25:161-182. [PMID: 38594932 DOI: 10.1146/annurev-genom-120522-012938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The development and deployment of single-cell genomic technologies have driven a resolution revolution in our understanding of the immune system, providing unprecedented insight into the diversity of immune cells present throughout the body and their function in health and disease. Waldeyer's ring is the collective name for the lymphoid tissue aggregations of the upper aerodigestive tract, comprising the palatine, pharyngeal (adenoids), lingual, and tubal tonsils. These tonsils are the first immune sentinels encountered by ingested and inhaled antigens and are responsible for mounting the first wave of adaptive immune response. An effective mucosal immune response is critical to neutralizing infection in the upper airway and preventing systemic spread, and dysfunctional immune responses can result in ear, nose, and throat pathologies. This review uses Waldeyer's ring to demonstrate how single-cell technologies are being applied to advance our understanding of the immune system and highlight directions for future research.
Collapse
Affiliation(s)
- Benjamin J Talks
- Department of Otolaryngology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| | - Michael W Mather
- Department of Otolaryngology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| | - Manisha Chahal
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| | - Matthew Coates
- Department of Medicine, University of Cambridge, Cambridge, UK; ,
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Hinxton, UK;
- Department of Medicine, University of Cambridge, Cambridge, UK; ,
| | - Muzlifah Haniffa
- Department of Dermatology and National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Hinxton, UK;
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| |
Collapse
|
12
|
Sartoris S, Del Pozzo G. Exploring the HLA complex in autoimmunity: From the risk haplotypes to the modulation of expression. Clin Immunol 2024; 265:110266. [PMID: 38851519 DOI: 10.1016/j.clim.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The genes mapping at the HLA region show high density, strong linkage disequilibrium and high polymorphism, which affect the association of HLA class I and class II genes with autoimmunity. We focused on the HLA haplotypes, genomic structures consisting of an array of specific alleles showing some degrees of genetic association with different autoimmune disorders. GWASs in many pathologies have identified variants in either the coding loci or the flanking regulatory regions, both in linkage disequilibrium in haplotypes, that are frequently associated with increased risk and may influence gene expression. We discuss the relevance of the HLA gene expression because the level of surface heterodimers determines the number of complexes presenting self-antigen and, thus, the strength of pathogenic autoreactive T cells immune response.
Collapse
Affiliation(s)
- Silvia Sartoris
- Dept. of Medicine, Section of Immunology University of Verona School of Medicine, Verona, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" National Research Council (CNR), Naples, Italy.
| |
Collapse
|
13
|
Smith CJ, Strausz S, Spence JP, Ollila HM, Pritchard JK. Haplotype Analysis Reveals Pleiotropic Disease Associations in the HLA Region. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24311183. [PMID: 39132491 PMCID: PMC11312630 DOI: 10.1101/2024.07.29.24311183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The human leukocyte antigen (HLA) region plays an important role in human health through involvement in immune cell recognition and maturation. While genetic variation in the HLA region is associated with many diseases, the pleiotropic patterns of these associations have not been systematically investigated. Here, we developed a haplotype approach to investigate disease associations phenome-wide for 412,181 Finnish individuals and 2,459 traits. Across the 1,035 diseases with a GWAS association, we found a 17-fold average per-SNP enrichment of hits in the HLA region. Altogether, we identified 7,649 HLA associations across 647 traits, including 1,750 associations uncovered by haplotype analysis. We find some haplotypes show trade-offs between diseases, while others consistently increase risk across traits, indicating a complex pleiotropic landscape involving a range of diseases. This study highlights the extensive impact of HLA variation on disease risk, and underscores the importance of classical and non-classical genes, as well as non-coding variation.
Collapse
Affiliation(s)
- Courtney J. Smith
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Satu Strausz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Plastic Surgery, Cleft Palate and Craniofacial Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Jeffrey P. Spence
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hanna M. Ollila
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan K. Pritchard
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Carrasco-Hernández R, Valenzuela-Ponce H, Soto-Nava M, García-Morales C, Matías-Florentino M, Wertheim JO, Smith DM, Reyes-Terán G, Ávila-Ríos S. Unveiling ecological/evolutionary insights in HIV viral load dynamics: Allowing random slopes to observe correlational changes to CpG-contents and other molecular and clinical predictors. Epidemics 2024; 47:100770. [PMID: 38761432 PMCID: PMC11213286 DOI: 10.1016/j.epidem.2024.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
In the context of infectious diseases, the dynamic interplay between ever-changing host populations and viral biology demands a more flexible modeling approach than common fixed correlations. Embracing random-effects regression models allows for a nuanced understanding of the intricate ecological and evolutionary dynamics underlying complex phenomena, offering valuable insights into disease progression and transmission patterns. In this article, we employed a random-effects regression to model an observed decreasing median plasma viral load (pVL) among individuals with HIV in Mexico City during 2019-2021. We identified how these functional slope changes (i.e. random slopes by year) improved predictions of the observed pVL median changes between 2019 and 2021, leading us to hypothesize underlying ecological and evolutionary factors. Our analysis involved a dataset of pVL values from 7325 ART-naïve individuals living with HIV, accompanied by their associated clinical and viral molecular predictors. A conventional fixed-effects linear model revealed significant correlations between pVL and predictors that evolved over time. However, this fixed-effects model could not fully explain the reduction in median pVL; thus, prompting us to adopt random-effects models. After applying a random effects regression model-with random slopes and intercepts by year-, we observed potential "functional changes" within the local HIV viral population, highlighting the importance of ecological and evolutionary considerations in HIV dynamics: A notably stronger negative correlation emerged between HIV pVL and the CpG content in the pol gene, suggesting a changing immune landscape influenced by CpG-induced innate immune responses that could impact viral load dynamics. Our study underscores the significance of random effects models in capturing dynamic correlations and the crucial role of molecular characteristics like CpG content. By enriching our understanding of changing host-virus interactions and HIV progression, our findings contribute to the broader relevance of such models in infectious disease research. They shed light on the changing interplay between host and pathogen, driving us closer to more effective strategies for managing infectious diseases. SIGNIFICANCE OF THE STUDY: This study highlights a decreasing trend in median plasma viral loads among ART-naïve individuals living with HIV in Mexico City between 2019 and 2021. It uncovers various predictors significantly correlated with pVL, shedding light on the complex interplay between host-virus interactions and disease progression. By employing a random-slopes model, the researchers move beyond traditional fixed-effects models to better capture dynamic correlations and evolutionary changes in HIV dynamics. The discovery of a stronger negative correlation between pVL and CpG content in HIV-pol sequences suggests potential changes in the immune landscape and innate immune responses, opening avenues for further research into adaptive changes and responses to environmental shifts in the context of HIV infection. The study's emphasis on molecular characteristics as predictors of pVL adds valuable insights to epidemiological and evolutionary studies of viruses, providing new avenues for understanding and managing HIV infection at the population level.
Collapse
Affiliation(s)
- Rocío Carrasco-Hernández
- Centro de Investigación en Enfermedades Infecciosas (CIENI), Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico.
| | - Humberto Valenzuela-Ponce
- Centro de Investigación en Enfermedades Infecciosas (CIENI), Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico
| | - Maribel Soto-Nava
- Centro de Investigación en Enfermedades Infecciosas (CIENI), Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico
| | - Claudia García-Morales
- Centro de Investigación en Enfermedades Infecciosas (CIENI), Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico
| | - Margarita Matías-Florentino
- Centro de Investigación en Enfermedades Infecciosas (CIENI), Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Davey M Smith
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gustavo Reyes-Terán
- Coordinación de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas (CIENI), Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico; Centro de Investigación en Enfermedades Infecciosas (CIENI), Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico
| |
Collapse
|
15
|
Lin Y, Li X, Fang J, Zeng Q, Cheng D, Wang G, Shi R, Luo Y, Ma Y, Li M, Tang X, Wang X, Tian R. Single-cell transcriptome profiling reveals cell type-specific variation and development in HLA expression of human skin. Int Immunopharmacol 2024; 133:112070. [PMID: 38640716 DOI: 10.1016/j.intimp.2024.112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Skin, the largest organ of body, is a highly immunogenic tissue with a diverse collection of immune cells. Highly polymorphic human leukocyte antigen (HLA) molecules have a central role in coordinating immune responses as recognition molecules. Nevertheless, HLA gene expression patterns among diverse cell types within a specific organ, like the skin, have yet to be thoroughly investigated, with stromal cells attracting much less attention than immune cells. To illustrate HLA expression profiles across different cell types in the skin, we performed single-cell RNA sequencing (scRNA-seq) analyses on skin datasets, covering adult and fetal skin, and hair follicles as the skin appendages. We revealed the variation in HLA expression between different skin populations by examining normal adult skin datasets. Moreover, we evaluated the potential immunogenicity of multiple skin populations based on the expression of classical HLA class I genes, which were well represented in all cell types. Furthermore, we generated scRNA-seq data of developing skin from fetuses of 15 post conception weeks (PCW), 17 PCW, and 22 PCW, delineating the dynamic expression of HLA genes with cell type-dependent variation among various cell types during development. Notably, the pseudotime trajectory analysis unraveled the significant variance in HLA genes during the evolution of vascular endothelial cells. Moreover, we uncovered the immune-privileged properties of hair follicles at single-cell resolution. Our study presents a comprehensive single-cell transcriptomic landscape of HLA genes in the skin, which provides new insights into variation in HLA molecules and offers a clue for allogeneic skin transplantation.
Collapse
Affiliation(s)
- Yumiao Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinxin Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jingxian Fang
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qinglan Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Danling Cheng
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, China
| | - Gaofeng Wang
- Department of Pastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Runlu Shi
- Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Yilin Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yihe Ma
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Miaomiao Li
- Department of Hemangioma and Vascular Malformation Surgery, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiang Tang
- Department of Minimal Invasive Gynecology, Guangzhou Women and Children's Hospital, Guangzhou Medical University, Guangzhou 510000, China.
