1
|
Nakamura T, Shimizu T, Nishinakama N, Takahashi R, Arasaki K, Uda A, Watanabe K, Watarai M. A novel method of Francisella infection of epithelial cells using HeLa cells expressing fc gamma receptor. BMC Infect Dis 2024; 24:1171. [PMID: 39420255 PMCID: PMC11488177 DOI: 10.1186/s12879-024-10083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Francisella tularensis, the causative agent of tularemia, is a facultative intracellular bacterium. Although the life cycle of this bacterium inside phagocytic cells (e.g., macrophages, neutrophils) has been well analyzed, the difficulty of gene silencing and editing genes in phagocytic cells makes it difficult to analyze host factors important for the infection. On the other hand, epithelial cell lines, such as HeLa, have been established as cell lines that are easy to perform gene editing. However, the infection efficiency of Francisella into these epithelial cells is extremely low. METHODS In order to facilitate the molecular biological analysis of Francisella infection using epithelial cells, we constructed an efficient infection model of F. tularensis subsp. novicida (F. novicida) in HeLa cells expressing mouse FcγRII (HeLa-FcγRII), and the system was applied to evaluate the role of host GLS1 on Francisella infection. RESULTS As a result of colony forming unit count, HeLa-FcγRII cells uptake F. novicida in a serum-dependent manner and demonstrated an approximately 100-fold increase in intracellular bacterial infection compared to parental HeLa cells. Furthermore, taking advantage of the gene silencing capability of HeLa-FcγRII cells, we developed GLS1, a gene encoding glutaminase, knockdown cells using lentiviral sh RNA vector and assessed the impact of GLS1 on F. novicida infection. LDH assay revealed that GLS1-knockdown HeLa-FcγRII cells exhibited increased cytotoxicity during infection with F. novicida compared with control HeLa-FcγRII cells. Furthermore, the cell death was inhibited by the addition of ammonia, the metabolite produced through glutaminase activity. These results suggest that ammonia plays an important role in the proliferation of F. novicida. CONCLUSIONS In this report, we proposed a new cell-based infection system for Francisella infection using HeLa-FcγRII cells and demonstrated its effectiveness. This system has the potential to accelerate cell-based infection assays, such as large-scale genetic screening, and to provide new insights into Francisella infection in epithelial cells, which has been difficult to analyze in phagocytic cells.
Collapse
Affiliation(s)
- Takemasa Nakamura
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Takashi Shimizu
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Naho Nishinakama
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Reika Takahashi
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Kenta Watanabe
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Masahisa Watarai
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
2
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Zhang Z, Gaetjens TK, Ou J, Zhou Q, Yu Y, Mallory DP, Abel SM, Yu Y. Propulsive cell entry diverts pathogens from immune degradation by remodeling the phagocytic synapse. Proc Natl Acad Sci U S A 2023; 120:e2306788120. [PMID: 38032935 PMCID: PMC10710034 DOI: 10.1073/pnas.2306788120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Phagocytosis is a critical immune function for infection control and tissue homeostasis. During phagocytosis, pathogens are internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors are required to disrupt the biogenesis of phagolysosomes. In contrast, we present here that physical forces from motile pathogens during cell entry divert them away from the canonical degradative pathway. This altered fate begins with the force-induced remodeling of the phagocytic synapse formation. We used the parasite Toxoplasma gondii as a model because live Toxoplasma actively invades host cells using gliding motility. To differentiate the effects of physical forces from virulence factors in phagocytosis, we employed magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophages. Experiments and computer simulations show that large propulsive forces hinder productive activation of receptors by preventing their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites are engulfed into vacuoles that fail to mature into degradative units, similar to the live motile parasite's intracellular pathway. Using yeast cells and opsonized beads, we confirmed that this mechanism is general, not specific to the parasite used. These results reveal new aspects of immune evasion by demonstrating how physical forces during active cell entry, independent of virulence factors, enable pathogens to circumvent phagolysosomal degradation.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Thomas K. Gaetjens
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN37996
| | - Jin Ou
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Qiong Zhou
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - D. Paul Mallory
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN37996
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| |
Collapse
|
4
|
Zhang Z, Gaetjens TK, Yu Y, Paul Mallory D, Abel SM, Yu Y. Propulsive cell entry diverts pathogens from immune degradation by remodeling the phagocytic synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538287. [PMID: 37162866 PMCID: PMC10168248 DOI: 10.1101/2023.04.25.538287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phagocytosis is a critical immune function for infection control and tissue homeostasis. This process is typically described as non-moving pathogens being internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors that biochemically disrupt the biogenesis of phagoslysosomes are required. In contrast, here we report that physical forces exerted by pathogens during cell entry divert them away from the canonical phagolysosomal degradation pathway, and this altered intracellular fate is determined at the time of phagocytic synapse formation. We used the eukaryotic parasite Toxoplasma gondii as a model because live Toxoplasma uses gliding motility to actively invade into host cells. To differentiate the effect of physical forces from that of virulence factors in phagocytosis, we developed a strategy that used magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophage cells. Experiments and computer simulations collectively reveal that large propulsive forces suppress productive activation of receptors by hindering their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites, instead of being degraded in phagolysosomes, are engulfed into vacuoles that fail to mature into degradative units, following an intracellular pathway strikingly similar to that of the live motile parasite. Using opsonized beads, we further confirmed that this mechanism is general, not specific to the parasite used. These results reveal previously unknown aspects of immune evasion by demonstrating how physical forces exerted during active cell entry, independent of virulence factors, can help pathogens circumvent phagolysosomal degradation.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Thomas K. Gaetjens
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - D. Paul Mallory
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| |
Collapse
|
5
|
Conrady CD, Pradeep T, Yu Y, Johnson MW, VanderBeek BL. Association of Proton Pump Inhibitor/Histamine-2 Blocker Use and Ocular Toxoplasmosis: Findings from a Large US National Database. Ophthalmol Retina 2023; 7:261-265. [PMID: 36058521 PMCID: PMC9978037 DOI: 10.1016/j.oret.2022.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To test the hypothesis that the use of proton pump inhibitors (PPIs) is associated with an increased risk of being diagnosed with toxoplasmic retinochoroiditis. DESIGN Retrospective, matched case-control study using data from 2000 to 2020. PARTICIPANTS Patients with ocular toxoplasmosis and controls were matched 5:1 for age, sex, and race, with the eligibility date ± 3 months from the index date of exposed match. Patients aged < 18 years with congenital toxoplasmosis, having < 2 years in the insurance plan before the index date, and without ≥ 1 visit to an eyecare provider before the index date were excluded from the study. METHODS Patients with ocular toxoplasmosis were identified using the International Classification of Diseases, Ninth Revision and International Classification of Diseases, Tenth Revision codes, and PPI use or diseases highly associated with PPIs were identified using national drug codes from an administrative medical claims database. MAIN OUTCOME MEASURES The primary outcome was defined as having a prescription for a PPI or histamine-2 (H2) blocker. Multivariable logistic regression analyses were performed, controlling for demographic and systemic health variables. RESULTS A total of 4069 cases and 19 177 controls met the eligibility criteria. Of the 4069 patients with ocular toxoplasmosis, 989 (24.3%) were on PPI/H2 blockers compared with 3763 of 19 177 (19.2%) controls. The adjusted logistic regression model demonstrated 1.28 greater odds of PPI/H2 blocker use in cases of ocular toxoplasmosis than matched controls (95% confidence interval, 1.17-1.40; P < 0.001). CONCLUSIONS Proton pump inhibitor/H2 blocker exposure was associated with an increased risk of being diagnosed with ocular toxoplasmosis, corroborating findings from a prior case series. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Christopher D Conrady
