1
|
LeCher JC, Costa VV, Rust LN, Bassit LC, Patel D, Rezaei S, Moua J, Santos FRDS, Goncalves MR, Queroz-Junior CM, Marim FM, Zhou L, Lee S, McBrayer T, De R, Azadi N, Salman M, Zandi K, Amblard F, Burwitz B, Teixeira MM, Schinazi RF. Combating yellow fever virus with 7-deaza-7-fluoro-2'-C-methyladenosine. Antimicrob Agents Chemother 2025; 69:e0188924. [PMID: 40227063 PMCID: PMC12057363 DOI: 10.1128/aac.01889-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Yellow fever virus (YFV) is a deadly zoonotic flavivirus endemic in tropical/sub-tropical Africa and South America transmitted by mosquito vector (Aedes aegypti; Haemagogus leucocelaenus) to humans and non-human primates. There are no approved antiviral agents for YFV. We previously identified 7-deaza-7-fluoro-2'-C-methyladenosine (DFA) with anti-YFV activity. Interestingly, DFA exhibits pan-activity in vitro against flaviviruses, such as dengue, Japanese encephalitis, Zika, and hepatitis C. This study aimed to expand DFA's anti-flavivirus profile. DFA exhibited potent sub-micromolar anti-YFV activity in vitro against both the vaccine strain (YFV-17D) and a viscerotropic clinical YFV isolate (DakH1279) concomitantly with low cellular cytotoxicity and no notable mitochondrial toxicity. In vivo, efficacy was assessed against both YFV-17DD and a human clinical isolate in A129 and AG129 mouse flavivirus infection models, respectively. DFA significantly reduced virus replication in the livers of YFV-infected mice and the hallmarks of YFV-induced liver damage, including alanine transaminase levels and indocyanine green clearance. Collectively, this work identifies DFA as a potent YFV inhibitor and lays the groundwork for further therapeutic development as a YFV and, potentially, pan-flavivirus therapeutic.
Collapse
Affiliation(s)
- Julia C. LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vivian Vasconcelos Costa
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, State of Minas Gerais, Brazil
| | - Lauren N. Rust
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Leda C. Bassit
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Dharmeshkumar Patel
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sahar Rezaei
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Justin Moua
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Felipe Rocha da Silva Santos
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus Rodrigues Goncalves
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, State of Minas Gerais, Brazil
| | - Celso Martins Queroz-Junior
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, State of Minas Gerais, Brazil
| | - Fernanda Martins Marim
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Longhu Zhou
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sujin Lee
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Tamara McBrayer
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Ramyani De
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Niloufar Azadi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mohammad Salman
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Keivan Zandi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Benjamin Burwitz
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Mauro M. Teixeira
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, State of Minas Gerais, Brazil
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Gordon CJ, Walker SM, LeCher JC, Amblard F, Schinazi RF, Götte M. Mechanism of Inhibition of the Active Triphosphate Form of 2'-α-Fluoro,2'-β-bromouridine against Yellow Fever Virus RNA-Dependent RNA Polymerase. ACS Infect Dis 2025. [PMID: 40323779 DOI: 10.1021/acsinfecdis.5c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Yellow fever virus (YFV) is a deadly mosquito-borne flavivirus that infects approximately 200,000 individuals each year. YFV outbreak and infection are persistent throughout South America and Africa, demonstrating significant epidemic potential. Although an approved and effective vaccine exists, the zoonotic nature of YFV undermines any potential eradication efforts, highlighting the need for effective, direct-acting antivirals. Essential for viral replication, RNA-dependent RNA polymerase (RdRp) is a proven therapeutic target. A prominent example includes sofosbuvir, a 2'-α-fluoro,2'-β-methyluridine prodrug approved for the treatment of hepatitis C virus (HCV), that has demonstrated efficacy against YFV in vitro. A structurally similar 2'-α-fluoro, 2'-β-bromouridine prodrug has exhibited potent anti-YFV activity both in vitro and in vivo. Here, we expressed the full-length nonstructural protein 5 from YFV in insect cells to investigate the active triphosphate form of these prodrugs. Enzyme kinetics indicate that both nucleotide analogs are incorporated less efficiently than UTP. Once incorporated, the analogs inhibit RNA synthesis through immediate chain termination. Omitting the 2'-β-modification alleviates the inhibition of RNA synthesis, highlighting its role in eliciting an antiviral effect. S282T is a well-characterized mutation in motif B of HCV RdRp that confers resistance to sofosbuvir. We discovered that the analogous substitution in YFV (S603T) improved discrimination against the 2'-α-fluoro,2'-β-modified uridine analogs. Collectively, our findings explain their observed anti-YFV activity and identify a conserved mechanism of resistance. Based on its in vivo efficacy and mechanism of action, the 2'-fluoro,2'-bromouridine prodrug shows potential for future therapeutic strategies against YFV.
Collapse
Affiliation(s)
- Calvin Joel Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Simon Maximus Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Julia Christine LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Raymond Felix Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
3
|
Jia H, Liu S, Rao G, Liu Q, Wu J, Cao S, Gong P. An evolutionarily unique viral RdRP suggests a common dual-function feature of the priming element. SCIENCE ADVANCES 2025; 11:eadv9640. [PMID: 40249801 PMCID: PMC12007564 DOI: 10.1126/sciadv.adv9640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Many RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses use de novo initiation strategy to start RNA synthesis, and they usually contain a priming element (PE) to interact with template RNA and priming nucleoside triphosphate to facilitate initiation. Upon transition to elongation in dengue virus 2 (DENV2) RdRP, PE refolds and contributes to elongation complex stability by interacting with the upstream RNA duplex. However, whether this PE dual-function feature commonly exists in viral RdRPs remains elusive, as PE is highly diverse among the entire RNA virus group. Here, a more complexed PE refolding is observed in RdRP crystal structures of Aspergillus fumigatus polymycovirus-1 (AfuPmV-1), a polymycovirus evolutionarily connecting positive-strand and double-stranded RNA viruses. Although structural details and enzymology features are very different in transition from initiation to elongation in DENV2 and AfuPmV-1 RdRPs, what is in common is the PE dual-function feature that demonstrates functional conservation beyond sequence and structure.
Collapse
Affiliation(s)
- Hengxia Jia
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunli Liu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibo Rao
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Qiaojie Liu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Jiqin Wu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Sheng Cao
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Peng Gong
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| |
Collapse
|
4
|
Ryan P, Iftikhar R, Hunter L. Origami with small molecules: exploiting the C-F bond as a conformational tool. Beilstein J Org Chem 2025; 21:680-716. [PMID: 40196389 PMCID: PMC11973591 DOI: 10.3762/bjoc.21.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
When present within an organic molecule, the C-F bond tends to align in predictable ways with neighbouring functional groups, due to stereoelectronic effects such as hyperconjugation and electrostatic attraction/repulsion. These fluorine-derived conformational effects have been exploited to control the shapes, and thereby enhance the properties, of a wide variety of functional molecules including pharmaceutical agents, liquid crystals, fragrance chemicals, organocatalysts, and peptides. This comprehensive review summarises developments in this field during the period 2010-2024.
Collapse
Affiliation(s)
- Patrick Ryan
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| | - Ramsha Iftikhar
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
5
|
Shannon A, Canard B. Nucleotide analogues and mpox: Repurposing the repurposable. Antiviral Res 2025; 234:106057. [PMID: 39694420 DOI: 10.1016/j.antiviral.2024.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
While the COVID-19 crisis is still ongoing, a new public health threat has emerged with recent outbreaks of monkeypox (mpox) infections in Africa. Mass vaccination is not currently recommended by the World Health Organization (WHO), and antiviral treatments are yet to be specifically approved for mpox, although existing FDA-approved drugs (Tecovirimat, Brincidofovir, and Cidofovir) may be used in severe cases or for immunocompromised patients. A first-line of defense is thus drug repurposing, which was heavily attempted against SARS-CoV-2 - albeit with limited success. This review focuses on nucleoside analogues as promising antiviral candidates for targeting of the viral DNA-dependent DNA polymerase. In contrast to broad-spectrum screening approaches employed for SARS-CoV-2, we emphasize the importance of understanding the structural specificity of viral polymerases for rational selection of potential candidates. By comparing DNA-dependent DNA polymerases with other viral polymerases, we highlight the unique features that influence the efficacy and selectivity of nucleoside analogues. These structural insights provide a framework for the preselection, repurposing, optimization, and design of nucleoside analogues, aiming to accelerate the development of targeted antiviral therapies for mpox and other viral infections.
Collapse
Affiliation(s)
- Ashleigh Shannon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Bruno Canard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France.
| |
Collapse
|
6
|
Park SK, Guo M, Stamos JL, Kim W, Lee S, Zhang YJ, Lambowitz AM. Structural basis for the evolution of a domesticated group II intron-like reverse transcriptase to function in host cell DNA repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632616. [PMID: 39868158 PMCID: PMC11761039 DOI: 10.1101/2025.01.14.632616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A previous study found that a domesticated bacterial group II intron-like reverse transcriptase (G2L4 RT) functions in double-strand break repair (DSBR) via microhomology-mediated end joining (MMEJ) and that a mobile group II intron-encoded RT has a basal DSBR activity that uses conserved structural features of non-LTR-retroelement RTs. Here, we determined G2L4 RT apoenzyme and snap-back DNA synthesis structures revealing novel structural adaptations that optimized its cellular function in DSBR. These included a unique RT3a structure that stabilizes the apoenzyme in an inactive conformation until encountering an appropriate substrate; a longer N-terminal extension/RT0-loop with conserved residues that together with a modified active site favors strand annealing; and a conserved dimer interface that localizes G2L4 RT homodimers to DSBR sites with both monomers positioned for MMEJ. Our findings reveal how a non-LTR-retroelement RT evolved a dedicated cellular function and suggest new ways of optimizing these RTs for genome engineering applications.