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| | - Ruiyun Tian
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China; GuangDong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China.
| |
Collapse
|
16
|
Naidoo L, Arumugam T, Ramsuran V. HLA-B and C Expression Contributes to COVID-19 Disease Severity within a South African Cohort. Genes (Basel) 2024; 15:522. [PMID: 38674456 PMCID: PMC11050528 DOI: 10.3390/genes15040522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Globally, SARS-CoV-2 has negatively impacted many lives and industries due to its rapid spread, severe outcomes, and the need for the implementation of lockdown strategies across the world. SARS-CoV-2 disease severity varies among different populations. Host genetics have been associated with various diseases, and their ability to alter disease susceptibility and severity. In addition, Human Leukocyte Antigen (HLA) expression levels and alleles vary significantly among ethnic groups, which might impact the host's response to SARS-CoV-2. Our previous study highlighted that HLA-A might have an effect on COVID-19 disease severity across ethnicities. Therefore, in this study, we aim to examine the effect of HLA-B and C expression levels on COVID-19 disease severity. To achieve this, we used real-time PCR to measure the HLA mRNA expression levels of SARS-CoV-2-infected individuals from a South African cohort and compared them across ethnic groups, disease outcomes, gender, comorbidities, and age. Our results show (1) that the effect of HLA-B mRNA expression levels was associated with differences in disease severity when we compare symptomatic vs. asymptomatic (p < 0.0001). While HLA-C mRNA expression levels were not associated with COVID-19 disease severity. (2) In addition, we observed that HLA-B and HLA-C mRNA expression levels were significantly different between South African Black individuals and South African Indian individuals (p < 0.0001, p < 0.0001). HLA-B mRNA expression levels among symptomatic South African Black individuals were significantly higher than symptomatic South African Indian individuals (p < 0.0001). In addition, the HLA-B mRNA expression levels of symptomatic South African Black individuals were significantly higher than asymptomatic South African Black individuals (p > 0.0001). HLA-C mRNA expression levels among symptomatic South African Black individuals were significantly higher than among symptomatic South African Indian individuals (p = 0.0217). (3) HLA-C expression levels were significantly different between males and females (p = 0.0052). In addition, the HLA-C expression levels of asymptomatic males are higher than asymptomatic females (p = 0.0375). (4) HLA-B expression levels were significantly different between individuals with and without comorbidities (p = 0.0009). In addition, we observed a significant difference between individuals with no comorbidities and non-communicable diseases (p = 0.0034), in particular, hypertension (p = 0.0487). (5) HLA-B expression levels were significantly different between individuals between 26-35 and 56-65 years (p = 0.0380). Our work is expected to strengthen the understanding of the relationship between HLA and COVID-19 by providing insights into HLA-B and C expression levels across ethnic populations in South Africa among COVID-19-symptomatic and asymptomatic individuals. Our results highlight that HLA-B mRNA expression levels contribute to COVID-19 severity as well as variation in ethnicities associated with COVID-19. Further studies are needed to examine the effect of HLA expression levels across various ethnic groups with contributing factors.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
17
|
Naidoo L, Arumugam T, Ramsuran V. Narrative Review Explaining the Role of HLA-A, -B, and -C Molecules in COVID-19 Disease in and around Africa. Infect Dis Rep 2024; 16:380-406. [PMID: 38667755 PMCID: PMC11049896 DOI: 10.3390/idr16020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) has left a devasting effect on various regions globally. Africa has exceptionally high rates of other infectious diseases, such as tuberculosis (TB), human immunodeficiency virus (HIV), and malaria, and was not impacted by COVID-19 to the extent of other continents Globally, COVID-19 has caused approximately 7 million deaths and 700 million infections thus far. COVID-19 disease severity and susceptibility vary among individuals and populations, which could be attributed to various factors, including the viral strain, host genetics, environment, lifespan, and co-existing conditions. Host genetics play a substantial part in COVID-19 disease severity among individuals. Human leukocyte antigen (HLA) was previously been shown to be very important across host immune responses against viruses. HLA has been a widely studied gene region for various disease associations that have been identified. HLA proteins present peptides to the cytotoxic lymphocytes, which causes an immune response to kill infected cells. The HLA molecule serves as the central region for infectious disease association; therefore, we expect HLA disease association with COVID-19. Therefore, in this narrative review, we look at the HLA gene region, particularly, HLA class I, to understand its role in COVID-19 disease.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
18
|
O'Brien CL, Summers KM, Martin NM, Carter-Cusack D, Yang Y, Barua R, Dixit OVA, Hume DA, Pavli P. The relationship between extreme inter-individual variation in macrophage gene expression and genetic susceptibility to inflammatory bowel disease. Hum Genet 2024; 143:233-261. [PMID: 38421405 PMCID: PMC11043138 DOI: 10.1007/s00439-024-02642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024]
Abstract
The differentiation of resident intestinal macrophages from blood monocytes depends upon signals from the macrophage colony-stimulating factor receptor (CSF1R). Analysis of genome-wide association studies (GWAS) indicates that dysregulation of macrophage differentiation and response to microorganisms contributes to susceptibility to chronic inflammatory bowel disease (IBD). Here, we analyzed transcriptomic variation in monocyte-derived macrophages (MDM) from affected and unaffected sib pairs/trios from 22 IBD families and 6 healthy controls. Transcriptional network analysis of the data revealed no overall or inter-sib distinction between affected and unaffected individuals in basal gene expression or the temporal response to lipopolysaccharide (LPS). However, the basal or LPS-inducible expression of individual genes varied independently by as much as 100-fold between subjects. Extreme independent variation in the expression of pairs of HLA-associated transcripts (HLA-B/C, HLA-A/F and HLA-DRB1/DRB5) in macrophages was associated with HLA genotype. Correlation analysis indicated the downstream impacts of variation in the immediate early response to LPS. For example, variation in early expression of IL1B was significantly associated with local SNV genotype and with subsequent peak expression of target genes including IL23A, CXCL1, CXCL3, CXCL8 and NLRP3. Similarly, variation in early IFNB1 expression was correlated with subsequent expression of IFN target genes. Our results support the view that gene-specific dysregulation in macrophage adaptation to the intestinal milieu is associated with genetic susceptibility to IBD.
Collapse
Affiliation(s)
- Claire L O'Brien
- Centre for Research in Therapeutics Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Natalia M Martin
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia
| | - Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Yuanhao Yang
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Rasel Barua
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia
| | - Ojas V A Dixit
- Centre for Research in Therapeutics Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
| | - Paul Pavli
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia.
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
19
|
Nazarov IB, Zilov DS, Gordeev MN, Potapenko EV, Yeremenko N, Tomilin AN. Transcriptional Coactivator BOB1 (OBF1, OCA-B) Modulates the Specificity of DNA Recognition by the POU-Domain Factors OCT1 and OCT2 in a Monomeric Configuration. Biomolecules 2024; 14:123. [PMID: 38254723 PMCID: PMC10812921 DOI: 10.3390/biom14010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BOB1, a mammalian lymphocyte-specific transcriptional coactivator of the transcription factors OCT1 and OCT2 (OCT1/2), plays important roles in normal immune responses, autoimmunity, and hematologic malignancies. The issue of a DNA sequence preference change imposed by BOB1 was raised more than two decades ago but remains unresolved. In this paper, using the EMSA-SELEX-Seq approach, we have reassessed the intrinsic ability of BOB1 to modulate the specificity of DNA recognition by OCT1 and OCT2. Our results have reaffirmed previous conclusions regarding BOB1 selectivity towards the dimer configuration of OCT1/2. However, they suggest that the monomeric configuration of these factors, assembled on the classical octamer ATGCAAAT and related motifs, are the primary targets of BOB1. Our data further specify the DNA sequence preference imposed by BOB1 and predict the probability of ternary complex formation. These results provide an additional insight into the action of BOB1-an essential immune regulator and a promising molecular target for the treatment of autoimmune diseases and hematologic malignancies.
Collapse
Affiliation(s)
- Igor B. Nazarov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (D.S.Z.); (M.N.G.)
| | - Danil S. Zilov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (D.S.Z.); (M.N.G.)
| | - Mikhail N. Gordeev
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (D.S.Z.); (M.N.G.)
| | - Evgenii V. Potapenko
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
- University of Haifa, Haifa 3498838, Israel
| | - Nataliya Yeremenko
- Center for Research in Transplantation and Translational Immunology UMR1064, 30 Bd Jean Monnet, Nantes University, CEDEX 01, 44093 Nantes, France;
| | - Alexey N. Tomilin
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (D.S.Z.); (M.N.G.)
| |
Collapse
|
20
|
Peton B, Taniguchi M, Mangiola M, Al Malki MM, Gendzekhadze K. Specificity of HLA monoclonal antibodies and their use to determine HLA expression on lymphocytes and peripheral blood stem cells. HLA 2024; 103:e15192. [PMID: 37596840 DOI: 10.1111/tan.15192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
HLA Class I and II expression are known to differ locus-to-locus, however, HLA expression on the cell-surface is frequently reported as the total amount of HLA Class I or II antigens. This is despite evidence that indicates the differential expression of HLA can influence patient outcomes post-transplantation. Although numerous commercially available HLA monoclonal antibodies (mAbs) exist to characterize HLA expression, there is currently a lack of detailed information regarding their reactivities to HLA specificities. The specificities of locus-specific HLA mAbs (nine Class I and four Class II mAbs) were evaluated by two solid-phase Luminex single antigen bead assays. The reactivity patterns of these mAbs were then confirmed by flow cytometry using lymphocytes and PBSCs (peripheral blood stem cells). Out of the 13 HLA mAbs tested, only four (one Class I and three Class II mAbs) displayed intra-locus reactivity without also reacting to inter-locus specificities. Epitope analysis revealed the presence of shared epitopes across numerous HLA loci, explaining much of the observed inter-locus reactivity. The specificity of the HLA mAbs seen in solid-phase assays was confirmed against PBSCs and lymphocytes by flow cytometry. Using this method, we observed differences in the cell surface expression of HLA-C, HLA-DR, HLA-DQ, and HLA-DP between PBSCs and lymphocytes. Our results emphasize the need to characterize the reactivity patterns of HLA mAbs using solid-phase assays before their use on cells. Through understanding the reactivity of these HLA mAbs, the cellular expression of HLA can be more accurately assessed in downstream assays.
