1
|
Yuasa-Kawada J, Kinoshita-Kawada M, Hiramoto M, Yamagishi S, Mishima T, Yasunaga S, Tsuboi Y, Hattori N, Wu JY. Neuronal guidance signaling in neurodegenerative diseases: Key regulators that function at neuron-glia and neuroimmune interfaces. Neural Regen Res 2026; 21:612-635. [PMID: 39995079 DOI: 10.4103/nrr.nrr-d-24-01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The nervous system processes a vast amount of information, performing computations that underlie perception, cognition, and behavior. During development, neuronal guidance genes, which encode extracellular cues, their receptors, and downstream signal transducers, organize neural wiring to generate the complex architecture of the nervous system. It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system. This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system. Supporting this view, these pathways continue to regulate synaptic connectivity, plasticity, and remodeling, and overall brain homeostasis throughout adulthood. Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders. Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified, emerging evidence points to several common themes, including dysfunction in neurons, microglia, astrocytes, and endothelial cells, along with dysregulation of neuron-microglia-astrocyte, neuroimmune, and neurovascular interactions. In this review, we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions. For instance, recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation. We discuss the challenges ahead, along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases. Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions. Specifically, we examine the crosstalk between neuronal guidance signaling and TREM2, a master regulator of microglial function, in the context of pathogenic protein aggregates. It is well-established that age is a major risk factor for neurodegeneration. Future research should address how aging and neuronal guidance signaling interact to influence an individual's susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
Collapse
Affiliation(s)
| | | | | | - Satoru Yamagishi
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayasu Mishima
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jane Y Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Choi J, Strickland A, Loo HQ, Dong W, Barbar L, Bloom AJ, Sasaki Y, Jin SC, DiAntonio A, Milbrandt J. Diverse cell types establish a pathogenic immune environment in peripheral neuropathy. J Neuroinflammation 2025; 22:138. [PMID: 40410792 PMCID: PMC12100903 DOI: 10.1186/s12974-025-03459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/01/2025] [Indexed: 05/25/2025] Open
Abstract
Neuroinflammation plays a complex and context-dependent role in many neurodegenerative diseases. We identified a key pathogenic function of macrophages in a mouse model of a rare human congenital neuropathy in which SARM1, the central executioner of axon degeneration, is activated by hypomorphic mutations in the axon survival factor NMNAT2. Macrophage depletion blocked and reversed neuropathic phenotypes in this sarmopathy model, revealing SARM1-dependent neuroimmune mechanisms as key drivers of disease pathogenesis. In this study, we investigated the impact of chronic subacute SARM1 activation on the peripheral nerve milieu using single cell/nucleus RNA-sequencing (sc/snRNA-seq). Our analyses reveal an expansion of immune cells (macrophages and T lymphocytes) and repair Schwann cells, as well as significant transcriptional alterations to a wide range of nerve-resident cell types. Notably, endoneurial fibroblasts show increased expression of chemokines (Ccl9, Cxcl5) and complement components (C3, C4b, C6) in response to chronic SARM1 activation, indicating enhanced immune cell recruitment and immune response regulation by non-immune nerve-resident cells. Analysis of CD45+ immune cells in sciatic nerves revealed an expansion of an Il1b+ macrophage subpopulation with increased expression of markers associated with phagocytosis and T cell activation/proliferation. We also found a significant increase in T cells in sarmopathic nerves. Remarkably, T cell depletion rescued motor phenotypes in the sarmopathy model. These findings delineate the significant changes chronic SARM1 activation induces in peripheral nerves and highlights the potential of immunomodulatory therapies for SARM1-dependent peripheral neurodegenerative disease.
Collapse
Affiliation(s)
- Julie Choi
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hui Qi Loo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wendy Dong
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lilianne Barbar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - A Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO, 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO, 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Wani KA, Pukkila-Worley R. Evolutionarily ancient functions of enzymatic TIR proteins in innate immunity. Trends Immunol 2025:S1471-4906(25)00116-4. [PMID: 40393889 DOI: 10.1016/j.it.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
Proteins with a Toll/interleukin-1 receptor/resistance (TIR) domain are among the most ancient immune regulators and include well-known pattern recognition receptors (PRRs). A specialized subset of TIR domain proteins are enzymes that predominantly use nicotinamide adenine dinucleotide (NAD+) to generate second messenger metabolites. These enzymatic TIR proteins have essential roles in bacteria, plant, and animal immunity. The mechanism of activation of these TIR proteins, conserved across Kingdoms, involves oligomerization into higher-ordered structures, which activates their intrinsic enzymatic activity. Here, we review the functions of enzymatic TIR proteins in innate immunity in bacteria, plants, and animals. This work offers insights into the evolutionary origins of immunity itself and defines fundamental principles of immune surveillance across the Tree of Life.
Collapse
Affiliation(s)
- Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
4
|
Lai SY, Zhu XJ, Sun WD, Bi SZ, Zhang CY, Liu A, Li JH. Nicotinamide N-Methyltransferase (NNMT) and Liver Cancer: From Metabolic Networks to Therapeutic Targets. Biomolecules 2025; 15:719. [PMID: 40427612 PMCID: PMC12109476 DOI: 10.3390/biom15050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, remains a global health challenge with limited therapeutic options and high mortality rates. Despite advances in understanding its molecular pathogenesis, the role of metabolic reprogramming in HCC progression and therapy resistance demands further exploration. Nicotinamide N-methyltransferase (NNMT), a metabolic enzyme central to NAD+ and methionine cycles, has emerged as a critical regulator of tumorigenesis across cancers. However, its tissue-specific mechanisms in HCC-particularly in the context of viral hepatitis and methionine cycle dependency-remain understudied. This review systematically synthesizes current evidence on NNMT's dual role in HCC: (1) driving NAD+ depletion and homocysteine (Hcy) accumulation via metabolic dysregulation, (2) promoting malignant phenotypes (proliferation, invasion, metastasis, and drug resistance), and (3) serving as a prognostic biomarker and therapeutic target. We highlight how NNMT intersects with epigenetic modifications, immune evasion, and metabolic vulnerabilities unique to HCC. Additionally, we critically evaluate NNMT inhibitors, RNA-based therapies, and non-pharmacological strategies (e.g., exercise) as novel interventions. By bridging gaps between NNMT's molecular mechanisms and clinical relevance, this review provides a roadmap for advancing NNMT-targeted therapies and underscores the urgency of addressing challenges in biomarker validation, inhibitor specificity, and translational efficacy. Our work positions NNMT not only as a metabolic linchpin in HCC but also as a promising candidate for precision oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China; (S.-Y.L.); (X.-J.Z.); (W.-D.S.); (S.-Z.B.); (C.-Y.Z.); (A.L.)
| |
Collapse
|
5
|
Oliveira SDS, Honório da Silva JV, Vieira RDS, Moreira LFS, Bandeira PHA, Ramos BL, Silva MAA, Câmara NOS. SARM1: a key multifaceted component in immunoregulation, inflammation and neurodegeneration. Front Immunol 2025; 16:1521364. [PMID: 40433385 PMCID: PMC12106052 DOI: 10.3389/fimmu.2025.1521364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
The downstream signaling pathways of TLR activation involve a family of adaptor proteins, including MYD88, TIRAP, TRIF, TRAM, and SARM1. The first four proteins stimulate inflammatory and antiviral responses, playing crucial roles in innate immunity against various pathogens. In contrast, SARM1 promotes immunity to microorganisms in invertebrate animals independently of TLRs, and negatively regulates inflammatory responses in metazoan organisms. SARM1 inhibits TRIF, reduces the activation of various inflammasomes, and induces mitochondrial damage and cell death to eliminate hyperactivated cells. This regulation is essential to ensure timely control of immune responses and to prevent excessive inflammation. Recently, it was discovered that SARM1 can hydrolyze NAD, a critical component of cellular metabolism. The reduction of NAD levels by SARM1 is linked to the progression of Wallerian degeneration following neuronal injury and may also play a role in the immunoregulation of lymphoid and myeloid cells. Since SARM1 can be pharmacologically modulated, it presents promising opportunities for developing treatments for inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Samuel dos Santos Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School – FMRP of the University of São Paulo – USP, Ribeirão Preto, Brazil
| | | | - Raquel de Souza Vieira
- Department of Immunology, Institute of Biomedical Science – ICB of the University of São Paulo – USP, São Paulo, Brazil
| | - Luís Felipe Serra Moreira
- Department of Immunology, Institute of Biomedical Science – ICB of the University of São Paulo – USP, São Paulo, Brazil
| | | | - Beatriz Leocata Ramos
- Department of Immunology, Institute of Biomedical Science – ICB of the University of São Paulo – USP, São Paulo, Brazil
| | - Marco Antônio Ataíde Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School – FMRP of the University of São Paulo – USP, Ribeirão Preto, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School – FMRP of the University of São Paulo – USP, Ribeirão Preto, Brazil
- Department of Immunology, Institute of Biomedical Science – ICB of the University of São Paulo – USP, São Paulo, Brazil
| |
Collapse
|
6
|
Fu YQ, Zheng Y, Li ZL, Huang XY, Wang XW, Cui MY, Zhang YQ, Gao BR, Zhang C, Fan XX, Jian Y, Chen BH. SARM1 deletion inhibits astrogliosis and BBB damage through Jagged-1/Notch-1/NF-κB signaling to improve neurological function after ischemic stroke. Neurobiol Dis 2025; 208:106873. [PMID: 40089164 DOI: 10.1016/j.nbd.2025.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025] Open
Abstract
Reactive astrogliosis is a critical process in the development of ischemic stroke. However, the precise mechanism by which reactive astrogliosis changes the pathogenesis of ischemic stroke remains elusive. Sterile alpha and TIR motif-containing 1 protein (SARM1) plays a key role in axonal degeneration and is involved in different cell death programs that regulate neuronal survival. The present study investigated the role of SARM1 in regulating reactive astrogliosis and neurological function after stroke in whole-body SARM1 knockout (SARM1-/-) mice. SARM1-/- mice showed significantly smaller infarction, slighter apoptosis, and fewer neurological function deficits 1-7 days after ischemic injury. Immunohistochemistry, western blot, and real-time PCR analyses revealed that compared with the wild-type (WT) mice, SARM1-/- mice exhibited reduced astrocytic proliferation, increased anti-inflammatory astrocytes, decreased glial scar formation in the infarct zone on day 7 after ischemic injury. SARM1 deletion also suppressed cerebral microvascular damage and blood-brain barrier (BBB) injury in ischemic brains. Mechanistically, SARM1 deletion inhibited the stroke-triggered activation of NF-κB signaling and decreased the expression of Jagged-1 and NICD in astrocytes. Overall, these findings provide the first line of evidence for a causative role of SARM1 protein in ischemia-induced reactive astrogliosis and ischemic neurovascular damage.