Collapse
Affiliation(s)
| | | | - Jennifer L. Stamos
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Wantae Kim
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sidae Lee
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Y. Jessie Zhang
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Alan M. Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
Tripathi A, Chauhan S, Khasa R. A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection. Viruses 2025; 17:74. [PMID: 39861863 PMCID: PMC11769230 DOI: 10.3390/v17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy. Extensive research has been conducted in developing effective antivirals for flavivirus. Various approaches have been extensively utilized in clinical trials for antiviral development, targeting virus entry, replication, polyprotein synthesis and processing, and egress pathways exploiting virus as well as host proteins. However, to date, no licensed antiviral drug exists to treat the diseases caused by these viruses. Understanding the mechanisms of host-pathogen interaction, host immunity, viral immune evasion, and disease pathogenesis is highly warranted to foster the development of antivirals. This review provides an extensively detailed summary of the most recent advances in the development of antiviral drugs to combat diseases.
Collapse
Affiliation(s)
- Aarti Tripathi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Shailendra Chauhan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Renu Khasa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA
| |
Collapse
|
8
|
Jia X, Jing X, Li M, Gao M, Zhong Y, Li E, Liu Y, Li R, Yao G, Liu Q, Zhou M, Hou Y, An L, Hong Y, Li S, Zhang J, Wang W, Zhang K, Gong P, Chiu S. An adenosine analog shows high antiviral potency against coronavirus and arenavirus mainly through an unusual base pairing mode. Nat Commun 2024; 15:10750. [PMID: 39737930 PMCID: PMC11685483 DOI: 10.1038/s41467-024-54918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses. Importantly, treatment with HNC-1664 demonstrate anti-SARS-CoV-2 efficacy in infected K18-human ACE2 mice, with reduced viral titer and mortality, as well as improved lung injury. Enzymology data demonstrate that HNC-1664 inhibits RNA synthesis mainly at the pre-catalysis stage. The cryo-EM structures of HNC-1664-bound RdRP-RNA complexes from both SARS-CoV-2 and LASV reveal an unusual base pairing mode of HNC-1664 in part due to its base modification, thus revealing its great potency in binding but not catalysis. Under certain circumstances, 1664-TP can be slowly incorporated by RdRP through regular Watson-Crick base pairing, as evidenced by enzymology data and an HNC-1664-incorporated crystal structure of the RdRP-RNA complex. Overall, HNC-1664 achieves broad-spectrum characteristics by favoring an alternative base pairing strategy to non-catalytically block RNA synthesis, providing a novel concept for the rational development of NA drugs.
Collapse
Affiliation(s)
- Xiaoying Jia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Minli Gao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Zhong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Rui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Guoqiang Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiaojie Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Minmin Zhou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxia Hou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linfeng An
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yibao Hong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Wei Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, China.
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China.
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, China.
| |
Collapse
|
9
|
Gladysheva A, Osinkina I, Radchenko N, Alkhireenko D, Agafonov A. Tertiary Structures of Haseki Tick Virus Nonstructural Proteins Are Similar to Those of Orthoflaviviruses. Int J Mol Sci 2024; 25:13654. [PMID: 39769413 PMCID: PMC11678601 DOI: 10.3390/ijms252413654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Currently, a large number of novel tick-borne viruses potentially pathogenic to humans are discovered. Studying many of them by classical methods of virology is difficult due to the absence of live viral particles or a sufficient amount of their genetic material. In this case, the use of modern methods of bioinformatics and synthetic and structural biology can help. Haseki tick virus (HSTV) is a recently discovered tick-borne unclassified ssRNA(+) virus. HSTV-positive patients experienced fever and an elevated temperature. However, at the moment, there is no information on the tertiary structure and functions of its proteins. In this work, we used AlphaFold 3 and other bioinformatic tools for the annotation of HSTV nonstructural proteins, based on the principle that the tertiary structure of a protein is inextricably linked with its molecular function. We were the first to obtain models of tertiary structures and describe the putative functions of HSTV nonstructural proteins (NS3 helicase, NS3 protease, NS5 RNA-dependent RNA-polymerase, and NS5 methyltransferase), which play a key role in viral genome replication. Our results may help in further taxonomic identification of HSTV and the development of direct-acting antiviral drugs, POC tests, and vaccines.
Collapse
Affiliation(s)
- Anastasia Gladysheva
- State Research Center of Virology and Biotechnology “Vector”, 630559 Kol’tsovo, Russia; (I.O.); (N.R.); (D.A.); (A.A.)
| | - Irina Osinkina
- State Research Center of Virology and Biotechnology “Vector”, 630559 Kol’tsovo, Russia; (I.O.); (N.R.); (D.A.); (A.A.)
| | - Nikita Radchenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Kol’tsovo, Russia; (I.O.); (N.R.); (D.A.); (A.A.)
- Natural Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Daria Alkhireenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Kol’tsovo, Russia; (I.O.); (N.R.); (D.A.); (A.A.)
- Natural Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander Agafonov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Kol’tsovo, Russia; (I.O.); (N.R.); (D.A.); (A.A.)
| |
Collapse
|
10
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Mäkinen JJ, Rosenqvist P, Virta P, Metsä-Ketelä M, Belogurov GA. Probing the nucleobase selectivity of RNA polymerases with dual-coding substrates. J Biol Chem 2024; 300:107755. [PMID: 39260691 PMCID: PMC11474200 DOI: 10.1016/j.jbc.2024.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Formycin A (FOR) and pyrazofurin A (PYR) are nucleoside analogs with antiviral and antitumor properties. They are known to interfere with nucleic acid metabolism, but their direct effect on transcription is less understood. We explored how RNA polymerases (RNAPs) from bacteria, mitochondria, and viruses utilize FOR, PYR, and oxidized purine nucleotides. All tested polymerases incorporated FOR in place of adenine and PYR in place of uridine. FOR also exhibited surprising dual-coding behavior, functioning as a cytosine substitute, particularly for viral RNAP. In contrast, 8-oxoadenine and 8-oxoguanine were incorporated in place of uridine in addition to their canonical Watson-Crick codings. Our data suggest that the interconversion of canonical anti and alternative syn conformers underlies dual-coding abilities of FOR and oxidized purines. Structurally distinct RNAPs displayed varying abilities to utilize syn conformers during transcription. By examining base pairings that led to substrate incorporation and the entire spectrum of geometrically compatible pairings, we have gained new insights into the nucleobase selection processes employed by structurally diverse RNAPs. These insights may pave the way for advancements in antiviral therapies.
Collapse
Affiliation(s)
- Janne J Mäkinen
- Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Pasi Virta
- Department of Chemistry, University of Turku, Turku, Finland
| | | | | |
Collapse
|
12
|
Cui W, Duan Y, Gao Y, Wang W, Yang H. Structural review of SARS-CoV-2 antiviral targets. Structure 2024; 32:1301-1321. [PMID: 39241763 DOI: 10.1016/j.str.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
The coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents the most disastrous infectious disease pandemic of the past century. As a member of the Betacoronavirus genus, the SARS-CoV-2 genome encodes a total of 29 proteins. The spike protein, RNA-dependent RNA polymerase, and proteases play crucial roles in the virus replication process and are promising targets for drug development. In recent years, structural studies of these viral proteins and of their complexes with antibodies and inhibitors have provided valuable insights into their functions and laid a solid foundation for drug development. In this review, we summarize the structural features of these proteins and discuss recent progress in research regarding therapeutic development, highlighting mechanistically representative molecules and those that have already been approved or are under clinical investigation.
Collapse
Affiliation(s)
- Wen Cui
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China
| | - Wei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China.
| |
Collapse
|
13
|
Krejčová K, Krafcikova P, Klima M, Chalupska D, Chalupsky K, Zilecka E, Boura E. Structural and functional insights in flavivirus NS5 proteins gained by the structure of Ntaya virus polymerase and methyltransferase. Structure 2024; 32:1099-1109.e3. [PMID: 38781970 DOI: 10.1016/j.str.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Flaviviruses are single-stranded positive-sense RNA (+RNA) viruses that are responsible for several (re)emerging diseases such as yellow, dengue, or West Nile fevers. The Zika epidemic highlighted their dangerousness when a relatively benign virus known since the 1950s turned into a deadly pathogen. The central protein for their replication is NS5 (non-structural protein 5), which is composed of the N-terminal methyltransferase (MTase) domain and the C-terminal RNA-dependent RNA-polymerase (RdRp) domain. It is responsible for both RNA replication and installation of the 5' RNA cap. We structurally and biochemically analyzed the Ntaya virus MTase and RdRp domains and we compared their properties to other flaviviral NS5s. The enzymatic centers are well conserved across Flaviviridae, suggesting that the development of drugs targeting all flaviviruses is feasible. However, the enzymatic activities of the isolated proteins were significantly different for the MTase domains.