- Departments of Ophthalmology and Visual Sciences and Pathology and Microbiology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Tejus Pradeep
- Department of Ophthalmology and Visual Sciences, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yinxi Yu
- University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark W Johnson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brian L VanderBeek
- Department of Ophthalmology and Visual Sciences, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
A Broad Spectrum Antiparasitic Activity of Organotin (IV) Derivatives and Its Untargeted Proteomic Profiling Using Leishmania donovani. Pathogens 2022; 11:pathogens11121424. [PMID: 36558759 PMCID: PMC9785441 DOI: 10.3390/pathogens11121424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Metals have been used in medicine since ancient times for the treatment of different ailments with various elements such as iron, gold and arsenic. Metal complexes have also been reported to show antibiotic and antiparasitic activity. In this context, we tested the antiparasitic potential of 10 organotin (IV) derivatives from 4-(4-methoxyphenylamino)-4 oxobutanoic acid (MS26) against seven eukaryotic pathogens of medical importance: Leishmania donovani, Trypanosoma cruzi, Trypanosoma brucei, Entamoeba histolytica, Giardia lamblia, Naegleria fowleri and Schistosoma mansoni. Among the compounds with and without antiparasitic activity, compound MS26Et3 stood out with a 50% effective concentration (EC50) of 0.21 and 0.19 µM against promastigotes and intracellular amastigotes of L. donovani, respectively, 0.24 µM against intracellular amastigotes of T. cruzi, 0.09 µM against T. brucei, 1.4 µM against N. fowleri and impaired adult S. mansoni viability at 1.25 µM. In terms of host/pathogen selectivity, MS26Et3 demonstrated relatively mild cytotoxicity toward host cells with a 50% viability concentration of 4.87 µM against B10R cells (mouse monocyte cell line), 2.79 µM against C2C12 cells (mouse myoblast cell line) and 1.24 µM against HEK923 cells (human embryonic kidney cell line). The selectivity index supports this molecule as a therapeutic starting point for a broad spectrum antiparasitic alternative. Proteomic analysis of host cells infected with L. donovani after exposure to MS26Et3 showed a reduced expression of Rab7, which may affect the fusion of the endosome with the lysosome, and, consequently, impairing the differentiation of L. donovani to the amastigote form. Future studies to investigate the molecular target(s) and mechanism of action of MS26Et3 will support its chemical optimization.
Collapse
|
7
|
Monteiro IP, Sousa S, Borges V, Gonçalves P, Gomes JP, Mota LJ, Franco IS. A Search for Novel Legionella pneumophila Effector Proteins Reveals a Strain Specific Nucleotropic Effector. Front Cell Infect Microbiol 2022; 12:864626. [PMID: 35711665 PMCID: PMC9195298 DOI: 10.3389/fcimb.2022.864626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Legionella pneumophila is an accidental human pathogen that causes the potentially fatal Legionnaires’ disease, a severe type of pneumonia. The main virulence mechanism of L. pneumophila is a Type 4B Secretion System (T4SS) named Icm/Dot that transports effector proteins into the host cell cytosol. The concerted action of effectors on several host cell processes leads to the formation of an intracellular Legionella-containing vacuole that is replication competent and avoids phagolysosomal degradation. To date over 300 Icm/Dot substrates have been identified. In this study, we searched the genome of a L. pneumophila strain (Pt/VFX2014) responsible for the second largest L. pneumophila outbreak worldwide (in Vila Franca de Xira, Portugal, in 2014) for genes encoding potential novel Icm/Dot substrates. This strain Pt/VFX2014 belongs to serogroup 1 but phylogenetically segregates from all other serogroup 1 strains previously sequenced, displaying a unique mosaic genetic backbone. The ability of the selected putative effectors to be delivered into host cells by the T4SS was confirmed using the TEM-1 β-lactamase reporter assay. Two previously unknown Icm/Dot effectors were identified, VFX05045 and VFX10045, whose homologs Lpp1450 and Lpp3070 in clinical strain L. pneumophila Paris were also confirmed as T4SS substrates. After delivery into the host cell cytosol, homologs VFX05045/Lpp1450 remained diffused in the cell, similarly to Lpp3070. In contrast, VFX10045 localized to the host cell nucleus. To understand how VFX10045 and Lpp3070 (94% of identity at amino acid level) are directed to distinct sites, we carried out a comprehensive site-directed mutagenesis followed by analyses of the subcellular localization of the mutant proteins. This led to the delineation of region in the C-terminal part (residues 380 to 534) of the 583 amino acid-long VFX10045 as necessary and sufficient for nuclear targeting and highlighted the fundamental function of the VFX10045-specific R440 and I441 residues in this process. These studies revealed a strain-specific nucleotropism for new effector VFX10045/Lpp3070, which anticipates distinct functions between these homologs.
Collapse
Affiliation(s)
- Inês P. Monteiro
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sofia Sousa
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Vítor Borges
- Núcleo de Bioinformática, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Paulo Gonçalves
- Laboratório Nacional de Referência de Legionella, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - João Paulo Gomes
- Núcleo de Bioinformática, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Luís Jaime Mota
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Irina S. Franco
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- *Correspondence: Irina S. Franco,
| |
Collapse
|
8
|
Souza SP, Splitt SD, Sànchez-Arcila JC, Alvarez JA, Wilson JN, Wizzard S, Luo Z, Baumgarth N, Jensen KDC. Genetic mapping reveals Nfkbid as a central regulator of humoral immunity to Toxoplasma gondii. PLoS Pathog 2021; 17:e1010081. [PMID: 34871323 PMCID: PMC8675933 DOI: 10.1371/journal.ppat.1010081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/16/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Protective immunity to parasitic infections has been difficult to elicit by vaccines. Among parasites that evade vaccine-induced immunity is Toxoplasma gondii, which causes lethal secondary infections in chronically infected mice. Here we report that unlike susceptible C57BL/6J mice, A/J mice were highly resistant to secondary infection. To identify correlates of immunity, we utilized forward genetics to identify Nfkbid, a nuclear regulator of NF-κB that is required for B cell activation and B-1 cell development. Nfkbid-null mice (“bumble”) did not generate parasite-specific IgM and lacked robust parasite-specific IgG, which correlated with defects in B-2 cell maturation and class-switch recombination. Though high-affinity antibodies were B-2 derived, transfer of B-1 cells partially rescued the immunity defects observed in bumble mice and were required for 100% vaccine efficacy in bone marrow chimeric mice. Immunity in resistant mice correlated with robust isotype class-switching in both B cell lineages, which can be fine-tuned by Nfkbid gene expression. We propose a model whereby humoral immunity to T. gondii is regulated by Nfkbid and requires B-1 and B-2 cells for full protection. Eukaryotic parasitic diseases account for approximately one fifth of all childhood deaths, yet no highly protective vaccine exists for any human parasite. More research must be done to discover how to elicit protective vaccine-induced immunity to parasitic pathogens. We used an unbiased genetic screen to find key genes responsible for immunity to the eukaryotic parasite Toxoplasma gondii. Our screen found Nfkbid, a transcription factor regulator, which controls B cell activation and innate-like B-1 cell development. Mice without Nfkbid were not protected against T. gondii and were deficient at making antibodies against the parasite. Our survival studies of vaccinated mice with and without B-1 compartments found that B-1 cells improved survival, suggesting that B-1 cells act in conjunction with B-2 cells to provide vaccine-induced immunity. Nfkbid and other loci identified in our unbiased screen represent potential targets for vaccines to elicit protective immune responses against parasitic pathogens.