Collapse
Affiliation(s)
- Benjamin Peton
- HLA Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Michiko Taniguchi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Massimo Mangiola
- Transplant Institute, NYU Langone Medical Center, New York, New York, USA
| | - Monzr M Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Ketevan Gendzekhadze
- HLA Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
21
|
Rovatti PE, Muccini C, Punta M, Galli L, Mainardi I, Ponta G, Vago LAE, Castagna A. Impact of predicted HLA class I immunopeptidome on viral reservoir in a cohort of people living with HIV in Italy. HLA 2024; 103:e15298. [PMID: 37962099 DOI: 10.1111/tan.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
The class I HLA genotype has been widely recognized as a factor influencing HIV disease progression in treatment-naïve subjects. However, little is known regarding its role in HIV disease course and how it influences the size of the viral reservoir once anti-retroviral therapy (ART) is started. Here, leveraging on cutting-edge bioinformatic tools, we explored the relationship between HLA class I and the HIV reservoir in a cohort of 90 people living with HIV (PLWH) undergoing ART and who achieved viral suppression. Analysis of HLA allele distribution among patients with high and low HIV reservoir allowed us to document a predominant role of HLA-B and -C genes in regulating the size of HIV reservoir. We then focused on the analysis of HIV antigen (Ag) repertoire, by investigating immunogenetic parameters such as the degree of homozygosity, HLA evolutionary distance and Ag load. In particular, we used two different bioinformatic algorithms, NetMHCpan and MixMHCpred, to predict HLA presentation of immunogenic HIV-derived peptides and identified HLA-B*57:01 and HLA-B*58:01 among the highest ranking HLAs in terms of total load, suggesting that their previously reported protective role against HIV disease progression might be linked to a more effective viral recognition and presentation to Cytotoxic T lymphocytes (CTLs). Further, we speculated that some peptide-HLA complexes, including those produced by the interaction between HLA-B*27 and the HIV Gag protein, might be particularly relevant for the efficient regulation of HIV replication and containment of the HIV reservoir. Last, we provide evidence of a possible synergistic effect between the CCR5 ∆32 mutation and Ag load in controlling HIV reservoir.
Collapse
Affiliation(s)
- Pier Edoardo Rovatti
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Camilla Muccini
- Vita-Salute San Raffaele University, Milan, Italy
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Punta
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Galli
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Luca Aldo Edoardo Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Castagna
- Vita-Salute San Raffaele University, Milan, Italy
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Yang J, Song Y, Xu S, Ge S, Haiwen Z. CircHLA-C: A significantly upregulated circRNA co-existing in oral leukoplakia and oral lichen planus. Organogenesis 2023; 19:2234504. [PMID: 37531467 PMCID: PMC10399473 DOI: 10.1080/15476278.2023.2234504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Oral leukoplakia (OLK) and oral lichen planus (OLP) are common precancerous lesions of the oral mucosa. The role of circular RNAs (circRNAs) in OLK and OLP is unclear. The aim of this study was to evaluate the circRNA expression profiles of OLK and OLP, and further explore the potential role of circRNAs in the pathogenesis of these two diseases. METHODS High throughput sequencing technology was performed to detect the differentially expressed circRNA in OLK (n = 6), OLP (n = 6), oral squamous cell carcinoma (n = 6), and normal oral mucosa tissues (n = 6). Expression of selected circRNAs was validated by qRT-PCR, enzyme tolerance assay, and Sanger sequencing. Expanded sample size validation was done in 20 tissue pairs. The biological processes and signal pathways involved in differential circRNA were analyzed by GO and KEGG enrichment. TargetScan and MiRanda were used to predict miRNAs downstream of circRNA and draw competitive endogenous RNA network diagram. RESULTS Forty-nine circRNAs were significantly altered in OLK and OLP, including 30 upregulated and 19 downregulated circRNAs. The five selected circRNAs were validated by qRT-PCR, Sanger sequencing, and RNase R assay. GO and KEGG analyses indicated that the upregulated circHLA-C may be involved in the biological process of immune function of OLK and OLP. Bioinformatics analysis indicated that circHLA-C may be involved in the progression of OLK and OLP as a ceRNA. In validation with expanded sample size, PCR results showed that circHLA-C expression was significantly upregulated in OLK and OLP. ROC analysis indicated that circHLA-C has potential diagnostic value with good accuracy and specificity. CONCLUSION Our study revealed that circHLA-C is the most significantly upregulated circRNA co-existing in OLK and OLP, and we preliminarily discuss the role of circHLA-C in the etiopathogenesis and progression of OLK and OLP.
Collapse
Affiliation(s)
- Jingwen Yang
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong UniversityNational Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuhan Song
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong UniversityNational Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siming Xu
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong UniversityNational Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shuyun Ge
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong UniversityNational Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhou Haiwen
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong UniversityNational Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
23
|
Mohammadi A, Etemad B, Zhang X, Li Y, Bedwell GJ, Sharaf R, Kittilson A, Melberg M, Crain CR, Traunbauer AK, Wong C, Fajnzylber J, Worrall DP, Rosenthal A, Jordan H, Jilg N, Kaseke C, Giguel F, Lian X, Deo R, Gillespie E, Chishti R, Abrha S, Adams T, Siagian A, Dorazio D, Anderson PL, Deeks SG, Lederman MM, Yawetz S, Kuritzkes DR, Lichterfeld MD, Sieg S, Tsibris A, Carrington M, Brumme ZL, Castillo-Mancilla JR, Engelman AN, Gaiha GD, Li JZ. Viral and host mediators of non-suppressible HIV-1 viremia. Nat Med 2023; 29:3212-3223. [PMID: 37957382 PMCID: PMC10719098 DOI: 10.1038/s41591-023-02611-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level viremia on antiretroviral therapy (ART) without evidence of ART non-adherence or significant drug resistance. Unraveling the mechanisms behind NSV would broaden our understanding of HIV-1 persistence. Here we analyzed plasma virus sequences in eight ART-treated individuals with NSV (88% male) and show that they are composed of large clones without evidence of viral evolution over time in those with longitudinal samples. We defined proviruses that match plasma HIV-1 RNA sequences as 'producer proviruses', and those that did not as 'non-producer proviruses'. Non-suppressible viremia arose from expanded clones of producer proviruses that were significantly larger than the genome-intact proviral reservoir of ART-suppressed individuals. Integration sites of producer proviruses were enriched in proximity to the activating H3K36me3 epigenetic mark. CD4+ T cells from participants with NSV demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, participants with NSV showed significantly lower HIV-specific CD8+ T cell responses compared with untreated viremic controllers with similar viral loads. We identified potential critical host and viral mediators of NSV that may represent targets to disrupt HIV-1 persistence.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Valley Health System, Las Vegas, NV, USA
| | - Behzad Etemad
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China
| | - Yijia Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory J Bedwell
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Radwa Sharaf
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Autumn Kittilson
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meghan Melberg
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles R Crain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Anna K Traunbauer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Colline Wong
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jesse Fajnzylber
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Alex Rosenthal
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah Jordan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaus Jilg
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Francoise Giguel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Rinki Deo
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rida Chishti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Abrha
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor Adams
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail Siagian
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dominic Dorazio
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Peter L Anderson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Michael M Lederman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sigal Yawetz
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mathias D Lichterfeld
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Scott Sieg
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Athe Tsibris
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Jose R Castillo-Mancilla
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan N Engelman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Gaurav D Gaiha
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Kang JB, Shen AZ, Gurajala S, Nathan A, Rumker L, Aguiar VRC, Valencia C, Lagattuta KA, Zhang F, Jonsson AH, Yazar S, Alquicira-Hernandez J, Khalili H, Ananthakrishnan AN, Jagadeesh K, Dey K, Daly MJ, Xavier RJ, Donlin LT, Anolik JH, Powell JE, Rao DA, Brenner MB, Gutierrez-Arcelus M, Luo Y, Sakaue S, Raychaudhuri S. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution. Nat Genet 2023; 55:2255-2268. [PMID: 38036787 PMCID: PMC10787945 DOI: 10.1038/s41588-023-01586-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues. To mitigate technical confounding, we developed scHLApers, a pipeline to accurately quantify single-cell HLA expression using personalized reference genomes. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B and T cells. For example, a T cell HLA-DQA1 eQTL ( rs3104371 ) is strongest in cytotoxic cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.
Collapse
Affiliation(s)
- Joyce B Kang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amber Z Shen
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saisriram Gurajala
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vitor R C Aguiar
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristian Valencia
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaitlyn A Lagattuta
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Seyhan Yazar
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Kushal Dey
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, NY, USA
| | - Mark J Daly
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J Xavier
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jennifer H Anolik
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph E Powell
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Ogoshi K, Iwata K, Kunisaki C. Association between perforated peptic ulcers, human leukocyteantigen-restricted human endogenous retrovirus gene-derived peptides, and carcinogenesis after acid-suppressive therapy. ANNALS OF CANCER RESEARCH AND THERAPY 2023; 31:42-52. [DOI: 10.4993/acrt.31.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Kyoji Ogoshi
- Department of Gastrointestinal Surgery, Tokai University
- Division of Surgery, Seisho Hospital
| | - Kunihiro Iwata
- Department of Gastrointestinal Surgery, Tokai University
| | - Chikara Kunisaki
- Department of Surgery, Gastroenterological Center, Yokohama City University
| |
Collapse
|
26
|
Velastegui E, Vera E, Vanden Berghe W, Muñoz MS, Orellana-Manzano A. "HLA-C: evolution, epigenetics, and pathological implications in the major histocompatibility complex". Front Genet 2023; 14:1206034. [PMID: 37465164 PMCID: PMC10350511 DOI: 10.3389/fgene.2023.1206034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
HLA-C, a gene located within the major histocompatibility complex, has emerged as a prominent target in biomedical research due to its involvement in various diseases, including cancer and autoimmune disorders; even though its recent addition to the MHC, the interaction between HLA-C and KIR is crucial for immune responses, particularly in viral infections. This review provides an overview of the structure, origin, function, and pathological implications of HLA-C in the major histocompatibility complex. In the last decade, we systematically reviewed original publications from Pubmed, ScienceDirect, Scopus, and Google Scholar. Our findings reveal that genetic variations in HLA-C can determine susceptibility or resistance to certain diseases. However, the first four exons of HLA-C are particularly susceptible to epigenetic modifications, which can lead to gene silencing and alterations in immune function. These alterations can manifest in diseases such as alopecia areata and psoriasis and can also impact susceptibility to cancer and the effectiveness of cancer treatments. By comprehending the intricate interplay between genetic and epigenetic factors that regulate HLA-C expression, researchers may develop novel strategies for preventing and treating diseases associated with HLA-C dysregulation.