Collapse
Affiliation(s)
- Kateřina Krejčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Faculty of Sciences, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Karel Chalupsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eva Zilecka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
14
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Chazot A, Zimberger C, Feracci M, Moussa A, Good S, Sommadossi JP, Alvarez K, Ferron F, Canard B. The activation cascade of the broad-spectrum antiviral bemnifosbuvir characterized at atomic resolution. PLoS Biol 2024; 22:e3002743. [PMID: 39190717 DOI: 10.1371/journal.pbio.3002743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency. Functional and structural data at atomic resolution decipher N6-purine deamination compatible with its metabolic activation. Crystal structures of human histidine triad nucleotide binding protein 1, adenosine deaminase-like protein 1, guanylate kinase 1, and nucleoside diphosphate kinase at 2.09, 2.44, 1.76, and 1.9 Å resolution, respectively, with cognate precursors of AT-9010 illuminate the activation pathway from the orally available bemnifosbuvir to AT-9010, pointing to key drug-protein contacts along the activation pathway. Our work provides a framework to integrate the design of antiviral nucleotide analogues, confronting requirements and constraints associated with activation enzymes along the 5'-triphosphate assembly line.
Collapse
Affiliation(s)
- Aurélie Chazot
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Claire Zimberger
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Mikael Feracci
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Adel Moussa
- ATEA Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | - Steven Good
- ATEA Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | | | - Karine Alvarez
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
- European Virus Bioinformatics Center, Jena, Germany
| | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
- European Virus Bioinformatics Center, Jena, Germany
| |
Collapse
|
16
|
Deng H, Cao H, Wang Y, Li J, Dai J, Li LF, Qiu HJ, Li S. Viral replication organelles: the highly complex and programmed replication machinery. Front Microbiol 2024; 15:1450060. [PMID: 39144209 PMCID: PMC11322364 DOI: 10.3389/fmicb.2024.1450060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Viral infections usually induce the rearrangement of cellular cytoskeletal proteins and organelle membrane structures, thus creating independent compartments [termed replication organelles (ROs)] to facilitate viral genome replication. Within the ROs, viral replicases, including polymerases, helicases, and ligases, play functional roles during viral replication. These viral replicases are pivotal in the virus life cycle, and numerous studies have demonstrated that the viral replicases could be the potential targets for drugs development. Here, we summarize primarily the key replicases within viral ROs and emphasize the advancements of antiviral drugs targeting crucial viral replicases, providing novel insights into the future development of antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
17
|
Palazzotti D, Sguilla M, Manfroni G, Cecchetti V, Astolfi A, Barreca ML. Small Molecule Drugs Targeting Viral Polymerases. Pharmaceuticals (Basel) 2024; 17:661. [PMID: 38794231 PMCID: PMC11124969 DOI: 10.3390/ph17050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Small molecules that specifically target viral polymerases-crucial enzymes governing viral genome transcription and replication-play a pivotal role in combating viral infections. Presently, approved polymerase inhibitors cover nine human viruses, spanning both DNA and RNA viruses. This review provides a comprehensive analysis of these licensed drugs, encompassing nucleoside/nucleotide inhibitors (NIs), non-nucleoside inhibitors (NNIs), and mutagenic agents. For each compound, we describe the specific targeted virus and related polymerase enzyme, the mechanism of action, and the relevant bioactivity data. This wealth of information serves as a valuable resource for researchers actively engaged in antiviral drug discovery efforts, offering a complete overview of established strategies as well as insights for shaping the development of next-generation antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (D.P.); (M.S.); (G.M.); (V.C.); (A.A.)
| |
Collapse
|
18
|
Kothapalli Y, Jones RA, Chu CK, Singh US. Synthesis of Fluorinated Nucleosides/Nucleotides and Their Antiviral Properties. Molecules 2024; 29:2390. [PMID: 38792251 PMCID: PMC11124531 DOI: 10.3390/molecules29102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The FDA has approved several drugs based on the fluorinated nucleoside pharmacophore, and numerous drugs are currently in clinical trials. Fluorine-containing nucleos(t)ides offer significant antiviral and anticancer activity. The insertion of a fluorine atom, either in the base or sugar of nucleos(t)ides, alters its electronic and steric parameters and transforms the lipophilicity, pharmacodynamic, and pharmacokinetic properties of these moieties. The fluorine atom restricts the oxidative metabolism of drugs and provides enzymatic metabolic stability towards the glycosidic bond of the nucleos(t)ide. The incorporation of fluorine also demonstrates additional hydrogen bonding interactions in receptors with enhanced biological profiles. The present article discusses the synthetic methodology and antiviral activities of FDA-approved drugs and ongoing fluoro-containing nucleos(t)ide drug candidates in clinical trials.
Collapse
Affiliation(s)
| | | | - Chung K. Chu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA; (Y.K.); (R.A.J.)
| | - Uma S. Singh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA; (Y.K.); (R.A.J.)
| |
Collapse
|
19
|
Mesaros EF, Dugan BJ, Gao M, Sheraz M, McGovern-Gooch K, Xu F, Fan KY, Nguyen D, Kultgen SG, Lindstrom A, Stever K, Tercero B, Binder RJ, Liu F, Micolochick Steuer HM, Mani N, Harasym TO, Thi EP, Cuconati A, Dorsey BD, Cole AG, Lam AM, Sofia MJ. Discovery of C-Linked Nucleoside Analogues with Antiviral Activity against SARS-CoV-2. ACS Infect Dis 2024; 10:1780-1792. [PMID: 38651692 DOI: 10.1021/acsinfecdis.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.
Collapse
Affiliation(s)
- Eugen F Mesaros
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Benjamin J Dugan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Min Gao
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Muhammad Sheraz
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Fran Xu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kristi Yi Fan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Duyan Nguyen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Steven G Kultgen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Aaron Lindstrom
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kim Stever
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Breanna Tercero
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Randall J Binder
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Fei Liu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Nagraj Mani
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Troy O Harasym
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Emily P Thi
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrea Cuconati
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Bruce D Dorsey
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrew G Cole
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Angela M Lam
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Michael J Sofia
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| |
Collapse
|
20
|
Wang J, Zeng H, Dong G, Waddell S, McCauley J, Lagrutta A. Structure-Activity Relationship and Voltage Dependence for the Drug-Drug Interaction between Amiodarone Analogs and MNI-1 at the L-type Cav Channel. J Pharmacol Exp Ther 2024; 389:229-242. [PMID: 38453526 DOI: 10.1124/jpet.123.001858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
The drug-drug interaction (DDI) between amiodarone (AMIO) and sofosbuvir (SOF), a direct-acting hepatitis-C NS5B nucleotide polymerase inhibitor, has been associated with severe bradyarrhythmia in patients. Recent cryo-EM data has revealed that this DDI occurs at the α-subunit of L-type Cav channels, with AMIO binding at the fenestration site and SOF [or MSD nucleotide inhibitor #1 (MNI-1): analog of SOF] binding at the central cavity of the conductance pathway. In this study, we investigated the DDI between 21 AMIO analogs, including dronedarone (DRON) and MNI-1 (or SOF) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hCav1.2 models. Our findings indicate that among the tested AMIO analogs in hiPSC-CMs at clinically relevant concentrations, only three analogs (AA-9, AA-10, and AA-17) were able to effectively substitute for AMIO in this DDI with 1 µM MNI-1. This highlights the importance of the diethyl amino group of AMIO for interacting with MNI-1. In the hCav1.2 model, desethylamiodarone (AA-12) demonstrated synergy with 90 µM MNI-1, while three other analogs with modifications to the position of the diethyl amino group or removal of iodo groups showed weaker synergy with 90 µM MNI-1. Interestingly, DRON did not exhibit any interaction with 270 µM SOF or 90 µM MNI-1, suggesting that it could safely replace AMIO in patients requiring SOF treatment, other clinically relevant differences considered. Overall, our functional data align with the cryo-EM data, highlighting that this DDI is dependent on the structure of AMIO and cardiomyocyte resting membrane potential. SIGNIFICANCE STATEMENT: Our findings point to specific residues in the AMIO molecule playing a critical role in the DDI between AMIO and MNI-1 (SOF analog), confirming cryo-EM results. Applied at clinically relevant AMIO's concentrations or projected MNI-1's concentrations at the resting potentials mimicking the sinoatrial node, this DDI significantly slowed down or completely inhibited the beating of hiPSC-CMs. Finally, these in vitro results support the safe replacement of AMIO (Cordarone) with DRON (Multaq) for patients requiring SOF treatment, other clinical caveats considered.