Collapse
Affiliation(s)
- Yan Qiong Fu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Yu Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Zhuo Li Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Xin Yi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Xiao Wan Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Mai Yin Cui
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, PR China
| | - Yun Qi Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Bing Rui Gao
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang 110000, Liaoning, PR China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Xiao Xiao Fan
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China.
| | - Yong Jian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, PR China.
| | - Bai Hui Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China.
| |
Collapse
|
7
|
Sá-Pessoa J, Calderón-González R, Lee A, Bengoechea JA. Klebsiella pneumoniae emerging anti-immunology paradigms: from stealth to evasion. Trends Microbiol 2025; 33:533-545. [PMID: 39884872 DOI: 10.1016/j.tim.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Klebsiella pneumoniae (KP) is a global threat to human health due to the isolation of multidrug-resistant strains. Despite advancements in understanding KP's population structure, antibiotic resistance mechanisms, and transmission patterns, a gap remains in how KP evades defenses, allowing the pathogen to flourish in tissues despite an activated immune system. KP infection biology has been shaped by the notion that the pathogen has evolved to shield from defenses more than actively suppress them. This review describes new paradigms of how KP exploits the coevolution with the innate immune system to hijack immune effectors and receptors to ablate signaling pathways and to counteract cell-intrinsic immunity, making apparent that KP can no longer be considered only as a stealth pathogen.
Collapse
Affiliation(s)
- Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Ricardo Calderón-González
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Alix Lee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK.
| |
Collapse
|
8
|
Sabonis D, Avraham C, Chang RB, Lu A, Herbst E, Silanskas A, Vilutis D, Leavitt A, Yirmiya E, Toyoda HC, Ruksenaite A, Zaremba M, Osterman I, Amitai G, Kranzusch PJ, Sorek R, Tamulaitiene G. TIR domains produce histidine-ADPR as an immune signal in bacteria. Nature 2025:10.1038/s41586-025-08930-2. [PMID: 40307559 DOI: 10.1038/s41586-025-08930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Toll/interleukin-1 receptor (TIR) domains are central components of pattern recognition immune proteins across all domains of life1,2. In bacteria and plants, TIR-domain proteins recognize pathogen invasion and then produce immune signalling molecules exclusively comprising nucleotide moieties2-5. Here we show that the TIR-domain protein of the type II Thoeris defence system in bacteria produces a unique signalling molecule comprising the amino acid histidine conjugated to ADP-ribose (His-ADPR). His-ADPR is generated in response to phage infection and activates the cognate Thoeris effector by binding a Macro domain located at the C terminus of the effector protein. By determining the crystal structure of a ligand-bound Macro domain, we describe the structural basis for His-ADPR and its recognition and show its role by biochemical and mutational analyses. Our analyses furthermore reveal a family of phage proteins that bind and sequester His-ADPR signalling molecules, enabling phages to evade TIR-mediated immunity. These data demonstrate diversity in bacterial TIR signalling and reveal a new class of TIR-derived immune signalling molecules that combine nucleotide and amino acid moieties.
Collapse
Affiliation(s)
- Dziugas Sabonis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Carmel Avraham
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Renee B Chang
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Allen Lu
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ehud Herbst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Arunas Silanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Deividas Vilutis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Hunter C Toyoda
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Audrone Ruksenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Zaremba
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ilya Osterman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
9
|
Tse-Kang S, Wani KA, Pukkila-Worley R. Patterns of pathogenesis in innate immunity: insights from C. elegans. Nat Rev Immunol 2025:10.1038/s41577-025-01167-0. [PMID: 40247006 DOI: 10.1038/s41577-025-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as Caenorhabditis elegans, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how C. elegans surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using C. elegans as an experimental platform to study host-pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.
Collapse
Affiliation(s)
- Samantha Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Waller TJ, Collins CA, Dus M. Pyruvate kinase deficiency links metabolic perturbations to neurodegeneration and axonal protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647282. [PMID: 40235982 PMCID: PMC11996495 DOI: 10.1101/2025.04.04.647282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neurons rely on tightly regulated metabolic networks to sustain their high-energy demands, particularly through the coupling of glycolysis and oxidative phosphorylation. Here, we investigate the role of pyruvate kinase (PyK), a key glycolytic enzyme, in maintaining axonal and synaptic integrity in the Drosophila melanogaster neuromuscular system. Using genetic deficiencies in PyK, we show that disrupting glycolysis induces progressive synaptic and axonal degeneration and severe locomotor deficits. These effects require the conserved dual leucine zipper kinase (DLK), Jun N-terminal kinase (JNK), and activator protein 1 (AP-1) Fos transcription factor axonal damage signaling pathway and the SARM1 NADase enzyme, a key driver of axonal degeneration. As both DLK and SARM1 regulate degeneration of injured axons (Wallerian degeneration), we probed the effect of PyK loss on this process. Consistent with the idea that metabolic shifts may influence neuronal resilience in context-dependent ways, we find that pyk knockdown delays Wallerian degeneration following nerve injury, suggesting that reducing glycolytic flux can promote axon survival under stress conditions. This protective effect is partially blocked by DLK knockdown and fully abolished by SARM1 overexpression. Together, our findings help bridge metabolism and neurodegenerative signaling by demonstrating that glycolytic perturbations causally activate stress response pathways that dictate the balance between protection and degeneration depending on the system's state. These results provide a mechanistic framework for understanding metabolic contributions to neurodegeneration and highlight the potential of metabolism as a target for therapeutic strategies. Abstract Figure
Collapse
|
11
|
Hakim S, Jain A, Adamson SS, Petrova V, Indajang J, Kim HW, Kawaguchi R, Wang Q, Duran ES, Nelson D, Greene CA, Rasmussen J, Woolf CJ. Macrophages protect against sensory axon loss in peripheral neuropathy. Nature 2025; 640:212-220. [PMID: 39939762 PMCID: PMC11964918 DOI: 10.1038/s41586-024-08535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025]
Abstract
Peripheral neuropathy is a common complication of type 2 diabetes, which is strongly associated with obesity1, causing sensory loss and, in some patients, neuropathic pain2,3. Although the onset and progression of diabetic peripheral neuropathy is linked with dyslipidaemia and hyperglycaemia4, the contribution of inflammation to peripheral neuropathy pathogenesis has not been investigated. Here we used a high-fat, high-fructose diet (HFHFD), which induces obesity and prediabetic metabolic changes, to study the onset of peripheral neuropathy. Mice fed the HFHFD developed persistent heat hypoalgesia after 3 months, but a reduction in epidermal skin nerve fibre density manifested only at 6 months. Using single-cell sequencing, we found that CCR2+ macrophages infiltrate the sciatic nerves of HFHFD-fed mice well before axonal degeneration is detectable. These infiltrating macrophages share gene expression similarities with nerve-crush-induced macrophages5 and express neurodegeneration-associated microglial marker genes6, although there is no axon loss or demyelination. Inhibiting the macrophage recruitment by genetically or pharmacologically blocking CCR2 signalling resulted in more severe heat hypoalgesia and accelerated skin denervation, as did deletion of Lgals3, a gene expressed in recruited macrophages. Recruitment of macrophages into the peripheral nerves of obese prediabetic mice is, therefore, neuroprotective, delaying terminal sensory axon degeneration by means of galectin 3. Potentiating and sustaining early neuroprotective immune responses in patients could slow or prevent peripheral neuropathy.
Collapse
Affiliation(s)
- Sara Hakim
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Stuart S Adamson
- Department of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Veselina Petrova
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan Indajang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Hyoung Woo Kim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Qing Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Elif S Duran
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Drew Nelson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Caitlin A Greene
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jenae Rasmussen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Herbosa CG, Perez R, Jaeger A, Dy CJ, Brogan DM. Inhibition of SARM1 Reduces Neuropathic Pain in a Spared Nerve Injury Rodent Model. Muscle Nerve 2025; 71:670-679. [PMID: 39936361 DOI: 10.1002/mus.28367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION/AIMS The function of the sterile alpha and toll/interleukin receptor motif-containing protein 1 (SARM1) in neuropathic pain development has not yet been established. This protein has a central role in regulating axon degeneration and its depletion delays this process. This study aims to demonstrate the effects of SARM1 deletion on the development of neuropathic pain. METHODS Thirty-two wild-type (WT) or SARM1 knockout (KO) rats underwent spared nerve injury (SNI) or sham surgery. Mechanical allodynia was assessed by electronic Von Frey and cold hyperalgesia by the acetone test. Nociception was evaluated at the baseline, Day-1, Day-2, Week-1, Week-2, Week-3, and Week-4 time points. Nerve sections were examined by immunohistochemistry (IHC). RESULTS WT Injury rats were more sensitive to pain than WT Sham at all postoperative time points, validating the pain model. Injured SARM1 KO rats only demonstrated a difference in mechanical or cold nociception from KO Sham at Week 3. Injured KO rats demonstrated a clear trend of decreased sensitivity compared to WT Injury nociception, reaching significance at Week 4 (p = 0.044). Injured KO rats showed attenuated sensitivity to cold allodynia relative to WT at Week 2 (p = 0.019). IHC revealed decreased macrophages in spared sural nerves of injured KO animals at 2 and 4 weeks, and the proximal portion of tibial/peroneal nerves at Week 2. DISCUSSION This study demonstrates that SARM1 KO rats are less sensitive to mechanical and cold nociception than WT rats in an SNI model with decreased inflammatory response. Given these results, inhibition of SARM1 should be further investigated in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Christopher G Herbosa
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ronald Perez
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexandra Jaeger
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christopher J Dy
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Loyo CL, Grossman AD. A phage-encoded counter-defense inhibits an NAD-degrading anti-phage defense system. PLoS Genet 2025; 21:e1011551. [PMID: 40173202 PMCID: PMC11984713 DOI: 10.1371/journal.pgen.1011551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/10/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
Bacteria contain a diverse array of genes that provide defense against predation by phages. Anti-phage defense genes are frequently located on mobile genetic elements and spread through horizontal gene transfer. Despite the many anti-phage defense systems that have been identified, less is known about how phages overcome the defenses employed by bacteria. The integrative and conjugative element ICEBs1 in Bacillus subtilis contains a gene, spbK, that confers defense against the temperate phage SPβ through an abortive infection mechanism. Using genetic and biochemical analyses, we found that SpbK is an NADase that is activated by binding to the SPβ phage portal protein YonE. The presence of YonE stimulates NADase activity of the TIR domain of SpbK and causes cell death. We also found that the SPβ-like phage Φ3T has a counter-defense gene that prevents SpbK-mediated abortive infection and enables the phage to produce viable progeny, even in cells expressing spbK. We made SPβ-Φ3T hybrid phages that were resistant to SpbK-mediated defense and identified a single gene in Φ3T (phi3T_120, now called nip for NADase inhibitor from phage) that was both necessary and sufficient to block SpbK-mediated anti-phage defense. We found that Nip binds to the TIR (NADase) domain of SpbK and inhibits NADase activity. Our results provide insight into how phages overcome bacterial immunity by inhibiting enzymatic activity of an anti-phage defense protein.
