1
|
Gotoh-Saito S, Wada R, Nishimura T, Kawaji H. Drug-induced cis-regulatory elements in human hepatocytes affect molecular phenotypes associated with adverse reactions. Nat Commun 2025; 16:3851. [PMID: 40301309 PMCID: PMC12041347 DOI: 10.1038/s41467-025-59132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/09/2025] [Indexed: 05/01/2025] Open
Abstract
Genomic variation drives phenotypic diversity, including individual differences in drug response. While coding polymorphisms linked to drug efficacy and adverse reactions are well characterized, the contribution of noncoding regulatory elements remains underexplored. Using CAGE (Cap Analysis of Gene Expression), profiling transcription initiations of mRNAs and enhancer RNAs, we identify candidate cis-regulatory elements (CREs) and assessed their activities simultaneously in HepG2 cells expressing the drug-responsive transcription factor pregnane X receptor (PXR). Comparison with GWAS data reveals strong enrichment of the drug-induced CREs near variants associated with bilirubin and vitamin D levels. Among those bound by PXR in primary hepatocytes, we identify enhancers of UGT1A1, TSKU, and CYP24A1 and functional alleles that alter regulatory activities. We also find that TSKU influences expression of vitamin D-metabolizing enzymes. This study expands the landscape of PXR-mediated regulatory elements and uncovers noncoding variants impacting drug response, providing insights into the genomic basis of adverse drug reactions.
Collapse
Affiliation(s)
- Saki Gotoh-Saito
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ryoko Wada
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomoe Nishimura
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Nayak N, Mehrotra S, Karamchandani AN, Santelia D, Mehrotra R. Recent advances in designing synthetic plant regulatory modules. FRONTIERS IN PLANT SCIENCE 2025; 16:1567659. [PMID: 40241826 PMCID: PMC11999978 DOI: 10.3389/fpls.2025.1567659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Introducing novel functions in plants through synthetic multigene circuits requires strict transcriptional regulation. Currently, the use of natural regulatory modules in synthetic circuits is hindered by our limited knowledge of complex plant regulatory mechanisms, the paucity of characterized promoters, and the possibility of crosstalk with endogenous circuits. Synthetic regulatory modules can overcome these limitations. This article introduces an integrative de novo approach for designing plant synthetic promoters by utilizing the available online tools and databases. The recent achievements in designing and validating synthetic plant promoters, enhancers, transcription factors, and the challenges of establishing synthetic circuits in plants are also discussed.
Collapse
Affiliation(s)
- Namitha Nayak
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| | | | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich Universitätstrasse, Zürich, Switzerland
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| |
Collapse
|
3
|
Altendorfer E, Mundlos S, Mayer A. A transcription coupling model for how enhancers communicate with their target genes. Nat Struct Mol Biol 2025; 32:598-606. [PMID: 40217119 DOI: 10.1038/s41594-025-01523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
How enhancers communicate with their target genes to influence transcription is an unresolved question of fundamental importance. Current models of the mechanism of enhancer-target gene or enhancer-promoter (E-P) communication are transcription-factor-centric and underappreciate major findings, including that enhancers are themselves transcribed by RNA polymerase II, which correlates with enhancer activity. In this Perspective, we posit that enhancer transcription and its products, enhancer RNAs, are elementary components of enhancer-gene communication. Specifically, we discuss the possibility that transcription at enhancers and at their cognate genes are linked and that this coupling is at the basis of how enhancers communicate with their targets. This model of transcriptional coupling between enhancers and their target genes is supported by growing experimental evidence and represents a synthesis of recent key discoveries.
Collapse
Affiliation(s)
- Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Mundlos
- Development and Disease group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
4
|
Geng J, Lu W, Kong Q, Lv J, Liu Y, Zu G, Chen Y, Jiang C, You Z, Nie Z. Validation of selective catalytic BmCBP inhibitors that regulate the Bm30K-24 protein expression in silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2025; 34:322-334. [PMID: 39513476 DOI: 10.1111/imb.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The cAMP response element binding protein (CREB)-binding protein (CBP) is a histone acetyltransferase that plays an indispensable role in regulating the acetylation of histone and non-histone proteins. Recently, it has been discovered that chemical inhibitors A485 and C646 can bind to Bombyx mori's CBP (BmCBP) and inhibit its acetyltransferase activity. Notably, the binding ability of A485 with BmCBP showed a very low Kd value of 48 nM by surface plasmon resonance (SPR) test. Further identification showed that both A485 and C646 can decrease the acetylation level of known substrate H3K27 and only 1 μM of A485 can almost completely inhibit the acetylation of H3K27, suggesting that A485 is an effective inhibitor of BmCBP's acetyltransferase activity. Moreover, it was confirmed that A485 could downregulate the expression of acetylated Bm30K-24 protein at a post-translational level through acetylation modification by BmCBP. Additionally, it was found that A485 can downregulate the stability of Bm30K-24 and improve its ubiquitination level, suggesting that the acetylation modification by BmCBP could compete with ubiquitination modification at the same lysine site on Bm30K-24, thereby affecting its protein stability. Here, we predict that A485 may be a potent CBP acetyltransferase inhibitor which could be utilized to inhibit acetyltransferase activity in insects, including silkworms.
Collapse
Affiliation(s)
- Jiasheng Geng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weina Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qinglong Kong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yue Liu
- School of Food and Health, Zhejiang Institute of Economics and Trade, Hangzhou, China
| | - Guowei Zu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanmei Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Auxillos J, Stigliani A, Vaagensø C, Garland W, Niazi A, Valen E, Jensen T, Sandelin A. True length of diverse capped RNA sequencing (TLDR-seq): 5'-3'-end sequencing of capped RNAs regardless of 3'-end status. Nucleic Acids Res 2025; 53:gkaf240. [PMID: 40183637 PMCID: PMC11969664 DOI: 10.1093/nar/gkaf240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Analysis of transcript function is greatly aided by knowledge of the full-length RNA sequence. New long-read sequencing enabled by Oxford Nanopore and PacBio devices have the potential to provide full-length transcript information; however, standard methods still lack the ability to capture true RNA 5' ends and select for polyadenylated (pA+) transcripts only. Here, we present a method that, by utilizing cap trapping and 3'-end adapter ligation, sequences transcripts between their exact 5' and 3' ends regardless of polyadenylation status and without the need for ribosomal RNA depletion, with the ability to characterize polyadenylation length of RNAs, if any. The method shows high reproducibility, can faithfully detect 5' ends, 3' ends and splice junctions, and produces gene-expression estimates that are highly correlated to those of short-read sequencing techniques. We also demonstrate that the method can detect and sequence full-length nonadenylated (pA-) RNAs, including long noncoding RNAs, promoter upstream transcripts, and enhancer RNAs, and present cases where pA+ and pA- RNAs show preferences for different but closely located transcription start sites. Our method is therefore useful for the characterization of diverse capped RNA species and analysis of relationships between transcription initiation, termination, and RNA processing.
Collapse
Affiliation(s)
- Jamie Auxillos
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Arnaud Stigliani
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Christian Skov Vaagensø
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - William Garland
- Department of Molecular Biology and Genetics, Aarhus University, DK8000 Aarhus, Denmark
| | - Adnan Muhammed Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008 Bergen, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008 Bergen, Norway
- Department of Biosciences, University of Oslo, N-0371 Oslo, Norway
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, DK8000 Aarhus, Denmark
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Yoshihara M, Coschiera A, Bachmann JA, Pucci M, Li H, Bhagat S, Murakawa Y, Weltner J, Jouhilahti EM, Swoboda P, Sahlén P, Kere J. Transcriptional enhancers in human neuronal differentiation provide clues to neuronal disorders. EMBO Rep 2025; 26:1212-1237. [PMID: 39948187 PMCID: PMC11893885 DOI: 10.1038/s44319-025-00372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 03/12/2025] Open
Abstract
Genome-wide association studies (GWASs) have identified thousands of variants associated with complex phenotypes, including neuropsychiatric disorders. To better understand their pathogenesis, it is necessary to identify the functional roles of these variants, which are largely located in non-coding DNA regions. Here, we employ a human mesencephalic neuronal cell differentiation model, LUHMES, with sensitive and high-resolution methods to discover enhancers (NET-CAGE), perform DNA conformation analysis (Capture Hi-C) to link enhancers to their target genes, and finally validate selected interactions. We expand the number of known enhancers active in differentiating human LUHMES neurons to 47,350, and find overlap with GWAS variants for Parkinson's disease and schizophrenia. Our findings reveal a fine-tuned regulation of human neuronal differentiation, even between adjacent developmental stages; provide a valuable resource for further studies on neuronal development, regulation, and disorders; and emphasize the importance of exploring the vast regulatory potential of non-coding DNA and enhancers.
Collapse
Affiliation(s)
- Masahito Yoshihara
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, Japan
| | - Andrea Coschiera
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
| | - Jörg A Bachmann
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mariangela Pucci
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Haonan Li
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
| | - Shruti Bhagat
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Yasuhiro Murakawa
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jere Weltner
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Peter Swoboda
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden.
| | - Pelin Sahlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Juha Kere
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden.
- Folkhälsan Research Centre, Helsinki, Finland.
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Statsenko Y, Kuznetsov NV, Ljubisaljevich M. Hallmarks of Brain Plasticity. Biomedicines 2025; 13:460. [PMID: 40002873 PMCID: PMC11852462 DOI: 10.3390/biomedicines13020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Cerebral plasticity is the ability of the brain to change and adapt in response to experience or learning. Its hallmarks are developmental flexibility, complex interactions between genetic and environmental influences, and structural-functional changes comprising neurogenesis, axonal sprouting, and synaptic remodeling. Studies on brain plasticity have important practical implications. The molecular characteristics of changes in brain plasticity may reveal disease course and the rehabilitative potential of the patient. Neurological disorders are linked with numerous cerebral non-coding RNAs (ncRNAs), in particular, microRNAs; the discovery of their essential role in gene regulation was recently recognized and awarded a Nobel Prize in Physiology or Medicine in 2024. Herein, we review the association of brain plasticity and its homeostasis with ncRNAs, which make them putative targets for RNA-based diagnostics and therapeutics. New insight into the concept of brain plasticity may provide additional perspectives on functional recovery following brain damage. Knowledge of this phenomenon will enable physicians to exploit the potential of cerebral plasticity and regulate eloquent networks with timely interventions. Future studies may reveal pathophysiological mechanisms of brain plasticity at macro- and microscopic levels to advance rehabilitation strategies and improve quality of life in patients with neurological diseases.