Collapse
Affiliation(s)
- Scott P. Souza
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Samantha D. Splitt
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Juan C. Sànchez-Arcila
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Julia A. Alvarez
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Jessica N. Wilson
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Safuwra Wizzard
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Zheng Luo
- Center for Immunology & Infectious Diseases, and Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Nicole Baumgarth
- Center for Immunology & Infectious Diseases, and Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Kirk D. C. Jensen
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Science Research Institute, University of California, Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Lodoen MB, Smith NC, Soldati-Favre D, Ferguson DJP, van Dooren GG. Nanos gigantium humeris insidentes: old papers informing new research into Toxoplasma gondii. Int J Parasitol 2021; 51:1193-1212. [PMID: 34736901 PMCID: PMC10538201 DOI: 10.1016/j.ijpara.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
Since Nicolle, Manceaux and Splendore first described Toxoplasma gondii as a parasite of rodents and rabbits in the early 20th century, a diverse and vigorous research community has been built around studying this fascinating intracellular parasite. In addition to its importance as a pathogen of humans, livestock and wildlife, modern researchers are attracted to T. gondii as a facile experimental system to study many aspects of evolutionary biology, cellular biology, host-microbe interactions, and host immunity. For new researchers entering the field, the extensive literature describing the biology of the parasite, and the interactions with its host, can be daunting. In this review, we examine four foundational studies that describe various aspects of T. gondii biology, presenting a 'journal club'-style analysis of each. We have chosen a paper that established the beguiling life cycle of the parasite (Hutchison et al., 1971), a paper that described key features of its cellular biology that the parasite shares with related organisms (Gustafson et al., 1954), a paper that characterised the origin of the unique compartment in which the parasite resides within host cells (Jones and Hirsch, 1972), and a paper that established a key mechanism in the host immune response to parasite infection (Pfefferkorn, 1984). These interesting and far-reaching studies set the stage for subsequent research into numerous facets of parasite biology. As well as providing new researchers with an entry point into the literature surrounding the parasite, revisiting these studies can remind us of the roots of our discipline, how far we have come, and the new directions in which we might head.
Collapse
Affiliation(s)
- Melissa B Lodoen
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
10
|
The Legionella pneumophila Effector RavY Contributes to a Replication-Permissive Vacuolar Environment during Infection. Infect Immun 2021; 89:e0026121. [PMID: 34543123 DOI: 10.1128/iai.00261-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Legionella pneumophila is the causative agent of Legionnaires' disease and is capable of replicating inside phagocytic cells, such as mammalian macrophages. The Dot/Icm type IV secretion system is a L. pneumophila virulence factor that is essential for successful intracellular replication. During infection, L. pneumophila builds a replication-permissive vacuole by recruiting multiple host molecules and hijacking host cellular signaling pathways, a process mediated by the coordinated functions of multiple Dot/Icm effector proteins. RavY is a predicted Dot/Icm effector protein found to be important for optimal L. pneumophila replication inside host cells. Here, we demonstrate that RavY is a Dot/Icm-translocated effector protein that is dispensable for axenic replication of L. pneumophila but critical for optimal intracellular replication of the bacteria. RavY is not required for avoidance of endosomal maturation, and RavY does not contribute to the recruitment of host molecules found on replication-permissive vacuoles, such as ubiquitin, RAB1a, and RTN4. Vacuoles containing L. pneumophila ravY mutants promote intracellular survival but limit replication. The replication defect of the L. pneumophila ravY mutant was complemented when the mutant was in the same vacuole as wild-type L. pneumophila. Thus, RavY is an effector that is essential for promoting intracellular replication of L. pneumophila once the specialized vacuole has been established.
Collapse
|
11
|
Steiner S, Meir A, Roy CR. Coxiella burnetii encodes an LvgA-related protein important for intracellular replication. Cell Microbiol 2021; 23:e13331. [PMID: 33774901 DOI: 10.1111/cmi.13331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022]
Abstract
Coxiella burnetii is a bacterial pathogen that replicates in a specialised lysosome-derived organelle called the Coxiella-containing vacuole (CCV). Establishment of the CCV requires the Dot/Icm type IVB secretion system. A previous transposon mutagenesis screen identified the gene cbu1754 as being important for the intracellular replication of C. burnetii. To understand the function of the protein encoded by cbu1754, CCV maturation and intracellular replication phenotypes of a cbu1754 mutant were analysed. In contrast to vacuoles containing wild-type C. burnetii Nine Mile phase II, vacuoles containing the isogenic cbu1754 mutant were smaller and did not display detectible amounts of the autophagy protein LC3, which indicated a CCV biogenesis defect. The Cbu1754 protein was not efficiently delivered into the host cell cytosol during infection, which indicated this protein is not a Dot/Icm-translocated effector protein. Secondary structure predictions suggested that Cbu1754 could be similar to the Legionella pneumophila LvgA protein, which is a component of the Dot/Icm apparatus. Consistent with this hypothesis, production of Cbu1754 in an L. pneumophila ∆lvgA mutant restored LvgA-dependent activities. The L. pneumophila proteins LvgA, IcmS and IcmW are interacting partners that comprise a subassembly of the coupling protein complex that mediates Dot/Icm-dependent effector translocation. Similarly, the Cbu1754 protein was found to be a component of the chaperone complex containing the C. burnetii proteins IcmS and IcmW. Thus, the Cbu1754 protein is an LvgA-related protein important for Dot/Icm function and intracellular replication of C. burnetii.
Collapse
Affiliation(s)
- Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amit Meir
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Portes J, Barrias E, Travassos R, Attias M, de Souza W. Toxoplasma gondii Mechanisms of Entry Into Host Cells. Front Cell Infect Microbiol 2020; 10:294. [PMID: 32714877 PMCID: PMC7340009 DOI: 10.3389/fcimb.2020.00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/19/2020] [Indexed: 01/12/2023] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite. Toxoplasma can invade and multiply inside any nucleated cell of a wide range of homeothermic hosts. The canonical process of internalization involves several steps: an initial recognition of the host cell surface and a sequential secretion of proteins from micronemes followed by rhoptries that assemble a macromolecular complex constituting a specialized and transient moving junction. The parasite is then internalized via an endocytic process with the establishment of a parasitophorous vacuole (PV), that does not fuse with lysosomes, where the parasites survive and multiply. This process of host cell invasion is usually referred to active penetration. Using different cell types and inhibitors of distinct endocytic pathways, we show that treatment of host cells with compounds that interfere with clathrin-mediated endocytosis (hypertonic sucrose medium, chlorpromazine hydrochloride, and pitstop 2 inhibited the internalization of tachyzoites). In addition, treatments that interfere with macropinocytosis, such as incubation with amiloride or IPA-3, increased parasite attachment to the host cell surface but significantly blocked parasite internalization. Immunofluorescence microscopy showed that markers of macropinocytosis, such as the Rab5 effector rabankyrin 5 and Pak1, are associated with parasite-containing cytoplasmic vacuoles. These results indicate that entrance of T. gondii into mammalian cells can take place both by the well-characterized interaction of parasite and host cell endocytic machinery and other processes, such as the clathrin-mediated endocytosis, and macropinocytosis.