Collapse
Affiliation(s)
- Christian L. Loyo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
14
|
Cai Y, Kanyo J, Wilson R, Bathla S, Cardozo PL, Tong L, Qin S, Fuentes LA, Pinheiro-de-Sousa I, Huynh T, Sun L, Mansuri MS, Tian Z, Gan HR, Braker A, Trinh HK, Huttner A, Lam TT, Petsalaki E, Brennand KJ, Nairn AC, Grutzendler J. Subcellular proteomics and iPSC modeling uncover reversible mechanisms of axonal pathology in Alzheimer's disease. NATURE AGING 2025; 5:504-527. [PMID: 40065072 PMCID: PMC11922768 DOI: 10.1038/s43587-025-00823-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/29/2025] [Indexed: 03/21/2025]
Abstract
Dystrophic neurites (also termed axonal spheroids) are found around amyloid deposits in Alzheimer's disease (AD), where they impair axonal electrical conduction, disrupt neural circuits and correlate with AD severity. Despite their importance, the mechanisms underlying spheroid formation remain incompletely understood. To address this, we developed a proximity labeling approach to uncover the proteome of spheroids in human postmortem and mouse brains. Additionally, we established a human induced pluripotent stem cell (iPSC)-derived AD model enabling mechanistic investigation and optical electrophysiology. These complementary approaches revealed the subcellular molecular architecture of spheroids and identified abnormalities in key biological processes, including protein turnover, cytoskeleton dynamics and lipid transport. Notably, the PI3K/AKT/mTOR pathway, which regulates these processes, was activated in spheroids. Furthermore, phosphorylated mTOR levels in spheroids correlated with AD severity in humans. Notably, mTOR inhibition in iPSC-derived neurons and mice ameliorated spheroid pathology. Altogether, our study provides a multidisciplinary toolkit for investigating mechanisms and therapeutic targets for axonal pathology in neurodegeneration.
Collapse
Affiliation(s)
- Yifei Cai
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Rashaun Wilson
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | - Lei Tong
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Shanshan Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lukas A Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tram Huynh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Liyuan Sun
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mohammad Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Zichen Tian
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Hao-Ran Gan
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Amber Braker
- Yale College, Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Hoang Kim Trinh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Kristen J Brennand
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Huang Y, Zhang J, Zhang W, Chen J, Chen S, Wu Q, Zheng S, Wang X. Stepwise activation of SARM1 for cell death and axon degeneration revealed by a biosynthetic NMN mimic. Proc Natl Acad Sci U S A 2025; 122:e2424906122. [PMID: 39964720 PMCID: PMC11874154 DOI: 10.1073/pnas.2424906122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Axon degeneration, driven by the NAD+ hydrolyzing enzyme SARM1, is an early pathological hallmark of numerous neurodegenerative diseases. SARM1 exists in an inactive form and is activated following nerve injury. However, the precise molecular mechanism underlying SARM1 activation remains to be fully elucidated. In this study, we report the identification of a potent proactivator of SARM1, G10, which is converted into a direct activator (M1) by the enzyme nicotinamide phosphoribosyltransferase. Cryoelectron microscopy structures of SARM1 bound to M1, as well as to M1 and a nonhydrolyzable NAD+ analog (1AD), captured two intermediate activation states and the fully active state, revealing a stepwise mechanism of SARM1 activation. Further, introducing a disulfide bond to prevent conformational transitions between the two intermediate states mediated by M1 stabilized SARM1 in its inactive form and blocked M1-induced cell death. Together, these findings propose a sequential, stepwise activation model for SARM1 and offer a framework for developing potential SARM1 inhibitors for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yinpin Huang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing10094, China
- National Institute of Biological Sciences, Beijing102206, China
| | - Jun Zhang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing10094, China
- National Institute of Biological Sciences, Beijing102206, China
| | - Wenbin Zhang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing10094, China
- National Institute of Biological Sciences, Beijing102206, China
| | - Jie Chen
- National Institute of Biological Sciences, Beijing102206, China
| | - Sijia Chen
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing10094, China
- National Institute of Biological Sciences, Beijing102206, China
| | - Qincui Wu
- National Institute of Biological Sciences, Beijing102206, China
| | - Sanduo Zheng
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing10094, China
- National Institute of Biological Sciences, Beijing102206, China
| | - Xiaodong Wang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing10094, China
- National Institute of Biological Sciences, Beijing102206, China
| |
Collapse
|
16
|
Dabill L, Shen I, Brazill J, Neiner A, Sasaki Y, Scheller EL. Quantification of SARM1 activity in human peripheral blood mononuclear cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638666. [PMID: 40027610 PMCID: PMC11870490 DOI: 10.1101/2025.02.17.638666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
SARM1 (sterile α and TIR motif-containing protein-1) is an NADase enzyme that has been identified as the central executioner of Wallerian axon degeneration. Given this, SARM1 is of high interest as a candidate therapeutic target and SARM1 inhibitors are currently in clinical trials for prevention and treatment of neurodegeneration. Beyond neuroscience, emerging studies reveal that SARM1 activation may also drive aspects of bone fragility, liver pathology, adipose tissue expansion, and insulin resistance in settings of metabolic disease. However, we lack methods to quantify SARM1 activation in humans using clinical isolates to better define patients at high risk of SARM1-mediated tissue damage, informing the future clinical application of SARM1 inhibitors. Unlike neurons, peripheral blood mononuclear cells (PBMCs) represent an easily accessible population of cells for clinical screening. We hypothesized that by pairing activators and inhibitors of SARM1 with analysis of downstream changes in cellular metabolites, we could quantify both the basal SARM1 activity and the SARM1 activation potential of human PBMCs. Our results reveal that SARM1 agonist pyrinuron, also known as Vacor, activates a dose-dependent increase in cAPDR and the cADPR:ADPR ratio that is arrested when paired with SARM1 inhibitor DSRM-3716. Various changes in secondary metabolites were also characterized and reported herein. Overall, these findings demonstrate that human PBMCs have detectable SARM1 activation potential and could be leveraged as a clinical readout of SARM1 expression and activity across diverse disease contexts.
Collapse
Affiliation(s)
- Lila Dabill
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ivana Shen
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer Brazill
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Alicia Neiner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Nasuhidehnavi A, Zarzycka W, Górecki I, Chiao YA, Lee CF. Emerging interactions between mitochondria and NAD + metabolism in cardiometabolic diseases. Trends Endocrinol Metab 2025; 36:176-190. [PMID: 39198117 PMCID: PMC11794032 DOI: 10.1016/j.tem.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for redox reactions and regulates cellular catabolic pathways. An intertwined relationship exists between NAD+ and mitochondria, with consequences for mitochondrial function. Dysregulation in NAD+ homeostasis can lead to impaired energetics and increased oxidative stress, contributing to the pathogenesis of cardiometabolic diseases. In this review, we explore how disruptions in NAD+ homeostasis impact mitochondrial function in various cardiometabolic diseases. We discuss emerging studies demonstrating that enhancing NAD+ synthesis or inhibiting its consumption can ameliorate complications of this family of pathological conditions. Additionally, we highlight the potential role and therapeutic promise of mitochondrial NAD+ transporters in regulating cellular and mitochondrial NAD+ homeostasis.
Collapse
Affiliation(s)
- Azadeh Nasuhidehnavi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13790, USA
| | - Weronika Zarzycka
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ignacy Górecki
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
18
|
Meraner P, Avetisyan A, Swift K, Cheng YC, Barria R, Freeman MR. Hypoxia-inducible factor 1 protects neurons from Sarm1-mediated neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633664. [PMID: 39868134 PMCID: PMC11761811 DOI: 10.1101/2025.01.17.633664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Sarm1 NAD + hydrolase drives neurodegeneration in many contexts, but how Sarm1 activity is regulated remains poorly defined. Using CRISPR/Cas9 screening, we found loss of VHL suppressed Sarm1-mediated cellular degeneration. VHL normally promotes O 2 -dependent constitutive ubiquitination and degradation of hypoxia-inducible factor 1 (HIF-1), but during hypoxia, HIF-1 is stabilized and regulates gene expression. We observed neuroprotection after depletion of VHL or other factors required for HIF-1 degradation, and expression of a non-ubiquitinated HIF-1 variant led to even stronger blockade of axon degeneration in mammals and Drosophila . Neuroprotection required HIF-1 DNA binding, prolonged expression, and resulted in broad gene expression changes. Unexpectedly, stabilized HIF-1 prevented the precipitous NAD + loss driven by Sarm1 activation in neurons, despite NAD + hydrolase activity being intrinsic to the Sarm1 TIR domain. Our work argues hypoxia inhibits Sarm1 activity through HIF-1 driven transcriptional changes, rendering neurons less sensitive to Sarm1-mediated neurodegeneration when in a hypoxic state. Competing interests Marc Freeman is co-founder of Nura Bio, a biotech startup pursuing novel neuroprotective therapies including SARM1 inhibition. The remaining authors declare no competing interests.