Collapse
Affiliation(s)
- Jixin Wang
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| | - Haoyu Zeng
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| | - Grace Dong
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| | - Sherman Waddell
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| | - John McCauley
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| | - Armando Lagrutta
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| |
Collapse
|
21
|
Wang X, Jing X, Shi J, Liu Q, Shen S, Cheung PPH, Wu J, Deng F, Gong P. A jingmenvirus RNA-dependent RNA polymerase structurally resembles the flavivirus counterpart but with different features at the initiation phase. Nucleic Acids Res 2024; 52:3278-3290. [PMID: 38296832 PMCID: PMC11014250 DOI: 10.1093/nar/gkae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Jingmenviruses are a category of emerging segmented viruses that have garnered global attention in recent years, and are close relatives of the flaviviruses in the Flaviviridae family. One of their genome segments encodes NSP1 homologous to flavivirus NS5. NSP1 comprises both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRP) modules playing essential roles in viral genome replication and capping. Here we solved a 1.8-Å resolution crystal structure of the NSP1 RdRP module from Jingmen tick virus (JMTV), the type species of jingmenviruses. The structure highly resembles flavivirus NS5 RdRP despite a sequence identity less than 30%. NSP1 RdRP enzymatic properties were dissected in a comparative setting with several representative Flaviviridae RdRPs included. Our data indicate that JMTV NSP1 produces characteristic 3-mer abortive products similar to the hepatitis C virus RdRP, and exhibits the highest preference of terminal initiation and shorter-primer usage. Unlike flavivirus NS5, JMTV RdRP may require the MTase for optimal transition from initiation to elongation, as an MTase-less NSP1 construct produced more 4-5-mer intermediate products than the full-length protein. Taken together, this work consolidates the evolutionary relationship between the jingmenvirus group and the Flaviviridae family, providing a basis to the further understanding of their viral replication/transcription process.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Junming Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Qiaojie Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Peter Pak-Hang Cheung
- Department of Chemical Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| |
Collapse
|
22
|
Shurtleff VW, Layton ME, Parish CA, Perkins JJ, Schreier JD, Wang Y, Adam GC, Alvarez N, Bahmanjah S, Bahnck-Teets CM, Boyce CW, Burlein C, Cabalu TD, Campbell BT, Carroll SS, Chang W, de Lera Ruiz M, Dolgov E, Fay JF, Fox NG, Goh SL, Hartingh TJ, Hurzy DM, Kelly MJ, Klein DJ, Klingler FM, Krishnamurthy H, Kudalkar S, Mayhood TW, McKenna PM, Murray EM, Nahas D, Nawrat CC, Park S, Qian D, Roecker AJ, Sharma V, Shipe WD, Su J, Taggart RV, Truong Q, Wu Y, Zhou X, Zhuang N, Perlin DS, Olsen DB, Howe JA, McCauley JA. Invention of MK-7845, a SARS-CoV-2 3CL Protease Inhibitor Employing a Novel Difluorinated Glutamine Mimic. J Med Chem 2024; 67:3935-3958. [PMID: 38365209 DOI: 10.1021/acs.jmedchem.3c02248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
As SARS-CoV-2 continues to circulate, antiviral treatments are needed to complement vaccines. The virus's main protease, 3CLPro, is an attractive drug target in part because it recognizes a unique cleavage site, which features a glutamine residue at the P1 position and is not utilized by human proteases. Herein, we report the invention of MK-7845, a novel reversible covalent 3CLPro inhibitor. While most covalent inhibitors of SARS-CoV-2 3CLPro reported to date contain an amide as a Gln mimic at P1, MK-7845 bears a difluorobutyl substituent at this position. SAR analysis and X-ray crystallographic studies indicate that this group interacts with His163, the same residue that forms a hydrogen bond with the amide substituents typically found at P1. In addition to promising in vivo efficacy and an acceptable projected human dose with unboosted pharmacokinetics, MK-7845 exhibits favorable properties for both solubility and absorption that may be attributable to the unusual difluorobutyl substituent.
Collapse
Affiliation(s)
| | - Mark E Layton
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Craig A Parish
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - James J Perkins
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - John D Schreier
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yunyi Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Gregory C Adam
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Nadine Alvarez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | | | | | | | | | - Tamara D Cabalu
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Brian T Campbell
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Steven S Carroll
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Wonsuk Chang
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Enriko Dolgov
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - John F Fay
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Nicholas G Fox
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Shih Lin Goh
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Danielle M Hurzy
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Michael J Kelly
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Daniel J Klein
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | | | - Shalley Kudalkar
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Todd W Mayhood
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Philip M McKenna
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Edward M Murray
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Debbie Nahas
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Steven Park
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | | | | | - Vijeta Sharma
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - William D Shipe
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jing Su
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Robert V Taggart
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Quang Truong
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yin Wu
- Viva Biotech Ltd., Shanghai 201318, China
| | - Xiaoyan Zhou
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - David B Olsen
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - John A Howe
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - John A McCauley
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
23
|
Kurosawa M, Kato F, Hishiki T, Ito S, Fujisawa H, Yamaguchi T, Moriguchi M, Hosokawa K, Watanabe T, Saito-Tarashima N, Minakawa N, Fujimuro M. Sofosbuvir Suppresses the Genome Replication of DENV1 in Human Hepatic Huh7 Cells. Int J Mol Sci 2024; 25:2022. [PMID: 38396699 PMCID: PMC10889370 DOI: 10.3390/ijms25042022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Dengue virus (DENV) causes dengue fever and dengue hemorrhagic fever, and DENV infection kills 20,000 people annually worldwide. Therefore, the development of anti-DENV drugs is urgently needed. Sofosbuvir (SOF) is an effective drug for HCV-related diseases, and its triphosphorylated metabolite inhibits viral RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of HCV. (2'R)-2'-Deoxy-2'-fluoro-2'-methyluridine (FMeU) is the dephosphorylated metabolite produced from SOF. The effects of SOF and FMeU on DENV1 replication were analyzed using two DENV1 replicon-based methods that we previously established. First, a replicon-harboring cell assay showed that DENV1 replicon replication in human hepatic Huh7 cells was decreased by SOF but not by FMeU. Second, a transient replicon assay showed that DENV1 replicon replication in Huh7 cells was decreased by SOF; however, in hamster kidney BHK-21 cells, it was not suppressed by SOF. Additionally, the replicon replication in Huh7 and BHK-21 cells was not affected by FMeU. Moreover, we assessed the effects of SOF on infectious DENV1 production. SOF suppressed infectious DENV1 production in Huh7 cells but not in monkey kidney Vero cells. To examine the substrate recognition of the HCV and DENV1 RdRps, the complex conformation of SOF-containing DENV1 RdRp or HCV RdRp was predicted using AlphaFold 2. These results indicate that SOF may be used as a treatment for DENV1 infection.
Collapse
Affiliation(s)
- Madoka Kurosawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (M.K.); (S.I.); (H.F.); (T.Y.); (M.M.); (K.H.)
| | - Fumihiro Kato
- Department of Virology III, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Takayuki Hishiki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Saori Ito
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (M.K.); (S.I.); (H.F.); (T.Y.); (M.M.); (K.H.)
| | - Hiroki Fujisawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (M.K.); (S.I.); (H.F.); (T.Y.); (M.M.); (K.H.)
| | - Tatsuo Yamaguchi
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (M.K.); (S.I.); (H.F.); (T.Y.); (M.M.); (K.H.)
| | - Misato Moriguchi
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (M.K.); (S.I.); (H.F.); (T.Y.); (M.M.); (K.H.)
| | - Kohei Hosokawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (M.K.); (S.I.); (H.F.); (T.Y.); (M.M.); (K.H.)
| | - Tadashi Watanabe
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan;
| | - Noriko Saito-Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University, Tokushima 770-8505, Japan; (N.S.-T.); (N.M.)
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Tokushima 770-8505, Japan; (N.S.-T.); (N.M.)
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (M.K.); (S.I.); (H.F.); (T.Y.); (M.M.); (K.H.)
| |
Collapse
|
24
|
Romero ME, McElhenney SJ, Yu J. Trapping a non-cognate nucleotide upon initial binding for replication fidelity control in SARS-CoV-2 RNA dependent RNA polymerase. Phys Chem Chem Phys 2024; 26:1792-1808. [PMID: 38168789 DOI: 10.1039/d3cp04410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The RNA dependent RNA polymerase (RdRp) in SARS-CoV-2 is a highly conserved enzyme responsible for viral genome replication/transcription. To understand how the viral RdRp achieves fidelity control during such processes, here we computationally investigate the natural non-cognate vs. cognate nucleotide addition and selectivity during viral RdRp elongation. We focus on the nucleotide substrate initial binding (RdRp active site open) to the prechemical insertion (active site closed) of the RdRp. The current studies were first carried out using microsecond ensemble equilibrium all-atom molecular dynamics (MD) simulations. Due to the slow conformational changes (from open to closed) during nucleotide insertion and selection, enhanced or umbrella sampling methods have been further employed to calculate the free energy profiles of the nucleotide insertion. Our studies find notable stability of noncognate dATP and GTP upon initial binding in the active-site open state. The results indicate that while natural cognate ATP and Remdesivir drug analogue (RDV-TP) are biased toward stabilization in the closed state to facilitate insertion, the natural non-cognate dATP and GTP can be well trapped in off-path initial binding configurations and prevented from insertion so that to be further rejected. The current work thus presents the intrinsic nucleotide selectivity of SARS-CoV-2 RdRp for natural substrate fidelity control, which should be considered in antiviral drug design.