Collapse
Affiliation(s)
- Juliana Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Emile Barrias
- Laboratório de Metrologia Aplicada à Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia- Inmetro, Rio de Janeiro, Brazil
| | - Renata Travassos
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Márcia Attias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila. Nat Commun 2020; 11:2864. [PMID: 32513920 PMCID: PMC7280309 DOI: 10.1038/s41467-020-16681-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/14/2020] [Indexed: 11/08/2022] Open
Abstract
Legionella pneumophila is a bacterial pathogen that utilises a Type IV secretion (T4S) system to inject effector proteins into human macrophages. Essential to the recruitment and delivery of effectors to the T4S machinery is the membrane-embedded T4 coupling complex (T4CC). Here, we purify an intact T4CC from the Legionella membrane. It contains the DotL ATPase, the DotM and DotN proteins, the chaperone module IcmSW, and two previously uncharacterised proteins, DotY and DotZ. The atomic resolution structure reveals a DotLMNYZ hetero-pentameric core from which the flexible IcmSW module protrudes. Six of these hetero-pentameric complexes may assemble into a 1.6-MDa hexameric nanomachine, forming an inner membrane channel for effectors to pass through. Analysis of multiple cryo EM maps, further modelling and mutagenesis provide working models for the mechanism for binding and delivery of two essential classes of Legionella effectors, depending on IcmSW or DotM, respectively.
Collapse
|
14
|
The Legionella pneumophila Metaeffector Lpg2505 (MesI) Regulates SidI-Mediated Translation Inhibition and Novel Glycosyl Hydrolase Activity. Infect Immun 2020; 88:IAI.00853-19. [PMID: 32122942 DOI: 10.1128/iai.00853-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Legionella pneumophila, the etiological agent of Legionnaires' disease, employs an arsenal of hundreds of Dot/Icm-translocated effector proteins to facilitate replication within eukaryotic phagocytes. Several effectors, called metaeffectors, function to regulate the activity of other Dot/Icm-translocated effectors during infection. The metaeffector Lpg2505 is essential for L. pneumophila intracellular replication only when its cognate effector, SidI, is present. SidI is a cytotoxic effector that interacts with the host translation factor eEF1A and potently inhibits eukaryotic protein translation by an unknown mechanism. Here, we evaluated the impact of Lpg2505 on SidI-mediated phenotypes and investigated the mechanism of SidI function. We determined that Lpg2505 binds with nanomolar affinity to SidI and suppresses SidI-mediated inhibition of protein translation. SidI binding to eEF1A and Lpg2505 is not mutually exclusive, and the proteins bind distinct regions of SidI. We also discovered that SidI possesses GDP-dependent glycosyl hydrolase activity and that this activity is regulated by Lpg2505. We have therefore renamed Lpg2505 MesI (metaeffector of SidI). This work reveals novel enzymatic activity for SidI and provides insight into how intracellular replication of L. pneumophila is regulated by a metaeffector.
Collapse
|
15
|
Zhao N, Ming S, Lu Y, Wang F, Li H, Zhang X, Zhao X. Identification and Application of Epitopes in EtMIC1 of Eimeria tenella Recognized by the Monoclonal Antibodies 1-A1 and 1-H2. Infect Immun 2019; 87:e00596-19. [PMID: 31427452 PMCID: PMC6803336 DOI: 10.1128/iai.00596-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Eimeria tenella microneme-1 protein (EtMIC1) has been proposed to be a transmembrane protein, but this characteristic has not yet been confirmed experimentally. Furthermore, despite EtMIC1 being an important candidate antigen, its key epitope has not been reported. Here, two linear B-cell epitopes of EtMIC1, 91LITFATRSK99 and 698ESLISAGE705, were identified by Western blotting using specific monoclonal antibodies (MAbs) and were named epitope I (located in the I-domain) and epitope CTR (located in the CTR domain), respectively. Sequence comparative analyses of these epitopes among Eimeria species that infect chickens showed that epitope I differs greatly across species, whereas epitope CTR is relatively conserved. Point mutation assay results indicate that all the amino acid residues of the epitopes recognized by MAb 1-A1 or 1-H2 are key amino acids involved in recognition. Comparative analyses of indirect immunofluorescence assay (IFA) results for MAbs 1-A1 and 1-H2 under both nonpermeabilization and permeabilization conditions indicate that epitope I is located on the outer side of the sporozoite surface membrane whereas epitope CTR is located on the inner side, together providing experimental evidence that EtMIC1 is a transmembrane protein. IFA also labeled the EtMIC1 protein on the parasitophorous vacuole membrane and on the surface of schizonts, which suggests that the EtMIC1 protein may play an important role in parasitophorous vacuole formation and E. tenella development. Immunoprotective efficacy experiments revealed that epitope I has good immunogenicity, as evidenced by its induction of high serum antibody levels, blood lymphocyte proliferation, and CD4+ blood lymphocyte percentage.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Shuzhen Ming
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Yaru Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| |
Collapse
|
16
|
Liempi A, Castillo C, Medina L, Rojas M, Maya JD, Parraguez VH, Kemmerling U. Ex vivo infection of human placental explants with Trypanosoma cruzi and Toxoplasma gondii: Differential activation of NF kappa B signaling pathways. Acta Trop 2019; 199:105153. [PMID: 31469971 DOI: 10.1016/j.actatropica.2019.105153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/24/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Trypanosoma cruzi (T. cruzi) and Toxoplasma gondii (T. gondii) are the causative agents of Chagas disease and Toxoplasmosis. T. cruzi and T. gondii present, respectively, low and high congenital transmission rates and induce a distinctive cytokine/chemokine profile in ex vivo infected human placental explants (HPE). Since the innate immune response is regulated, at least partially, by NF-κB signaling pathways, our main objective was to determine the effect of ex vivo infection with both parasites on the activation of canonical and non-canonical NF-κB pathways and its relation to parasite infection. T. cruzi activates both, the canonical and non-canonical pathways of NF-κB, unlike T. gondii, which has no effect on the canonical pathway and inhibits the non-canonical pathway. The inhibition of both pathways of NF-κB increases the DNA load of T. cruzi and T. gondii in HPE. Therefore, the differential modulation of NF-κB signal transduction pathways by both parasites might explain, at least partially, the low and high congenital transmission rates of T. cruzi and T. gondii.
Collapse
Affiliation(s)
- Ana Liempi
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lisvaneth Medina
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maura Rojas
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Victor H Parraguez
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Wieland A, Ahmed R. Fc Receptors in Antimicrobial Protection. Curr Top Microbiol Immunol 2019; 423:119-150. [DOI: 10.1007/82_2019_154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Novel Approaches To Kill Toxoplasma gondii by Exploiting the Uncontrolled Uptake of Unsaturated Fatty Acids and Vulnerability to Lipid Storage Inhibition of the Parasite. Antimicrob Agents Chemother 2018; 62:AAC.00347-18. [PMID: 30061287 DOI: 10.1128/aac.00347-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/21/2018] [Indexed: 12/17/2022] Open
Abstract
Toxoplasma gondii, an obligate intracellular parasite replicating in mammalian cells within a parasitophorous vacuole (PV), is an avid scavenger of lipids retrieved from the host cell. Following lipid uptake, this parasite stores excess lipids in lipid droplets (LD). Here, we examined the lipid storage capacities of Toxoplasma upon supplementation of the culture medium with various fatty acids at physiological concentrations. Supplemental unsaturated fatty acids (oleate [OA], palmitoleate, linoleate) accumulate in large LD and impair parasite replication, whereas saturated fatty acids (palmitate, stearate) neither stimulate LD formation nor impact growth. Examination of parasite growth defects with 0.4 mM OA revealed massive lipid deposits outside LD, indicating enzymatic inadequacies for storing neutral lipids in LD in response to the copious salvage of OA. Toxoplasma exposure to 0.5 mM OA led to irreversible growth arrest and lipid-induced damage, confirming a major disconnect between fatty acid uptake and the parasite's cellular lipid requirements. The importance of neutral lipid synthesis and storage to avoid lipotoxicity was further highlighted by the selective vulnerability of Toxoplasma, both the proliferative and the encysted forms, to subtoxic concentrations of the acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) pharmacological inhibitor T863. T863-treated parasites did not form LD but instead built up large membranous structures within the cytoplasm, which suggests improper channeling and management of the excess lipid. Dual addition of OA and T863 to infected cells intensified the deterioration of the parasite. Overall, our data pinpoint Toxoplasma DGAT as a promising drug target for the treatment of toxoplasmosis that would not incur the risk of toxicity for mammalian cells.