Collapse
Affiliation(s)
- Yauhen Statsenko
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Milos Ljubisaljevich
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
8
|
He Y, Cai Y, Cao Y, Wang Y, Wang J, Ding H. Application Strategies of Super-Enhancer RNA in Cardiovascular Diseases. Biomedicines 2025; 13:117. [PMID: 39857701 PMCID: PMC11762524 DOI: 10.3390/biomedicines13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of death worldwide, and new therapeutic strategies are urgently needed. In recent years, enhancer RNAs (eRNAs) have gradually attracted attention because they offer new directions for the treatment of CVDs. Super-enhancer RNAs (seRNAs) are a subset of non-coding RNAs that are transcribed from regions of the genome known as super enhancers, which are large clusters of enhancers with a high density of transcription factors and cofactors. These regions play a pivotal role in regulating genes involved in cell identity and disease progression. This article reviews the characteristics of seRNAs, their expression patterns, and regulatory mechanisms in the cardiovascular system. We also explore their role in the occurrence and development of CVDs, as well as their potential as diagnostic biomarkers and therapeutic targets. Currently, therapies targeting seRNAs are a research hotspot. The development of specific inhibitors or activators is expected to facilitate precise interventions for CVDs. In addition, the use of gene editing techniques to modify relevant eRNA introduces new possibilities for disease treatment. This review aims to provide a comprehensive overview of seRNAs in CVDs and discusses their potential as a novel class of therapeutic targets.
Collapse
Affiliation(s)
- Yi He
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yuwei Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yanyan Cao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Nobusada T, Yip C, Agrawal S, Severin J, Abugessaisa I, Hasegawa A, Hon C, Ide S, Koido M, Kondo A, Masuya H, Oki S, Tagami M, Takada T, Terao C, Thalhath N, Walker S, Yasuzawa K, Shin J, de Hoon ML, Carninci P, Kawaji H, Kasukawa T. Update of the FANTOM web resource: enhancement for studying noncoding genomes. Nucleic Acids Res 2025; 53:D419-D424. [PMID: 39592010 PMCID: PMC11701582 DOI: 10.1093/nar/gkae1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
The FANTOM web resource (https://fantom.gsc.riken.jp/) has been a unique resource for studying mammalian genomes, which is built on the research activities conducted in the international collaborative project FANTOM (Functional ANnoTation Of the Mammalian genome). In recent updates, we expanded annotations for long non-coding RNAs (lncRNAs) and transcribed cis-regulatory elements (CREs). The former was derived from the large-scale lncRNA perturbations in induced pluripotent stem cells (iPSCs) and integrative analysis of Hi-C data conducted in the sixth iteration of the project (FANTOM6). The resulting annotations of lncRNAs, according to the impact on cellular and molecular phenotypes and the potential RNA-chromatin interactions, are accessible via the interactive ZENBU-Reports framework. The latter involves a new platform, fanta.bio (https://fanta.bio/), which collects transcribed CREs identified via use of an extended dataset of CAGE profiles. The CREs, with their annotations including genetic and epigenetic information, are accessible via a dedicated interface as well as the UCSC Genome Browser Database. These updates offer enhanced opportunities to investigate the functions of non-coding regions within mammalian genomes.
Collapse
Affiliation(s)
- Tomoe Nobusada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chung Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Satoru Ide
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masaru Koido
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-0882, Japan
| | - Atsushi Kondo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Masuya
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Shinya Oki
- Kumamoto University, Kumamoto 860-0811, Japan
| | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Toyoyuki Takada
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Nishad Thalhath
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Scott Walker
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Michiel J L de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hideya Kawaji
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
10
|
Shi Z, Wang R, Huang J, Qian Q, Hu M, Zhang H, Feng L, Gu H, Wang Y. Super-enhancer-driven ameboidal-type cell migration-related MMP14 expression in tongue squamous cell carcinoma switched by BATF and ATF3. J Pharm Pharmacol 2025; 77:64-75. [PMID: 38836550 DOI: 10.1093/jpp/rgae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) exhibits an aggressive biological behavior of lymph node and distant metastasis, which contributes to poorer prognosis and results in tongue function loss or death. In addition to known regulators and pathways of cell migration in TSCC, it is important to uncover pivotal switches governing tumor metastasis. METHODS Cancer cell migration-associated transcriptional and epigenetic characteristics were profiled in TSCC, and the specific super-enhancers (SEs) were identified. Molecular function and mechanism studies were used to investigate the pivotal switches in TSCC metastasis. RESULTS Ameboidal-type cell migration-related genes accompanied by transcriptional and epigenetic activity were enriched in TSCC. Meanwhile, the higher-ranked SE-related genes showed significant differences between 43 paired tumor and normal samples from the TCGA TSCC cohort. In addition, key motifs were detected in SE regions, and transcription factor-related expression levels were significantly associated with TSCC survival status. Notably, BATF and ATF3 regulated the expression of ameboidal-type cell migration-related MMP14 by switching the interaction with the SE region. CONCLUSION SEs and related key motifs transcriptional regulate tumor metastasis-associated MMP14 and might be potential therapeutic targets for TSCC.
Collapse
Affiliation(s)
- Zhimin Shi
- Department of Immunology, the School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Rui Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Jie Huang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Qian Qian
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230022, China
| | - Menglin Hu
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
- Department of Dental, Tongling Traditional Chinese Medicine Hospital, Taipinghu Road, Tongling 244000, China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hao Gu
- Department of Immunology, the School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
11
|
Yang Y, Dashi A, Soong PL, Lin KH, Tan WLW, Pan B, Autio MI, Tiang Z, Hartman RJG, Wei H, Ackers-Johnson MA, Lim B, Walentinsson A, Iyer VV, Jonsson MKB, Foo RS. Long noncoding RNA VENTHEART is required for ventricular cardiomyocyte specification and function. J Mol Cell Cardiol 2024; 197:90-102. [PMID: 39490643 DOI: 10.1016/j.yjmcc.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
RATIONALE Cardiac-expressed long noncoding RNAs (lncRNAs) are important for cardiomyocyte (CM) differentiation and function. Several lncRNAs have been identified and characterized for early CM lineage commitment, however those in later CM lineage specification and maturation remain less well studied. Moreover, unique atrial / ventricular lncRNA expression has never been studied in detail. OBJECTIVES Here, we characterized a novel ventricular myocyte-restricted lncRNA, not expressed in atrial myocytes, and conserved only in primates. METHODS AND RESULTS First, we performed single cell RNA-seq on human pluripotent stem cell derived cardiomyocytes (hPSC-CM) at the late stages of 2, 6 and 12 weeks of differentiation. Weighted correlation network analysis identified core gene modules, including a set of lncRNAs highly abundant and predominantly expressed in the human heart. A lncRNA (we call VENTHEART, VHRT) co-expressed with cardiac maturation and ventricular-specific genes MYL2 and MYH7, and was expressed in fetal and adult human ventricles, but not atria. CRISPR-mediated deletion of the VHRT gene led to impaired CM sarcomere formation and significant disruption of the ventricular CM gene program. Indeed, a similar disruption was not observed in VHRT KO hPSC-derived atrial CM, suggesting that VHRT exhibits only ventricular myocyte subtype-specific effects. Optical recordings validated that loss of VHRT significantly prolonged action potential duration at 90 % repolarization (APD90) for ventricular-like, but not atrial-like, CMs. CONCLUSION This reports the first lncRNA that is exclusively required for proper ventricular, and not atrial, CM specification and function.
Collapse
Affiliation(s)
- Yiqing Yang
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; NUS Graduate School, National University of Singapore, Singapore
| | - Albert Dashi
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Poh Loong Soong
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; Ternion Biosciences, Singapore
| | | | - Wilson L W Tan
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Bangfen Pan
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Matias I Autio
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Zenia Tiang
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Robin J G Hartman
- University of Utrecht, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands; Translational Science & Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Heming Wei
- National Heart Research Institute Singapore (NHRIS), National Heart Centre, Singapore
| | - Matthew Andrew Ackers-Johnson
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Bing Lim
- Sana Biotechnology, 300 Technology Square, Cambridge, MA 02139, United States of America
| | - Anna Walentinsson
- Translational Science & Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Vidhya Vardharajan Iyer
- Bioscience Cardiovascular, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Uppsala University, Uppsala, Sweden
| | - Malin K B Jonsson
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Bioscience Cardiovascular, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roger S Foo
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
12
|
Fursova NA, Larson DR. Transcriptional machinery as an architect of genome structure. Curr Opin Struct Biol 2024; 89:102920. [PMID: 39306948 PMCID: PMC11602364 DOI: 10.1016/j.sbi.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 11/29/2024]
Abstract
Chromatin organization, facilitated by compartmentalization and loop extrusion, is crucial for proper gene expression and cell viability. Transcription has long been considered important for shaping genome architecture due to its pervasive activity across the genome and impact on the local chromatin environment. Although earlier studies suggested a minimal contribution of transcription to shaping global genome structure, recent insights from high-resolution chromatin contact mapping, polymer simulations, and acute perturbations have revealed its critical role in dynamic chromatin organization at the level of active genes and enhancer-promoter interactions. In this review, we discuss these latest advances, highlighting the direct interplay between transcriptional machinery and loop extrusion. Finally, we explore how transcription of genes and non-coding regulatory elements may contribute to the specificity of gene regulation, focusing on enhancers as sites of targeted cohesin loading.
Collapse
Affiliation(s)
- Nadezda A Fursova
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Cochran K, Yin M, Mantripragada A, Schreiber J, Marinov GK, Shah SR, Yu H, Lis JT, Kundaje A. Dissecting the cis-regulatory syntax of transcription initiation with deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596138. [PMID: 38853896 PMCID: PMC11160661 DOI: 10.1101/2024.05.28.596138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Despite extensive characterization of mammalian Pol II transcription, the DNA sequence determinants of transcription initiation at a third of human promoters and most enhancers remain poorly understood. We trained and interpreted a neural network called ProCapNet that accurately models base-resolution initiation profiles from PRO-cap experiments using local DNA sequence. ProCapNet learns sequence motifs with distinct effects on initiation rates and TSS positioning and uncovers context-specific cryptic initiator elements intertwined within other TF motifs. ProCapNet annotates predictive motifs in nearly all actively transcribed regulatory elements across multiple cell-lines, revealing a shared cis-regulatory logic across promoters and enhancers and a highly epistatic sequence syntax of cooperative and competitive motif interactions. ProCapNet models of steady-state RAMPAGE profiles distill initiation signals on par with models trained directly on PRO-cap profiles. ProCapNet learns a largely cell-type-agnostic cis-regulatory code of initiation complementing sequence drivers of cell-type-specific chromatin state critical for accurate prediction of cell-type-specific transcription initiation.
Collapse
Affiliation(s)
- Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | | | - Jacob Schreiber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Sagar R Shah
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Ranjan G, Sehgal P, Scaria V, Sivasubbu S. SCAR-6 elncRNA locus epigenetically regulates PROZ and modulates coagulation and vascular function. EMBO Rep 2024; 25:4950-4978. [PMID: 39358551 PMCID: PMC11549340 DOI: 10.1038/s44319-024-00272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
In this study, we characterize a novel lncRNA-producing gene locus that we name Syntenic Cardiovascular Conserved Region-Associated lncRNA-6 (scar-6) and functionally validate its role in coagulation and cardiovascular function. A 12-bp deletion of the scar-6 locus in zebrafish (scar-6gib007Δ12/Δ12) results in cranial hemorrhage and vascular permeability. Overexpression, knockdown and rescue with the scar-6 lncRNA modulates hemostasis in zebrafish. Molecular investigation reveals that the scar-6 lncRNA acts as an enhancer lncRNA (elncRNA), and controls the expression of prozb, an inhibitor of factor Xa, through an enhancer element in the scar-6 locus. The scar-6 locus suppresses loop formation between prozb and scar-6 sequences, which might be facilitated by the methylation of CpG islands via the prdm14-PRC2 complex whose binding to the locus might be stabilized by the scar-6 elncRNA transcript. Binding of prdm14 to the scar-6 locus is impaired in scar-6gib007Δ12/Δ12 zebrafish. Finally, activation of the PAR2 receptor in scar-6gib007Δ12/Δ12 zebrafish triggers NF-κB-mediated endothelial cell activation, leading to vascular dysfunction and hemorrhage. We present evidence that the scar-6 locus plays a role in regulating the expression of the coagulation cascade gene prozb and maintains vascular homeostasis.