Collapse
Affiliation(s)
- Moises E Romero
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | | | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simmons Center for Multi-scale Cell Fate Research, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
25
|
Gömer A, Klöhn M, Jagst M, Nocke MK, Pischke S, Horvatits T, Schulze zur Wiesch J, Müller T, Hardtke S, Cornberg M, Wedemeyer H, Behrendt P, Steinmann E, Todt D. Emergence of resistance-associated variants during sofosbuvir treatment in chronically infected hepatitis E patients. Hepatology 2023; 78:1882-1895. [PMID: 37334496 PMCID: PMC10653298 DOI: 10.1097/hep.0000000000000514] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND AND AIMS Chronic HEV infections remain a serious problem in immunocompromised patients, as specifically approved antiviral drugs are unavailable. In 2020, a 24-week multicenter phase II pilot trial was carried out, evaluating the nucleotide analog sofosbuvir by treating nine chronically HEV-infected patients with sofosbuvir (Trial Number NCT03282474). During the study, antiviral therapy reduced virus RNA levels initially but did not lead to a sustained virologic response. Here, we characterize the changes in HEV intrahost populations during sofosbuvir treatment to identify the emergence of treatment-associated variants. APPROACH AND RESULTS We performed high-throughput sequencing on RNA-dependent RNA polymerase sequences to characterize viral population dynamics in study participants. Subsequently, we used an HEV-based reporter replicon system to investigate sofosbuvir sensitivity in high-frequency variants. Most patients had heterogenous HEV populations, suggesting high adaptability to treatment-related selection pressures. We identified numerous amino acid alterations emerging during treatment and found that the EC 50 of patient-derived replicon constructs was up to ~12-fold higher than the wild-type control, suggesting that variants associated with lower drug sensitivity were selected during sofosbuvir treatment. In particular, a single amino acid substitution (A1343V) in the finger domain of ORF1 could reduce susceptibility to sofosbuvir significantly in 8 of 9 patients. CONCLUSIONS In conclusion, viral population dynamics played a critical role during antiviral treatment. High population diversity during sofosbuvir treatment led to the selection of variants (especially A1343V) with lower sensitivity to the drug, uncovering a novel mechanism of resistance-associated variants during sofosbuvir treatment.
Collapse
Affiliation(s)
- André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Michelle Jagst
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maximilian K. Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Sven Pischke
- Medical Clinic and Polyclinic, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck-Borstel-Riems, Germany
| | - Thomas Horvatits
- Medical Clinic and Polyclinic, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck-Borstel-Riems, Germany
- Gastromedics Health Center, Eisenstadt, Austria
| | - Julian Schulze zur Wiesch
- Medical Clinic and Polyclinic, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck-Borstel-Riems, Germany
| | - Tobias Müller
- Department of Gastroenterology and Hepatology, Charité Campus Virchow-Klinikum (CVK), Berlin, Germany
| | - Svenja Hardtke
- German Center for Infection Research (DZIF); HepNet Study-House/German Liver Foundation (DLS), Hannover, Germany
- Institute for Infections Research and Vaccine, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | - Markus Cornberg
- German Center for Infection Research (DZIF); HepNet Study-House/German Liver Foundation (DLS), Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Germany
- German Center for Infection Research (DZIF); Partner Site Hannover Braunschweig, Germany
- Center for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Heiner Wedemeyer
- German Center for Infection Research (DZIF); HepNet Study-House/German Liver Foundation (DLS), Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Germany
- German Center for Infection Research (DZIF); Partner Site Hannover Braunschweig, Germany
| | - Patrick Behrendt
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Germany
- German Center for Infection Research (DZIF); Partner Site Hannover Braunschweig, Germany
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- German Centre for Infection Research (DZIF), Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
26
|
Abstract
The nonsegmented, negative-strand RNA viruses (nsNSVs), also known as the order Mononegavirales, have a genome consisting of a single strand of negative-sense RNA. Integral to the nsNSV replication cycle is the viral polymerase, which is responsible for transcribing the viral genome, to produce an array of capped and polyadenylated messenger RNAs, and replicating it to produce new genomes. To perform the different steps that are necessary for these processes, the nsNSV polymerases undergo a series of coordinated conformational transitions. While much is still to be learned regarding the intersection of nsNSV polymerase dynamics, structure, and function, recently published polymerase structures, combined with a history of biochemical and molecular biology studies, have provided new insights into how nsNSV polymerases function as dynamic machines. In this review, we consider each of the steps involved in nsNSV transcription and replication and suggest how these relate to solved polymerase structures.
Collapse
Affiliation(s)
- Mohamed Ouizougun-Oubari
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA;
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA;
| |
Collapse
|
27
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
28
|
Kamzeeva PN, Aralov AV, Alferova VA, Korshun VA. Recent Advances in Molecular Mechanisms of Nucleoside Antivirals. Curr Issues Mol Biol 2023; 45:6851-6879. [PMID: 37623252 PMCID: PMC10453654 DOI: 10.3390/cimb45080433] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The search for new drugs has been greatly accelerated by the emergence of new viruses and drug-resistant strains of known pathogens. Nucleoside analogues (NAs) are a prospective class of antivirals due to known safety profiles, which are important for rapid repurposing in the fight against emerging pathogens. Recent improvements in research methods have revealed new unexpected details in the mechanisms of action of NAs that can pave the way for new approaches for the further development of effective drugs. This review accounts advanced techniques in viral polymerase targeting, new viral and host enzyme targeting approaches, and prodrug-based strategies for the development of antiviral NAs.
Collapse
Affiliation(s)
| | | | | | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (P.N.K.); (A.V.A.); (V.A.A.)
| |
Collapse
|
29
|
Gidi Y, Robert A, Tordo A, Lovell TC, Ramos-Sanchez J, Sakaya A, Götte M, Cosa G. Binding and Sliding Dynamics of the Hepatitis C Virus Polymerase: Hunting the 3' Terminus. ACS Infect Dis 2023; 9:1488-1498. [PMID: 37436367 DOI: 10.1021/acsinfecdis.3c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The hepatitis C virus (HCV) nonstructural protein 5B (NS5B) polymerase catalyzes the replication of the (+) single-stranded RNA genome of HCV. In vitro studies have shown that replication can be performed in the absence of a primer. However, the dynamics and mechanism by which NS5B locates the 3'-terminus of the RNA template to initiate de novo synthesis remain elusive. Here, we performed single-molecule fluorescence studies based on protein-induced fluorescence enhancement reporting on NS5B dynamics on a short model RNA substrate. Our results suggest that NS5B exists in a fully open conformation in solution wherefrom it accesses its binding site along RNA and then closes. Our results revealed two NS5B binding modes: an unstable one resulting in rapid dissociation, and a stable one characterized by a larger residence time on the substrate. We associate these bindings to an unproductive and productive orientation, respectively. Addition of extra mono (Na+)- and divalent (Mg2+) ions increases the mobility of NS5B along its RNA substrate. However, only Mg2+ ions induce a decrease in NS5B residence time. Dwell times of residence increase with the length of the single-stranded template, suggesting that NS5B unbinds its substrate by unthreading the template rather than by spontaneous opening.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Anaïs Robert
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Alix Tordo
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Terri C Lovell
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jorge Ramos-Sanchez
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Aya Sakaya
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
30
|
Fang X, Lu G, Deng Y, Yang S, Hou C, Gong P. Unusual substructure conformations observed in crystal structures of a dicistrovirus RNA-dependent RNA polymerase suggest contribution of the N-terminal extension in proper folding. Virol Sin 2023; 38:531-540. [PMID: 37156298 PMCID: PMC10436059 DOI: 10.1016/j.virs.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
The Dicistroviridae is a virus family that includes many insect pathogens. These viruses contain a positive-sense RNA genome that is replicated by the virally encoded RNA-dependent RNA polymerase (RdRP) also named 3Dpol. Compared with the Picornaviridae RdRPs such as poliovirus (PV) 3Dpol, the Dicistroviridae representative Israeli acute paralysis virus (IAPV) 3Dpol has an additional N-terminal extension (NE) region that is about 40-residue in length. To date, both the structure and catalytic mechanism of the Dicistroviridae RdRP have remain elusive. Here we reported crystal structures of two truncated forms of IAPV 3Dpol, namely Δ85 and Δ40, both missing the NE region, and the 3Dpol protein in these structures exhibited three conformational states. The palm and thumb domains of these IAPV 3Dpol structures are largely consistent with those of the PV 3Dpol structures. However, in all structures, the RdRP fingers domain is partially disordered, while different conformations of RdRP substructures and interactions between them are also present. In particular, a large-scale conformational change occurred in the motif B-middle finger region in one protein chain of the Δ40 structure, while a previously documented alternative conformation of motif A was observed in all IAPV structures. These experimental data on one hand show intrinsic conformational variances of RdRP substructures, and on the other hand suggest possible contribution of the NE region in proper RdRP folding in IAPV.
Collapse
Affiliation(s)
- Xiang Fang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Lu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|
31
|
Osawa T, Aoki M, Ehara H, Sekine SI. Structures of dengue virus RNA replicase complexes. Mol Cell 2023:S1097-2765(23)00470-7. [PMID: 37478848 DOI: 10.1016/j.molcel.2023.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Dengue is a mosquito-borne viral infection caused by dengue virus (DENV), a member of the flaviviruses. The DENV genome is a 5'-capped positive-sense RNA with a unique 5'-stem-loop structure (SLA), which is essential for RNA replication and 5' capping. The virus-encoded proteins NS5 and NS3 are responsible for viral genome replication, but the structural basis by which they cooperatively conduct the required tasks has remained unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of SLA-bound NS5 (PC), NS3-bound PC (PC-NS3), and an RNA-elongating NS5-NS3 complex (EC). While SLA bridges the NS5 methyltransferase and RNA-dependent RNA polymerase domains in PC, the NS3 helicase domain displaces it in elongation complex (EC). The SLA- and NS3-binding sites overlap with that of human STAT2. These structures illuminate the key steps in DENV genome replication, namely, SLA-dependent replication initiation, processive RNA elongation, and 5' capping of the nascent genomic RNA, thereby providing foundations to combat flaviviruses.