Collapse
Affiliation(s)
- Erick Velastegui
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador
| | - Edwin Vera
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador
| | - Wim Vanden Berghe
- Epigenetic Signaling Lab, Faculty Biomedical Sciences, PPES, University of Antwerp, Antwerp, Belgium
| | - Mindy S. Muñoz
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Andrea Orellana-Manzano
- Escuela Superior Politécnica del Litoral, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la Vida (FCV), Guayaquil, Ecuador
| |
Collapse
|
27
|
Houwaart T, Scholz S, Pollock NR, Palmer WH, Kichula KM, Strelow D, Le DB, Belick D, Hülse L, Lautwein T, Wachtmeister T, Wollenweber TE, Henrich B, Köhrer K, Parham P, Guethlein LA, Norman PJ, Dilthey AT. Complete sequences of six major histocompatibility complex haplotypes, including all the major MHC class II structures. HLA 2023; 102:28-43. [PMID: 36932816 PMCID: PMC10986641 DOI: 10.1111/tan.15020] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023]
Abstract
Accurate and comprehensive immunogenetic reference panels are key to the successful implementation of population-scale immunogenomics. The 5Mbp Major Histocompatibility Complex (MHC) is the most polymorphic region of the human genome and associated with multiple immune-mediated diseases, transplant matching and therapy responses. Analysis of MHC genetic variation is severely complicated by complex patterns of sequence variation, linkage disequilibrium and a lack of fully resolved MHC reference haplotypes, increasing the risk of spurious findings on analyzing this medically important region. Integrating Illumina, ultra-long Nanopore, and PacBio HiFi sequencing as well as bespoke bioinformatics, we completed five of the alternative MHC reference haplotypes of the current (GRCh38/hg38) build of the human reference genome and added one other. The six assembled MHC haplotypes encompass the DR1 and DR4 haplotype structures in addition to the previously completed DR2 and DR3, as well as six distinct classes of the structurally variable C4 region. Analysis of the assembled haplotypes showed that MHC class II sequence structures, including repeat element positions, are generally conserved within the DR haplotype supergroups, and that sequence diversity peaks in three regions around HLA-A, HLA-B+C, and the HLA class II genes. Demonstrating the potential for improved short-read analysis, the number of proper read pairs recruited to the MHC was found to be increased by 0.06%-0.49% in a 1000 Genomes Project read remapping experiment with seven diverse samples. Furthermore, the assembled haplotypes can serve as references for the community and provide the basis of a structurally accurate genotyping graph of the complete MHC region.
Collapse
Affiliation(s)
- Torsten Houwaart
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stephan Scholz
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Nicholas R. Pollock
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - William H. Palmer
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Katherine M. Kichula
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Daniel Strelow
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Duyen B. Le
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Dana Belick
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Lisanna Hülse
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tobias Lautwein
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Thorsten Wachtmeister
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tassilo E. Wollenweber
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl Köhrer
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Peter Parham
- Department of Structural Biology, and Department of Microbiology and ImmunologyStanford UniversityStanfordCaliforniaUSA
| | - Lisbeth A. Guethlein
- Department of Structural Biology, and Department of Microbiology and ImmunologyStanford UniversityStanfordCaliforniaUSA
| | - Paul J. Norman
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Alexander T. Dilthey
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
28
|
Vinuesa CG, Grenov A, Kassiotis G. Innate virus-sensing pathways in B cell systemic autoimmunity. Science 2023; 380:478-484. [PMID: 37141353 DOI: 10.1126/science.adg6427] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although all multicellular organisms have germ line-encoded innate receptors to sense pathogen-associated molecular patterns, vertebrates also evolved adaptive immunity based on somatically generated antigen receptors on B and T cells. Because randomly generated antigen receptors may also react with self-antigens, tolerance checkpoints operate to limit but not completely prevent autoimmunity. These two systems are intricately linked, with innate immunity playing an instrumental role in the induction of adaptive antiviral immunity. In this work, we review how inborn errors of innate immunity can instigate B cell autoimmunity. Increased nucleic acid sensing, often resulting from defects in metabolizing pathways or retroelement control, can break B cell tolerance and converge into TLR7-, cGAS-STING-, or MAVS-dominant signaling pathways. The resulting syndromes span a spectrum that ranges from chilblain and systemic lupus to severe interferonopathies.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK
- China Centre for Personalised Immunology, Renji Hospital, Shanghai, China
| | | | - George Kassiotis
- The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
29
|
Mohammadi A, Etemad B, Zhang X, Li Y, Bedwell GJ, Sharaf R, Kittilson A, Melberg M, Wong C, Fajnzylber J, Worrall DP, Rosenthal A, Jordan H, Jilg N, Kaseke C, Giguel F, Lian X, Deo R, Gillespie E, Chishti R, Abrha S, Adams T, Siagian A, Anderson PL, Deeks SG, Lederman MM, Yawetz S, Kuritzkes DR, Lichterfeld MD, Tsibris A, Carrington M, Brumme ZL, Castillo-Mancilla JR, Engelman AN, Gaiha GD, Li JZ. Viral and Host Mediators of Non-Suppressible HIV-1 Viremia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.30.23287124. [PMID: 37034605 PMCID: PMC10081408 DOI: 10.1101/2023.03.30.23287124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Non-suppressible HIV-1 viremia (NSV) can occur in persons with HIV despite adherence to combination antiretroviral therapy (ART) and in the absence of significant drug resistance. Here, we show that plasma NSV sequences are comprised primarily of large clones without evidence of viral evolution over time. We defined proviruses that contribute to plasma viremia as "producer", and those that did not as "non-producer". Compared to ART-suppressed individuals, NSV participants had a significantly larger producer reservoir. Producer proviruses were enriched in chromosome 19 and in proximity to the activating H3K36me3 epigenetic mark. CD4+ cells from NSV participants demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, NSV participants showed no elevation in HIV-specific CD8+ cell responses and producer proviruses were enriched for HLA escape mutations. We identified critical host and viral mediators of NSV that represent potential targets to disrupt HIV persistence and promote viral silencing.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Behzad Etemad
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Zhang
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yijia Li
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Radwa Sharaf
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Autumn Kittilson
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meghan Melberg
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Colline Wong
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jesse Fajnzylber
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Alex Rosenthal
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah Jordan
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaus Jilg
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Francoise Giguel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaodong Lian
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rinki Deo
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rida Chishti
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Abrha
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor Adams
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail Siagian
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter L. Anderson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Michael M. Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sigal Yawetz
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mathias D. Lichterfeld
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Athe Tsibris
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Jose R. Castillo-Mancilla
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alan N. Engelman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Gaurav D. Gaiha
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan Z. Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Kang JB, Shen AZ, Sakaue S, Luo Y, Gurajala S, Nathan A, Rumker L, Aguiar VRC, Valencia C, Lagattuta K, Zhang F, Jonsson AH, Yazar S, Alquicira-Hernandez J, Khalili H, Ananthakrishnan AN, Jagadeesh K, Dey K, Daly MJ, Xavier RJ, Donlin LT, Anolik JH, Powell JE, Rao DA, Brenner MB, Gutierrez-Arcelus M, Raychaudhuri S. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.14.23287257. [PMID: 36993194 PMCID: PMC10055604 DOI: 10.1101/2023.03.14.23287257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation, and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here, we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues, using personalized reference genomes to mitigate technical confounding. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B, and T cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.
Collapse
Affiliation(s)
- Joyce B. Kang
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Amber Z. Shen
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang Luo
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saisriram Gurajala
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Vitor R. C. Aguiar
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristian Valencia
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaitlyn Lagattuta
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Seyhan Yazar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ashwin N. Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kushal Dey
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Mark J. Daly
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J. Xavier
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T. Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jennifer H. Anolik
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael B. Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Aguiar VRC, Castelli EC, Single RM, Bashirova A, Ramsuran V, Kulkarni S, Augusto DG, Martin MP, Gutierrez-Arcelus M, Carrington M, Meyer D. Comparison between qPCR and RNA-seq reveals challenges of quantifying HLA expression. Immunogenetics 2023; 75:249-262. [PMID: 36707444 PMCID: PMC9883133 DOI: 10.1007/s00251-023-01296-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Human leukocyte antigen (HLA) class I and II loci are essential elements of innate and acquired immunity. Their functions include antigen presentation to T cells leading to cellular and humoral immune responses, and modulation of NK cells. Their exceptional influence on disease outcome has now been made clear by genome-wide association studies. The exons encoding the peptide-binding groove have been the main focus for determining HLA effects on disease susceptibility/pathogenesis. However, HLA expression levels have also been implicated in disease outcome, adding another dimension to the extreme diversity of HLA that impacts variability in immune responses across individuals. To estimate HLA expression, immunogenetic studies traditionally rely on quantitative PCR (qPCR). Adoption of alternative high-throughput technologies such as RNA-seq has been hampered by technical issues due to the extreme polymorphism at HLA genes. Recently, however, multiple bioinformatic methods have been developed to accurately estimate HLA expression from RNA-seq data. This opens an exciting opportunity to quantify HLA expression in large datasets but also brings questions on whether RNA-seq results are comparable to those by qPCR. In this study, we analyze three classes of expression data for HLA class I genes for a matched set of individuals: (a) RNA-seq, (b) qPCR, and (c) cell surface HLA-C expression. We observed a moderate correlation between expression estimates from qPCR and RNA-seq for HLA-A, -B, and -C (0.2 ≤ rho ≤ 0.53). We discuss technical and biological factors which need to be accounted for when comparing quantifications for different molecular phenotypes or using different techniques.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP Brazil ,Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Erick C. Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University, Botucatu, SP Brazil
| | - Richard M. Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT USA
| | - Arman Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Veron Ramsuran
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa ,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Smita Kulkarni
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Danillo G. Augusto
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC USA ,Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR Brazil
| | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA USA
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP Brazil
| |
Collapse
|
32
|
Increased Prevalence of Unstable HLA-C Variants in HIV-1 Rapid-Progressor Patients. Int J Mol Sci 2022; 23:ijms232314852. [PMID: 36499177 PMCID: PMC9741376 DOI: 10.3390/ijms232314852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
HIV-1 infection in the absence of treatment results in progression toward AIDS. Host genetic factors play a role in HIV-1 pathogenesis, but complete knowledge is not yet available. Since less-expressed HLA-C variants are associated with poor HIV-1 control and unstable HLA-C variants are associated with higher HIV-1 infectivity, we investigated whether there was a correlation between the different stages of HIV-1 progression and the presence of specific HLA-C allotypes. HLA-C genotyping was performed using allele-specific PCR by analyzing a treatment-naïve cohort of 96 HIV-1-infected patients from multicentric cohorts in the USA, Canada, and Brazil. HIV-1-positive subjects were classified according to their different disease progression status as progressors (Ps, n = 48), long-term non-progressors (LTNPs, n = 37), and elite controllers (ECs, n = 11). HLA-C variants were classified as stable or unstable according to their binding stability to β2-microglobulin/peptide complex. Our results showed a significant correlation between rapid progression to AIDS and the presence of two or one unstable HLA-C variants (p-value: 0.0078, p-value: 0.0143, respectively). These findings strongly suggest a link between unstable HLA-C variants both at genotype and at allele levels and rapid progression to AIDS. This work provides further insights into the impact of host genetic factors on AIDS progression.