Collapse
Affiliation(s)
- Gyan Ranjan
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Paras Sehgal
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| |
Collapse
|
15
|
Kadhim AZ, Vanderkruk B, Mar S, Dan M, Zosel K, Xu EE, Spencer RJ, Sasaki S, Cheng X, Sproul SLJ, Speckmann T, Nian C, Cullen R, Shi R, Luciani DS, Hoffman BG, Taubert S, Lynn FC. Transcriptional coactivator MED15 is required for beta cell maturation. Nat Commun 2024; 15:8711. [PMID: 39379383 PMCID: PMC11461855 DOI: 10.1038/s41467-024-52801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Mediator, a co-regulator complex required for RNA Polymerase II activity, interacts with tissue-specific transcription factors to regulate development and maintain homeostasis. We observe reduced Mediator subunit MED15 expression in endocrine hormone-producing pancreatic islets isolated from people living with type 2 diabetes and sought to understand how MED15 and Mediator control gene expression programs important for the function of insulin-producing β-cells. Here we show that Med15 is expressed during mouse β-cell development and maturation. Knockout of Med15 in mouse β-cells causes defects in β-cell maturation without affecting β-cell mass or insulin expression. ChIP-seq and co-immunoprecipitation analyses found that Med15 binds β-cell transcription factors Nkx6-1 and NeuroD1 to regulate key β-cell maturation genes. In support of a conserved role during human development, human embryonic stem cell-derived β-like cells, genetically engineered to express high levels of MED15, express increased levels of maturation markers. We provide evidence of a conserved role for Mediator in β-cell maturation and demonstrate an additional layer of control that tunes β-cell transcription factor function.
Collapse
Affiliation(s)
- Alex Z Kadhim
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Ben Vanderkruk
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Samantha Mar
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Meixia Dan
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Katarina Zosel
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Eric E Xu
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Rachel J Spencer
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shugo Sasaki
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Xuanjin Cheng
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shannon L J Sproul
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Thilo Speckmann
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Cuilan Nian
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Robyn Cullen
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Dan S Luciani
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Bradford G Hoffman
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Stefan Taubert
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Francis C Lynn
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
16
|
Wadsworth GM, Srinivasan S, Lai LB, Datta M, Gopalan V, Banerjee PR. RNA-driven phase transitions in biomolecular condensates. Mol Cell 2024; 84:3692-3705. [PMID: 39366355 PMCID: PMC11604179 DOI: 10.1016/j.molcel.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
RNAs and RNA-binding proteins can undergo spontaneous or active condensation into phase-separated liquid-like droplets. These condensates are cellular hubs for various physiological processes, and their dysregulation leads to diseases. Although RNAs are core components of many cellular condensates, the underlying molecular determinants for the formation, regulation, and function of ribonucleoprotein condensates have largely been studied from a protein-centric perspective. Here, we highlight recent developments in ribonucleoprotein condensate biology with a particular emphasis on RNA-driven phase transitions. We also present emerging future directions that might shed light on the role of RNA condensates in spatiotemporal regulation of cellular processes and inspire bioengineering of RNA-based therapeutics.
Collapse
Affiliation(s)
- Gable M Wadsworth
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Sukanya Srinivasan
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Lien B Lai
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Moulisubhro Datta
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Priya R Banerjee
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
17
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Lyu R, Gao Y, Wu T, Ye C, Wang P, He C. Quantitative analysis of cis-regulatory elements in transcription with KAS-ATAC-seq. Nat Commun 2024; 15:6852. [PMID: 39127768 PMCID: PMC11316786 DOI: 10.1038/s41467-024-50680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Cis-regulatory elements (CREs) are pivotal in orchestrating gene expression throughout diverse biological systems. Accurate identification and in-depth characterization of functional CREs are crucial for decoding gene regulation networks during cellular processes. In this study, we develop Kethoxal-Assisted Single-stranded DNA Assay for Transposase-Accessible Chromatin with Sequencing (KAS-ATAC-seq) to quantitatively analyze the transcriptional activity of CREs. A main advantage of KAS-ATAC-seq lies in its precise measurement of ssDNA levels within both proximal and distal ATAC-seq peaks, enabling the identification of transcriptional regulatory sequences. This feature is particularly adept at defining Single-Stranded Transcribing Enhancers (SSTEs). SSTEs are highly enriched with nascent RNAs and specific transcription factors (TFs) binding sites that define cellular identity. Moreover, KAS-ATAC-seq provides a detailed characterization and functional implications of various SSTE subtypes. Our analysis of CREs during mouse neural differentiation demonstrates that KAS-ATAC-seq can effectively identify immediate-early activated CREs in response to retinoic acid (RA) treatment. Our findings indicate that KAS-ATAC-seq provides more precise annotation of functional CREs in transcription. Future applications of KAS-ATAC-seq would help elucidate the intricate dynamics of gene regulation in diverse biological processes.
Collapse
Affiliation(s)
- Ruitu Lyu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| | - Yun Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Tong Wu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Pingluan Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
19
|
Mizunuma M, Redon CE, Saha LK, Tran AD, Dhall A, Sebastian R, Taniyama D, Kruhlak MJ, Reinhold WC, Takebe N, Pommier Y. Acetalax (Oxyphenisatin Acetate, NSC 59687) and Bisacodyl Cause Oncosis in Triple-Negative Breast Cancer Cell Lines by Poisoning the Ion Exchange Membrane Protein TRPM4. CANCER RESEARCH COMMUNICATIONS 2024; 4:2101-2111. [PMID: 39041239 PMCID: PMC11322923 DOI: 10.1158/2767-9764.crc-24-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Triple-negative breast cancer (TNBC) is clinically aggressive and relatively unresponsive to current therapies. Therefore, the development of new anticancer agents is needed to satisfy clinical needs. Oxyphenisatin acetate (Acetalax), which had been used as a laxative, has recently been reported to have anticancer activity in murine models. In this study, we demonstrate that Acetalax and its diphenolic laxative structural analogue bisacodyl (Dulcolax) exhibit potent antiproliferative activity in TNBC cell lines and cause oncosis, a nonapoptotic cell death characterized by cellular and nuclear swelling and cell membrane blebbing, leading to mitochondrial dysfunction, ATP depletion, and enhanced immune and inflammatory responses. Mechanistically, we provide evidence that transient receptor potential melastatin member 4 (TRPM4) is poisoned by Acetalax and bisacodyl in MDA-MB468, BT549, and HS578T TNBC cells. MDA-MB231 and MDA-MB436 TNBC cells without endogenous TRPM4 expression as well as TRPM4-knockout TNBC cells were found to be Acetalax- and bisacodyl-resistant. Conversely, ectopic expression of TRPM4 sensitized MDA-MB231 and MDA-MB436 cells to Acetalax. TRPM4 was also lost in cells with acquired Acetalax resistance. Moreover, TRPM4 is rapidly degraded by the ubiquitin-proteasome system upon acute exposure to Acetalax and bisacodyl. Together, these results demonstrate that TRPM4 is a previously unknown target of Acetalax and bisacodyl and that TRPM4 expression in cancer cells is a predictor of Acetalax and bisacodyl efficacy and could be used for the clinical development of these drugs as anticancer agents. SIGNIFICANCE Acetalax and bisacodyl kill cancer cells by causing oncosis following poisoning of the plasma membrane sodium transporter TRPM4 and represent a new therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Makito Mizunuma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Liton Kumar Saha
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andy D. Tran
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anjali Dhall
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daiki Taniyama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Naoko Takebe
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Zhao Z, Chen Y, Zou X, Lin L, Zhou X, Cheng X, Yang G, Xu Q, Gong L, Li L, Ni T. Pan-cancer transcriptome analysis reveals widespread regulation through alternative tandem transcription initiation. SCIENCE ADVANCES 2024; 10:eadl5606. [PMID: 38985880 PMCID: PMC11235174 DOI: 10.1126/sciadv.adl5606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
Abnormal transcription initiation from alternative first exon has been reported to promote tumorigenesis. However, the prevalence and impact of gene expression regulation mediated by alternative tandem transcription initiation were mostly unknown in cancer. Here, we developed a robust computational method to analyze alternative tandem transcription start site (TSS) usage from standard RNA sequencing data. Applying this method to pan-cancer RNA sequencing datasets, we observed widespread dysregulation of tandem TSS usage in tumors, many of which were independent of changes in overall expression level or alternative first exon usage. We showed that the dynamics of tandem TSS usage was associated with epigenomic modulation. We found that significant 5' untranslated region shortening of gene TIMM13 contributed to increased protein production, and up-regulation of TIMM13 by CRISPR-mediated transcriptional activation promoted proliferation and migration of lung cancer cells. Our findings suggest that dysregulated tandem TSS usage represents an addtional layer of cancer-associated transcriptome alterations.
Collapse
Affiliation(s)
- Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yu Chen
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xudong Zou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Limin Lin
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaolan Zhou
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaomeng Cheng
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guangrui Yang
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiushi Xu
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lihai Gong
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
21
|
Oguchi A, Suzuki A, Komatsu S, Yoshitomi H, Bhagat S, Son R, Bonnal RJP, Kojima S, Koido M, Takeuchi K, Myouzen K, Inoue G, Hirai T, Sano H, Takegami Y, Kanemaru A, Yamaguchi I, Ishikawa Y, Tanaka N, Hirabayashi S, Konishi R, Sekito S, Inoue T, Kere J, Takeda S, Takaori-Kondo A, Endo I, Kawaoka S, Kawaji H, Ishigaki K, Ueno H, Hayashizaki Y, Pagani M, Carninci P, Yanagita M, Parrish N, Terao C, Yamamoto K, Murakawa Y. An atlas of transcribed enhancers across helper T cell diversity for decoding human diseases. Science 2024; 385:eadd8394. [PMID: 38963856 DOI: 10.1126/science.add8394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 05/01/2024] [Indexed: 07/06/2024]
Abstract
Transcribed enhancer maps can reveal nuclear interactions underpinning each cell type and connect specific cell types to diseases. Using a 5' single-cell RNA sequencing approach, we defined transcription start sites of enhancer RNAs and other classes of coding and noncoding RNAs in human CD4+ T cells, revealing cellular heterogeneity and differentiation trajectories. Integration of these datasets with single-cell chromatin profiles showed that active enhancers with bidirectional RNA transcription are highly cell type-specific and that disease heritability is strongly enriched in these enhancers. The resulting cell type-resolved multimodal atlas of bidirectionally transcribed enhancers, which we linked with promoters using fine-scale chromatin contact maps, enabled us to systematically interpret genetic variants associated with a range of immune-mediated diseases.