Collapse
Affiliation(s)
- Takuo Osawa
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mari Aoki
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
32
|
Sherwood AV, Rivera-Rangel LR, Ryberg LA, Larsen HS, Anker KM, Costa R, Vågbø CB, Jakljevič E, Pham LV, Fernandez-Antunez C, Indrisiunaite G, Podolska-Charlery A, Grothen JER, Langvad NW, Fossat N, Offersgaard A, Al-Chaer A, Nielsen L, Kuśnierczyk A, Sølund C, Weis N, Gottwein JM, Holmbeck K, Bottaro S, Ramirez S, Bukh J, Scheel TKH, Vinther J. Hepatitis C virus RNA is 5'-capped with flavin adenine dinucleotide. Nature 2023; 619:811-818. [PMID: 37407817 PMCID: PMC7616780 DOI: 10.1038/s41586-023-06301-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
RNA viruses have evolved elaborate strategies to protect their genomes, including 5' capping. However, until now no RNA 5' cap has been identified for hepatitis C virus1,2 (HCV), which causes chronic infection, liver cirrhosis and cancer3. Here we demonstrate that the cellular metabolite flavin adenine dinucleotide (FAD) is used as a non-canonical initiating nucleotide by the viral RNA-dependent RNA polymerase, resulting in a 5'-FAD cap on the HCV RNA. The HCV FAD-capping frequency is around 75%, which is the highest observed for any RNA metabolite cap across all kingdoms of life4-8. FAD capping is conserved among HCV isolates for the replication-intermediate negative strand and partially for the positive strand. It is also observed in vivo on HCV RNA isolated from patient samples and from the liver and serum of a human liver chimeric mouse model. Furthermore, we show that 5'-FAD capping protects RNA from RIG-I mediated innate immune recognition but does not stabilize the HCV RNA. These results establish capping with cellular metabolites as a novel viral RNA-capping strategy, which could be used by other viruses and affect anti-viral treatment outcomes and persistence of infection.
Collapse
Affiliation(s)
- Anna V Sherwood
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Lizandro R Rivera-Rangel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Line A Ryberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Helena S Larsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Klara M Anker
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Rui Costa
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Cathrine B Vågbø
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Eva Jakljevič
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Gabriele Indrisiunaite
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Agnieszka Podolska-Charlery
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Julius E R Grothen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Nicklas W Langvad
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Amal Al-Chaer
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Anna Kuśnierczyk
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Christina Sølund
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Sandro Bottaro
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark.
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark.
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Jeppe Vinther
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
33
|
Moianos D, Prifti GM, Makri M, Zoidis G. Targeting Metalloenzymes: The "Achilles' Heel" of Viruses and Parasites. Pharmaceuticals (Basel) 2023; 16:901. [PMID: 37375848 DOI: 10.3390/ph16060901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Metalloenzymes are central to the regulation of a wide range of essential viral and parasitic functions, including protein degradation, nucleic acid modification, and many others. Given the impact of infectious diseases on human health, inhibiting metalloenzymes offers an attractive approach to disease therapy. Metal-chelating agents have been expansively studied as antivirals and antiparasitics, resulting in important classes of metal-dependent enzyme inhibitors. This review provides the recent advances in targeting the metalloenzymes of viruses and parasites that impose a significant burden on global public health, including influenza A and B, hepatitis B and C, and human immunodeficiency viruses as well as Trypanosoma brucei and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria Makri
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
34
|
Karpiński TM, Ożarowski M, Silva PJ, Stasiewicz M, Alam R, Samad A. Discovery of Terpenes as Novel HCV NS5B Polymerase Inhibitors via Molecular Docking. Pathogens 2023; 12:842. [PMID: 37375532 PMCID: PMC10305183 DOI: 10.3390/pathogens12060842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis C virus (HCV) is a dangerous virus that is responsible for a large number of infections and deaths worldwide. In the treatment of HCV, it is important that the drugs are effective and do not have additional hepatotoxic effects. The aim of this study was to test the in silico activity of 1893 terpenes against the HCV NS5B polymerase (PDB-ID: 3FQK). Two drugs, sofosbuvir and dasabuvir, were used as controls. The GOLD software (CCDC) and InstaDock were used for docking. By using the results obtained from PLP.Fitness (GOLD), pKi, and binding free energy (InstaDock), nine terpenes were finally selected based on their scores. The drug-likeness properties were calculated using Lipinski's rule of five. The ADMET values were studied using SwissADME and pkCSM servers. Ultimately, it was shown that nine terpenes have better docking results than sofosbuvir and dasabuvir. These were gniditrin, mulberrofuran G, cochlearine A, ingenol dibenzoate, mulberrofuran G, isogemichalcone C, pawhuskin B, 3-cinnamyl-4-oxoretinoic acid, DTXSID501019279, and mezerein. Each docked complex was submitted to 150 ns-long molecular dynamics simulations to ascertain the binding stability. The results show that mulberrofuran G, cochlearine A, and both stereoisomers of pawhuskin B form very stable interactions with the active site region where the reaction product should form and are, therefore, good candidates for use as effective competitive inhibitors. The other compounds identified in the docking screen either afford extremely weak (or even hardly any) binding (such as ingenol dibenzoate, gniditrin, and mezerein) or must first undergo preliminary movements in the active site before attaining their stable binding conformations, in a process which may take from 60 to 80 ns (for DTXSID501019279, 3-cinnamyl-4-oxoretinoic acid or isogemichalcone C).
Collapse
Affiliation(s)
- Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Pedro J. Silva
- FP-I3ID/Fac. de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- UCIBIO@REQUIMTE, BioSIM, Departament of Biomedicine, Faculty of Medicine, Universidade do Porto, 4200-319 Porto, Portugal
| | - Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Rahat Alam
- Biological Solution Centre (BioSol Centre), Farmgate, Dhaka 1215, Bangladesh
| | - Abdus Samad
- Biological Solution Centre (BioSol Centre), Farmgate, Dhaka 1215, Bangladesh
| |
Collapse
|
35
|
De Clercq E. Hydrogen Bonding (Base Pairing) in Antiviral Activity. Viruses 2023; 15:v15051145. [PMID: 37243232 DOI: 10.3390/v15051145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Base pairing based on hydrogen bonding has, since its inception, been crucial in the antiviral activity of arabinosyladenine, 2'-deoxyuridines (i.e., IDU, TFT, BVDU), acyclic nucleoside analogues (i.e., acyclovir) and nucleoside reverse transcriptase inhibitors (NRTIs). Base pairing based on hydrogen bonding also plays a key role in the mechanism of action of various acyclic nucleoside phosphonates (ANPs) such as adefovir, tenofovir, cidofovir and O-DAPYs, thus explaining their activity against a wide array of DNA viruses (human hepatitis B virus (HBV), human immunodeficiency (HIV) and human herpes viruses (i.e., human cytomegalovirus)). Hydrogen bonding (base pairing) also seems to be involved in the inhibitory activity of Cf1743 (and its prodrug FV-100) against varicella-zoster virus (VZV) and in the activity of sofosbuvir against hepatitis C virus and that of remdesivir against SARS-CoV-2 (COVID-19). Hydrogen bonding (base pairing) may also explain the broad-spectrum antiviral effects of ribavirin and favipiravir. This may lead to lethal mutagenesis (error catastrophe), as has been demonstrated with molnutegravir in its activity against SARS-CoV-2.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
36
|
Feracci M, Eydoux C, Fattorini V, Lo Bello L, Gauffre P, Selisko B, Sutto-Ortiz P, Shannon A, Xia H, Shi PY, Noel M, Debart F, Vasseur JJ, Good S, Lin K, Moussa A, Sommadossi JP, Chazot A, Alvarez K, Guillemot JC, Decroly E, Ferron F, Canard B. AT-752 targets multiple sites and activities on the Dengue virus replication enzyme NS5. Antiviral Res 2023; 212:105574. [PMID: 36905944 DOI: 10.1016/j.antiviral.2023.105574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023]
Abstract
AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 μM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.
Collapse
Affiliation(s)
- Mikael Feracci
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Cécilia Eydoux
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Véronique Fattorini
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Lea Lo Bello
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Pierre Gauffre
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Barbara Selisko
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Priscila Sutto-Ortiz
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Ashleigh Shannon
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Mathieu Noel
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Françoise Debart
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Jean-Jacques Vasseur
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Steve Good
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | - Kai Lin
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | - Adel Moussa
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | | | - Aurélie Chazot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Karine Alvarez
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Jean-Claude Guillemot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Etienne Decroly
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - François Ferron
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
37
|
Rogers DM, Agarwal R, Vermaas JV, Smith MD, Rajeshwar RT, Cooper C, Sedova A, Boehm S, Baker M, Glaser J, Smith JC. SARS-CoV2 billion-compound docking. Sci Data 2023; 10:173. [PMID: 36977690 PMCID: PMC10044124 DOI: 10.1038/s41597-023-01984-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/24/2023] [Indexed: 03/30/2023] Open
Abstract
This dataset contains ligand conformations and docking scores for 1.4 billion molecules docked against 6 structural targets from SARS-CoV2, representing 5 unique proteins: MPro, NSP15, PLPro, RDRP, and the Spike protein. Docking was carried out using the AutoDock-GPU platform on the Summit supercomputer and Google Cloud. The docking procedure employed the Solis Wets search method to generate 20 independent ligand binding poses per compound. Each compound geometry was scored using the AutoDock free energy estimate, and rescored using RFScore v3 and DUD-E machine-learned rescoring models. Input protein structures are included, suitable for use by AutoDock-GPU and other docking programs. As the result of an exceptionally large docking campaign, this dataset represents a valuable resource for discovering trends across small molecule and protein binding sites, training AI models, and comparing to inhibitor compounds targeting SARS-CoV-2. The work also gives an example of how to organize and process data from ultra-large docking screens.