Collapse
|
19
|
Brüll M, Multrus S, Schäfer M, Celardo I, Karreman C, Leist M. Programmed neurite degeneration in human central nervous system neurons driven by changes in NAD + metabolism. Cell Death Dis 2025; 16:24. [PMID: 39824831 PMCID: PMC11742042 DOI: 10.1038/s41419-024-07326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025]
Abstract
Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism. Axotomy lead to a loss of the NAD+ synthesis enzyme NMNAT2 within 2 h and a depletion of NAD+ within 4-6 h. This process appeared specific, as isolated neurites maintained ATP levels and a coupled mitochondrial respiration for at least 6 h. In the peripheral nervous system (PNS) many studies observed that NAD+ metabolism, in particular by the NADase SARM1, plays a major role in the ND occurring after axotomy. Since neither ferroptosis nor necroptosis, nor caspase-dependent apoptosis seemed to be involved in neurite loss, we investigated SARM1 as potential executioner (or controller). Knock-down or expression of a dominant-negative isoform of SARM1 indeed drastically delayed ND. Various modifications of NAD+ metabolism known to modulate SARM1 activity showed the corresponding effects on ND. Moreover, supplementation with NAD+ attenuated ND. As a third approach to investigate the role of altered NAD+ metabolism, we made use of the WLD(s) protein, which has been found in a mutant mouse to inhibit Wallerian degeneration of axons. This protein, which has a stable NMNAT activity, and thus can buffer the loss of NMNAT2, protected the neurites by stabilizing neurite NAD+ levels. Thus CNS-type ND was tightly linked to neurite metabolism in multiple experimental setups. Based on this knowledge, several new strategies for treating neurodegenerative diseases can be envisaged.
Collapse
Affiliation(s)
- Markus Brüll
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Selina Multrus
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Michael Schäfer
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Ivana Celardo
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Christiaan Karreman
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.
- CAAT-Europe, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
20
|
Paglione M, Restivo L, Zakhia S, Llobet Rosell A, Terenzio M, Neukomm LJ. Local translatome sustains synaptic function in impaired Wallerian degeneration. EMBO Rep 2025; 26:61-83. [PMID: 39482489 PMCID: PMC11724096 DOI: 10.1038/s44319-024-00301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
After injury, severed axons separated from their somas activate programmed axon degeneration, a conserved pathway to initiate their degeneration within a day. Conversely, severed projections deficient in programmed axon degeneration remain morphologically preserved with functional synapses for weeks to months after axotomy. How this synaptic function is sustained remains currently unknown. Here, we show that dNmnat overexpression attenuates programmed axon degeneration in distinct neuronal populations. Severed projections remain morphologically preserved for weeks. When evoked, they elicit a postsynaptic behavior, a readout for preserved synaptic function. We used ribosomal pulldown to isolate the translatome from these projections 1 week after axotomy. Translatome candidates of enriched biological classes identified by transcriptional profiling are validated in a screen using a novel automated system to detect evoked antennal grooming as a proxy for preserved synaptic function. RNAi-mediated knockdown reveals that transcripts of the mTORC1 pathway, a mediator of protein synthesis, and of candidate genes involved in protein ubiquitination and Ca2+ homeostasis are required for preserved synaptic function. Our translatome dataset also uncovers several uncharacterized Drosophila genes associated with human disease. It may offer insights into novel avenues for therapeutic treatments.
Collapse
Affiliation(s)
- Maria Paglione
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Lemanic Neuroscience Doctoral School (LNDS), Lausanne, Switzerland
| | - Leonardo Restivo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Sarah Zakhia
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Lukas J Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
| |
Collapse
|
21
|
Gibbons L, Doyle S. A Role for SARM1 in Photoreceptor Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:183-187. [PMID: 39930193 DOI: 10.1007/978-3-031-76550-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Photoreceptor cell death is a common feature of many retinal degenerative diseases, leading to incurable vision loss. While there is evidence to support the involvement of cell death pathways such as apoptosis and necroptosis in the degeneration of photoreceptors, the inhibition of these pathways has not been sufficient to rescue photoreceptors and preserve vision in a number of models of disease. Therefore, there is a need to identify other pathways involved in photoreceptor cell death. SARM1 is a TLR adaptor protein with a novel role in the induction of axonal degeneration and neuronal cell death. Our lab and others have demonstrated a role for SARM1 in the induction of photoreceptor cell death in models of retinal degenerative disease. Here, we summarize the current knowledge on SARM1 function and its role in photoreceptor cell death.
Collapse
Affiliation(s)
- Luke Gibbons
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Sarah Doyle
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Gómez-Deza J, Nebiyou M, Alkaslasi MR, Nadal-Nicolás FM, Somasundaram P, Slavutsky AL, Li W, Ward ME, Watkins TA, Le Pichon CE. DLK-dependent axonal mitochondrial fission drives degeneration after axotomy. Nat Commun 2024; 15:10806. [PMID: 39737939 PMCID: PMC11686342 DOI: 10.1038/s41467-024-54982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Currently there are no effective treatments for an array of neurodegenerative disorders to a large part because cell-based models fail to recapitulate disease. Here we develop a reproducible human iPSC-based model where laser axotomy causes retrograde axon degeneration leading to neuronal cell death. Time-lapse confocal imaging revealed that damage triggers an apoptotic wave of mitochondrial fission proceeding from the site of injury to the soma. We demonstrate that this apoptotic wave is locally initiated in the axon by dual leucine zipper kinase (DLK). We find that mitochondrial fission and resultant cell death are entirely dependent on phosphorylation of dynamin related protein 1 (DRP1) downstream of DLK, revealing a mechanism by which DLK can drive apoptosis. Importantly, we show that CRISPR mediated Drp1 depletion protects mouse retinal ganglion neurons from degeneration after optic nerve crush. Our results provide a platform for studying degeneration of human neurons, pinpoint key early events in damage related neural death and provide potential focus for therapeutic intervention.
Collapse
Affiliation(s)
- Jorge Gómez-Deza
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Nebiyou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Anastasia L Slavutsky
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Wei Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Trent A Watkins
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
24
|
Ye Y, Song F. SARM1 in the pathogenesis of immune-related disease. Toxicol Res (Camb) 2024; 13:tfae208. [PMID: 39664502 PMCID: PMC11631086 DOI: 10.1093/toxres/tfae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Background Sterile alpha and toll interleukin receptor motif-containing protein 1 (SARM1) are primarily expressed in the mammalian nervous system, with their presence in neurons being associated with mitochondrial aggregation. SARM1 functions as a mediator of cell death and morphological changes, while also regulating Waller degeneration in nerve fibers and influencing glial cell formation. Purpose Recent reports demonstrate SARM1 serves as a connector in the Toll-like receptor (TLR) pathway and plays a role in regulating inflammation during periods of stress such as infection, trauma, and hypoxia. These findings offer new insights into pathogenesis research and the prevention and treatment of neurodegenerative diseases and pathogen infections. Methods This review synthesizes recent findings on the immune-related mechanisms of SARM1, emphasizing its roles in inflammation and its functional impact on the nervous system and other bodily systems. Conclusions Understanding the multifaceted roles of SARM1 in immune regulation and neuronal health provides novel insights into its involvement in disease pathogenesis. These insights hold promise for advancing research into the prevention and treatment of neurodegenerative diseases and pathogen-induced conditions.
Collapse
Affiliation(s)
- Yihan Ye
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
25
|
Avetisyan A, Barria R, Sheehan A, Freeman MR. An Ionic Sensor acts in Parallel to dSarm to Promote Neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620922. [PMID: 39651259 PMCID: PMC11623519 DOI: 10.1101/2024.10.29.620922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
How neurons to sense when they are terminally dysfunctional and activate neurodegeneration remains poorly defined. The pro-degenerative NAD + hydrolase dSarm/SARM1 can act as a metabolic sensor by detecting pathological changes in NAD + /NMN and subsequently induce catastrophic axon degeneration. Here we show Drosophila with-no-lysine kinase (dWnk), which can directly sense Cl - , K + and osmotic pressure, is required for neurodegeneration induced by depletion of the NAD + biosynthetic enzyme dNmnat. dWnk functions in parallel to dSarm and acts through the downstream kinase Frayed to promote axon degeneration and neuronal cell death. dWnk and dSarm ultimately converge on the BTB-Back domain molecule Axundead (Axed) to execute neurodegeneration. Our work argues that neurons use direct sensors of both metabolism (dSarm/SARM1) and ionic/osmotic status (dWnk) to evaluate cellular health and, when dysfunctional, promote neurodegeneration though a common axon death signaling molecule, Axundead.
Collapse
|
26
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
27
|
Zhang X, Li T, Zhang R, Li J, Wang K, Wu J. Downregulation of SARM1 Protects Retinal Ganglion Cell Axonal and Somal Degeneration Via JNK Activation in a Glaucomatous Model of Ocular Hypertension. Invest Ophthalmol Vis Sci 2024; 65:7. [PMID: 39499508 PMCID: PMC11540032 DOI: 10.1167/iovs.65.13.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose This study aimed to assess the expression of sterile alpha and TIR motif containing protein 1 (SARM1) in both chronic and acute glaucomatous animal models and investigate the underlying SARM1-JNK signaling mechanism responsible for the protective effects of SARM1 downregulation on retinal ganglion cell (RGC) soma and axons in a chronic intraocular hypertension (COH) model. Methods The COH model was induced by injecting magnetic microbeads into the anterior chamber, whereas the acute model was created through ischemia-reperfusion (I/R) injury. Immunohistochemistry and Western blot were used to assess SARM1 expression and JNK phosphorylation in the retina and optic nerve. SARM1 downregulation was achieved through the intravitreal injection of adeno-associated virus (AAV)2-shRNA. Quantitative analysis of RGC survival was performed by the counting of Brn3A-positive RGCs, and surviving axons were assessed through optic nerve toluidine blue stain. Results The expression of SARM1 increased 1 week after microbead injection in the optic nerve, whereas the retinal SARM1 expression decreased at 3 days post-injection in the COH model. After 24 hours of reperfusion, SARM1 expression increased in both the optic nerves and the retinas in the I/R injury model. SARM1 downregulation led to increased survival of RGC soma and axons in the COH model. In this model, JNK phosphorylation was significantly reduced concomitant with decreased SARM1 expression. Conclusions Elevated SARM1 expression was observed in the optic nerves in both the COH and I/R injury models. Downregulation of SARM1 exhibited a protective effect on RGC soma and axons in the COH model, with JNK identified as a downstream regulator of SARM1 in this context.
Collapse
Affiliation(s)
- Xuejin Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Ting Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Rong Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Junfeng Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Kaidi Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
28
|
Pacifico P, Menichella DM. Molecular mechanisms of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:279-309. [PMID: 39580215 DOI: 10.1016/bs.irn.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Peripheral neuropathic pain, which occurs after a lesion or disease affecting the peripheral somatosensory nervous system, is a complex and challenging condition to treat. This chapter will cover molecular mechanisms underlying the pathophysiology of peripheral neuropathic pain, focusing on (1) sensitization of nociceptors, (2) neuro-immune crosstalk, and (3) axonal degeneration and regeneration. The chapter will also emphasize the importance of identifying novel therapeutic targets in non-neuronal cells. A comprehensive understanding of how changes at both neuronal and non-neuronal levels contribute to peripheral neuropathic pain may significantly improve pain management and treatment options, expanding to topical application that bypass the side effects associated with systemic administration.