Collapse
Affiliation(s)
- Akiko Oguchi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shuichiro Komatsu
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Hiroyuki Yoshitomi
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shruti Bhagat
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Raku Son
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Shohei Kojima
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaru Koido
- Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuhiro Takeuchi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Myouzen
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Gyo Inoue
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoya Hirai
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiromi Sano
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | | | | | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Nao Tanaka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shigeki Hirabayashi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Riyo Konishi
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sho Sekito
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shinpei Kawaoka
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hideki Ueno
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihide Hayashizaki
- K.K. DNAFORM, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Massimiliano Pagani
- IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi, Milan, Italy
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Motoko Yanagita
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nicholas Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasuhiro Murakawa
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Ulicevic J, Shao Z, Jasnovidova O, Bressin A, Gajos M, Ng AH, Annaldasula S, Meierhofer D, Church GM, Busskamp V, Mayer A. Uncovering the dynamics and consequences of RNA isoform changes during neuronal differentiation. Mol Syst Biol 2024; 20:767-798. [PMID: 38755290 PMCID: PMC11219738 DOI: 10.1038/s44320-024-00039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Static gene expression programs have been extensively characterized in stem cells and mature human cells. However, the dynamics of RNA isoform changes upon cell-state-transitions during cell differentiation, the determinants and functional consequences have largely remained unclear. Here, we established an improved model for human neurogenesis in vitro that is amenable for systems-wide analyses of gene expression. Our multi-omics analysis reveals that the pronounced alterations in cell morphology correlate strongly with widespread changes in RNA isoform expression. Our approach identifies thousands of new RNA isoforms that are expressed at distinct differentiation stages. RNA isoforms mainly arise from exon skipping and the alternative usage of transcription start and polyadenylation sites during human neurogenesis. The transcript isoform changes can remodel the identity and functions of protein isoforms. Finally, our study identifies a set of RNA binding proteins as a potential determinant of differentiation stage-specific global isoform changes. This work supports the view of regulated isoform changes that underlie state-transitions during neurogenesis.
Collapse
Affiliation(s)
- Jelena Ulicevic
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Zhihao Shao
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Olga Jasnovidova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annkatrin Bressin
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martyna Gajos
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Alex Hm Ng
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, USA
| | - Siddharth Annaldasula
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, USA
| | - Volker Busskamp
- Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
23
|
O'Reilly ME, Ho S, Coronel J, Zhu L, Liu W, Xue C, Kim E, Cynn E, Matias CV, Soni RK, Wang C, Ionita-Laza I, Bauer RC, Ross L, Zhang Y, Corvera S, Fried SK, Reilly MP. linc-ADAIN, a human adipose lincRNA, regulates adipogenesis by modulating KLF5 and IL-8 mRNA stability. Cell Rep 2024; 43:114240. [PMID: 38753486 PMCID: PMC11334222 DOI: 10.1016/j.celrep.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Adipose tissue remodeling and dysfunction, characterized by elevated inflammation and insulin resistance, play a central role in obesity-related development of type 2 diabetes (T2D) and cardiovascular diseases. Long intergenic non-coding RNAs (lincRNAs) are important regulators of cellular functions. Here, we describe the functions of linc-ADAIN (adipose anti-inflammatory), an adipose lincRNA that is downregulated in white adipose tissue of obese humans. We demonstrate that linc-ADAIN knockdown (KD) increases KLF5 and interleukin-8 (IL-8) mRNA stability and translation by interacting with IGF2BP2. Upregulation of KLF5 and IL-8, via linc-ADAIN KD, leads to an enhanced adipogenic program and adipose tissue inflammation, mirroring the obese state, in vitro and in vivo. KD of linc-ADAIN in human adipose stromal cell (ASC) hTERT adipocytes implanted into mice increases adipocyte size and macrophage infiltration compared to implanted control adipocytes, mimicking hallmark features of obesity-induced adipose tissue remodeling. linc-ADAIN is an anti-inflammatory lincRNA that limits adipose tissue expansion and lipid storage.
Collapse
Affiliation(s)
- Marcella E O'Reilly
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Sebastian Ho
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Johana Coronel
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Lucie Zhu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Wen Liu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Chenyi Xue
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Eunyoung Kim
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Esther Cynn
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Caio V Matias
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Chen Wang
- Department of Statistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Iuliana Ionita-Laza
- Department of Statistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Robert C Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Leila Ross
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yiying Zhang
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Muredach P Reilly
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA; Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
24
|
Saha D, Animireddy S, Lee J, Thommen A, Murvin MM, Lu Y, Calabrese JM, Bartholomew B. Enhancer switching in cell lineage priming is linked to eRNA, Brg1's AT-hook, and SWI/SNF recruitment. Mol Cell 2024; 84:1855-1869.e5. [PMID: 38593804 PMCID: PMC11104297 DOI: 10.1016/j.molcel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/24/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
RNA transcribed from enhancers, i.e., eRNA, has been suggested to directly activate transcription by recruiting transcription factors and co-activators. Although there have been specific examples of eRNA functioning in this way, it is not clear how general this may be. We find that the AT-hook of SWI/SNF preferentially binds RNA and, as part of the esBAF complex, associates with eRNA transcribed from intronic and intergenic regions. Our data suggest that SWI/SNF is globally recruited in cis by eRNA to cell-type-specific enhancers, representative of two distinct stages that mimic early mammalian development, and not at enhancers that are shared between the two stages. In this manner, SWI/SNF facilitates recruitment and/or activation of MLL3/4, p300/CBP, and Mediator to stage-specific enhancers and super-enhancers that regulate the transcription of metabolic and cell lineage priming-related genes. These findings highlight a connection between ATP-dependent chromatin remodeling and eRNA in cell identity and typical- and super-enhancer activation.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Srinivas Animireddy
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Junwoo Lee
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Anna Thommen
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - McKenzie M Murvin
- Department of Pharmacology, RNA Discovery Center, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA; Curriculum in Mechanistic, Interdisciplinary Studies in Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA
| | - J Mauro Calabrese
- Department of Pharmacology, RNA Discovery Center, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA; Curriculum in Mechanistic, Interdisciplinary Studies in Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA.
| |
Collapse
|
25
|
Guérin A, Moncada-Vélez M, Jackson K, Ogishi M, Rosain J, Mancini M, Langlais D, Nunez A, Webster S, Goyette J, Khan T, Marr N, Avery DT, Rao G, Waterboer T, Michels B, Neves E, Iracema Morais C, London J, Mestrallet S, Quartier dit Maire P, Neven B, Rapaport F, Seeleuthner Y, Lev A, Simon AJ, Montoya J, Barel O, Gómez-Rodríguez J, Orrego JC, L’Honneur AS, Soudée C, Rojas J, Velez AC, Sereti I, Terrier B, Marin N, García LF, Abel L, Boisson-Dupuis S, Reis J, Marinho A, Lisco A, Faria E, Goodnow CC, Vasconcelos J, Béziat V, Ma CS, Somech R, Casanova JL, Bustamante J, Franco JL, Tangye SG. Helper T cell immunity in humans with inherited CD4 deficiency. J Exp Med 2024; 221:e20231044. [PMID: 38557723 PMCID: PMC10983808 DOI: 10.1084/jem.20231044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαβ+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αβ T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.
Collapse
Affiliation(s)
- Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | | | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - David Langlais
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Andrea Nunez
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Samantha Webster
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Jesse Goyette
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- The Jackson Laboratory, Farmington, CT, USA
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Danielle T. Avery
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Birgitta Michels
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Esmeralda Neves
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Cátia Iracema Morais
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Jonathan London
- Service of Internal Medicine, Diaconesse-Croix Saint Simon Hospital, Paris, France
| | - Stéphanie Mestrallet
- Department of Internal Medicine and Infectious Diseases, Manchester Hospital, Charleville-Mézières, France
| | - Pierre Quartier dit Maire
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Bénédicte Neven
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Atar Lev
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Amos J. Simon
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jorge Montoya
- San Vicente de Paul University Hospital, Medellin, Colombia
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Julio Gómez-Rodríguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julio C. Orrego
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Anne-Sophie L’Honneur
- Department of Virology, Paris Cité University and Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jessica Rojas
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Alejandra C. Velez
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Terrier
- Department of Internal Medicine, Cochin Hospital, Assistance Publique–Hôpitaux de Paris, Paris Cité University, Paris, France
| | - Nancy Marin
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Luis F. García
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Joel Reis
- Dermatology Service, University Hospital Center of Porto, Porto, Portugal
| | - Antonio Marinho
- School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Department of Clinical Immunology, University Hospital Center of Porto, Porto, Portugal
| | - Andrea Lisco
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emilia Faria
- Allergy and Clinical Immunology Department, University Hospital Center of Coimbra, Coimbra, Portugal
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Julia Vasconcelos
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Raz Somech
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| |
Collapse
|
26
|
Kotliar D, Curtis M, Agnew R, Weinand K, Nathan A, Baglaenko Y, Zhao Y, Sabeti PC, Rao DA, Raychaudhuri S. Reproducible single cell annotation of programs underlying T-cell subsets, activation states, and functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592310. [PMID: 38746317 PMCID: PMC11092745 DOI: 10.1101/2024.05.03.592310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
T-cells recognize antigens and induce specialized gene expression programs (GEPs) enabling functions including proliferation, cytotoxicity, and cytokine production. Traditionally, different classes of helper T-cells express mutually exclusive responses - for example, Th1, Th2, and Th17 programs. However, new single-cell RNA sequencing (scRNA-Seq) experiments have revealed a continuum of T-cell states without discrete clusters corresponding to these subsets, implying the need for new analytical frameworks. Here, we advance the characterization of T-cells with T-CellAnnoTator (TCAT), a pipeline that simultaneously quantifies pre-defined GEPs capturing activation states and cellular subsets. From 1,700,000 T-cells from 700 individuals across 38 tissues and five diverse disease contexts, we discover 46 reproducible GEPs reflecting the known core functions of T-cells including proliferation, cytotoxicity, exhaustion, and T helper effector states. We experimentally characterize several novel activation programs and apply TCAT to describe T-cell activation and exhaustion in Covid-19 and cancer, providing insight into T-cell function in these diseases.
Collapse
Affiliation(s)
- Dylan Kotliar
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle Curtis
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan Agnew
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn Weinand
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Yuriy Baglaenko
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Center for Autoimmune Genetics and Etiology and Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45219, USA
| | - Yu Zhao
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Paterson AH, Queitsch C. Genome organization and botanical diversity. THE PLANT CELL 2024; 36:1186-1204. [PMID: 38382084 PMCID: PMC11062460 DOI: 10.1093/plcell/koae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The rich diversity of angiosperms, both the planet's dominant flora and the cornerstone of agriculture, is integrally intertwined with a distinctive evolutionary history. Here, we explore the interplay between angiosperm genome organization and botanical diversity, empowered by genomic approaches ranging from genetic linkage mapping to analysis of gene regulation. Commonality in the genetic hardware of plants has enabled robust comparative genomics that has provided a broad picture of angiosperm evolution and implicated both general processes and specific elements in contributing to botanical diversity. We argue that the hardware of plant genomes-both in content and in dynamics-has been shaped by selection for rather substantial differences in gene regulation between plants and animals such as maize and human, organisms of comparable genome size and gene number. Their distinctive genome content and dynamics may reflect in part the indeterminate development of plants that puts strikingly different demands on gene regulation than in animals. Repeated polyploidization of plant genomes and multiplication of individual genes together with extensive rearrangement and differential retention provide rich raw material for selection of morphological and/or physiological variations conferring fitness in specific niches, whether natural or artificial. These findings exemplify the burgeoning information available to employ in increasing knowledge of plant biology and in modifying selected plants to better meet human needs.