Collapse
|
33
|
Zhao X, Ma S, Wang B, Jiang X, Xu S. PGG.MHC: toward understanding the diversity of major histocompatibility complexes in human populations. Nucleic Acids Res 2022; 51:D1102-D1108. [PMID: 36321663 PMCID: PMC9825418 DOI: 10.1093/nar/gkac997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
The human leukocyte antigen (HLA) system, or the human version of the major histocompatibility complex (MHC), is known for its extreme polymorphic nature and high heterogeneity. Taking advantage of whole-genome and whole-exome sequencing data, we developed PGG.MHC to provide a platform to explore the diversity of the MHC in Asia as well as in global populations. PGG.MHC currently archives high-resolution HLA alleles of 53 254 samples representing 190 populations spanning 66 countries. PGG.MHC provides: (i) high-quality allele frequencies for eight classical HLA loci (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1, -DPA1 and -DPB1); (ii) visualization of population prevalence of HLA alleles on global, regional, and country-wide levels; (iii) haplotype structure of 134 populations; (iv) two online analysis tools including 'HLA imputation' for inferring HLA alleles from SNP genotyping data and 'HLA association' to perform case/control studies for HLA-related phenotypes and (v) East Asian-specific reference panels for HLA imputation. Equipped with high-quality frequency data and user-friendly computer tools, we expect that the PGG.MHC database can advance the understanding and facilitate applications of MHC genomic diversity in both evolutionary and medical studies. The PGG.MHC database is freely accessible via https://pog.fudan.edu.cn/pggmhc or https://www.pggmhc.org/pggmhc.
Collapse
Affiliation(s)
| | | | | | - Xuetong Jiang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, FudanUniversity, Shanghai 200438, China
| | | | - Shuhua Xu
- To whom correspondence should be addressed. Tel: +86 21 31246617; Fax: +86 21 31246617;
| |
Collapse
|
34
|
Loi E, Moi L, Cabras P, Arduino G, Costanzo G, Del Giacco S, Erlich HA, Firinu D, Caddori A, Zavattari P. HLA-C dysregulation as a possible mechanism of immune evasion in SARS-CoV-2 and other RNA-virus infections. Front Immunol 2022; 13:1011829. [PMID: 36325330 PMCID: PMC9618630 DOI: 10.3389/fimmu.2022.1011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
One of the mechanisms by which viruses can evade the host's immune system is to modify the host's DNA methylation pattern. This work aims to investigate the DNA methylation and gene expression profile of COVID-19 patients, divided into symptomatic and asymptomatic, and healthy controls, focusing on genes involved in the immune response. In this study, changes in the methylome of COVID-19 patients' upper airways cells, the first barrier against respiratory infections and the first cells presenting viral antigens, are shown for the first time. Our results showed alterations in the methylation pattern of genes encoding proteins implicated in the response against pathogens, in particular the HLA-C gene, also important for the T-cell mediated memory response. HLA-C expression significantly decreases in COVID-19 patients, especially in those with a more severe prognosis and without other possibly confounding co-morbidities. Moreover, our bionformatic analysis revealed that the identified methylation alteration overlaps with enhancers regulating HLA-C expression, suggesting an additional mechanism exploited by SARS-CoV-2 to inhibit this fundamental player in the host's immune response. HLA-C could therefore represent both a prognostic marker and an excellent therapeutic target, also suggesting a preventive intervention that conjugate a virus-specific antigenic stimulation with an adjuvant increasing the T-cell mediated memory response.
Collapse
Affiliation(s)
- Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| | - Loredana Moi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| | - Paola Cabras
- Department of Internal Medicine, Hospital SS. Trinità, Cagliari, Italy
| | - Giulia Arduino
- Department of Internal Medicine, Hospital SS. Trinità, Cagliari, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Henry A. Erlich
- Department of Genetics and Genomics, Children’s Hospital Oakland Research Institute, Oakland, CA, United States
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Aldo Caddori
- Department of Internal Medicine, Hospital SS. Trinità, Cagliari, Italy
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| |
Collapse
|
35
|
Zou J, Kongtim P, Srour SA, Greenbaum U, Schetelig J, Heidenreich F, Baldauf H, Moore B, Saengboon S, Carmazzi Y, Rondon G, Ma Q, Rezvani K, Shpall EJ, Champlin RE, Ciurea SO, Cao K. Donor selection for KIR alloreactivity is associated with superior survival in haploidentical transplant with PTCy. Front Immunol 2022; 13:1033871. [PMID: 36311784 PMCID: PMC9606393 DOI: 10.3389/fimmu.2022.1033871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
With the continuous increase in the use of haploidentical donors for transplantation, the selection of donors becomes increasingly important. Haploidentical donors have been selected primarily based on clinical characteristics, while the effects of killer cell immunoglobulin-like receptors (KIRs) on outcomes of haploidentical-hematopoietic stem cell transplantation (haplo-HSCT) with post-transplant cyclophosphamide (PTCy) remain inconclusive. The present study aimed to thoroughly evaluate the effect of KIRs and binding ligands assessed by various models, in addition to other patient/donor variables, on clinical outcomes in haplo-HSCT. In a cohort of 354 patients undergoing their first haplo-HSCT, we found that a higher Count Functional inhibitory KIR score (CF-iKIR) was associated with improved progression-free survival (adjusted hazard ratio [HR], 0.71; P = .029) and overall survival (OS) (HR, 0.66; P = .016), while none of the other models predicted for survival in these patients. Moreover, using exploratory classification and regression tree analysis, we found that donor age <58 years combined with cytomegalovirus-nonreactive recipient was associated with the best OS, whereas donor age >58 years was associated with the worst OS. In the rest of our cohort (80%), cytomegalovirus-reactive recipients with a donor <58 years old, a higher CF-iKIR was associated with superior OS. The 3-year OS rates were 73.9%, 54.1% (HR, 1.84; P = .044), 44.5% (HR, 2.01; P = .003), and 18.5% (HR, 5.44; P <.001) in the best, better, poor, and worse donor groups, respectively. Our results suggest that KIR alloreactivity assessed by CF-iKIR score can help optimize donor selection in haplo-HSCT.
Collapse
Affiliation(s)
- Jun Zou
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jun Zou, ; Stefan O. Ciurea,
| | - Piyanuch Kongtim
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA, United States
- Center of Excellence in Applied Epidemiology, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Samer A. Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Uri Greenbaum
- Department of Hematology, Soroka University Medical Center, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- DKMS gemeinnützige GmbH, Tübingen, Germany
| | - Falk Heidenreich
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- DKMS gemeinnützige GmbH, Tübingen, Germany
| | | | - Brandt Moore
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Supawee Saengboon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yudith Carmazzi
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stefan O. Ciurea
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA, United States
- *Correspondence: Jun Zou, ; Stefan O. Ciurea,
| | - Kai Cao
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
36
|
Vigón L, Galán M, Torres M, Martín-Galiano AJ, Rodríguez-Mora S, Mateos E, Corona M, Malo R, Navarro C, Murciano-Antón MA, García-Gutiérrez V, Planelles V, Martínez-Laso J, López-Huertas MR, Coiras M. Association between HLA-C alleles and COVID-19 severity in a pilot study with a Spanish Mediterranean Caucasian cohort. PLoS One 2022; 17:e0272867. [PMID: 35960731 PMCID: PMC9374209 DOI: 10.1371/journal.pone.0272867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022] Open
Abstract
The clinical presentations of COVID-19 may range from an asymptomatic or mild infection to a critical or fatal disease. Several host factors such as elderly age, male gender, and previous comorbidities seem to be involved in the most severe outcomes, but also an impaired immune response that causes a hyperinflammatory state but is unable to clear the infection. In order to get further understanding about this impaired immune response, we aimed to determine the association of specific HLA alleles with different clinical presentations of COVID-19. Therefore, we analyzed HLA Class I and II, as well as KIR gene sequences, in 72 individuals with Spanish Mediterranean Caucasian ethnicity who presented mild, severe, or critical COVID-19, according to their clinical characteristics and management. This cohort was recruited in Madrid (Spain) during the first and second pandemic waves between April and October 2020. There were no significant differences in HLA-A or HLA-B alleles among groups. However, despite the small sample size, we found that HLA-C alleles from group C1 HLA-C*08:02, -C*12:03, or -C*16:01 were more frequently associated in individuals with mild COVID-19 (43.8%) than in individuals with severe (8.3%; p = 0.0030; pc = 0.033) and critical (16.1%; p = 0.0014; pc = 0.0154) disease. C1 alleles are supposed to be highly efficient to present peptides to T cells, and HLA-C*12:03 may present a high number of verified epitopes from abundant SARS-CoV-2 proteins M, N, and S, thereby being allegedly able to trigger an efficient antiviral response. On the contrary, C2 alleles are usually poorly expressed on the cell surface due to low association with β2-microglobulin (β2M) and peptides, which may impede the adequate formation of stable HLA-C/β2M/peptide heterotrimers. Consequently, this pilot study described significant differences in the presence of specific HLA-C1 alleles in individuals with different clinical presentations of COVID-19, thereby suggesting that HLA haplotyping could be valuable to get further understanding in the underlying mechanisms of the impaired immune response during critical COVID-19.