Collapse
|
19
|
NADPH Oxidase and Guanylate Binding Protein 5 Restrict Survival of Avirulent Type III Strains of Toxoplasma gondii in Naive Macrophages. mBio 2018; 9:mBio.01393-18. [PMID: 30154263 PMCID: PMC6113620 DOI: 10.1128/mbio.01393-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma infections in humans and other mammals are largely controlled by IFN-γ produced by the activated adaptive immune system. However, we still do not completely understand the role of cell-intrinsic functions in controlling Toxoplasma or other apicomplexan infections. The present work identifies intrinsic activities in naive macrophages in counteracting T. gondii infection. Using an avirulent strain of T. gondii, we highlight the importance of Nox complexes in conferring protection against parasite infection both in vitro and in vivo. We also identify Gbp5 as a novel macrophage factor involved in limiting intracellular infection by avirulent strains of T. gondii. The rarity of human infections caused by type III strains suggests that these mechanisms may also be important in controlling human toxoplasmosis. These findings further extend our understanding of host responses and defense mechanisms that act to control parasitic infections at the cellular level. Phagocytic cells are the first line of innate defense against intracellular pathogens, and yet Toxoplasma gondii is renowned for its ability to survive in macrophages, although this paradigm is based on virulent type I parasites. Surprisingly, we find that avirulent type III parasites are preferentially cleared in naive macrophages, independent of gamma interferon (IFN-γ) activation. The ability of naive macrophages to clear type III parasites was dependent on enhanced activity of NADPH oxidase (Nox)-generated reactive oxygen species (ROS) and induction of guanylate binding protein 5 (Gbp5). Macrophages infected with type III parasites (CTG strain) showed a time-dependent increase in intracellular ROS generation that was higher than that induced by type I parasites (GT1 strain). The absence of Nox1 or Nox2, gp91 subunit isoforms of the Nox complex, reversed ROS-mediated clearance of CTG parasites. Consistent with this finding, both Nox1−/− and Nox2−/− mice showed higher susceptibility to CTG infection than wild-type mice. Additionally, Gbp5 expression was induced upon infection and the enhanced clearance of CTG strain parasites was reversed in Gbp5−/− macrophages. Expression of a type I ROP18 allele in CTG prevented clearance in naive macrophages, suggesting that it plays a role counteracting Gbp5. Although ROS and Gbp5 have been linked to activation of the NLRP3 inflammasome, clearance of CTG parasites did not rely on induction of pyroptosis. Collectively, these findings reveal that not all strains of T. gondii are adept at avoiding clearance in macrophages and define new roles for ROS and Gbps in controlling this important intracellular pathogen.
Collapse
|
20
|
Arnold KB, Chung AW. Prospects from systems serology research. Immunology 2017; 153:279-289. [PMID: 29139548 PMCID: PMC5795183 DOI: 10.1111/imm.12861] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 12/28/2022] Open
Abstract
Antibodies are highly functional glycoproteins capable of providing immune protection through multiple mechanisms, including direct pathogen neutralization and the engagement of their Fc portions with surrounding effector immune cells that induce anti-pathogenic responses. Small modifications to multiple antibody biophysical features induced by vaccines can significantly alter functional immune outcomes, though it is difficult to predict which combinations confer protective immunity. In order to give insight into the highly complex and dynamic processes that drive an effective humoral immune response, here we discuss recent applications of 'Systems Serology', a new approach that uses data-driven (also called 'machine learning') computational analysis and high-throughput experimental data to infer networks of important antibody features associated with protective humoral immunity and/or Fc functional activity. This approach offers the ability to understand humoral immunity beyond single correlates of protection, assessing the relative importance of multiple biophysical modifications to antibody features with multivariate computational approaches. Systems Serology has the exciting potential to help identify novel correlates of protection from infection and may generate a more comprehensive understanding of the mechanisms behind protection, including key relationships between specific Fc functions and antibody biophysical features (e.g. antigen recognition, isotype, subclass and/or glycosylation events). Reviewed here are some of the experimental and computational technologies available for Systems Serology research and evidence that the application has broad relevance to multiple different infectious diseases including viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
21
|
Guzmán-Herrador DL, Steiner S, Alperi A, González-Prieto C, Roy CR, Llosa M. DNA Delivery and Genomic Integration into Mammalian Target Cells through Type IV A and B Secretion Systems of Human Pathogens. Front Microbiol 2017; 8:1503. [PMID: 28878740 PMCID: PMC5572225 DOI: 10.3389/fmicb.2017.01503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
We explore the potential of bacterial secretion systems as tools for genomic modification of human cells. We previously showed that foreign DNA can be introduced into human cells through the Type IV A secretion system of the human pathogen Bartonella henselae. Moreover, the DNA is delivered covalently attached to the conjugative relaxase TrwC, which promotes its integration into the recipient genome. In this work, we report that this tool can be adapted to other target cells by using different relaxases and secretion systems. The promiscuous relaxase MobA from plasmid RSF1010 can be used to deliver DNA into human cells with higher efficiency than TrwC. MobA also promotes DNA integration, albeit at lower rates than TrwC. Notably, we report that DNA transfer to human cells can also take place through the Type IV secretion system of two intracellular human pathogens, Legionella pneumophila and Coxiella burnetii, which code for a distantly related Dot/Icm Type IV B secretion system. This suggests that DNA transfer could be an intrinsic ability of this family of secretion systems, expanding the range of target human cells. Further analysis of the DNA transfer process showed that recruitment of MobA by Dot/Icm was dependent on the IcmSW chaperone, which may explain the higher DNA transfer rates obtained. Finally, we observed that the presence of MobA negatively affected the intracellular replication of C. burnetii, suggesting an interference with Dot/Icm translocation of virulence factors.
Collapse
Affiliation(s)
- Dolores L. Guzmán-Herrador
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, UC-CSIC-SODERCAN)Santander, Spain
| | - Samuel Steiner
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New HavenCT, United States
| | - Anabel Alperi
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, UC-CSIC-SODERCAN)Santander, Spain
| | - Coral González-Prieto
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, UC-CSIC-SODERCAN)Santander, Spain
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New HavenCT, United States
| | - Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, UC-CSIC-SODERCAN)Santander, Spain
| |
Collapse
|
22
|
Abou-El-Naga IF, El Kerdany ED, Mady RF, Shalaby TI, Zaytoun EM. The effect of lopinavir/ritonavir and lopinavir/ritonavir loaded PLGA nanoparticles on experimental toxoplasmosis. Parasitol Int 2017; 66:735-747. [PMID: 28838776 DOI: 10.1016/j.parint.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022]
Abstract
A marked reduction has been achieved in the incidence and clinical course of toxoplasmic encephalitis after the introduction of protease inhibitors within the treatment regimen of HIV (HIV-PIs). This work was undertaken to study for the first time, the efficacy of HIV-PIs, lopinavir/ritonavir (L/R), as a therapeutic agent in acute experimental toxoplasmosis. Lopinavir/ritonavir (L/R) were used in the same ratio present in aluvia, a known HIV-PIs drug used in the developing countries in the treatment regimens of AID's patient. Poly lactic-co-glycolic acid (PLGA) nanoparticles were used as a delivery system to L/R therapy. L/R alone or after its encapsulation on PLGA were given to Swiss strain albino mice that were infected with RH virulent toxoplasma strain. Both forms caused parasitological improvement in both mortality rate and parasite count. The higher efficacy was achieved by using L/R PLGA together with minimizing the effective dose. There was significant reduction in the parasite count in the peritoneal fluid and the liver. Parasite viability and infectivity were also significantly reduced. The anti-toxoplasma effect of the drug was attributed to the morphological distortion of the tachyzoites as evident by the ultrastructure examination and suppressed the egress of tachyzoites. L/R also induced changes that suggest apoptosis and autophagy of tachyzoites. The parasitophorous vacuole membrane was disrupted and vesiculated. The nanotubular networks inside the parasitophorous vacuole were disrupted. Therefore, the present work opens a new possible way for the approved HIV-PIs as an alternative treatment against acute toxoplasmosis. Furthermore, it increases the list of the opportunistic parasites that can be treated by this drug. The successful in vivo effect of HIV-PIs against Toxoplasma gondii suggests that this parasite may be a target in HIV treated patients, thus decrease the possibility of toxoplasmic encephalitis development.