Collapse
Affiliation(s)
- Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Gupta I, Yeung J, Rahimi-Balaei M, Wu SR, Goldowitz D. Msx genes delineate a novel molecular map of the developing cerebellar neuroepithelium. Front Mol Neurosci 2024; 17:1356544. [PMID: 38742226 PMCID: PMC11089253 DOI: 10.3389/fnmol.2024.1356544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
In the early cerebellar primordium, there are two progenitor zones, the ventricular zone (VZ) residing atop the IVth ventricle and the rhombic lip (RL) at the lateral edges of the developing cerebellum. These zones give rise to the several cell types that form the GABAergic and glutamatergic populations of the adult cerebellum, respectively. Recently, an understanding of the molecular compartmentation of these zones has emerged. To add to this knowledge base, we report on the Msx genes, a family of three transcription factors, that are expressed downstream of Bone Morphogenetic Protein (BMP) signaling in these zones. Using fluorescent RNA in situ hybridization, we have characterized the Msx (Msh Homeobox) genes and demonstrated that their spatiotemporal pattern segregates specific regions within the progenitor zones. Msx1 and Msx2 are compartmentalized within the rhombic lip (RL), while Msx3 is localized within the ventricular zone (VZ). The relationship of the Msx genes with an early marker of the glutamatergic lineage, Atoh1, was examined in Atoh1-null mice and it was found that the expression of Msx genes persisted. Importantly, the spatial expression of Msx1 and Msx3 altered in response to the elimination of Atoh1. These results point to the Msx genes as novel early markers of cerebellar progenitor zones and more importantly to an updated view of the molecular parcellation of the RL with respect to the canonical marker of the RL, Atoh1.
Collapse
Affiliation(s)
- Ishita Gupta
- British Columbia Children’s Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Joanna Yeung
- British Columbia Children’s Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Maryam Rahimi-Balaei
- British Columbia Children’s Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sih-Rong Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Dan Goldowitz
- British Columbia Children’s Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Abugessaisa I, Manabe RI, Kawashima T, Tagami M, Takahashi C, Okazaki Y, Bandinelli S, Kasukawa T, Ferrucci L. OVCH1 Antisense RNA 1 is differentially expressed between non-frail and frail old adults. GeroScience 2024; 46:2063-2081. [PMID: 37817005 PMCID: PMC10828349 DOI: 10.1007/s11357-023-00961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
While some old adults stay healthy and non-frail up to late in life, others experience multimorbidity and frailty often accompanied by a pro-inflammatory state. The underlying molecular mechanisms for those differences are still obscure. Here, we used gene expression analysis to understand the molecular underpinning between non-frail and frail individuals in old age. Twenty-four adults (50% non-frail and 50% frail) from InCHIANTI study were included. Total RNA extracted from whole blood was analyzed by Cap Analysis of Gene Expression (CAGE). CAGE identified transcription start site (TSS) and active enhancer regions. We identified a set of differentially expressed (DE) TSS and enhancer between non-frail and frail and male and female participants. Several DE TSSs were annotated as lncRNA (XIST and TTTY14) and antisense RNAs (ZFX-AS1 and OVCH1 Antisense RNA 1). The promoter region chr6:366,786,54-366,787,97;+ was DE and overlapping the longevity CDKN1A gene. GWAS-LD enrichment analysis identifies overlapping LD-blocks with the DE regions with reported traits in GWAS catalog (isovolumetric relaxation time and urinary tract infection frequency). Furthermore, we used weighted gene co-expression network analysis (WGCNA) to identify changes of gene expression associated with clinical traits and identify key gene modules. We performed functional enrichment analysis of the gene modules with significant trait/module correlation. One gene module is showing a very distinct pattern in hub genes. Glycogen Phosphorylase L (PYGL) was the top ranked hub gene between non-frail and frail. We predicted transcription factor binding sites (TFBS) and motif activity. TF involved in age-related pathways (e.g., FOXO3 and MYC) shows different expression patterns between non-frail and frail participants. Expanding the study of OVCH1 Antisense RNA 1 and PYGL may help understand the mechanisms leading to loss of homeostasis that ultimately causes frailty.
Collapse
Affiliation(s)
- Imad Abugessaisa
- Laboratory for Large-Scale Biomedical Data Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
| | - Ri-Ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Tsugumi Kawashima
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Michihira Tagami
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Chitose Takahashi
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Stefania Bandinelli
- Azienda USL Toscana Centro, InCHIANTI, Villa Margherita, Primo piano Viale Michelangelo, 41, 50125, Firenze, Italy
| | - Takeya Kasukawa
- Laboratory for Large-Scale Biomedical Data Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD, 21225, USA
| |
Collapse
|
30
|
Teng M, Xia ZJ, Lo N, Daud K, He HH. Assembling the RNA therapeutics toolbox. MEDICAL REVIEW (2021) 2024; 4:110-128. [PMID: 38680684 PMCID: PMC11046573 DOI: 10.1515/mr-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
From the approval of COVID-19 mRNA vaccines to the 2023 Nobel Prize awarded for nucleoside base modifications, RNA therapeutics have entered the spotlight and are transforming drug development. While the term "RNA therapeutics" has been used in various contexts, this review focuses on treatments that utilize RNA as a component or target RNA for therapeutic effects. We summarize the latest advances in RNA-targeting tools and RNA-based technologies, including but not limited to mRNA, antisense oligos, siRNAs, small molecules and RNA editors. We focus on the mechanisms of current FDA-approved therapeutics but also provide a discussion on the upcoming workforces. The clinical utility of RNA-based therapeutics is enabled not only by the advances in RNA technologies but in conjunction with the significant improvements in chemical modifications and delivery platforms, which are also briefly discussed in the review. We summarize the latest RNA therapeutics based on their mechanisms and therapeutic effects, which include expressing proteins for vaccination and protein replacement therapies, degrading deleterious RNA, modulating transcription and translation efficiency, targeting noncoding RNAs, binding and modulating protein activity and editing RNA sequences and modifications. This review emphasizes the concept of an RNA therapeutic toolbox, pinpointing the readers to all the tools available for their desired research and clinical goals. As the field advances, the catalog of RNA therapeutic tools continues to grow, further allowing researchers to combine appropriate RNA technologies with suitable chemical modifications and delivery platforms to develop therapeutics tailored to their specific clinical challenges.
Collapse
Affiliation(s)
- Mona Teng
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ziting Judy Xia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nicholas Lo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kashif Daud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
31
|
Walter NG. Are non-protein coding RNAs junk or treasure?: An attempt to explain and reconcile opposing viewpoints of whether the human genome is mostly transcribed into non-functional or functional RNAs. Bioessays 2024; 46:e2300201. [PMID: 38351661 DOI: 10.1002/bies.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
The human genome project's lasting legacies are the emerging insights into human physiology and disease, and the ascendance of biology as the dominant science of the 21st century. Sequencing revealed that >90% of the human genome is not coding for proteins, as originally thought, but rather is overwhelmingly transcribed into non-protein coding, or non-coding, RNAs (ncRNAs). This discovery initially led to the hypothesis that most genomic DNA is "junk", a term still championed by some geneticists and evolutionary biologists. In contrast, molecular biologists and biochemists studying the vast number of transcripts produced from most of this genome "junk" often surmise that these ncRNAs have biological significance. What gives? This essay contrasts the two opposing, extant viewpoints, aiming to explain their bases, which arise from distinct reference frames of the underlying scientific disciplines. Finally, it aims to reconcile these divergent mindsets in hopes of stimulating synergy between scientific fields.
Collapse
Affiliation(s)
- Nils G Walter
- Center for RNA Biomedicine, Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Patel A, Dharap A. An Emerging Role for Enhancer RNAs in Brain Disorders. Neuromolecular Med 2024; 26:7. [PMID: 38546891 PMCID: PMC11263973 DOI: 10.1007/s12017-024-08776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Noncoding DNA undergoes widespread context-dependent transcription to produce noncoding RNAs. In recent decades, tremendous advances in genomics and transcriptomics have revealed important regulatory roles for noncoding DNA elements and the RNAs that they produce. Enhancers are one such element that are well-established drivers of gene expression changes in response to a variety of factors such as external stimuli, cellular responses, developmental cues, and disease states. They are known to act at long distances, interact with multiple target gene loci simultaneously, synergize with other enhancers, and associate with dynamic chromatin architectures to form a complex regulatory network. Recent advances in enhancer biology have revealed that upon activation, enhancers transcribe long noncoding RNAs, known as enhancer RNAs (eRNAs), that have been shown to play important roles in enhancer-mediated gene regulation and chromatin-modifying activities. In the brain, enhancer dysregulation and eRNA transcription has been reported in numerous disorders from acute injuries to chronic neurodegeneration. Because this is an emerging area, a comprehensive understanding of eRNA function has not yet been achieved in brain disorders; however, the findings to date have illuminated a role for eRNAs in activity-driven gene expression and phenotypic outcomes. In this review, we highlight the breadth of the current literature on eRNA biology in brain health and disease and discuss the challenges as well as focus areas and strategies for future in-depth research on eRNAs in brain health and disease.
Collapse
Affiliation(s)
- Ankit Patel
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Byrd Alzheimer's Center & Research Institute, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Ashutosh Dharap
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.
- Byrd Alzheimer's Center & Research Institute, USF Health Neuroscience Institute, Tampa, FL, USA.
| |
Collapse
|
33
|
Lin W, Wall JD, Li G, Newman D, Yang Y, Abney M, VandeBerg JL, Olivier M, Gilad Y, Cox LA. Genetic regulatory effects in response to a high-cholesterol, high-fat diet in baboons. CELL GENOMICS 2024; 4:100509. [PMID: 38430910 PMCID: PMC10943580 DOI: 10.1016/j.xgen.2024.100509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Steady-state expression quantitative trait loci (eQTLs) explain only a fraction of disease-associated loci identified through genome-wide association studies (GWASs), while eQTLs involved in gene-by-environment (GxE) interactions have rarely been characterized in humans due to experimental challenges. Using a baboon model, we found hundreds of eQTLs that emerge in adipose, liver, and muscle after prolonged exposure to high dietary fat and cholesterol. Diet-responsive eQTLs exhibit genomic localization and genic features that are distinct from steady-state eQTLs. Furthermore, the human orthologs associated with diet-responsive eQTLs are enriched for GWAS genes associated with human metabolic traits, suggesting that context-responsive eQTLs with more complex regulatory effects are likely to explain GWAS hits that do not seem to overlap with standard eQTLs. Our results highlight the complexity of genetic regulatory effects and the potential of eQTLs with disease-relevant GxE interactions in enhancing the understanding of GWAS signals for human complex disease using non-human primate models.