Collapse
Affiliation(s)
- Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Daniela M Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
29
|
Knoerl R, Mazzola E, Pazyra-Murphy M, Ryback B, Frazier AL, Freeman RL, Hammer M, LaCasce A, Ligibel J, Luskin MR, Berry DL, Segal RA. Exploring clinical markers of Axon degeneration processes in Chemotherapy-induced peripheral neuropathy among young adults receiving vincristine or paclitaxel. BMC Neurol 2024; 24:366. [PMID: 39342135 PMCID: PMC11438373 DOI: 10.1186/s12883-024-03877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Approximately 70% of patients receiving neurotoxic chemotherapy (e.g., paclitaxel or vincristine) will develop chemotherapy-induced peripheral neuropathy. Despite the known negative effects of CIPN on physical functioning and chemotherapy dosing, little is known about how to prevent CIPN. The development of efficacious CIPN prevention interventions is hindered by the lack of knowledge surrounding CIPN mechanisms. Nicotinamide adenine dinucleotide (NAD+) and cyclic-adenosine diphosphate ribose (cADPR) are potential markers of axon degeneration following neurotoxic chemotherapy, however, such markers have been exclusively measured in preclinical models of chemotherapy-induced peripheral neuropathy (CIPN). The overall objective of this longitudinal, observational study was to determine the association between plasma NAD+, cADPR, and ADPR with CIPN severity in young adults receiving vincristine or paclitaxel. METHODS Young adults (18-39 years old) beginning vincristine or paclitaxel were recruited from Dana-Farber Cancer Institute. Young adults completed the QLQ-CIPN20 sensory and motor subscales and provided a blood sample prior to starting chemotherapy (T1) and at increasing cumulative vincristine (T2: 3-5 mg, T3: 7-9 mg) and paclitaxel (T2: 300-500 mg/m2, T3: 700-900 mg/m2) dosages. NAD+, cADPR, and ADPR were quantified from plasma using mass spectrometry. Metabolite levels and QLQ-CIPN20 scores over time were compared using mixed-effects linear regression models and/or paired two-sample tests. RESULTS Participants (N = 50) were mainly female (88%), white (80%), and receiving paclitaxel (78%). Sensory and motor CIPN severity increased from T1-T3 (p < 0.001). NAD+ (p = 0.28), cADPR (p = 0.62), and ADPR (p = 0.005) values decreased, while cADPR/NAD+ ratio increased from T1-T3 (p = 0.50). There were no statistically significant associations between NAD + and QLQ-CIPN20 scores over time. CONCLUSIONS To our knowledge, this is the first study to measure plasma NAD+, cADPR, and ADPR among patients receiving neurotoxic chemotherapy. Although, no meaningful changes in NAD+, cADPR, or cADPR/NAD+ were observed among young adults receiving paclitaxel or vincristine. Future research in an adequately powered sample is needed to explore the clinical utility of biomarkers of axon degeneration among patients receiving neurotoxic chemotherapy to guide mechanistic research and novel CIPN treatments.
Collapse
Affiliation(s)
- Robert Knoerl
- Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, MA, USA.
- University of Michigan School of Nursing, 400 North Ingalls St, Office 2350, Ann Arbor, MI, 48109, USA.
| | - Emanuele Mazzola
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Birgitta Ryback
- Metabolomics Core, Dana-Farber Cancer Institute, Boston, MA, USA
| | - A Lindsay Frazier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roy L Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Marilyn Hammer
- Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ann LaCasce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer Ligibel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marlise R Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Donna L Berry
- Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| | - Rosalind A Segal
- Deparment of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Tse-Kang SY, Pukkila-Worley R. Lysosome-related organelle integrity suppresses TIR-1 aggregation to restrain toxic propagation of p38 innate immunity. Cell Rep 2024; 43:114674. [PMID: 39299237 PMCID: PMC11492801 DOI: 10.1016/j.celrep.2024.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Innate immunity in bacteria, plants, and animals requires the specialized subset of Toll/interleukin-1/resistance gene (TIR) domain proteins that are nicotinamide adenine dinucleotide (NAD+) hydrolases. Aggregation of these TIR proteins engages their enzymatic activity, but it is unknown how this protein multimerization is regulated. Here, we discover that TIR oligomerization is controlled to prevent immune toxicity. We find that p38 propagates its own activation in a positive feedback loop, which promotes the aggregation of the lone enzymatic TIR protein in the nematode C. elegans (TIR-1, homologous to human sterile alpha and TIR motif-containing 1 [SARM1]). We perform a forward genetic screen to determine how the p38 positive feedback loop is regulated. We discover that the integrity of the specific lysosomal subcompartment that expresses TIR-1 is actively maintained to limit inappropriate TIR-1 aggregation on the membranes of these organelles, which restrains toxic propagation of p38 innate immunity. Thus, innate immunity in C. elegans intestinal epithelial cells is regulated by specific control of TIR-1 multimerization.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
31
|
Su M, Qiu F, Li Y, Che T, Li N, Zhang S. Mechanisms of the NAD + salvage pathway in enhancing skeletal muscle function. Front Cell Dev Biol 2024; 12:1464815. [PMID: 39372950 PMCID: PMC11450036 DOI: 10.3389/fcell.2024.1464815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is crucial for cellular energy production, serving as a coenzyme in oxidation-reduction reactions. It also supports enzymes involved in processes such as DNA repair, aging, and immune responses. Lower NAD+ levels have been associated with various diseases, highlighting the importance of replenishing NAD+. Nicotinamide phosphoribosyltransferase (NAMPT) plays a critical role in the NAD+ salvage pathway, which helps sustain NAD+ levels, particularly in high-energy tissues like skeletal muscle.This review explores how the NAMPT-driven NAD+ salvage pathway influences skeletal muscle health and functionality in aging, type 2 diabetes mellitus (T2DM), and skeletal muscle injury. The review offers insights into enhancing the salvage pathway through exercise and NAD+ boosters as strategies to improve muscle performance. The findings suggest significant potential for using this pathway in the diagnosis, monitoring, and treatment of skeletal muscle conditions.
Collapse
Affiliation(s)
- Mengzhu Su
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Physical Education, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, Qingdao, China
| | - Yansong Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Tongtong Che
- School of Physical Education, Qingdao University, Qingdao, China
| | - Ningning Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Physical Education, Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Liu Y, Wang A, Chen C, Zhang Q, Shen Q, Zhang D, Xiao X, Chen S, Lian L, Le Z, Liu S, Liang T, Zheng Q, Xu P, Zou J. Microglial cGAS-STING signaling underlies glaucoma pathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2409493121. [PMID: 39190350 PMCID: PMC11388346 DOI: 10.1073/pnas.2409493121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Characterized by progressive degeneration of retinal ganglion cells (RGCs) and vision loss, glaucoma is the primary cause of irreversible blindness, incurable and affecting over 78 million patients. However, pathogenic mechanisms leading to glaucoma-induced RGC loss are incompletely understood. Unexpectedly, we found that cGAS-STING (2'3'-cyclic GMP-AMP-stimulator of interferon genes) signaling, which surveils displaced double-stranded DNA (dsDNA) in the cytosol and initiates innate immune responses, was robustly activated during glaucoma in retinal microglia in distinct murine models. Global or microglial deletion of STING markedly relieved glaucoma symptoms and protected RGC degeneration and vision loss, while mice bearing genetic cGAS-STING supersensitivity aggravated retinal neuroinflammation and RGC loss. Mechanistically, dsDNA from tissue injury activated microglial cGAS-STING signaling, causing deleterious macroglia reactivity in retinas by cytokine-mediated microglia-macroglia interactions, progressively driving apoptotic death of RGCs. Remarkably, preclinical investigations of targeting cGAS-STING signaling by intraocular injection of TBK1i or anti-IFNAR1 antibody prevented glaucoma-induced losses of RGCs and vision. Therefore, we unravel an essential role of cGAS-STING signaling underlying glaucoma pathogenesis and suggest promising therapeutic strategies for treating this devastating disease.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Ailian Wang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Chen Chen
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Qian Zhang
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Qin Shen
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
| | - Dan Zhang
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
| | - Xueqi Xiao
- Eye Center of the Second Affiliated Hospital School of Medicine, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Hangzhou310029, China
| | - Shasha Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou325035, China
| | - Lili Lian
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Zhenmin Le
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Shengduo Liu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
| | - Qinxiang Zheng
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Pinglong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Jian Zou
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Eye Center of the Second Affiliated Hospital School of Medicine, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Hangzhou310029, China
| |
Collapse
|
33
|
Taylor CA, Maor-Nof M, Metzl-Raz E, Hidalgo A, Yee C, Gitler AD, Shen K. Histone deacetylase inhibition expands cellular proteostasis repertoires to enhance neuronal stress resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608176. [PMID: 39229034 PMCID: PMC11370365 DOI: 10.1101/2024.08.21.608176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Neurons are long-lived, terminally differentiated cells with limited regenerative capacity. Cellular stressors such as endoplasmic reticulum (ER) protein folding stress and membrane trafficking stress accumulate as neurons age and accompany age-dependent neurodegeneration. Current strategies to improve neuronal resilience are focused on using factors to reprogram neurons or targeting specific proteostasis pathways. We discovered a different approach. In an unbiased screen for modifiers of neuronal membrane trafficking defects, we unexpectedly identified a role for histone deacetylases (HDACs) in limiting cellular flexibility in choosing cellular pathways to respond to diverse types of stress. Genetic or pharmacological inactivation of HDACs resulted in improved neuronal health in response to ER protein folding stress and endosomal membrane trafficking stress in C. elegans and mammalian neurons. Surprisingly, HDAC inhibition enabled neurons to activate latent proteostasis pathways tailored to the nature of the individual stress, instead of generalized transcriptional upregulation. These findings shape our understanding of neuronal stress responses and suggest new therapeutic strategies to enhance neuronal resilience.