Collapse
Affiliation(s)
| | | | - Rasha Fadly Mady
- Medical Parasitology Department, Alexandria Faculty of Medicine, Egypt.
| | | | | |
Collapse
|
23
|
Clough B, Wright JD, Pereira PM, Hirst EM, Johnston AC, Henriques R, Frickel EM. K63-Linked Ubiquitination Targets Toxoplasma gondii for Endo-lysosomal Destruction in IFNγ-Stimulated Human Cells. PLoS Pathog 2016; 12:e1006027. [PMID: 27875583 PMCID: PMC5119857 DOI: 10.1371/journal.ppat.1006027] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/26/2016] [Indexed: 12/03/2022] Open
Abstract
Toxoplasma gondii is the most common protozoan parasitic infection in man. Gamma interferon (IFNγ) activates haematopoietic and non-haematopoietic cells to kill the parasite and mediate host resistance. IFNγ-driven host resistance pathways and parasitic virulence factors are well described in mice, but a detailed understanding of pathways that kill Toxoplasma in human cells is lacking. Here we show, that contrary to the widely held belief that the Toxoplasma vacuole is non-fusogenic, in an immune-stimulated environment, the vacuole of type II Toxoplasma in human cells is able to fuse with the host endo-lysosomal machinery leading to parasite death by acidification. Similar to murine cells, we find that type II, but not type I Toxoplasma vacuoles are targeted by K63-linked ubiquitin in an IFNγ-dependent manner in non-haematopoetic primary-like human endothelial cells. Host defence proteins p62 and NDP52 are subsequently recruited to the type II vacuole in distinct, overlapping microdomains with a loss of IFNγ-dependent restriction in p62 knocked down cells. Autophagy proteins Atg16L1, GABARAP and LC3B are recruited to <10% of parasite vacuoles and show no parasite strain preference, which is consistent with inhibition and enhancement of autophagy showing no effect on parasite replication. We demonstrate that this differs from HeLa human epithelial cells, where type II Toxoplasma are restricted by non-canonical autophagy leading to growth stunting that is independent of lysosomal acidification. In contrast to mouse cells, human vacuoles do not break. In HUVEC, the ubiquitinated vacuoles are targeted for destruction in acidified LAMP1-positive endo-lysosomal compartments. Consequently, parasite death can be prevented by inhibiting host ubiquitination and endosomal acidification. Thus, K63-linked ubiquitin recognition leading to vacuolar endo-lysosomal fusion and acidification is an important, novel virulence-driven Toxoplasma human host defence pathway. Toxoplasma gondii is an intracellular parasite that can invade nucleated cells of any warm-blooded animal into a compartment known as a parasitophorous vacuole (PV). The production of gamma interferon (IFNγ) drives the restriction and killing of Toxoplasma. It is not fully known how the parasite inside the PV is eliminated in human cells, although its fate depends on the cell type into which it invades. In IFNγ-stimulated epithelial HeLa cells for instance growth of type II parasites is restricted 24h post-infection by employing the cellular autophagy pathway. Distinctly, we show here that in human endothelial cells the parasite is destroyed by fusion of the PV with the cell’s endo-lysosomal pathway as early as 6h post-infection. This process, which is at odds with the normally non-fusogenic nature of the PV, is dependent on IFNγ. Parasite death follows Lysine63-linked ubiquitination of the PV and is specific to type II Toxoplasma. Our results demonstrate for the first time that vacuolar acidification leading to parasite death is central to controlling infection by Toxoplasma in human endothelial cells.
Collapse
Affiliation(s)
- Barbara Clough
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, United Kingdom
| | - Joseph D. Wright
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, United Kingdom
| | - Pedro M. Pereira
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, United Kingdom
| | - Elizabeth M. Hirst
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, United Kingdom
| | - Ashleigh C. Johnston
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, United Kingdom
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, United Kingdom
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Cebrian I, Croce C, Guerrero NA, Blanchard N, Mayorga LS. Rab22a controls MHC-I intracellular trafficking and antigen cross-presentation by dendritic cells. EMBO Rep 2016; 17:1753-1765. [PMID: 27861124 DOI: 10.15252/embr.201642358] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 11/09/2022] Open
Abstract
Cross-presentation by MHC class I molecules allows the detection of exogenous antigens by CD8+ T lymphocytes. This process is crucial to initiate cytotoxic immune responses against many pathogens (i.e., Toxoplasma gondii) and tumors. To achieve efficient cross-presentation, dendritic cells (DCs) have specialized endocytic pathways; however, the molecular effectors involved are poorly understood. In this work, we identify the small GTPase Rab22a as a key regulator of MHC-I trafficking and antigen cross-presentation by DCs. Our results demonstrate that Rab22a is recruited to DC endosomes and phagosomes, as well as to the vacuole containing T. gondii parasites. The silencing of Rab22a expression did not affect the uptake of exogenous antigens or parasite invasion, but it drastically reduced the intracellular pool and the recycling of MHC-I molecules. The knockdown of Rab22a also hampered the cross-presentation of soluble, particulate and T. gondii-associated antigens, but not the endogenous MHC-I antigen presentation through the classical secretory pathway. Our findings provide compelling evidence that Rab22a plays a central role in the MHC-I endocytic trafficking, which is crucial for efficient cross-presentation by DCs.
Collapse
Affiliation(s)
- Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/UNCuyo Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cristina Croce
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/UNCuyo Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Néstor A Guerrero
- Centre de Physiopathologie de Toulouse Purpan (CPTP), CNRS/INSERM/Université de Toulouse-UPS, Toulouse, France
| | - Nicolas Blanchard
- Centre de Physiopathologie de Toulouse Purpan (CPTP), CNRS/INSERM/Université de Toulouse-UPS, Toulouse, France
| | - Luis S Mayorga
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/UNCuyo Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
25
|
Leisching G, Pietersen RD, Wiid I, Baker B. Virulence, biochemistry, morphology and host-interacting properties of detergent-free cultured mycobacteria: An update. Tuberculosis (Edinb) 2016; 100:53-60. [DOI: 10.1016/j.tube.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/26/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
|
26
|
Blume M, Nitzsche R, Sternberg U, Gerlic M, Masters SL, Gupta N, McConville MJ. A Toxoplasma gondii Gluconeogenic Enzyme Contributes to Robust Central Carbon Metabolism and Is Essential for Replication and Virulence. Cell Host Microbe 2016; 18:210-20. [PMID: 26269956 DOI: 10.1016/j.chom.2015.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 05/25/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
The expression of gluconeogenic enzymes is typically repressed when glucose is available. The protozoan parasite Toxoplasma gondii utilizes host glucose to sustain high rates of intracellular replication. However, despite their preferential utilization of glucose, intracellular parasites constitutively express two isoforms of the gluconeogenic enzyme fructose 1,6-bisphosphatase (TgFBP1 and TgFBP2). The rationale for constitutive expression of FBPases in T. gondii remains unclear. We find that conditional knockdown of TgFBP2 results in complete loss of intracellular growth in vitro under glucose-replete conditions and loss of acute virulence in mice. TgFBP2 deficiency was rescued by expression of catalytically active FBPase and was associated with altered glycolytic and mitochondrial TCA cycle fluxes, as well as dysregulation of glycolipid, amylopectin, and fatty acid biosynthesis. Futile cycling between gluconeogenic and glycolytic enzymes may constitute a regulatory mechanism that allows T. gondii to rapidly adapt to changes in nutrient availability in different host cells.