Collapse
Affiliation(s)
- Wenhe Lin
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Deborah Newman
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78229, USA
| | - Yunqi Yang
- Committee on Genetics, Genomics and System Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Abney
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - John L VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Yoav Gilad
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Laura A Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78229, USA.
| |
Collapse
|
34
|
Cai H, Liang J, Jiang Y, Wang Z, Li H, Wang W, Wang C, Hou J. KLF7 regulates super-enhancer-driven IGF2BP2 overexpression to promote the progression of head and neck squamous cell carcinoma. J Exp Clin Cancer Res 2024; 43:69. [PMID: 38443991 PMCID: PMC10913600 DOI: 10.1186/s13046-024-02996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Head and neck squamous carcinoma (HNSCC) is known for its high aggressiveness and susceptibility to cervical lymph node metastasis, which greatly contributes to its poor prognosis. During tumorigenesis, many types of cancer cells acquire oncogenic super-enhancers (SEs) that drive the overexpression of oncogenes, thereby maintaining malignant progression. This study aimed to identify and validate the role of oncogenic SE-associated genes in the malignant progression of HNSCC. METHODS We identified HNSCC cell-specific SE-associated genes through H3K27Ac ChIP-seq and overlapped them with HNSCC-associated genes obtained from The Cancer Genome Atlas (TCGA) dataset and Gene Expression Omnibus (GEO) datasets using weighted gene coexpression network analysis (WGCNA) to identify hub genes. The expression of IGF2BP2 and KLF7 in HNSCC was detected using clinical samples. To determine the biological role of IGF2BP2, we performed CCK-8, colony formation assay, Transwell migration assay, invasion assay, and orthotopic xenograft model experiments. Furthermore, we utilized a CRISPR/Cas9 gene-editing system, small-molecule inhibitors, ChIP-qPCR, and dual-luciferase reporter assays to investigate the molecular mechanisms of IGF2BP2 and its upstream transcription factors. RESULTS Our study identified IGF2BP2 as a hub SE-associated gene that exhibited aberrant expression in HNSCC tissues. Increased expression of IGF2BP2 was observed to be linked with malignant progression and unfavorable prognosis in HNSCC patients. Both in vitro and in vivo experiments confirmed that IGF2BP2 promotes the tumorigenicity and metastasis of HNSCC by promoting cell proliferation, migration, and invasion. Mechanistically, the IGF2BP2-SE region displayed enrichment for H3K27Ac, BRD4, and MED1, which led to the inhibition of IGF2BP2 transcription and expression through deactivation of the SE-associated transcriptional program. Additionally, KLF7 was found to induce the transcription of IGF2BP2 and directly bind to its promoter and SE regions. Moreover, the abundance of KLF7 exhibited a positive correlation with the abundance of IGF2BP2 in HNSCC. Patients with high expression of both KLF7 and IGF2BP2 showed poorer prognosis. Lastly, we demonstrated that the small molecule inhibitor JQ1, targeting BRD4, attenuated the proliferation and metastatic abilities of HNSCC cells. CONCLUSIONS Our study reveals the critical role of IGF2BP2 overexpression mediated by SE and KLF7 in promoting HNSCC progression. Targeting SE-associated transcriptional programs may represent a potential therapeutic strategy in managing HNSCC.
Collapse
Affiliation(s)
- Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yaoqi Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ziyi Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongyu Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wenjin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cheng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
35
|
O'Brien CL, Summers KM, Martin NM, Carter-Cusack D, Yang Y, Barua R, Dixit OVA, Hume DA, Pavli P. The relationship between extreme inter-individual variation in macrophage gene expression and genetic susceptibility to inflammatory bowel disease. Hum Genet 2024; 143:233-261. [PMID: 38421405 PMCID: PMC11043138 DOI: 10.1007/s00439-024-02642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024]
Abstract
The differentiation of resident intestinal macrophages from blood monocytes depends upon signals from the macrophage colony-stimulating factor receptor (CSF1R). Analysis of genome-wide association studies (GWAS) indicates that dysregulation of macrophage differentiation and response to microorganisms contributes to susceptibility to chronic inflammatory bowel disease (IBD). Here, we analyzed transcriptomic variation in monocyte-derived macrophages (MDM) from affected and unaffected sib pairs/trios from 22 IBD families and 6 healthy controls. Transcriptional network analysis of the data revealed no overall or inter-sib distinction between affected and unaffected individuals in basal gene expression or the temporal response to lipopolysaccharide (LPS). However, the basal or LPS-inducible expression of individual genes varied independently by as much as 100-fold between subjects. Extreme independent variation in the expression of pairs of HLA-associated transcripts (HLA-B/C, HLA-A/F and HLA-DRB1/DRB5) in macrophages was associated with HLA genotype. Correlation analysis indicated the downstream impacts of variation in the immediate early response to LPS. For example, variation in early expression of IL1B was significantly associated with local SNV genotype and with subsequent peak expression of target genes including IL23A, CXCL1, CXCL3, CXCL8 and NLRP3. Similarly, variation in early IFNB1 expression was correlated with subsequent expression of IFN target genes. Our results support the view that gene-specific dysregulation in macrophage adaptation to the intestinal milieu is associated with genetic susceptibility to IBD.
Collapse
Affiliation(s)
- Claire L O'Brien
- Centre for Research in Therapeutics Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Natalia M Martin
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia
| | - Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Yuanhao Yang
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Rasel Barua
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia
| | - Ojas V A Dixit
- Centre for Research in Therapeutics Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
| | - Paul Pavli
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia.
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
36
|
Wang Y, Jin W, Pan X, Liao W, Shen Q, Cai J, Gong W, Tian Y, Xu D, Li Y, Li J, Gong J, Zhang Z, Yuan X. Pig-eRNAdb: a comprehensive enhancer and eRNA dataset of pigs. Sci Data 2024; 11:157. [PMID: 38302497 PMCID: PMC10834423 DOI: 10.1038/s41597-024-02960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Enhancers and the enhancer RNAs (eRNAs) have been strongly implicated in regulations of transcriptions. Based the multi-omics data (ATAC-seq, ChIP-seq and RNA-seq) from public databases, Pig-eRNAdb is a dataset that comprehensively integrates enhancers and eRNAs for pigs using the machine learning strategy, which incorporates 82,399 enhancers and 37,803 eRNAs from 607 samples across 15 tissues of pigs. This user-friendly dataset covers a comprehensive depth of enhancers and eRNAs annotation for pigs. The coordinates of enhancers and the expression patterns of eRNAs are downloadable. Besides, thousands of regulators on eRNAs, the target genes of eRNAs, the tissue-specific eRNAs, and the housekeeping eRNAs are also accessible as well as the sequence similarity of eRNAs with humans. Moreover, the tissue-specific eRNA-trait associations encompass 652 traits are also provided. It will crucially facilitate investigations on enhancers and eRNAs with Pig-eRNAdb as a reference dataset in pigs.
Collapse
Affiliation(s)
- Yifei Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Weiwei Jin
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangchun Pan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Weili Liao
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingpeng Shen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiali Cai
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Gong
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuhan Tian
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dantong Xu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yipeng Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqi Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Gong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaolong Yuan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
37
|
Reitzner SM, Emanuelsson EB, Arif M, Kaczkowski B, Kwon AT, Mardinoglu A, Arner E, Chapman MA, Sundberg CJ. Molecular profiling of high-level athlete skeletal muscle after acute endurance or resistance exercise - A systems biology approach. Mol Metab 2024; 79:101857. [PMID: 38141850 PMCID: PMC10805945 DOI: 10.1016/j.molmet.2023.101857] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE Long-term high-level exercise training leads to improvements in physical performance and multi-tissue adaptation following changes in molecular pathways. While skeletal muscle baseline differences between exercise-trained and untrained individuals have been previously investigated, it remains unclear how training history influences human multi-omics responses to acute exercise. METHODS We recruited and extensively characterized 24 individuals categorized as endurance athletes with >15 years of training history, strength athletes or control subjects. Timeseries skeletal muscle biopsies were taken from M. vastus lateralis at three time-points after endurance or resistance exercise was performed and multi-omics molecular analysis performed. RESULTS Our analyses revealed distinct activation differences of molecular processes such as fatty- and amino acid metabolism and transcription factors such as HIF1A and the MYF-family. We show that endurance athletes have an increased abundance of carnitine-derivates while strength athletes increase specific phospholipid metabolites compared to control subjects. Additionally, for the first time, we show the metabolite sorbitol to be substantially increased with acute exercise. On transcriptional level, we show that acute resistance exercise stimulates more gene expression than acute endurance exercise. This follows a specific pattern, with endurance athletes uniquely down-regulating pathways related to mitochondria, translation and ribosomes. Finally, both forms of exercise training specialize in diverging transcriptional directions, differentiating themselves from the transcriptome of the untrained control group. CONCLUSIONS We identify a "transcriptional specialization effect" by transcriptional narrowing and intensification, and molecular specialization effects on metabolomic level Additionally, we performed multi-omics network and cluster analysis, providing a novel resource of skeletal muscle transcriptomic and metabolomic profiling in highly trained and untrained individuals.
Collapse
Affiliation(s)
- Stefan M Reitzner
- Department Physiology & Pharmacology, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden; Department Women's and Children's Health, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden.
| | - Eric B Emanuelsson
- Department Physiology & Pharmacology, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden
| | - Bogumil Kaczkowski
- Center for Integrative Medical Sciences, RIKEN Yokohama, 1 Chome-7-22 Suehirocho, Tsurumi Ward, Yokohama, Kanagawa 230-0045, Japan
| | - Andrew Tj Kwon
- Center for Integrative Medical Sciences, RIKEN Yokohama, 1 Chome-7-22 Suehirocho, Tsurumi Ward, Yokohama, Kanagawa 230-0045, Japan
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 1UL, United Kingdom
| | - Erik Arner
- Center for Integrative Medical Sciences, RIKEN Yokohama, 1 Chome-7-22 Suehirocho, Tsurumi Ward, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1 Chome-3-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Mark A Chapman
- Department Physiology & Pharmacology, Department Women's and Children's Health, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden; Department of Integrated Engineering, University of San Diego, 5998 Alcalà Park, San Diego, CA 92110, USA
| | - Carl Johan Sundberg
- Department Physiology & Pharmacology, Department Women's and Children's Health, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden; Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Tomtebodavägen 18A, 171 65 Solna, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 141 52 Huddinge, Sweden
| |
Collapse
|
38
|
Sung HM, Schott J, Boss P, Lehmann JA, Hardt MR, Lindner D, Messens J, Bogeski I, Ohler U, Stoecklin G. Stress-induced nuclear speckle reorganization is linked to activation of immediate early gene splicing. J Cell Biol 2023; 222:e202111151. [PMID: 37956386 PMCID: PMC10641589 DOI: 10.1083/jcb.202111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 11/15/2023] Open
Abstract
Current models posit that nuclear speckles (NSs) serve as reservoirs of splicing factors and facilitate posttranscriptional mRNA processing. Here, we discovered that ribotoxic stress induces a profound reorganization of NSs with enhanced recruitment of factors required for splice-site recognition, including the RNA-binding protein TIAR, U1 snRNP proteins and U2-associated factor 65, as well as serine 2 phosphorylated RNA polymerase II. NS reorganization relies on the stress-activated p38 mitogen-activated protein kinase (MAPK) pathway and coincides with splicing activation of both pre-existing and newly synthesized pre-mRNAs. In particular, ribotoxic stress causes targeted excision of retained introns from pre-mRNAs of immediate early genes (IEGs), whose transcription is induced during the stress response. Importantly, enhanced splicing of the IEGs ZFP36 and FOS is accompanied by relocalization of the corresponding nuclear mRNA foci to NSs. Our study reveals NSs as a dynamic compartment that is remodeled under stress conditions, whereby NSs appear to become sites of IEG transcription and efficient cotranscriptional splicing.