Collapse
Affiliation(s)
- Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Galán
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio J. Martín-Galiano
- Intrahospital Infections Laboratory, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Magdalena Corona
- Hematology Service, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rosa Malo
- Neumology Service, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | | | | | - Vicente Planelles
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jorge Martínez-Laso
- Immunogenetic Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - María Rosa López-Huertas
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | | |
Collapse
|
37
|
Sharif-zak M, Abbasi-Jorjandi M, Asadikaram G, Ghoreshi ZAS, Rezazadeh-Jabalbarzi M, Rashidinejad H. Influence of Disease Severity and Gender on HLA-C Methylation in COVID-19 Patients. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY. TRANSACTION A, SCIENCE 2022; 46:1309-1316. [PMID: 35912367 PMCID: PMC9325662 DOI: 10.1007/s40995-022-01334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022]
Abstract
In the pathophysiology of COVID-19, immunomodulatory factors play a vital role. Viruses have epigenetic effects on various genes, particularly methylation. Explaining the changes in immunological factor methylation levels during viral infections requires substantial consideration. HLA-C is a crucial determinant of immune function and NK cell activity and is primarily implicated in viral infections. This research focused on studying HLA-C methylation in COVID-19 patients with different severity. Peripheral blood samples were collected from 470 patients (235 men and 235 women) with RT-qPCR-confirmed COVID-19 test and classified into moderate, severe, and critical groups based on WHO criteria. Also, one hundred (50 men and 50 women) healthy subjects were selected as the control group. Peripheral blood mononuclear cells were used for DNA extraction, and the methylation-specific PCR (MSP) method and gel electrophoresis were used to determine the methylation status of the HLA-C. Significant statistical differences in HLA-C methylation were observed among cases and controls and various stages of the disease. HLA-C methylation in men and women has decreased in all stages (p < 0.05). In comparison with control, HLA-C methylation in both genders were as follows: moderate (women: 41.0%, men: 52.33%), severe (women: 43.42%, men: 64.86%), critical (women: 42.33%, men: 60.07%), and total patients (women: 45.52%, men: 56.97%). Furthermore, the methylation levels in men were higher than in women in all groups (p < 0.05). Significantly, among all groups, the severe group of men participants showed the highest methylation percentage (p < 0.05). No significant differences were detected for different disease severity in the women group (p > 0.1). This study found that HLA-C methylation was significantly lower in COVID-19 patients with different disease severity. There were also significant differences in HLA-C methylation between men and women patients with different severity. Therefore, during managing viral infections, particularly COVID-19, it is critical to consider patient gender and disease severity.
Collapse
Affiliation(s)
- Mohsen Sharif-zak
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Abbasi-Jorjandi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh-al-Sadat Ghoreshi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Rezazadeh-Jabalbarzi
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hamidreza Rashidinejad
- Department of Cardiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
38
|
Cornaby C, Montgomery MC, Liu C, Weimer ET. Unique Molecular Identifier-Based High-Resolution HLA Typing and Transcript Quantitation Using Long-Read Sequencing. Front Genet 2022; 13:901377. [PMID: 35879986 PMCID: PMC9308011 DOI: 10.3389/fgene.2022.901377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/05/2022] [Indexed: 01/03/2023] Open
Abstract
HLA typing provides essential results for stem cell and solid organ transplants, as well as providing diagnostic benefits for various rheumatology, gastroenterology, neurology, and infectious diseases. It is becoming increasingly clear that understanding the expression of patient HLA transcripts can provide additional benefits for many of these same patient groups. Our study cohort was evaluated using a long-read RNA sequencing methodology to provide rapid HLA genotyping results and normalized HLA transcript expression. Our assay used NGSEngine to determine the HLA genotyping result and normalized mRNA transcript expression using Athlon2. The assay demonstrated an excellent concordance rate of 99.7%. Similar to previous studies, for the class I loci, patients demonstrated significantly lower expression of HLA-C than HLA-A and -B (Mann-Whitney U, p value = 0.0065 and p value = 0.0154, respectively). In general, the expression of class II transcripts was lower than that of class I transcripts. This study demonstrates a rapid high-resolution HLA typing assay using RNA-Seq that can provide accurate HLA genotyping and HLA allele-specific transcript expression in 7-8 h, a timeline short enough to perform the assay for deceased donors.
Collapse
Affiliation(s)
- Caleb Cornaby
- Molecular Immunology Laboratory, McLendon Clinical Laboratories, UNC Health, Chapel Hill, NC, United States
| | - Maureen C Montgomery
- Molecular Immunology Laboratory, McLendon Clinical Laboratories, UNC Health, Chapel Hill, NC, United States
| | - Chang Liu
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Eric T Weimer
- Molecular Immunology Laboratory, McLendon Clinical Laboratories, UNC Health, Chapel Hill, NC, United States.,Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
39
|
Vollmers S, Lobermeyer A, Niehrs A, Fittje P, Indenbirken D, Nakel J, Virdi S, Brias S, Trenkner T, Sauer G, Peine S, Behrens GM, Lehmann C, Meurer A, Pauli R, Postel N, Roider J, Scholten S, Spinner CD, Stephan C, Wolf E, Wyen C, Richert L, Norman PJ, Sauter J, Schmidt AH, Hoelzemer A, Altfeld M, Körner C. Host KIR/HLA-C Genotypes Determine HIV-Mediated Changes of the NK Cell Repertoire and Are Associated With Vpu Sequence Variations Impacting Downmodulation of HLA-C. Front Immunol 2022; 13:922252. [PMID: 35911762 PMCID: PMC9334850 DOI: 10.3389/fimmu.2022.922252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
NK cells play a pivotal role in viral immunity, utilizing a large array of activating and inhibitory receptors to identify and eliminate virus-infected cells. Killer-cell immunoglobulin-like receptors (KIRs) represent a highly polymorphic receptor family, regulating NK cell activity and determining the ability to recognize target cells. Human leukocyte antigen (HLA) class I molecules serve as the primary ligand for KIRs. Herein, HLA-C stands out as being the dominant ligand for the majority of KIRs. Accumulating evidence indicated that interactions between HLA-C and its inhibitory KIR2DL receptors (KIR2DL1/L2/L3) can drive HIV-1-mediated immune evasion and thus may contribute to the intrinsic control of HIV-1 infection. Of particular interest in this context is the recent observation that HIV-1 is able to adapt to host HLA-C genotypes through Vpu-mediated downmodulation of HLA-C. However, our understanding of the complex interplay between KIR/HLA immunogenetics, NK cell-mediated immune pressure and HIV-1 immune escape is still limited. Therefore, we investigated the impact of specific KIR/HLA-C combinations on the NK cell receptor repertoire and HIV-1 Vpu protein sequence variations of 122 viremic, untreated HIV-1+ individuals. Compared to 60 HIV-1- controls, HIV-1 infection was associated with significant changes within the NK cell receptor repertoire, including reduced percentages of NK cells expressing NKG2A, CD8, and KIR2DS4. In contrast, the NKG2C+ and KIR3DL2+ NK cell sub-populations from HIV-1+ individuals was enlarged compared to HIV-1- controls. Stratification along KIR/HLA-C genotypes revealed a genotype-dependent expansion of KIR2DL1+ NK cells that was ultimately associated with increased binding affinities between KIR2DL1 and HLA-C allotypes. Lastly, our data hinted to a preferential selection of Vpu sequence variants that were associated with HLA-C downmodulation in individuals with high KIR2DL/HLA-C binding affinities. Altogether, our study provides evidence that HIV-1-associated changes in the KIR repertoire of NK cells are to some extent predetermined by host KIR2DL/HLA-C genotypes. Furthermore, analysis of Vpu sequence polymorphisms indicates that differential KIR2DL/HLA-C binding affinities may serve as an additional mechanism how host genetics impact immune evasion by HIV-1.
Collapse
Affiliation(s)
| | | | | | - Pia Fittje
- Leibniz Institute of Virology, Hamburg, Germany
| | | | | | | | - Sebastien Brias
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Gabriel Sauer
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg M.N. Behrens
- Department for Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
| | - Clara Lehmann
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anja Meurer
- Center for Internal Medicine and Infectiology, Munich, Germany
| | - Ramona Pauli
- Medizinisches Versorgungszentrum (MVZ) am Isartor, Munich, Germany
| | - Nils Postel
- Prinzmed, Practice for Infectious Diseases, Munich, Germany
| | - Julia Roider
- Department of Internal Medicine IV, Department of Infectious Diseases, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | | | - Christoph D. Spinner
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Technical University of Munich, School of Medicine, University Hospital rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Christoph Stephan
- Infectious Diseases Unit, Goethe-University Hospital Frankfurt, Frankfurt, Germany
| | | | - Christoph Wyen
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | - Laura Richert
- University of Bordeaux, Inserm U1219 Bordeaux Population Health, Inria Sistm, Bordeaux, France
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | | | | | - Angelique Hoelzemer
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christian Körner
- Leibniz Institute of Virology, Hamburg, Germany
- *Correspondence: Christian Körner,
| |
Collapse
|
40
|
Li SS, Hickey A, Shangguan S, Ehrenberg PK, Geretz A, Butler L, Kundu G, Apps R, Creegan M, Clifford RJ, Pinyakorn S, Eller LA, Luechai P, Gilbert PB, Holtz TH, Chitwarakorn A, Sacdalan C, Kroon E, Phanuphak N, de Souza M, Ananworanich J, O'Connell RJ, Robb ML, Michael NL, Vasan S, Thomas R. HLA-B∗46 associates with rapid HIV disease progression in Asian cohorts and prominent differences in NK cell phenotype. Cell Host Microbe 2022; 30:1173-1185.e8. [PMID: 35841889 DOI: 10.1016/j.chom.2022.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
Human leukocyte antigen (HLA) alleles have been linked to HIV disease progression and attributed to differences in cytotoxic T lymphocyte (CTL) epitope representation. These findings are largely based on treatment-naive individuals of European and African ancestry. We assessed HLA associations with HIV-1 outcomes in 1,318 individuals from Thailand and found HLA-B∗46:01 (B∗46) associated with accelerated disease in three independent cohorts. B∗46 had no detectable effect on HIV-specific T cell responses, but this allele is unusual in containing an HLA-C epitope that binds inhibitory receptors on natural killer (NK) cells. Unbiased transcriptomic screens showed increased NK cell activation in people with HIV, without B∗46, and simultaneous single-cell profiling of surface proteins and transcriptomes revealed a NK cell subset primed for increased responses in the absence of B∗46. These findings support a role for NK cells in HIV pathogenesis, revealed by the unique properties of the B∗46 allele common only in Asia.