Collapse
Affiliation(s)
- Caitlin A. Taylor
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
| | - Maya Maor-Nof
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
| | - Eyal Metzl-Raz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron Hidalgo
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, 94158, USA
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
| |
Collapse
|
34
|
Tang Q, Yin H. Pyridine-based small molecule inhibitors of SARM1 alleviate cell death caused by NADase activity. Chem Commun (Camb) 2024; 60:8724-8727. [PMID: 39072360 DOI: 10.1039/d4cc02650k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Our investigation has unveiled a series of pyridine-based SARM1 inhibitors, with the lead compound TH-408 exhibiting remarkable potency, achieving an IC50 value of 0.46 μM. This exceptional inhibitory effect significantly curtailed SARM1-mediated cell death across diverse biological models. This finding highlights the promising therapeutic potential for neurodegenerative disorders by disrupting SARM1 activation and advances our understanding of molecular interventions in these complex disorders, including the regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Qingxuan Tang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing 100084, China
| | - Hang Yin
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Nheu D, Petratos S. How does Nogo-A signalling influence mitochondrial function during multiple sclerosis pathogenesis? Neurosci Biobehav Rev 2024; 163:105767. [PMID: 38885889 DOI: 10.1016/j.neubiorev.2024.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is a severe neurological disorder that involves inflammation in the brain, spinal cord and optic nerve with key disabling neuropathological outcomes being axonal damage and demyelination. When degeneration of the axo-glial union occurs, a consequence of inflammatory damage to central nervous system (CNS) myelin, dystrophy and death can lead to large membranous structures from dead oligodendrocytes and degenerative myelin deposited in the extracellular milieu. For the first time, this review covers mitochondrial mechanisms that may be operative during MS-related neurodegenerative changes directly activated during accumulating extracellular deposits of myelin associated inhibitory factors (MAIFs), that include the potent inhibitor of neurite outgrowth, Nogo-A. Axonal damage may occur when Nogo-A binds to and signals through its cognate receptor, NgR1, a multimeric complex, to initially stall axonal transport and limit the delivery of important growth-dependent cargo and subcellular organelles such as mitochondria for metabolic efficiency at sites of axo-glial disintegration as a consequence of inflammation. Metabolic efficiency in axons fails during active demyelination and progressive neurodegeneration, preceded by stalled transport of functional mitochondria to fuel axo-glial integrity.
Collapse
Affiliation(s)
- Danica Nheu
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia
| | - Steven Petratos
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia.
| |
Collapse
|
36
|
McGuinness HY, Gu W, Shi Y, Kobe B, Ve T. SARM1-Dependent Axon Degeneration: Nucleotide Signaling, Neurodegenerative Disorders, Toxicity, and Therapeutic Opportunities. Neuroscientist 2024; 30:473-492. [PMID: 37002660 PMCID: PMC11282687 DOI: 10.1177/10738584231162508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Axons are an essential component of the nervous system, and axon degeneration is an early feature of many neurodegenerative disorders. The NAD+ metabolome plays an essential role in regulating axonal integrity. Axonal levels of NAD+ and its precursor NMN are controlled in large part by the NAD+ synthesizing survival factor NMNAT2 and the pro-neurodegenerative NADase SARM1, whose activation triggers axon destruction. SARM1 has emerged as a promising axon-specific target for therapeutic intervention, and its function, regulation, structure, and role in neurodegenerative diseases have been extensively characterized in recent years. In this review, we first introduce the key molecular players involved in the SARM1-dependent axon degeneration program. Next, we summarize recent major advances in our understanding of how SARM1 is kept inactive in healthy neurons and how it becomes activated in injured or diseased neurons, which has involved important insights from structural biology. Finally, we discuss the role of SARM1 in neurodegenerative disorders and environmental neurotoxicity and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Helen Y. McGuinness
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| |
Collapse
|
37
|
Petriti B, Rabiolo A, Chau KY, Williams PA, Montesano G, Lascaratos G, Garway-Heath DF. Peripheral blood mononuclear cell respiratory function is associated with progressive glaucomatous vision loss. Nat Med 2024; 30:2362-2370. [PMID: 38886621 PMCID: PMC11333286 DOI: 10.1038/s41591-024-03068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Intraocular pressure (IOP) is currently the only modifiable risk factor for glaucoma and all licensed treatments lower IOP. However, many patients continue to lose vision despite IOP-lowering treatment. Identifying biomarkers for progressive vision loss would have considerable clinical utility. We demonstrate that lower peripheral blood mononuclear cell (PBMC) oxygen consumption rate (OCR) is strongly associated with faster visual field (VF) progression in patients treated by lowering IOP (P < 0.001, 229 eyes of 139 participants), explaining 13% of variance in the rate of progression. In a separate reference cohort of untreated patients with glaucoma (213 eyes of 213 participants), IOP explained 16% of VF progression variance. OCR is lower in patients with glaucoma (n = 168) than in controls (n = 50; P < 0.001) and is lower in patients with low baseline IOP (n = 99) than those with high baseline IOP (n = 69; P < 0.01). PBMC nicotinamide adenine dinucleotide (NAD) levels are lower in patients with glaucoma (n = 29) compared to controls (n = 25; P < 0.001) and strongly associated with OCR (P < 0.001). Our results support PBMC OCR and NAD levels as new biomarkers for progressive glaucoma.
Collapse
Affiliation(s)
- Bledi Petriti
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queens Square Institute of Neurology, London, UK
| | - Alessandro Rabiolo
- Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Kai-Yin Chau
- Department of Clinical and Movement Neurosciences, UCL Queens Square Institute of Neurology, London, UK
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Giovanni Montesano
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | | | - David F Garway-Heath
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
38
|
Vallejo-Schmidt T, Palm C, Obiorah T, Koudjra AR, Schmidt K, Scudder AH, Guzman-Cruz E, Ingram LP, Erickson BC, Akingbehin V, Riddick T, Hamilton S, Riaz T, Alexander Z, Anderson JT, Bader C, Calkins PH, Chaudhry SS, Collins H, Conteh M, Dada TA, David J, Fallah D, De Leon R, Duff R, Eromosele IR, Jones JK, Keshmiri N, Mercanti MA, Onwezi-Nwugwo J, Ojo MA, Pascoe ER, Poteat AM, Price SE, Riedlbauer D, Rolle LTA, Shoemaker P, Stefano A, Sterling MK, Sultana S, Toneygay L, Williams AN, Nallar S, Weldon JE, Snyder GA, Snyder MLD. Characterization of the Structural Requirements for the NADase Activity of Bacterial Toll/IL-1R domains in a Course-based Undergraduate Research Experience. Immunohorizons 2024; 8:563-576. [PMID: 39172026 PMCID: PMC11374754 DOI: 10.4049/immunohorizons.2300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
TLRs initiate innate immune signaling pathways via Toll/IL-1R (TIR) domains on their cytoplasmic tails. Various bacterial species also express TIR domain-containing proteins that contribute to bacterial evasion of the innate immune system. Bacterial TIR domains, along with the mammalian sterile α and TIR motif-containing protein 1 and TIRs from plants, also have been found to exhibit NADase activity. Initial X-ray crystallographic studies of the bacterial TIR from Acinetobacter baumannii provided insight into bacterial TIR structure but were unsuccessful in cocrystallization with the NAD+ ligand, leading to further questions about the TIR NAD binding site. In this study, we designed a Course-Based Undergraduate Research Experience (CURE) involving 16-20 students per year to identify amino acids crucial for NADase activity of A. baumannii TIR domain protein and the TIR from Escherichia coli (TIR domain-containing protein C). Students used structural data to identify amino acids that they hypothesized would play a role in TIR NADase activity, and created plasmids to express mutated TIRs through site-directed mutagenesis. Mutant TIRs were expressed, purified, and tested for NADase activity. The results from these studies provide evidence for a conformational change upon NAD binding, as was predicted by recent cryogenic electron microscopy and hydrogen-deuterium exchange mass spectrometry studies. Along with corroborating recent characterization of TIR NADases that could contribute to drug development for diseases associated with dysregulated TIR activity, this work also highlights the value of CURE-based projects for inclusion of a diverse group of students in authentic research experiences.