Collapse
Affiliation(s)
- Hsu-Min Sung
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Johanna Schott
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Philipp Boss
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Humboldt University, Berlin, Germany
| | - Janina A. Lehmann
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Marius Roland Hardt
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Doris Lindner
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Joris Messens
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Humboldt University, Berlin, Germany
| | - Georg Stoecklin
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
39
|
Abstract
Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Amandine Barral Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. 3400 Civic Blvd, Philadelphia, Pennsylvania19104, USA
| | - Jérôme Déjardin
- Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, Montpellier, France,Jérôme Déjardin Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier34000, France
| |
Collapse
|
40
|
Lin W, Wall JD, Li G, Newman D, Yang Y, Abney M, VandeBerg JL, Olivier M, Gilad Y, Cox LA. Genetic regulatory effects in response to a high cholesterol, high fat diet in baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551489. [PMID: 37577666 PMCID: PMC10418186 DOI: 10.1101/2023.08.01.551489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Steady-state expression quantitative trait loci (eQTLs) explain only a fraction of disease-associated loci identified through genome-wide association studies (GWAS), while eQTLs involved in gene-by-environment (GxE) interactions have rarely been characterized in humans due to experimental challenges. Using a baboon model, we found hundreds of eQTLs that emerge in adipose, liver, and muscle after prolonged exposure to high dietary fat and cholesterol. Diet-responsive eQTLs exhibit genomic localization and genic features that are distinct from steady-state eQTLs. Furthermore, the human orthologs associated with diet-responsive eQTLs are enriched for GWAS genes associated with human metabolic traits, suggesting that context-responsive eQTLs with more complex regulatory effects are likely to explain GWAS hits that do not seem to overlap with standard eQTLs. Our results highlight the complexity of genetic regulatory effects and the potential of eQTLs with disease-relevant GxE interactions in enhancing the understanding of GWAS signals for human complex disease using nonhuman primate models.
Collapse
Affiliation(s)
- Wenhe Lin
- Department of Human Genetics, The University of Chicago, Chicago, USA
| | - Jeffrey D. Wall
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Present address: Galatea Bio, Hialeah, FL, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Deborah Newman
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Yunqi Yang
- Committee on Genetics, Genomics and System Biology, The University of Chicago, Chicago, USA
| | - Mark Abney
- Department of Human Genetics, The University of Chicago, Chicago, USA
| | - John L. VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grand Valley, Brownsville, TX, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yoav Gilad
- Department of Human Genetics, The University of Chicago, Chicago, USA
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
- Lead contact
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
41
|
Xie Y, Ying S, Li Z, Zhang Y, Zhu J, Zhang J, Wang M, Diao H, Wang H, Zhang Y, Ye L, Zhuang Y, Zhao F, Teng W, Zhang W, Tong Y, Cho J, Dong Z, Xue Y, Zhang Y. Transposable element-initiated enhancer-like elements generate the subgenome-biased spike specificity of polyploid wheat. Nat Commun 2023; 14:7465. [PMID: 37978184 PMCID: PMC10656477 DOI: 10.1038/s41467-023-42771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Transposable elements (TEs) comprise ~85% of the common wheat genome, which are highly diverse among subgenomes, possibly contribute to polyploid plasticity, but the causality is only assumed. Here, by integrating data from gene expression cap analysis and epigenome profiling via hidden Markov model in common wheat, we detect a large proportion of enhancer-like elements (ELEs) derived from TEs producing nascent noncoding transcripts, namely ELE-RNAs, which are well indicative of the regulatory activity of ELEs. Quantifying ELE-RNA transcriptome across typical developmental stages reveals that TE-initiated ELE-RNAs are mainly from RLG_famc7.3 specifically expanded in subgenome A. Acquisition of spike-specific transcription factor binding likely confers spike-specific expression of RLG_famc7.3-initiated ELE-RNAs. Knockdown of RLG_famc7.3-initiated ELE-RNAs resulted in global downregulation of spike-specific genes and abnormal spike development. These findings link TE expansion to regulatory specificity and polyploid developmental plasticity, highlighting the functional impact of TE-driven regulatory innovation on polyploid evolution.
Collapse
Affiliation(s)
- Yilin Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Songbei Ying
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu'e Zhang
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiafu Zhu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinyu Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiyue Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huishan Diao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Haoyu Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Henan University, School of Life Science, Kaifeng, Henan, 457000, China
| | - Yuyun Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan Teng
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Yiping Tong
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jungnam Cho
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom.
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Yongbiao Xue
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing, 100101, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
42
|
Umarov R, Hon CC. Enhancer target prediction: state-of-the-art approaches and future prospects. Biochem Soc Trans 2023; 51:1975-1988. [PMID: 37830459 DOI: 10.1042/bst20230917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Enhancers are genomic regions that regulate gene transcription and are located far away from the transcription start sites of their target genes. Enhancers are highly enriched in disease-associated variants and thus deciphering the interactions between enhancers and genes is crucial to understanding the molecular basis of genetic predispositions to diseases. Experimental validations of enhancer targets can be laborious. Computational methods have thus emerged as a valuable alternative for studying enhancer-gene interactions. A variety of computational methods have been developed to predict enhancer targets by incorporating genomic features (e.g. conservation, distance, and sequence), epigenomic features (e.g. histone marks and chromatin contacts) and activity measurements (e.g. covariations of enhancer activity and gene expression). With the recent advances in genome perturbation and chromatin conformation capture technologies, data on experimentally validated enhancer targets are becoming available for supervised training of these methods and evaluation of their performance. In this review, we categorize enhancer target prediction methods based on their rationales and approaches. Then we discuss their merits and limitations and highlight the future directions for enhancer targets prediction.
Collapse
Affiliation(s)
- Ramzan Umarov
- RIKEN Centre for Integrative Medical Sciences, Yokohama RIKEN Institute, Yokohama, Japan
| | - Chung-Chau Hon
- RIKEN Centre for Integrative Medical Sciences, Yokohama RIKEN Institute, Yokohama, Japan
| |
Collapse
|
43
|
Kitagawa Y, Ikenaka A, Sugimura R, Niwa A, Saito MK. ZEB2 and MEIS1 independently contribute to hematopoiesis via early hematopoietic enhancer activation. iScience 2023; 26:107893. [PMID: 37771659 PMCID: PMC10522983 DOI: 10.1016/j.isci.2023.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/15/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Cell differentiation is achieved by acquiring a cell type-specific transcriptional program and epigenetic landscape. While the cell type-specific patterning of enhancers has been shown to precede cell fate decisions, it remains unclear how regulators of these enhancers are induced to initiate cell specification and how they appropriately restrict cells that differentiate. Here, using embryonic stem cell-derived hematopoietic cell differentiation cultures, we show the activation of some hematopoietic enhancers during arterialization of hemogenic endothelium, a prerequisite for hematopoiesis. We further reveal that ZEB2, a factor involved in the transcriptional regulation of arterial endothelial cells, and a hematopoietic regulator MEIS1 are independently required for activating these enhancers. Concomitantly, ZEB2 or MEIS1 deficiency impaired hematopoietic cell development. These results suggest that multiple regulators expressed from an earlier developmental stage non-redundantly contribute to the establishment of hematopoietic enhancer landscape, thereby restricting cell differentiation despite the unrestricted expression of these regulators to hematopoietic cells.
Collapse
Affiliation(s)
- Yohko Kitagawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Ikenaka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Ryohichi Sugimura
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
44
|
Ntini E, Budach S, Vang Ørom UA, Marsico A. Genome-wide measurement of RNA dissociation from chromatin classifies transcripts by their dynamics and reveals rapid dissociation of enhancer lncRNAs. Cell Syst 2023; 14:906-922.e6. [PMID: 37857083 DOI: 10.1016/j.cels.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/24/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Long non-coding RNAs (lncRNAs) are involved in gene expression regulation in cis. Although enriched in the cell chromatin fraction, to what degree this defines their regulatory potential remains unclear. Furthermore, the factors underlying lncRNA chromatin tethering, as well as the molecular basis of efficient lncRNA chromatin dissociation and its impact on enhancer activity and target gene expression, remain to be resolved. Here, we developed chrTT-seq, which combines the pulse-chase metabolic labeling of nascent RNA with chromatin fractionation and transient transcriptome sequencing to follow nascent RNA transcripts from their transcription on chromatin to release and allows the quantification of dissociation dynamics. By incorporating genomic, transcriptomic, and epigenetic metrics, as well as RNA-binding protein propensities, in machine learning models, we identify features that define transcript groups of different chromatin dissociation dynamics. Notably, lncRNAs transcribed from enhancers display reduced chromatin retention, suggesting that, in addition to splicing, their chromatin dissociation may shape enhancer activity.
Collapse
Affiliation(s)
- Evgenia Ntini
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany; Institute of Molecular Biology and Biotechnology, IMBB-FORTH, 70013 Heraklio, Greece.
| | - Stefan Budach
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany
| | - Ulf A Vang Ørom
- Aarhus University, Department of Molecular Biology and Genetics, 8000 Aarhus, Denmark
| | - Annalisa Marsico
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany; Computational Health Center, Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
45
|
Heuts BMH, Martens JHA. Understanding blood development and leukemia using sequencing-based technologies and human cell systems. Front Mol Biosci 2023; 10:1266697. [PMID: 37886034 PMCID: PMC10598665 DOI: 10.3389/fmolb.2023.1266697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
Our current understanding of human hematopoiesis has undergone significant transformation throughout the years, challenging conventional views. The evolution of high-throughput technologies has enabled the accumulation of diverse data types, offering new avenues for investigating key regulatory processes in blood cell production and disease. In this review, we will explore the opportunities presented by these advancements for unraveling the molecular mechanisms underlying normal and abnormal hematopoiesis. Specifically, we will focus on the importance of enhancer-associated regulatory networks and highlight the crucial role of enhancer-derived transcription regulation. Additionally, we will discuss the unprecedented power of single-cell methods and the progression in using in vitro human blood differentiation system, in particular induced pluripotent stem cell models, in dissecting hematopoietic processes. Furthermore, we will explore the potential of ever more nuanced patient profiling to allow precision medicine approaches. Ultimately, we advocate for a multiparameter, regulatory network-based approach for providing a more holistic understanding of normal hematopoiesis and blood disorders.