Collapse
Affiliation(s)
- Shuying S Li
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA 98104, USA
| | - Andrew Hickey
- Division of HIV Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Thailand Ministry of Public Health, U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand
| | - Shida Shangguan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Philip K Ehrenberg
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aviva Geretz
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Lauryn Butler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Gautam Kundu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Richard Apps
- Center for Human Immunology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Creegan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Robert J Clifford
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Pikunchai Luechai
- Division of HIV Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Thailand Ministry of Public Health, U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand
| | - Peter B Gilbert
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA 98104, USA
| | - Timothy H Holtz
- Division of HIV Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Thailand Ministry of Public Health, U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand; Office of AIDS Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anupong Chitwarakorn
- Department of Disease Control, Thailand Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Carlo Sacdalan
- Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Eugène Kroon
- Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | | | - Mark de Souza
- Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Jintanat Ananworanich
- Department of Global Health, Amsterdam Medical Center, University of Amsterdam, 1105 BP Amsterdam, the Netherlands
| | | | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Nelson L Michael
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
41
|
Zhu MM, Niu BW, Liu LL, Yang H, Qin BY, Peng XH, Chen LX, Liu Y, Wang C, Ren XN, Xu CH, Zhou XH, Li F. Development of a humanized HLA-A30 transgenic mouse model. Animal Model Exp Med 2022; 5:350-361. [PMID: 35791899 PMCID: PMC9434587 DOI: 10.1002/ame2.12225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background There are remarkable genetic differences between animal major histocompatibility complex (MHC) systems and the human leukocyte antigen (HLA) system. HLA transgenic humanized mouse model systems offer a much better method to study the HLA‐A‐related principal mechanisms for vaccine development and HLA‐A‐restricted responses against infection in human. Methods A recombinant gene encoding the chimeric HLA‐A30 monochain was constructed. This HHD molecule contains the following: α1‐α2 domains of HLA‐A30, α3 and cytoplasmic domains of H‐2Db, linked at its N‐terminus to the C‐terminus of human β2m by a 15‐amino‐acid peptide linker. The recombinant gene encoding the chimeric HLA‐A30 monochain cassette was introduced into bacterial artificial chromosome (BAC) CH502‐67J3 containing the HLA‐A01 gene locus by Red‐mediated homologous recombination. Modified BAC CH502‐67J3 was microinjected into the pronuclei of wild‐type mouse oocytes. This humanized mouse model was further used to assess the immune responses against influenza A virus (H1N1) pdm09 clinically isolated from human patients. Immune cell population, cytokine production, and histopathology in the lung were analyzed. Results We describe a novel human β2m‐HLA‐A30 (α1α2)‐H‐2Db (α3 transmembrane cytoplasmic) (HHD) monochain transgenic mouse strain, which contains the intact HLA‐A01 gene locus including 49 kb 5′‐UTR and 74 kb 3′‐UTR of HLA‐A01*01. Five transgenic lines integrated into the large genomic region of HLA‐A gene locus were obtained, and the robust expression of exogenous transgene was detected in various tissues from A30‐18# and A30‐19# lines encompassing the intact flanking sequences. Flow cytometry revealed that the introduction of a large genomic region in HLA‐A gene locus can influence the immune cell constitution in humanized mice. Pdm09 infection caused a similar immune response among HLA‐A30 Tg humanized mice and wild‐type mice, and induced the rapid increase of cytokines, including IFN‐γ, TNF‐α, and IL‐6, in both HLA‐A30 humanized Tg mice and wild‐type mice. The expression of HLA‐A30 transgene was dramatically promoted in tissues from A30‐9# line at 3 days post‐infection (dpi). Conclusions We established a promising preclinical research animal model of HLA‐A30 Tg humanized mouse, which could accelerate the identification of novel HLA‐A30‐restricted epitopes and vaccine development, and support the study of HLA‐A‐restricted responses against infection in humans.
Collapse
Affiliation(s)
- Meng-Min Zhu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Bo-Wen Niu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Ling-Ling Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Hua Yang
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Bo-Yin Qin
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiu-Hua Peng
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Li-Xiang Chen
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yang Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Chao Wang
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao-Nan Ren
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Chun-Hua Xu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao-Hui Zhou
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
42
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
43
|
Nii-Trebi NI, Matsuoka S, Kawana-Tachikawa A, Bonney EY, Abana CZ, Ofori SB, Mizutani T, Ishizaka A, Shiino T, Ohashi J, Naruse TK, Kimura A, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Super high-resolution single-molecule sequence-based typing of HLA class I alleles in HIV-1 infected individuals in Ghana. PLoS One 2022; 17:e0269390. [PMID: 35653364 PMCID: PMC9162337 DOI: 10.1371/journal.pone.0269390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Polymorphisms in human leukocyte antigen (HLA) class I loci are known to have a great impact on disease progression in HIV-1 infection. Prevailing HIV-1 subtypes and HLA genotype distribution are different all over the world, and the HIV-1 and host HLA interaction could be specific to individual areas. Data on the HIV-1 and HLA interaction have been accumulated in HIV-1 subtype B- and C-predominant populations but not fully obtained in West Africa where HIV-1 subtype CRF02_AG is predominant. In the present study, to obtain accurate HLA typing data for analysis of HLA association with disease progression in HIV-1 infection in West African populations, HLA class I (HLA-A, -B, and -C) four-digit allele typing was performed in treatment-naïve HIV-1 infected individuals in Ghana (n = 324) by a super high-resolution single-molecule sequence-based typing (SS-SBT) using next-generation sequencing. Comparison of the SS-SBT-based data with those obtained by a conventional sequencing-based typing (SBT) revealed incorrect assignment of several alleles by SBT. Indeed, HLA-A*23:17, HLA-B*07:06, HLA-C*07:18, and HLA-C*18:02 whose allele frequencies were 2.5%, 0.9%, 4.3%, and 3.7%, respectively, were not determined by SBT. Several HLA alleles were associated with clinical markers, viral load and CD4+ T-cell count. Of note, the impact of HLA-B*57:03 and HLA-B*58:01, known as protective alleles against HIV-1 subtype B and C infection, on clinical markers was not observed in our cohort. This study for the first time presents SS-SBT-based four-digit typing data on HLA-A, -B, and -C alleles in Ghana, describing impact of HLA on viral load and CD4 count in HIV-1 infection. Accumulation of these data would facilitate high-resolution HLA genotyping, contributing to our understanding of the HIV-1 and host HLA interaction in Ghana, West Africa.
Collapse
Affiliation(s)
- Nicholas I. Nii-Trebi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Evelyn Y. Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christopher Z. Abana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson B. Ofori
- Department of Medicine, Koforidua Government Hospital, Eastern Region, Ghana
| | | | - Aya Ishizaka
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Sciences, University of Tokyo, Tokyo, Japan
| | - Taeko K. Naruse
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Kiyono
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - William K. Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- * E-mail: (WKA); (TM)
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (WKA); (TM)
| |
Collapse
|
44
|
Regulation of HLA class I expression by non-coding gene variations. PLoS Genet 2022; 18:e1010212. [PMID: 35666741 PMCID: PMC9170083 DOI: 10.1371/journal.pgen.1010212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
The Human Leukocyte Antigen (HLA) is a critical genetic system for different outcomes after solid organ and hematopoietic cell transplantation. Its polymorphism is usually determined by molecular technologies at the DNA level. A potential role of HLA allelic expression remains under investigation in the context of the allogenic immune response between donors and recipients. In this study, we quantified the allelic expression of all three HLA class I loci (HLA-A, B and C) by RNA sequencing and conducted an analysis of expression quantitative traits loci (eQTL) to investigate whether HLA expression regulation could be associated with non-coding gene variations. HLA-B alleles exhibited the highest expression levels followed by HLA-C and HLA-A alleles. The max fold expression variation was observed for HLA-C alleles. The expression of HLA class I loci of distinct individuals demonstrated a coordinated and paired expression of both alleles of the same locus. Expression of conserved HLA-A~B~C haplotypes differed in distinct PBMC's suggesting an individual regulated expression of both HLA class I alleles and haplotypes. Cytokines TNFα /IFNβ, which induced a very similar upregulation of HLA class I RNA and cell surface expression across alleles did not modify the individually coordinated expression at the three HLA class I loci. By identifying cis eQTLs for the HLA class I genes, we show that the non-coding eQTLs explain 29%, 13%, and 31% of the respective HLA-A, B, C expression variance in unstimulated cells, and 9%, 23%, and 50% of the variance in cytokine-stimulated cells. The eQTLs have significantly higher effect sizes in stimulated cells compared to unstimulated cells for HLA-B and HLA-C genes expression. Our data also suggest that the identified eQTLs are independent from the coding variation which defines HLA alleles and thus may be influential on intra-allele expression variability although they might not represent the causal eQTLs.
Collapse
|
45
|
Clay SM, Schoettler N, Goldstein AM, Carbonetto P, Dapas M, Altman MC, Rosasco MG, Gern JE, Jackson DJ, Im HK, Stephens M, Nicolae DL, Ober C. Fine-mapping studies distinguish genetic risks for childhood- and adult-onset asthma in the HLA region. Genome Med 2022; 14:55. [PMID: 35606880 PMCID: PMC9128203 DOI: 10.1186/s13073-022-01058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/12/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Genome-wide association studies of asthma have revealed robust associations with variation across the human leukocyte antigen (HLA) complex with independent associations in the HLA class I and class II regions for both childhood-onset asthma (COA) and adult-onset asthma (AOA). However, the specific variants and genes contributing to risk are unknown. METHODS We used Bayesian approaches to perform genetic fine-mapping for COA and AOA (n=9432 and 21,556, respectively; n=318,167 shared controls) in White British individuals from the UK Biobank and to perform expression quantitative trait locus (eQTL) fine-mapping in immune (lymphoblastoid cell lines, n=398; peripheral blood mononuclear cells, n=132) and airway (nasal epithelial cells, n=188) cells from ethnically diverse individuals. We also examined putatively causal protein coding variation from protein crystal structures and conducted replication studies in independent multi-ethnic cohorts from the UK Biobank (COA n=1686; AOA n=3666; controls n=56,063). RESULTS Genetic fine-mapping revealed both shared and distinct causal variation between COA and AOA in the class I region but only distinct causal variation in the class II region. Both gene expression levels and amino acid variation contributed to risk. Our results from eQTL fine-mapping and amino acid visualization suggested that the HLA-DQA1*03:01 allele and variation associated with expression of the nonclassical HLA-DQA2 and HLA-DQB2 genes accounted entirely for the most significant association with AOA in GWAS. Our studies also suggested a potentially prominent role for HLA-C protein coding variation in the class I region in COA. We replicated putatively causal variant associations in a multi-ethnic cohort. CONCLUSIONS We highlight roles for both gene expression and protein coding variation in asthma risk and identified putatively causal variation and genes in the HLA region. A convergence of genomic, transcriptional, and protein coding evidence implicates the HLA-DQA2 and HLA-DQB2 genes and HLA-DQA1*03:01 allele in AOA.