Collapse
Affiliation(s)
| | - Cheyenne Palm
- Department of Biological Sciences, Towson University, Towson, MD
| | - Trinity Obiorah
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Katrina Schmidt
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Eber Guzman-Cruz
- Department of Biological Sciences, Towson University, Towson, MD
| | | | | | | | - Terra Riddick
- Department of Biological Sciences, Towson University, Towson, MD
| | - Sarah Hamilton
- Department of Biological Sciences, Towson University, Towson, MD
| | - Tahreem Riaz
- Department of Biological Sciences, Towson University, Towson, MD
| | | | | | - Charlotte Bader
- Department of Biological Sciences, Towson University, Towson, MD
| | | | | | - Haley Collins
- Department of Biological Sciences, Towson University, Towson, MD
| | - Maimunah Conteh
- Department of Biological Sciences, Towson University, Towson, MD
| | - Tope A. Dada
- Department of Biological Sciences, Towson University, Towson, MD
| | - Jaira David
- Department of Biological Sciences, Towson University, Towson, MD
| | - Daniel Fallah
- Department of Biological Sciences, Towson University, Towson, MD
| | - Raquel De Leon
- Department of Biological Sciences, Towson University, Towson, MD
| | - Rachel Duff
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Jaliyl K. Jones
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Mark A. Mercanti
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Michael A. Ojo
- Department of Biological Sciences, Towson University, Towson, MD
| | - Emily R. Pascoe
- Department of Biological Sciences, Towson University, Towson, MD
| | - Ariana M. Poteat
- Department of Biological Sciences, Towson University, Towson, MD
| | - Sarah E. Price
- Department of Biological Sciences, Towson University, Towson, MD
| | | | | | - Payton Shoemaker
- Department of Biological Sciences, Towson University, Towson, MD
| | - Alanna Stefano
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Samina Sultana
- Department of Biological Sciences, Towson University, Towson, MD
| | - Lindsey Toneygay
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Sheeram Nallar
- Division of Vaccine Research, Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - John E. Weldon
- Department of Biological Sciences, Towson University, Towson, MD
| | - Greg A. Snyder
- Division of Vaccine Research, Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | | |
Collapse
|
39
|
Tribble JR, Jöe M, Varricchio C, Otmani A, Canovai A, Habchi B, Daskalakis E, Chaleckis R, Loreto A, Gilley J, Wheelock CE, Jóhannesson G, Wong RCB, Coleman MP, Brancale A, Williams PA. NMNAT2 is a druggable target to drive neuronal NAD production. Nat Commun 2024; 15:6256. [PMID: 39048544 PMCID: PMC11269627 DOI: 10.1038/s41467-024-50354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Maintenance of NAD pools is critical for neuronal survival. The capacity to maintain NAD pools declines in neurodegenerative disease. We identify that low NMNAT2, the critical neuronal NAD producing enzyme, drives retinal susceptibility to neurodegenerative insults. As proof of concept, gene therapy over-expressing full length human NMNAT2 is neuroprotective. To pharmacologically target NMNAT2, we identify that epigallocatechin gallate (EGCG) can drive NAD production in neurons through an NMNAT2 and NMN dependent mechanism. We confirm this by pharmacological and genetic inhibition of the NAD-salvage pathway. EGCG is neuroprotective in rodent (mixed sex) and human models of retinal neurodegeneration. As EGCG has poor drug-like qualities, we use it as a tool compound to generate novel small molecules which drive neuronal NAD production and provide neuroprotection. This class of NMNAT2 targeted small molecules could have an important therapeutic impact for neurodegenerative disease following further drug development.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
| | - Melissa Jöe
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences; Cardiff University, Cardiff, Wales, UK
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
| | - Alessio Canovai
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
- Department of Biology, University of Pisa, 56127, Pisa, Italy
| | - Baninia Habchi
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- C2VN, INRAE, INSERM, Aix Marseille University, 13007, Marseille, France
| | - Evangelia Daskalakis
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Romanas Chaleckis
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences; University of Cambridge, Cambridge, UK
- School of Medical Sciences and Save Sight Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences; University of Cambridge, Cambridge, UK
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Gauti Jóhannesson
- Department of Clinical Sciences, Ophthalmology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre of Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences; University of Cambridge, Cambridge, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences; Cardiff University, Cardiff, Wales, UK
- Vysoká škola chemicko-technologická v Praze, Prague, Czech Republic
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
40
|
Zheng C, Li Y, Wu X, Gao L, Chen X. Advances in the Synthesis and Physiological Metabolic Regulation of Nicotinamide Mononucleotide. Nutrients 2024; 16:2354. [PMID: 39064797 PMCID: PMC11279976 DOI: 10.3390/nu16142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD+), is involved in the regulation of many physiological and metabolic reactions in the body. NMN can indirectly affect cellular metabolic pathways, DNA repair, and senescence, while also being essential for maintaining tissues and dynamic metabolic equilibria, promoting healthy aging. Therefore, NMN has found many applications in the food, pharmaceutical, and cosmetics industries. At present, NMN synthesis strategies mainly include chemical synthesis and biosynthesis. Despite its potential benefits, the commercial production of NMN by organic chemistry approaches faces environmental and safety problems. With the rapid development of synthetic biology, it has become possible to construct microbial cell factories to produce NMN in a cost-effective way. In this review, we summarize the chemical and biosynthetic strategies of NMN, offering an overview of the recent research progress on host selection, chassis cell optimization, mining of key enzymes, metabolic engineering, and adaptive fermentation strategies. In addition, we also review the advances in the role of NMN in aging, metabolic diseases, and neural function. This review provides comprehensive technical guidance for the efficient biosynthesis of NMN as well as a theoretical basis for its application in the fields of food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Chuxiong Zheng
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Yumeng Li
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xin Wu
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Le Gao
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
41
|
Bonneau N, Potey A, Blond F, Guerin C, Baudouin C, Peyrin JM, Brignole-Baudouin F, Réaux-Le Goazigo A. Assessment of corneal nerve regeneration after axotomy in a compartmentalized microfluidic chip model with automated 3D high resolution live-imaging. Front Cell Neurosci 2024; 18:1417653. [PMID: 39076204 PMCID: PMC11285198 DOI: 10.3389/fncel.2024.1417653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Damage to the corneal nerves can result in discomfort and chronic pain, profoundly impacting the quality of life of patients. Development of novel in vitro method is crucial to better understand corneal nerve regeneration and to find new treatments for the patients. Existing in vitro models often overlook the physiology of primary sensory neurons, for which the soma is separated from the nerve endings. Methods To overcome this limitation, our novel model combines a compartmentalized microfluidic culture of trigeminal ganglion neurons from adult mice with live-imaging and automated 3D image analysis offering robust way to assess axonal regrowth after axotomy. Results Physical axotomy performed by a two-second aspiration led to a reproducible 70% axonal loss and altered the phenotype of the neurons, increasing the number of substance P-positive neurons 72 h post-axotomy. To validate our new model, we investigated axonal regeneration after exposure to pharmacological compounds. We selected various targets known to enhance or inhibit axonal regrowth and analyzed their basal expression in trigeminal ganglion cells by scRNAseq. NGF/GDNF, insulin, and Dooku-1 (Piezo1 antagonist) enhanced regrowth by 81, 74 and 157%, respectively, while Yoda-1 (Piezo1 agonist) had no effect. Furthermore, SARM1-IN-2 (Sarm1 inhibitor) inhibited axonal regrowth, leading to only 6% regrowth after 72 h of exposure (versus 34% regrowth without any compound). Discussion Combining compartmentalized trigeminal neuronal culture with advanced imaging and analysis allowed a thorough evaluation of the extent of the axotomy and subsequent axonal regrowth. This innovative approach holds great promise for advancing our understanding of corneal nerve injuries and regeneration and ultimately improving the quality of life for patients suffering from sensory abnormalities, and related conditions.
Collapse
Affiliation(s)
- Noémie Bonneau
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSIGHT, Paris, France
| | - Anaïs Potey
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
| | - Frédéric Blond
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
| | - Camille Guerin
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSIGHT, Paris, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
- Inserm-DGOS CIC 1423, IHU Foresight, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
- Hôpital Ambroise Paré, APHP, Université Versailles-Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - Jean-Michel Peyrin
- UMR8246, Inserm U1130, IBPS, UPMC, Neurosciences Paris Seine, Sorbonne Université, Paris, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
- Inserm-DGOS CIC 1423, IHU Foresight, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
- Faculté de Pharmacie de Paris, Université Paris Cité, Paris, France
| | | |
Collapse
|
42
|
Taub DG, Woolf CJ. Age-dependent small fiber neuropathy: Mechanistic insights from animal models. Exp Neurol 2024; 377:114811. [PMID: 38723859 PMCID: PMC11131160 DOI: 10.1016/j.expneurol.2024.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/07/2024] [Accepted: 05/05/2024] [Indexed: 05/28/2024]
Abstract
Small fiber neuropathy (SFN) is a common and debilitating disease in which the terminals of small diameter sensory axons degenerate, producing sensory loss, and in many patients neuropathic pain. While a substantial number of cases are attributable to diabetes, almost 50% are idiopathic. An underappreciated aspect of the disease is its late onset in most patients. Animal models of human genetic mutations that produce SFN also display age-dependent phenotypes suggesting that aging is an important contributor to the risk of development of the disease. In this review we define how particular sensory neurons are affected in SFN and discuss how aging may drive the disease. We also evaluate how animal models of SFN can define disease mechanisms that will provide insight into early risk detection and suggest novel therapeutic interventions.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Chakraborty J. A comprehensive review of soybean RNL and TIR domain proteins. PLANT MOLECULAR BIOLOGY 2024; 114:78. [PMID: 38922375 DOI: 10.1007/s11103-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
44
|
Dingwall CB, Sasaki Y, Strickland A, Summers DW, Bloom AJ, DiAntonio A, Milbrandt J. Suppressing phagocyte activation by overexpressing the phosphatidylserine lipase ABHD12 preserves sarmopathic nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599919. [PMID: 38979309 PMCID: PMC11230269 DOI: 10.1101/2024.06.20.599919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Programmed axon degeneration (AxD) is a key feature of many neurodegenerative diseases. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of AxD, preventing it from initiating the rapid local NAD+ depletion and metabolic catastrophe that precipitates axon destruction. Because these components of the AxD pathway act within neurons, it was also assumed that the timetable of AxD was set strictly by a cell-intrinsic mechanism independent of neuron-extrinsic processes later activated by axon fragmentation. However, using a rare human disease model of neuropathy caused by hypomorphic NMNAT2 mutations and chronic SARM1 activation (sarmopathy), we demonstrated that neuronal SARM1 can initiate macrophage-mediated axon elimination long before stressed-but-viable axons would otherwise succumb to cell-intrinsic metabolic failure. Investigating potential SARM1-dependent signals that mediate macrophage recognition and/or engulfment of stressed-but-viable axons, we found that chronic SARM1 activation triggers axonal blebbing and dysregulation of phosphatidylserine (PS), a potent phagocyte immunomodulatory molecule. Neuronal expression of the phosphatidylserine lipase ABDH12 suppresses nerve macrophage activation, preserves motor axon integrity, and rescues motor function in this chronic sarmopathy model. We conclude that PS dysregulation is an early SARM1-dependent axonal stress signal, and that blockade of phagocytic recognition and engulfment of stressed-but-viable axons could be an attractive therapeutic target for management of neurological disorders involving SARM1 activation.