Collapse
Affiliation(s)
- David M Rogers
- Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Rupesh Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Josh V Vermaas
- Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Micholas Dean Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Rajitha T Rajeshwar
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Connor Cooper
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Biological Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ada Sedova
- Biological Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Swen Boehm
- Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Matthew Baker
- Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jens Glaser
- Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
| |
Collapse
|
38
|
Rabaan AA, Halwani MA, Aljeldah M, Al Shammari BR, Garout M, Aldali J, Alawfi A, Alshengeti A, Alsulaiman AM, Alsayyah A. Exploration of potent antiviral phytomedicines from Lauraceae family plants against SARS-CoV-2 RNA-dependent RNA polymerase. J Biomol Struct Dyn 2023; 41:15085-15105. [PMID: 36883874 DOI: 10.1080/07391102.2023.2186720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
RNA-dependent RNA polymerase, also known as RdRp, is a possible therapeutic target that could be used to suppress the proliferation of RNA viruses such as SARS-CoV-2. This protein has two major functional sites (a) catalytic and (b) substrate entry, which regulate the natural substrate entry and its corresponding interaction with the protein. In this study, a computational drug design pipeline was applied to investigate potential inhibitors against SARS-CoV-2 RdRp from Lauraceae plants, and five top hits were selected based on the docked score (< -7 kcal/mol). The docking study suggested that the Glochidioboside had a minimum binding score of -7.8 kcal/mol. This compound showed total five hydrogen bonds while two of them were with catalytic residues Asp618 and Asp760. However, another compound, Sitogluside showed a binding score of -7.3 kcal/mol with four hydrogen bonds targeting three functional residues (Arg555, Ser759, and Asp760). Later, 100 ns explicit solvent molecular dynamics (MD) simulation was performed to evaluate the stability of the protein-ligand docked system. These compounds translocated their positions from the catalytic site to the substrate entry site, as observed in the MD simulation trajectory. However, translocation did not affect the binding strength of these compounds, and they retained the strong binding affinity (ΔG < -11.5 kcal/mol), estimated using the MM/GBSA method. In general, the findings of this study indicated the potential therapeutic compounds that may be used targeting SARS-CoV-2 RdRp. However, these compounds still need to be validated by experimentation in order to determine their inhibitory function.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Basim R Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jehad Aldali
- Pathology Organization, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah, Saudi Arabia
| | | | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
39
|
Kumar G, Singh AK, Agarwal D. Structural and functional characterization of RNA dependent RNA polymerase of Macrobrachium rosenbergii nodavirus (MnRdRp). J Biomol Struct Dyn 2023; 41:12825-12837. [PMID: 36757137 DOI: 10.1080/07391102.2023.2175384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/07/2023] [Indexed: 02/10/2023]
Abstract
Macrobrachium rosenbergii is a highly valued farmed freshwater species and its production has been affected globally by white tail disease caused by M. rosenbergii nodavirus (MrNV). MrNV is a single stranded positive sense RNA virus encoding RNA-dependent RNA polymerase (RdRp) for genome replication. Due to its essentiality for pathogenesis, it is an important drug target. The domain prediction of the complete sequence revealed the presence of two enzymatic regions namely methyl transferase and RdRp separated by transmembrane region. The predicted three-dimensional (3D) structure of MnRdRp using AlphaFold 2 shows that the structure is composed of three major sub-domains common for other polymerases namely fingers, palm and thumb. Structural similarity search revealed its similarity with other flaviviridea members especially with BVDV RdRp (BvdvRdRp). The structure of fingers and palm sub-domains is more conserved than the thumb sub-domain. A small α-helix named 'priming helix' having conserve Tyr was identified at position 829-833 with a potential role in de novo initiation. Analysis of electrostatic potential revealed that nucleotide and template channels are electropositive. Metal binding residues were identified as Asp599, Asp704 and Asp705. The α and β phosphates of incoming nucleotide interact with two Mn2+, Arg455 and Arg537. For recognition of 2'-OH of incoming rNTP, Asp604, Ser661 and Asn670 were identified which can form H-bond network with 2'-OH group. Docking study revealed that Dasabuvir can potentially inhibit MnRdRp. The study concluded that the overall structure and function of MnRdRp are similar to Flaviviridae polymerases and their inhibitors can work against this enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gulshan Kumar
- College of Fisheries Science Gunla, Birsa Agricultural University, Ranchi, Jharkhand, India
| | - A K Singh
- College of Fisheries Science Gunla, Birsa Agricultural University, Ranchi, Jharkhand, India
| | - Deepak Agarwal
- TNJFU, Institute of Fisheries Post Graduate Studies, OMR, Chennai, Tamil Nadu, India
| |
Collapse
|
40
|
Ejeh S, Uzairu A, Shallangwa GA, Abechi SE, Ibrahim MT, Ramu R. Cheminformatics study of some indole compounds through QSAR modeling, ADME prediction, molecular docking, and molecular dynamic simulation to identify novel inhibitors of HCV NS5B protease. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
41
|
Malone BF, Perry JK, Olinares PDB, Lee HW, Chen J, Appleby TC, Feng JY, Bilello JP, Ng H, Sotiris J, Ebrahim M, Chua EYD, Mendez JH, Eng ET, Landick R, Götte M, Chait BT, Campbell EA, Darst SA. Structural basis for substrate selection by the SARS-CoV-2 replicase. Nature 2023; 614:781-787. [PMID: 36725929 PMCID: PMC9891196 DOI: 10.1038/s41586-022-05664-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/15/2022] [Indexed: 02/03/2023]
Abstract
The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate3,4. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5' RNA cap6.
Collapse
Affiliation(s)
- Brandon F Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Hery W Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | | | - Joy Y Feng
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | - Honkit Ng
- The Evelyn Gruss Lipper Cryo-Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Johanna Sotiris
- The Evelyn Gruss Lipper Cryo-Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Mark Ebrahim
- The Evelyn Gruss Lipper Cryo-Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Eugene Y D Chua
- National Center for Cryo-EM Access and Training, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Joshua H Mendez
- National Center for Cryo-EM Access and Training, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Ed T Eng
- National Center for Cryo-EM Access and Training, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
42
|
Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Viruses 2023; 15:v15020341. [PMID: 36851554 PMCID: PMC9960070 DOI: 10.3390/v15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.
Collapse
Affiliation(s)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, F78350 Jouy en Josas, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- Correspondence:
| |
Collapse
|
43
|
Malik M, Vijayan P, Jagannath DK, Mishra RK, Lakshminarasimhan A. Sofosbuvir and its tri-phosphate metabolite inhibit the RNA-dependent RNA polymerase activity of non-structural protein 5 from the Kyasanur forest disease virus. Biochem Biophys Res Commun 2023; 641:50-56. [PMID: 36521285 DOI: 10.1016/j.bbrc.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Kyasanur forest disease is a neglected zoonotic disease caused by a single-stranded RNA-based flavivirus, the incidence of which was first recorded in 1957 in the Southern part of India. Kyasanur forest disease virus is transmitted to monkeys and humans through the infected tick bite of Haemophysalis spinigera. Kyasanur forest disease is a febrile illness, which in severe cases, results in neurological complications leading to mortality. The current treatment regimens are symptomatic and supportive, and no targeted therapies are available for this disease. In this study, we evaluated the ability of FDA-approved drugs sofosbuvir (and its active metabolite) and Dasabuvir to inhibit the RNA-dependent RNA polymerase activity of NS5 protein from the Kyasanur forest disease virus. NS5 protein containing the N-terminal methyl transferase domain and C-terminal RNA-dependent RNA polymerase domain was expressed in Escherichia coli, and RNA-dependent RNA polymerase activity was demonstrated with the purified protein. The RNA-dependent RNA polymerase assay conditions were optimized, followed by the determination of apparent Km,ATP to validate the enzyme preparation. Half maximal-inhibitory concentrations against RNA-dependent RNA polymerase activity were determined for Sofosbuvir and its active metabolite. Dasabuvir did not show detectable inhibition with the tested conditions. This is the first demonstration of the inhibition of RNA-dependent RNA polymerase activity of NS5 protein from the Kyasanur forest disease virus with small molecule inhibitors. These initial findings can potentially facilitate the discovery and development of targeted therapies for treating Kyasanur forest disease.