Collapse
Affiliation(s)
- Martin Blume
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Richard Nitzsche
- Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | - Ulrich Sternberg
- Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | - Motti Gerlic
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nishith Gupta
- Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
27
|
The Host Response to a Clinical MDR Mycobacterial Strain Cultured in a Detergent-Free Environment: A Global Transcriptomics Approach. PLoS One 2016; 11:e0153079. [PMID: 27055235 PMCID: PMC4824497 DOI: 10.1371/journal.pone.0153079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/23/2016] [Indexed: 12/28/2022] Open
Abstract
During Mycobacterium tuberculosis (M.tb) infection, the initial interactions between the pathogen and the host cell determines internalization and innate immune response events. It is established that detergents such as Tween alter the mycobacterial cell wall and solubilize various lipids and proteins. The implication of this is significant since induced changes on the cell wall affect macrophage uptake and the immune response to M.tb. Importantly, during transmission between hosts, aerosolized M.tb enters the host in its native form, i.e. in a detergent-free environment, thus in vitro and in vivo studies should mimic this as closely as possible. To this end, we have optimized a procedure for growing and processing detergent-free M.tb and assessed the response of murine macrophages (BMDM) infected with multi drug-resistant M.tb (R179 Beijing 220 clinical isolate) using RNAseq. We compared the effects of the host response to M.tb cultured under standard laboratory conditions (Tween 80 containing medium -R179T), or in detergent-free medium (R179NT). RNAseq comparisons reveal 2651 differentially expressed genes in BMDMs infected with R179T M.tb vs. BMDMs infected with R179NT M.tb. A range of differentially expressed genes involved in BMDM receptor interaction with M.tb (Mrc1, Ifngr1, Tlr9, Fpr1 and Itgax) and pro-inflammatory cytokines/chemokines (Il6, Il1b, Tnf, Ccl5 and Cxcl14) were selected for analysis through qPCR. BMDMs infected with R179NT stimulate a robust inflammatory response. Interestingly, R179NT M.tb induce transcription of Fpr1, a receptor which detects bacterial formyl peptides and initiates a myriad of immune responses. Additionally we show that the host components Cxcl14, with an unknown role in M.tb infection, and Tlr9, an emerging role player, are only stimulated by infection with R179NT M.tb. Taken together, our results suggest that the host response differs significantly in response to Tween 80 cultured M.tb and should therefore not be used in infection experiments.
Collapse
|
28
|
Fc Receptors and Fc Receptor-Like Molecules within the Immunoreceptor Family. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7152311 DOI: 10.1016/b978-0-12-374279-7.02017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptors for the Fc portion of immunoglobulins (FcRs) account for most cell-mediated biological activities of antibodies. The majority of FcRs are encoded by a set of genes, clustered in the fcr locus, on chromosome 1 in humans and on chromosome 1 and 3 in mice. Eight (in humans) and six (in mice) new genes were found, intermixed with FcR genes in corresponding fcr loci, which encode FcR-like molecules (FcRLs). FcRs and FcRLs are genetically, phylogenetically, structurally, and functionally related. FcRs and FcRLs, however, markedly differ by their ligands, their tissue distribution, and, therefore, by the biological functions they control. A systematic comparison of their biological properties leads to the conclusion that FcRLs are not like FcRs. They altogether form a single family within the immunoreceptor family, whose members fulfill distinct but complementary roles in immunity by differentially controlling innate and adaptive responses.
Collapse
|
29
|
Martin TM, Plautz SA, Pannier AK. Temporal endogenous gene expression profiles in response to lipid-mediated transfection. J Gene Med 2015; 17:14-32. [PMID: 25663588 DOI: 10.1002/jgm.2821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Design of efficient nonviral gene delivery systems is limited as a result of the rudimentary understanding of the specific molecules and processes that facilitate DNA transfer. METHODS Lipoplexes formed with Lipofectamine 2000 (LF2000) and plasmid-encoding green fluorescent protein (GFP) were delivered to the HEK 293T cell line. After treating cells with lipoplexes, HG-U133 Affymetrix microarrays were used to identify endogenous genes differentially expressed between treated and untreated cells (2 h exposure) or between flow-separated transfected cells (GFP+) and treated, untransfected cells (GFP-) at 8, 16 and 24 h after lipoplex treatment. Cell priming studies were conducted using pharmacologic agents to alter endogenous levels of the identified differentially expressed genes to determine effect on transfection levels. RESULTS Relative to untreated cells 2 h after lipoplex treatment, only downregulated genes were identified ≥ 30-fold: ALMS1, ITGB1, FCGR3A, DOCK10 and ZDDHC13. Subsequently, relative to GFP- cells, the GFP+ cell population showed at least a five-fold upregulation of RAP1A and PACSIN3 (8 h) or HSPA6 and RAP1A (16 and 24 h). Pharmacologic studies altering endogenous levels for ALMS1, FCGR3A, and DOCK10 (involved in filopodia protrusions), ITGB1 (integrin signaling), ZDDHC13 (membrane trafficking) and PACSIN3 (proteolytic shedding of membrane receptors) were able to increase or decrease transgene production. CONCLUSIONS RAP1A, PACSIN3 and HSPA6 may help lipoplex-treated cells overcome a transcriptional shutdown due to treatment with lipoplexes and provide new targets for investigating molecular mechanisms of transfection or for enhancing transfection through cell priming or engineering of the nonviral gene delivery system.