Collapse
|
45
|
Cao Y, Shu W, Jin P, Li J, Zhu H, Chen X, Zhu Y, Huang X, Cheng W, Shen Y. NAD metabolism-related genes provide prognostic value and potential therapeutic insights for acute myeloid leukemia. Front Immunol 2024; 15:1417398. [PMID: 38966636 PMCID: PMC11222388 DOI: 10.3389/fimmu.2024.1417398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Acute myeloid leukemia (AML) is an aggressive blood cancer with high heterogeneity and poor prognosis. Although the metabolic reprogramming of nicotinamide adenine dinucleotide (NAD) has been reported to play a pivotal role in the pathogenesis of acute myeloid leukemia (AML), the prognostic value of NAD metabolism and its correlation with the immune microenvironment in AML remains unclear. Methods We utilized our large-scale RNA-seq data on 655 patients with AML and the NAD metabolism-related genes to establish a prognostic NAD metabolism score based on the sparse regression analysis. The signature was validated across three independent datasets including a total of 1,215 AML patients. ssGSEA and ESTIMATE algorithms were employed to dissect the tumor immune microenvironment. Ex vivo drug screening and in vitro experimental validation were performed to identify potential therapeutic approaches for the high-risk patients. In vitro knockdown and functional experiments were employed to investigate the role of SLC25A51, a mitochondrial NAD+ transporter gene implicated in the signature. Results An 8-gene NAD metabolism signature (NADM8) was generated and demonstrated a robust prognostic value in more than 1,800 patients with AML. High NADM8 score could efficiently discriminate AML patients with adverse clinical characteristics and genetic lesions and serve as an independent factor predicting a poor prognosis. Immune microenvironment analysis revealed significant enrichment of distinct tumor-infiltrating immune cells and activation of immune checkpoints in patients with high NADM8 scores, acting as a potential biomarker for immune response evaluation in AML. Furthermore, ex vivo drug screening and in vitro experimental validation in a panel of 9 AML cell lines demonstrated that the patients with high NADM8 scores were more sensitive to the PI3K inhibitor, GDC-0914. Finally, functional experiments also substantiated the critical pathogenic role of the SLC25A51 in AML, which could be a promising therapeutic target. Conclusion Our study demonstrated that NAD metabolism-related signature can facilitate risk stratification and prognosis prediction in AML and guide therapeutic decisions including both immunotherapy and targeted therapies.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Prognosis
- NAD/metabolism
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Biomarkers, Tumor/genetics
- Female
- Male
- Middle Aged
- Gene Expression Regulation, Leukemic
- Gene Expression Profiling
- Transcriptome
- Cell Line, Tumor
Collapse
Affiliation(s)
- Yuncan Cao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Shu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongmei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Huang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenyan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Li JJ, Sun WD, Zhu XJ, Mei YZ, Li WS, Li JH. Nicotinamide N-Methyltransferase (NNMT): A New Hope for Treating Aging and Age-Related Conditions. Metabolites 2024; 14:343. [PMID: 38921477 PMCID: PMC11205546 DOI: 10.3390/metabo14060343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The complex process of aging leads to a gradual deterioration in the function of cells, tissues, and the entire organism, thereby increasing the risk of disease and death. Nicotinamide N-methyltransferase (NNMT) has attracted attention as a potential target for combating aging and its related pathologies. Studies have shown that NNMT activity increases over time, which is closely associated with the onset and progression of age-related diseases. NNMT uses S-adenosylmethionine (SAM) as a methyl donor to facilitate the methylation of nicotinamide (NAM), converting NAM into S-adenosyl-L-homocysteine (SAH) and methylnicotinamide (MNA). This enzymatic action depletes NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and generates SAH, a precursor of homocysteine (Hcy). The reduction in the NAD+ levels and the increase in the Hcy levels are considered important factors in the aging process and age-related diseases. The efficacy of RNA interference (RNAi) therapies and small-molecule inhibitors targeting NNMT demonstrates the potential of NNMT as a therapeutic target. Despite these advances, the exact mechanisms by which NNMT influences aging and age-related diseases remain unclear, and there is a lack of clinical trials involving NNMT inhibitors and RNAi drugs. Therefore, more in-depth research is needed to elucidate the precise functions of NNMT in aging and promote the development of targeted pharmaceutical interventions. This paper aims to explore the specific role of NNMT in aging, and to evaluate its potential as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China; (J.-J.L.); (W.-D.S.); (X.-J.Z.); (Y.-Z.M.); (W.-S.L.)
| |
Collapse
|
47
|
Zhang Y, Yao Y, Yang J, Zhou B, Zhu Y. Inhibiting the SARM1-NAD + axis reduces oxidative stress-induced damage to retinal and nerve cells. Int Immunopharmacol 2024; 134:112193. [PMID: 38723372 DOI: 10.1016/j.intimp.2024.112193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Retinal neurodegenerative diseases are a category of refractory blinding eye conditions closely associated with oxidative stress induced by mitochondrial dysfunction in retinal cells. SARM1, a core driver molecule leading to axonal degeneration, possesses NAD+ enzyme (NADase) activity. However, the role of the SARM1-NAD+ axis in oxidative stress-induced retinal cell death remains unclear. Here, we employed the SARM1 NADase inhibitor DSRM-3716 and established a glucose oxidase (GOx)-induced oxidative stress cell model. We found that compared to the GOx group, the DSRM-3716 pre-treated group reduced the hydrolysis of NAD+, inhibited the elevation of oxidative stress markers induced by GOx, decreased mitochondrial dysfunction, lowered the phosphorylation level of JNK, and attenuated the occurrence of pyroptosis in retinal and nerve cells, thereby providing protection for neurite growth. Further utilization of the JNK activator Anisomycin activated JNK, revealed that the JNK/c-Jun pathway down-regulated NMNAT2 expression. Consequently, it reduced cellular NAD+ synthesis, exacerbated mitochondrial dysfunction and cell pyroptosis, and reversed the protective effect of DSRM-3716 on cells. In summary, the inhibition of SARM1 NADase activity substantially mitigates oxidative damage to retinal cells and mitochondrial damage. Additionally, JNK simultaneously serves as both an upstream and downstream regulator in the SARM1-NAD+ axis, regulating retinal cell pyroptosis and neurite injury. Thus, this study provides new insights into the pathological processes of retinal cell oxidative stress and identifies potential therapeutic targets for retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Yannan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Ophthalmology, National Regional Medical Center, Binghai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yihua Yao
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Ophthalmology, National Regional Medical Center, Binghai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Juhua Yang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Biting Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Ophthalmology, National Regional Medical Center, Binghai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Yihua Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Ophthalmology, National Regional Medical Center, Binghai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
48
|
Hinz FI, Villegas CLM, Roberts JT, Yao H, Gaddam S, Delwig A, Green SA, Fredrickson C, Adrian M, Asuncion RR, Cheung TK, Hayne M, Hackos DH, Rose CM, Richmond D, Hoogenraad CC. Context-Specific Stress Causes Compartmentalized SARM1 Activation and Local Degeneration in Cortical Neurons. J Neurosci 2024; 44:e2424232024. [PMID: 38692735 PMCID: PMC11170950 DOI: 10.1523/jneurosci.2424-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
Sterile alpha and TIR motif containing 1 (SARM1) is an inducible NADase that localizes to mitochondria throughout neurons and senses metabolic changes that occur after injury. Minimal proteomic changes are observed upon either SARM1 depletion or activation, suggesting that SARM1 does not exert broad effects on neuronal protein homeostasis. However, whether SARM1 activation occurs throughout the neuron in response to injury and cell stress remains largely unknown. Using a semiautomated imaging pipeline and a custom-built deep learning scoring algorithm, we studied degeneration in both mixed-sex mouse primary cortical neurons and male human-induced pluripotent stem cell-derived cortical neurons in response to a number of different stressors. We show that SARM1 activation is differentially restricted to specific neuronal compartments depending on the stressor. Cortical neurons undergo SARM1-dependent axon degeneration after mechanical transection, and SARM1 activation is limited to the axonal compartment distal to the injury site. However, global SARM1 activation following vacor treatment causes both cell body and axon degeneration. Context-specific stressors, such as microtubule dysfunction and mitochondrial stress, induce axonal SARM1 activation leading to SARM1-dependent axon degeneration and SARM1-independent cell body death. Our data reveal that compartment-specific SARM1-mediated death signaling is dependent on the type of injury and cellular stressor.
Collapse
Affiliation(s)
- Flora I Hinz
- Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | | | - Jasmine T Roberts
- Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Heming Yao
- Biological Research | AI Development, Genentech, Inc., South San Francisco, California 94080
| | - Shreya Gaddam
- Biological Research | AI Development, Genentech, Inc., South San Francisco, California 94080
| | - Anton Delwig
- Departments of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080
| | - Samantha A Green
- Discovery Chemistry, Genentech, Inc., South San Francisco, California 94080
| | - Craig Fredrickson
- Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Max Adrian
- Pathology, Genentech, Inc., South San Francisco, California 94080
| | - Raymond R Asuncion
- Transgenic Technology, Genentech, Inc., South San Francisco, California 94080
| | - Tommy K Cheung
- Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, California 94080
| | - Margaret Hayne
- Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - David H Hackos
- Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Christopher M Rose
- Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, California 94080
| | - David Richmond
- Biological Research | AI Development, Genentech, Inc., South San Francisco, California 94080
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| |
Collapse
|
49
|
Gómez-Deza J, Nebiyou M, Alkaslasi MR, Nadal-Nicolás FM, Somasundaran P, Slavutsky AL, Ward ME, Li W, Watkins TA, Le Pichon CE. DLK-dependent axonal mitochondrial fission drives degeneration following axotomy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.30.526132. [PMID: 36778383 PMCID: PMC9915495 DOI: 10.1101/2023.01.30.526132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Currently there are no effective treatments for an array of neurodegenerative disorders to a large part because cell-based models fail to recapitulate disease. Here we developed a reproducible human iPSC-based model where laser axotomy causes retrograde axon degeneration leading to neuronal cell death. Time-lapse confocal imaging revealed that damage triggers an apoptotic wave of mitochondrial fission proceeding from the site of injury to the soma. We demonstrated that this apoptotic wave is locally initiated in the axon by dual leucine zipper kinase (DLK). We found that mitochondrial fission and resultant cell death are entirely dependent on phosphorylation of dynamin related protein 1 (DRP1) downstream of DLK, revealing a new mechanism by which DLK can drive apoptosis. Importantly, we show that CRISPR mediated Drp1 depletion protected mouse retinal ganglion neurons from degeneration after optic nerve crush. Our results provide a powerful platform for studying degeneration of human neurons, pinpoint key early events in damage related neural death and new focus for therapeutic intervention.
Collapse
Affiliation(s)
- Jorge Gómez-Deza
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Matthew Nebiyou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | | | | | - Anastasia L Slavutsky
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Wei Li
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Trent A Watkins
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
- Department of Neurology, University of California at San Francisco
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
50
|
Andersh KM, MacLean M, Howell GR, Libby RT. IL1A enhances TNF-induced retinal ganglion cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596328. [PMID: 38854045 PMCID: PMC11160597 DOI: 10.1101/2024.05.28.596328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Glaucoma is a neurodegenerative disease that leads to the death of retinal ganglion cells (RGCs). A growing body of literature suggests a role for neuroinflammation in RGC death after glaucoma-relevant insults. For instance, it was shown that deficiency of three proinflammatory cytokines, complement component 1, subcomponent q ( C1q ), interleukin 1 alpha ( Il1a ), and tumor necrosis factor ( Tnf ), resulted in near complete protection of RGCs after two glaucoma-relevant insults, optic nerve injury and ocular hypertension. While TNF and C1Q have been extensively investigated in glaucoma-relevant model systems, the role of IL1A in RGC is not as well defined. Thus, we investigated the direct neurotoxicity of IL1A on RGCs in vivo. Intravitreal injection of IL1A did not result in RGC death at either 14 days or 12 weeks after insult. Consistent with previous studies, TNF injection did not result in significant RGC loss at 14 days but did after 12 weeks. Interestingly, IL1A+TNF resulted in a relatively rapid RGC death, driving significant RGC loss two weeks after injection. JUN activation and SARM1 have been implicated in RGC death in glaucoma and after cytokine insult. Using mice deficient in JUN or SARM1, we show RGC loss after IL1A+TNF insult is JUN-independent and SARM1-dependent. Furthermore, RNA-seq analysis showed that RGC death by SARM1 deficiency does not stop the neuroinflammatory response to IL1A+TNF. These findings indicate that IL1A can potentiate TNF-induced RGC death after combined insult is likely driven by a SARM1-dependent RGC intrinsic signaling pathway.
Collapse
|