Collapse
Affiliation(s)
- Mansi Malik
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Parvathy Vijayan
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Deepak K Jagannath
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Rakesh K Mishra
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | | |
Collapse
|
44
|
Kotian PL, Wu M, Ghosh A, Polach KJ, El-Kattan Y, Kumar VS, Lin TH, Cheng X, Bantia S, Raman K, Chand P, Babu YS. Synthesis of novel azasugar-containing 2'β-C-Me 9-deaza nucleosides as potential anti-hepatitis C virus agents. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:317-327. [PMID: 36354089 DOI: 10.1080/15257770.2022.2142609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As a part of our ongoing discovery efforts exploring azasugar as agents for treating various unmet medical needs, we prepared analogs of azasugar as potential anti-hepatitis C virus (HCV) agents. Herein we describe the synthesis of novel 2'β-C-Me 9-deazanucleoside azasugar analogs.
Collapse
Affiliation(s)
- Pravin L Kotian
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| | - Minwan Wu
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| | - Ajit Ghosh
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| | - Kevin J Polach
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| | - Yahya El-Kattan
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| | - V Satish Kumar
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| | - Tsu-Hsing Lin
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| | - Xiaogang Cheng
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| | - Shanta Bantia
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| | - Krishnan Raman
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| | - Pooran Chand
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| | - Yarlagadda S Babu
- BioCryst Pharmaceuticals, Inc, 2100 Riverchase Center, Building 200, Suite 200, Birmingham, AL, 35244, USA
| |
Collapse
|
45
|
Li R, Wang M, Gong P. Crystal structure of a pre-chemistry viral RNA-dependent RNA polymerase suggests participation of two basic residues in catalysis. Nucleic Acids Res 2022; 50:12389-12399. [PMID: 36477355 PMCID: PMC9757066 DOI: 10.1093/nar/gkac1133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
The nucleic acid polymerase-catalyzed nucleotidyl transfer reaction associated with polymerase active site closure is a key step in the nucleotide addition cycle (NAC). Two proton transfer events can occur in such a nucleotidyl transfer: deprotonation of the priming nucleotide 3'-hydroxyl nucleophile and protonation of the pyrophosphate (PPi) leaving group. In viral RNA-dependent RNA polymerases (RdRPs), whether and how active site residues participate in this two-proton transfer reaction remained to be clarified. Here we report a 2.5 Å resolution crystal structure of enterovirus 71 (EV71) RdRP in a catalytically closed pre-chemistry conformation, with a proposed proton donor candidate K360 in close contact with the NTP γ-phosphate. Enzymology data reveal that K360 mutations not only reduce RdRP catalytic efficiency but also alter pH dependency profiles in both elongation and pre-elongation synthesis modes. Interestingly, mutations at R174, an RdRP-invariant residue in motif F, had similar effects with additional impact on the Michaelis constant of NTP (KM,NTP). However, direct participation in protonation was not evident for K360 or R174. Our data suggest that both K360 and R174 participate in nucleotidyl transfer, while their possible roles in acid-base or positional catalysis are discussed in comparison with other classes of nucleic acid polymerases.
Collapse
Affiliation(s)
| | | | - Peng Gong
- To whom correspondence should be addressed.
| |
Collapse
|
46
|
Yao X, Gao S, Wang J, Li Z, Huang J, Wang Y, Wang Z, Chen J, Fan X, Wang W, Jin X, Pan X, Yu Y, Lagrutta A, Yan N. Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Ca v channels. Cell 2022; 185:4801-4810.e13. [PMID: 36417914 PMCID: PMC9891081 DOI: 10.1016/j.cell.2022.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/24/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Drug-drug interaction of the antiviral sofosbuvir and the antiarrhythmics amiodarone has been reported to cause fatal heartbeat slowing. Sofosbuvir and its analog, MNI-1, were reported to potentiate the inhibition of cardiomyocyte calcium handling by amiodarone, which functions as a multi-channel antagonist, and implicate its inhibitory effect on L-type Cav channels, but the molecular mechanism has remained unclear. Here we present systematic cryo-EM structural analysis of Cav1.1 and Cav1.3 treated with amiodarone or sofosbuvir alone, or sofosbuvir/MNI-1 combined with amiodarone. Whereas amiodarone alone occupies the dihydropyridine binding site, sofosbuvir is not found in the channel when applied on its own. In the presence of amiodarone, sofosbuvir/MNI-1 is anchored in the central cavity of the pore domain through specific interaction with amiodarone and directly obstructs the ion permeation path. Our study reveals the molecular basis for the physical, pharmacodynamic interaction of two drugs on the scaffold of Cav channels.
Collapse
Affiliation(s)
- Xia Yao
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,These authors contribute equally
| | - Shuai Gao
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,These authors contribute equally.,Present address: School of Pharmaceutical Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China,To whom correspondence should be addressed: N. Yan (); S. Gao ()
| | - Jixin Wang
- Department of Genetic and Cellular Toxicology, ADME & Discovery Toxicology, Preclinical Development, Merck Research Laboratories, Merck & Co., Inc., West Point, PA 19486, USA,These authors contribute equally
| | - Zhangqiang Li
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China,These authors contribute equally
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yan Wang
- Department of Biological Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zhifei Wang
- Department of Biological Sciences, St. John’s University, Queens, NY 11439, USA
| | - Jiaofeng Chen
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weipeng Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqin Jin
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojing Pan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong Yu
- Department of Biological Sciences, St. John’s University, Queens, NY 11439, USA
| | - Armando Lagrutta
- Department of Genetic and Cellular Toxicology, ADME & Discovery Toxicology, Preclinical Development, Merck Research Laboratories, Merck & Co., Inc., West Point, PA 19486, USA
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lead contact.,To whom correspondence should be addressed: N. Yan (); S. Gao ()
| |
Collapse
|
47
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
48
|
Tan YB, Chmielewski D, Law MCY, Zhang K, He Y, Chen M, Jin J, Luo D. Molecular architecture of the Chikungunya virus replication complex. SCIENCE ADVANCES 2022; 8:eadd2536. [PMID: 36449616 PMCID: PMC9710867 DOI: 10.1126/sciadv.add2536] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
To better understand how positive-strand (+) RNA viruses assemble membrane-associated replication complexes (RCs) to synthesize, process, and transport viral RNA in virus-infected cells, we determined both the high-resolution structure of the core RNA replicase of chikungunya virus and the native RC architecture in its cellular context at subnanometer resolution, using in vitro reconstitution and in situ electron cryotomography, respectively. Within the core RNA replicase, the viral polymerase nsP4, which is in complex with nsP2 helicase-protease, sits in the central pore of the membrane-anchored nsP1 RNA-capping ring. The addition of a large cytoplasmic ring next to the C terminus of nsP1 forms the holo-RNA-RC as observed at the neck of spherules formed in virus-infected cells. These results represent a major conceptual advance in elucidating the molecular mechanisms of RNA virus replication and the principles underlying the molecular architecture of RCs, likely to be shared with many pathogenic (+) RNA viruses.
Collapse
Affiliation(s)
- Yaw Bia Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - David Chmielewski
- Biophysics Graduate Program, Departments of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Michelle Cheok Yien Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Kuo Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Yu He
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Jing Jin
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
- Vitalant Research Institute, San Francisco, CA 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
49
|
Xu S, Del Pozo J, Romiti F, Fu Y, Mai BK, Morrison RJ, Lee K, Hu S, Koh MJ, Lee J, Li X, Liu P, Hoveyda AH. Diastereo- and enantioselective synthesis of compounds with a trifluoromethyl- and fluoro-substituted carbon centre. Nat Chem 2022; 14:1459-1469. [PMID: 36376387 PMCID: PMC9772297 DOI: 10.1038/s41557-022-01054-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Molecules that contain one or more fluorine atoms are crucial to drug discovery. There are protocols available for the selective synthesis of different organofluorine compounds, including those with a fluoro-substituted or a trifluoromethyl-substituted stereogenic carbon centre. However, approaches for synthesizing compounds with a trifluoromethyl- and fluoro-substituent stereogenic carbon centre are far less common. This potentially impactful set of molecules thus remains severely underdeveloped. Here we introduce a catalytic regio-, diastereo- and enantioselective strategy for the preparation of homoallylic alcohols bearing a stereogenic carbon centre bound to a trifluoromethyl group and a fluorine atom. The process, which involves a polyfluoroallyl boronate and is catalysed by an in situ-formed organozinc complex, can be used for diastereodivergent preparation of tetrafluoro-monosaccharides, including ribose core analogues of the antiviral drug sofosbuvir (Sovaldi). Unexpected reactivity/selectivity profiles, probably originating from the trifluoromethyl- and fluoro-substituted carbon site, are discovered, foreshadowing other unique chemistries that remain unknown.
Collapse
Affiliation(s)
- Shibo Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Filippo Romiti
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - KyungA Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Shaowei Hu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Ming Joo Koh
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Jaehee Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Xinghan Li
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|
50
|
Grosse S, Tahri A, Raboisson P, Houpis Y, Stoops B, Jacoby E, Neefs JM, Van Loock M, Goethals O, Geluykens P, Bonfanti JF, Jonckers THM. From Oxetane to Thietane: Extending the Antiviral Spectrum of 2′-Spirocyclic Uridines by Substituting Oxygen with Sulfur. ACS Med Chem Lett 2022; 13:1879-1884. [DOI: 10.1021/acsmedchemlett.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sandrine Grosse
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Abdellah Tahri
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Pierre Raboisson
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Yannis Houpis
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Bart Stoops
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Edgar Jacoby
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jean-Marc Neefs
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marnix Van Loock
- Janssen Global Public Health, R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Olivia Goethals
- Janssen Global Public Health, R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Peggy Geluykens
- Charles River, Discovery, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Tim H. M. Jonckers
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|