Collapse
Affiliation(s)
- Selene M Clay
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Nathan Schoettler
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Andrew M Goldstein
- Department of Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Peter Carbonetto
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, 98101, USA
| | - Mario G Rosasco
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, 98101, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Matthew Stephens
- Department of Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Dan L Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Department of Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
46
|
Bernard NF, Kant S, Kiani Z, Tremblay C, Dupuy FP. Natural Killer Cells in Antibody Independent and Antibody Dependent HIV Control. Front Immunol 2022; 13:879124. [PMID: 35720328 PMCID: PMC9205404 DOI: 10.3389/fimmu.2022.879124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Infection with the human immunodeficiency virus (HIV), when left untreated, typically leads to disease progression towards acquired immunodeficiency syndrome. Some people living with HIV (PLWH) control their virus to levels below the limit of detection of standard viral load assays, without treatment. As such, they represent examples of a functional HIV cure. These individuals, called Elite Controllers (ECs), are rare, making up <1% of PLWH. Genome wide association studies mapped genes in the major histocompatibility complex (MHC) class I region as important in HIV control. ECs have potent virus specific CD8+ T cell responses often restricted by protective MHC class I antigens. Natural Killer (NK) cells are innate immune cells whose activation state depends on the integration of activating and inhibitory signals arising from cell surface receptors interacting with their ligands on neighboring cells. Inhibitory NK cell receptors also use a subset of MHC class I antigens as ligands. This interaction educates NK cells, priming them to respond to HIV infected cell with reduced MHC class I antigen expression levels. NK cells can also be activated through the crosslinking of the activating NK cell receptor, CD16, which binds the fragment crystallizable portion of immunoglobulin G. This mode of activation confers NK cells with specificity to HIV infected cells when the antigen binding portion of CD16 bound immunoglobulin G recognizes HIV Envelope on infected cells. Here, we review the role of NK cells in antibody independent and antibody dependent HIV control.
Collapse
Affiliation(s)
- Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Nicole F. Bernard,
| | - Sanket Kant
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
47
|
Impact of Micropolymorphism Outside the Peptide Binding Groove in the Clinically Relevant Allele HLA-C*14 on T Cell Responses in HIV-1 Infection. J Virol 2022; 96:e0043222. [PMID: 35475667 PMCID: PMC9131871 DOI: 10.1128/jvi.00432-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is increasing evidence for the importance of human leukocyte antigen C (HLA-C)-restricted CD8+ T cells in HIV-1 control, but these responses are relatively poorly investigated. The number of HLA-C-restricted HIV-1 epitopes identified is much smaller than those of HLA-A-restricted or HLA-B-restricted ones. Here, we utilized a mass spectrometry-based approach to identify HIV-1 peptides presented by HLA-C*14:03 protective and HLA-C*14:02 nonprotective alleles. We identified 25 8- to 11-mer HLA-I-bound HIV-1 peptides from HIV-1-infected HLA-C*14:02+/14:03+ cells. Analysis of T cell responses to these peptides identified novel 6 T cell epitopes targeted in HIV-1-infected HLA-C*14:02+/14:03+ subjects. Analyses using HLA stabilization assays demonstrated that all 6 epitope peptides exhibited higher binding to and greater cell surface stabilization of HLA-C*14:02 than HLA-C*14:03. T cell response magnitudes were typically higher in HLA-C*14:02+ than HLA-C*14:03+ individuals, with responses to the Pol KM9 and Nef epitopes being significantly higher. The results show that HLA-C*14:02 can elicit stronger T cell responses to HIV-1 than HLA-C*14:03 and suggest that the single amino acid difference between these HLA-C14 subtypes at position 21, outside the peptide-binding groove, indirectly influences the stability of peptide-HLA-C*14 complexes and induction/expansion of HIV-specific T cells. Taken together with a previous finding that KIR2DL2+ NK cells recognized HLA-C*14:03+ HIV-1-infected cells more than HLA-C*14:02+ ones, the present study indicates that these HLA-C*14 subtypes differentially impact HIV-1 control by T cells and NK cells. IMPORTANCE Some human leukocyte antigen (HLA) class I alleles are associated with good clinical outcomes in HIV-1 infection and are called protective HLA alleles. Identification of T cell epitopes restricted by protective HLA alleles can give important insight into virus-immune system interactions and inform design of immune-based prophylactic/therapeutic strategies. Although epitopes restricted by many protective HLA-A/B alleles have been identified, protective HLA-C alleles are relatively understudied. Here, we identified 6 novel T cell epitopes presented by both HLA-C*14:02 (no association with protection) and HLA-C*14:03 (protective) using a mass spectrometry-based immunopeptidome profiling approach. We found that these peptides bound to and stabilized HLA-C*14:02 better than HLA-C*14:03 and observed differences in induction/expansion of epitope-specific T cell responses in HIV-infected HLA-C*14:02+ versus HLA-C*14:03+ individuals. These results enhance understanding of how the microstructural difference at position 21 between these HLA-C*14 subtypes may influence cellular immune responses involved in viral control in HIV-1 infection.
Collapse
|
48
|
Factors Influencing Immune Restoration in People Living with HIV/AIDS. J Clin Med 2022; 11:jcm11071887. [PMID: 35407496 PMCID: PMC9000185 DOI: 10.3390/jcm11071887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: Immune restoration is a key clinical aspect that is pursued in the care of human immunodeficiency virus (HIV)-infected patients. Despite effective antiretroviral treatment and undetectable viremia, immune recovery is often incomplete. Materials and methods: Data from 311 Caucasian patients were collected. SNP in CCR2(rs1799864), CX3CR1(rs3732378), HLAC-35(rs9264942), and CCR5(promoter, rs1799988); a 32bp deletion(Δ32) in CCR5; and HLA-B*5701 genotypes were correlated with clinical data and selected endpoints. Kaplan−Meier and Cox proportional hazards models were used to analyze the effects of genetic factors over time. Results: For HLA-B*5701, the effect on the CD4+/CD8+ >0.8 cell ratio was lost within 48 months (HR = 2.04, 95% CI: 1.04−4.03), and the effect on the CD4+ cell count >500 cells/µL was lost within 12 months (HR = 2.12, CI: 1.11−4.04). The effect of CCR2 GG on the CD4+/CD8+ >0.8 cell ratio was lost within 36 months (HR = 1.7, CI: 1.05−2.75). For CCR5 wt/Δ32, the effect on the CD4+/CD8+ >1.0 cell ratio was lost within 24 months (HR = 2.0, CI: 1.08−3.69), and the effect on the CD4+ >800 cells/µL cell count was lost within 18 months (HR = 1.98, CI: 1.14−4.73). Conclusions: Selected genetic polymorphisms, namely CCR2 GG and CCR5 Δ32, and the presence of the HLA-B*5701 allele positively influenced immune restoration in cART-treated patients with HIV/AIDS.
Collapse
|
49
|
Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet 2022; 54:382-392. [PMID: 35241825 PMCID: PMC9005345 DOI: 10.1038/s41588-021-01006-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2–2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10−8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10−13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone. Genome-wide meta-analysis of SARS-CoV-2 susceptibility and severity phenotypes in up to 756,646 samples identifies a rare protective variant proximal to ACE2. A 6-SNP genetic risk score provides additional predictive power when added to known risk factors.
Collapse
|
50
|
Quinn JR, Goyal A, Ribeiro RM, Massaccesi G, Bailey JR, Thomas DL, Balagopal A. Antiretroviral therapy for HIV and intrahepatic hepatitis C virus replication. AIDS 2022; 36:337-346. [PMID: 34690280 PMCID: PMC9296270 DOI: 10.1097/qad.0000000000003116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE HIV alters host responses to hepatitis C virus (HCV). However, the impact of antiretroviral therapy (ART) on HCV is rarely understood in relevant tissues and never before within individual hepatocytes. DESIGN HIV and HCV kinetics were studied before and after ART initiation among 19 HIV/HCV co-infected persons. From five persons with the largest decline in plasma HCV RNA, liver tissues collected before and during ART, when plasma HIV RNA was undetectable, were studied. METHODS We used single-cell laser capture microdissection and quantitative PCR to assess intrahepatic HCV. Immunohistochemistry was performed to characterize intrahepatic immune cell populations. RESULTS Plasma HCV RNA declined by 0.81 (0.52-1.60) log10 IU/ml from a median (range) 7.26 (6.05-7.29) log10 IU/ml and correlated with proportions of HCV-infected hepatocytes (r = 0.89, P = 2 × 10-5), which declined from median (range) of 37% (6-49%) to 23% (0.5-52%) after plasma HIV clearance. Median (range) HCV RNA abundance within cells was unchanged in four of five participants. Liver T-cell abundance unexpectedly decreased, whereas natural killer (NK) and NK T-cell infiltration increased, correlating with changes in proportions of HCV-infected hepatocytes (r = -0.82 and r = -0.73, respectively). Hepatocyte expression of HLA-E, an NK cell restriction marker, correlated with proportions of HCV-infected hepatocytes (r = 0.79). CONCLUSION These are the first data to show that ART control of HIV reduces the intrahepatic burden of HCV. Furthermore, our data suggest that HIV affects the pathogenesis of HCV infection by an NK/NK T-cell-mediated mechanism that may involve HLA-E and can be rescued, at least in part, by ART.
Collapse
Affiliation(s)
| | - Ashish Goyal
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ruy M Ribeiro
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | | | - David L Thomas
- The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | |
Collapse
|