Collapse
Affiliation(s)
- Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
46
|
Amarasinghe HE, Zhang P, Whalley JP, Allcock A, Migliorini G, Brown AC, Scozzafava G, Knight JC. Mapping the epigenomic landscape of human monocytes following innate immune activation reveals context-specific mechanisms driving endotoxin tolerance. BMC Genomics 2023; 24:595. [PMID: 37805492 PMCID: PMC10559536 DOI: 10.1186/s12864-023-09663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Monocytes are key mediators of innate immunity to infection, undergoing profound and dynamic changes in epigenetic state and immune function which are broadly protective but may be dysregulated in disease. Here, we aimed to advance understanding of epigenetic regulation following innate immune activation, acutely and in endotoxin tolerant states. METHODS We exposed human primary monocytes from healthy donors (n = 6) to interferon-γ or differing combinations of endotoxin (lipopolysaccharide), including acute response (2 h) and two models of endotoxin tolerance: repeated stimulations (6 + 6 h) and prolonged exposure to endotoxin (24 h). Another subset of monocytes was left untreated (naïve). We identified context-specific regulatory elements based on epigenetic signatures for chromatin accessibility (ATAC-seq) and regulatory non-coding RNAs from total RNA sequencing. RESULTS We present an atlas of differential gene expression for endotoxin and interferon response, identifying widespread context specific changes. Across assayed states, only 24-29% of genes showing differential exon usage are also differential at the gene level. Overall, 19.9% (6,884 of 34,616) of repeatedly observed ATAC peaks were differential in at least one condition, the majority upregulated on stimulation and located in distal regions (64.1% vs 45.9% of non-differential peaks) within which sequences were less conserved than non-differential peaks. We identified enhancer-derived RNA signatures specific to different monocyte states that correlated with chromatin accessibility changes. The endotoxin tolerance models showed distinct chromatin accessibility and transcriptomic signatures, with integrated analysis identifying genes and pathways involved in the inflammatory response, detoxification, metabolism and wound healing. We leveraged eQTL mapping for the same monocyte activation states to link potential enhancers with specific genes, identifying 1,946 unique differential ATAC peaks with 1,340 expression associated genes. We further use this to inform understanding of reported GWAS, for example involving FCHO1 and coronary artery disease. CONCLUSION This study reports context-specific regulatory elements based on transcriptomic profiling and epigenetic signatures for enhancer-derived RNAs and chromatin accessibility in immune tolerant monocyte states, and demonstrates the informativeness of linking such elements and eQTL to inform future mechanistic studies aimed at defining therapeutic targets of immunosuppression and diseases.
Collapse
Affiliation(s)
- Harindra E Amarasinghe
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Ping Zhang
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Justin P Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Alice Allcock
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Gabriele Migliorini
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew C Brown
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Giuseppe Scozzafava
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK.
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
47
|
Yang Y, Li X, Meng Z, Liu Y, Qian K, Chu M, Pan Z. A body map of super-enhancers and their function in pig. Front Vet Sci 2023; 10:1239965. [PMID: 37869495 PMCID: PMC10587440 DOI: 10.3389/fvets.2023.1239965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Super-enhancers (SEs) are clusters of enhancers that act synergistically to drive the high-level expression of genes involved in cell identity and function. Although SEs have been extensively investigated in humans and mice, they have not been well characterized in pigs. Methods Here, we identified 42,380 SEs in 14 pig tissues using chromatin immunoprecipitation sequencing, and statistics of its overall situation, studied the composition and characteristics of SE, and explored the influence of SEs characteristics on gene expression. Results We observed that approximately 40% of normal enhancers (NEs) form SEs. Compared to NEs, we found that SEs were more likely to be enriched with an activated enhancer and show activated functions. Interestingly, SEs showed X chromosome depletion and short interspersed nuclear element enrichment, implying that SEs play an important role in sex traits and repeat evolution. Additionally, SE-associated genes exhibited higher expression levels and stronger conservation than NE-associated genes. However, genes with the largest SEs had higher expression levels than those with the smallest SEs, indicating that SE size may influence gene expression. Moreover, we observed a negative correlation between SE gene distance and gene expression, indicating that the proximity of SEs can affect gene activity. Gene ontology enrichment and motif analysis revealed that SEs have strong tissue-specific activity. For example, the CORO2B gene with a brain-specific SE shows strong brain-specific expression, and the phenylalanine hydroxylase gene with liver-specific SEs shows strong liver-specific expression. Discussion In this study, we illustrated a body map of SEs and explored their functions in pigs, providing information on the composition and tissue-specific patterns of SEs. This study can serve as a valuable resource of gene regulatory and comparative analyses to the scientific community and provides a theoretical reference for genetic control mechanisms of important traits in pigs.
Collapse
Affiliation(s)
- Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xinyue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhu Meng
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjian Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Kaifeng Qian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhangyuan Pan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
48
|
Velliou RI, Legaki AI, Nikolakopoulou P, Vlachogiannis NI, Chatzigeorgiou A. Liver endothelial cells in NAFLD and transition to NASH and HCC. Cell Mol Life Sci 2023; 80:314. [PMID: 37798474 PMCID: PMC11072568 DOI: 10.1007/s00018-023-04966-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome, which is characterised by obesity, insulin resistance, hypercholesterolemia and hypertension. NAFLD is the most frequent liver disease worldwide and more than 10% of NAFLD patients progress to the inflammatory and fibrotic stage of non-alcoholic steatohepatitis (NASH), which can lead to end-stage liver disease including hepatocellular carcinoma (HCC), the most frequent primary malignant liver tumor. Liver sinusoidal endothelial cells (LSEC) are strategically positioned at the interface between blood and hepatic parenchyma. LSECs are highly specialized cells, characterised by the presence of transcellular pores, called fenestrae, and exhibit anti-inflammatory and anti-fibrotic characteristics under physiological conditions. However, during NAFLD development they undergo capillarisation and acquire a phenotype similar to vascular endothelial cells, actively promoting all pathophysiological aspects of NAFLD, including steatosis, inflammation, and fibrosis. LSEC dysfunction is critical for the progression to NASH and HCC while restoring LSEC homeostasis appears to be a promising approach to prevent NAFLD progression and its complications and even reverse tissue damage. In this review we present current information on the role of LSEC throughout the progressive phases of NAFLD, summarising in vitro and in vivo experimental evidence and data from human studies.
Collapse
Affiliation(s)
- Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Polyxeni Nikolakopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Nikolaos I Vlachogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
49
|
Romero A, Heidenreich AC, Román CL, Algañarás M, Nazer E, Gagliardino JJ, Maiztegui B, Flores LE, Rodríguez-Seguí SA. Transcriptional signature of islet neogenesis-associated protein peptide-treated rat pancreatic islets reveals induction of novel long non-coding RNAs. Front Endocrinol (Lausanne) 2023; 14:1226615. [PMID: 37842306 PMCID: PMC10570750 DOI: 10.3389/fendo.2023.1226615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Background Diabetes mellitus is characterized by chronic hyperglycemia with loss of β-cell function and mass. An attractive therapeutic approach to treat patients with diabetes in a non-invasive way is to harness the innate regenerative potential of the pancreas. The Islet Neogenesis-Associated Protein pentadecapeptide (INGAP-PP) has been shown to induce β-cell regeneration and improve their function in rodents. To investigate its possible mechanism of action, we report here the global transcriptional effects induced by the short-term INGAP-PP in vitro treatment of adult rat pancreatic islets. Methods and findings Rat pancreatic islets were cultured in vitro in the presence of INGAP-PP for 4 days, and RNA-seq was generated from triplicate treated and control islet samples. We performed a de novo rat gene annotation based on the alignment of RNA-seq reads. The list of INGAP-PP-regulated genes was integrated with epigenomic data. Using the new gene annotation generated in this work, we quantified RNA-seq data profiled in INS-1 cells treated with IL1β, IL1β+Calcipotriol (a vitamin D agonist) or vehicle, and single-cell RNA-seq data profiled in rat pancreatic islets. We found 1,669 differentially expressed genes by INGAP-PP treatment, including dozens of previously unannotated rat transcripts. Genes differentially expressed by the INGAP-PP treatment included a subset of upregulated transcripts that are associated with vitamin D receptor activation. Supported by epigenomic and single-cell RNA-seq data, we identified 9 previously unannotated long noncoding RNAs (lncRNAs) upregulated by INGAP-PP, some of which are also differentially regulated by IL1β and vitamin D in β-cells. These include Ri-lnc1, which is enriched in mature β-cells. Conclusions Our results reveal the transcriptional program that could explain the enhancement of INGAP-PP-mediated physiological effects on β-cell mass and function. We identified novel lncRNAs that are induced by INGAP-PP in rat islets, some of which are selectively expressed in pancreatic β-cells and downregulated by IL1β treatment of INS-1 cells. Our results suggest a relevant function for Ri-lnc1 in β-cells. These findings are expected to provide the basis for a deeper understanding of islet translational results from rodents to humans, with the ultimate goal of designing new therapies for people with diabetes.
Collapse
Affiliation(s)
- Agustín Romero
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana C. Heidenreich
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina L. Román
- Centro de Endocrinología Experimental y Aplicada (CENEXA) - Universidad Nacional de La Plata (UNLP) - CONICET- Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CeAs CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Macarena Algañarás
- Centro de Endocrinología Experimental y Aplicada (CENEXA) - Universidad Nacional de La Plata (UNLP) - CONICET- Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CeAs CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Ezequiel Nazer
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Juan J. Gagliardino
- Centro de Endocrinología Experimental y Aplicada (CENEXA) - Universidad Nacional de La Plata (UNLP) - CONICET- Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CeAs CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Bárbara Maiztegui
- Centro de Endocrinología Experimental y Aplicada (CENEXA) - Universidad Nacional de La Plata (UNLP) - CONICET- Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CeAs CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Luis E. Flores
- Centro de Endocrinología Experimental y Aplicada (CENEXA) - Universidad Nacional de La Plata (UNLP) - CONICET- Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CeAs CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Santiago A. Rodríguez-Seguí
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
50
|
Limouse C, Smith OK, Jukam D, Fryer KA, Greenleaf WJ, Straight AF. Global mapping of RNA-chromatin contacts reveals a proximity-dominated connectivity model for ncRNA-gene interactions. Nat Commun 2023; 14:6073. [PMID: 37770513 PMCID: PMC10539311 DOI: 10.1038/s41467-023-41848-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed throughout the genome and provide regulatory inputs to gene expression through their interaction with chromatin. Yet, the genomic targets and functions of most ncRNAs are unknown. Here we use chromatin-associated RNA sequencing (ChAR-seq) to map the global network of ncRNA interactions with chromatin in human embryonic stem cells and the dynamic changes in interactions during differentiation into definitive endoderm. We uncover general principles governing the organization of the RNA-chromatin interactome, demonstrating that nearly all ncRNAs exclusively interact with genes in close three-dimensional proximity to their locus and provide a model predicting the interactome. We uncover RNAs that interact with many loci across the genome and unveil thousands of unannotated RNAs that dynamically interact with chromatin. By relating the dynamics of the interactome to changes in gene expression, we demonstrate that activation or repression of individual genes is unlikely to be controlled by a single ncRNA.
Collapse
Affiliation(s)
- Charles Limouse
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Owen K Smith
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
| | - David Jukam
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Kelsey A Fryer
- Department of Biochemistry, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | | | - Aaron F Straight
- Department of Biochemistry, Stanford University, Stanford, California, USA.
| |
Collapse
|