Collapse
Affiliation(s)
- Timothy M Martin
- Department of Pharmaceutical Sciences, Durham Research Center II, University of Nebraska-Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
30
|
Bugalhão JN, Mota LJ, Franco IS. Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking. Microbiologyopen 2015; 5:118-33. [PMID: 26626407 PMCID: PMC4767423 DOI: 10.1002/mbo3.316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 02/02/2023] Open
Abstract
The Legionella pneumophila effector protein VipA is an actin nucleator that co‐localizes with actin filaments and early endosomes in infected macrophages and which interferes with organelle trafficking when expressed in yeast. To identify the regions of VipA involved in its subcellular localization and functions, we ectopically expressed specific VipA mutant proteins in eukaryotic cells. This indicated that the characteristic punctate distribution of VipA depends on its NH2‐terminal (amino acid residues 1–133) and central coiled‐coil (amino acid residues 133–206) regions, and suggested a role for the COOH‐terminal (amino acid residues 206–339) region in association with actin filaments and for the NH2‐terminal in co‐localization with early endosomes. Co‐immunoprecipitation and in vitro assays showed that the COOH‐terminal region of VipA is necessary and sufficient to mediate actin binding, and is essential but insufficient to induce microfilament formation. Assays in yeast revealed that the NH2 and the COOH‐terminal regions, and possibly an NPY motif within the NH2 region of VipA, are necessary for interference with organelle trafficking. Overall, this suggests that subversion of eukaryotic vesicular trafficking by VipA involves both its ability to associate with early endosomes via its NH2‐terminal region and its capacity to bind and polymerize actin through its COOH‐terminal region.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Irina S Franco
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
31
|
Kumar SK, Singh P, Sinha S. Naturally produced opsonizing antibodies restrict the survival of Mycobacterium tuberculosis in human macrophages by augmenting phagosome maturation. Open Biol 2015; 5:150171. [PMID: 26674415 PMCID: PMC4703058 DOI: 10.1098/rsob.150171] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022] Open
Abstract
This study investigated the hypothesis that serum antibodies against Mycobacterium tuberculosis present in naturally infected healthy subjects of a tuberculosis (TB) endemic area could create and/or sustain the latent form of infection. All five apparently healthy Indian donors showed high titres of serum antibodies against M. tuberculosis cell membrane antigens, including lipoarabinomannan and alpha crystallin. Uptake and killing of bacilli by the donor macrophages was significantly enhanced following their opsonization with antibody-rich, heat-inactivated autologous sera. However, the capability to opsonize was apparent for antibodies against some and not other antigens. High-content cell imaging of infected macrophages revealed significantly enhanced colocalization of the phagosome maturation marker LAMP-1, though not of calmodulin, with antibody-opsonized compared with unopsonized M. tuberculosis. Key enablers of macrophage microbicidal action--proinflammatory cytokines (IFN-γ and IL-6), phagosome acidification, inducible NO synthase and nitric oxide--were also significantly enhanced following antibody opsonization. Interestingly, heat-killed M. tuberculosis also elevated these mediators to the levels comparable to, if not higher than, opsonized M. tuberculosis. Results of the study support the emerging view that an efficacious vaccine against TB should, apart from targeting cell-mediated immunity, also generate 'protective' antibodies.
Collapse
Affiliation(s)
- Shashi Kant Kumar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| | - Padam Singh
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| | - Sudhir Sinha
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
32
|
Yu X, Decker KB, Barker K, Neunuebel MR, Saul J, Graves M, Westcott N, Hang H, LaBaer J, Qiu J, Machner MP. Host-pathogen interaction profiling using self-assembling human protein arrays. J Proteome Res 2015; 14:1920-36. [PMID: 25739981 DOI: 10.1021/pr5013015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Host-pathogen protein interactions are fundamental to every microbial infection, yet their identification has remained challenging due to the lack of simple detection tools that avoid abundance biases while providing an open format for experimental modifications. Here, we applied the Nucleic Acid-Programmable Protein Array and a HaloTag-Halo ligand detection system to determine the interaction network of Legionella pneumophila effectors (SidM and LidA) with 10 000 unique human proteins. We identified known targets of these L. pneumophila proteins and potentially novel interaction candidates. In addition, we applied our Click chemistry-based NAPPA platform to identify the substrates for SidM, an effector with an adenylyl transferase domain that catalyzes AMPylation (adenylylation), the covalent addition of adenosine monophosphate (AMP). We confirmed a subset of the novel SidM and LidA targets in independent in vitro pull-down and in vivo cell-based assays, and provided further insight into how these effectors may discriminate between different host Rab GTPases. Our method circumvents the purification of thousands of human and pathogen proteins, and does not require antibodies against or prelabeling of query proteins. This system is amenable to high-throughput analysis of effectors from a wide variety of human pathogens that may bind to and/or post-translationally modify targets within the human proteome.
Collapse
Affiliation(s)
- Xiaobo Yu
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Kimberly B Decker
- ‡Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kristi Barker
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - M Ramona Neunuebel
- ‡Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Justin Saul
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Morgan Graves
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Nathan Westcott
- §The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Howard Hang
- §The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Joshua LaBaer
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Ji Qiu
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Matthias P Machner
- ‡Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
33
|
Walwyn O, Skariah S, Lynch B, Kim N, Ueda Y, Vohora N, Choe J, Mordue DG. Forward genetics screens using macrophages to identify Toxoplasma gondii genes important for resistance to IFN-γ-dependent cell autonomous immunity. J Vis Exp 2015:52556. [PMID: 25867017 PMCID: PMC4401235 DOI: 10.3791/52556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan pathogen. The parasite invades and replicates within virtually any warm blooded vertebrate cell type. During parasite invasion of a host cell, the parasite creates a parasitophorous vacuole (PV) that originates from the host cell membrane independent of phagocytosis within which the parasite replicates. While IFN-dependent-innate and cell mediated immunity is important for eventual control of infection, innate immune cells, including neutrophils, monocytes and dendritic cells, can also serve as vehicles for systemic dissemination of the parasite early in infection. An approach is described that utilizes the host innate immune response, in this case macrophages, in a forward genetic screen to identify parasite mutants with a fitness defect in infected macrophages following activation but normal invasion and replication in naïve macrophages. Thus, the screen isolates parasite mutants that have a specific defect in their ability to resist the effects of macrophage activation. The paper describes two broad phenotypes of mutant parasites following activation of infected macrophages: parasite stasis versus parasite degradation, often in amorphous vacuoles. The parasite mutants are then analyzed to identify the responsible parasite genes specifically important for resistance to induced mediators of cell autonomous immunity. The paper presents a general approach for the forward genetics screen that, in theory, can be modified to target parasite genes important for resistance to specific antimicrobial mediators. It also describes an approach to evaluate the specific macrophage antimicrobial mediators to which the parasite mutant is susceptible. Activation of infected macrophages can also promote parasite differentiation from the tachyzoite to bradyzoite stage that maintains chronic infection. Therefore, methodology is presented to evaluate the importance of the identified parasite gene to establishment of chronic infection.
Collapse
Affiliation(s)
- Odaelys Walwyn
- Department of Microbiology and Immunology, New York Medical College
| | - Sini Skariah
- Department of Microbiology and Immunology, New York Medical College
| | - Brian Lynch
- Department of Microbiology and Immunology, New York Medical College
| | - Nathaniel Kim
- Department of Microbiology and Immunology, New York Medical College
| | - Yukari Ueda
- Department of Microbiology and Immunology, New York Medical College
| | - Neal Vohora
- Department of Microbiology and Immunology, New York Medical College
| | - Josh Choe
- Department of Microbiology and Immunology, New York Medical College
| | - Dana G Mordue
- Department of Microbiology and Immunology, New York Medical College
| |
Collapse
|
34
|
Repnik U, Gangopadhyay P, Bietz S, Przyborski JM, Griffiths G, Lingelbach K. The apicomplexan parasite Babesia divergens internalizes band 3, glycophorin A and spectrin during invasion of human red blood cells. Cell Microbiol 2015; 17:1052-68. [PMID: 25628009 DOI: 10.1111/cmi.12422] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/21/2022]
Abstract
Plasmodium falciparum invades human red blood cells (RBC), while Babesia divergens infects bovine and, occasionally, human RBC. The mammalian RBC is normally unable to endocytose or phagocytose and the events leading to invasion are incompletely understood. Initially, both parasites are surrounded by the RBC plasma membrane-derived parasitophorous vacuolar membrane (PVM) that is formed during invasion. In P. falciparum-infected RBC, the PVM persists at least until parasite replication is completed whereas it has been proposed that the B. divergens PVM is disintegrated soon upon invasion. Here, we have used a B. divergens strain adapted to human RBC to investigate the formation and fate of the PVM. Using ultrastructural analysis and whole-mount or on-section immunofluorescence and immunogold labelling, we demonstrate that the initial vacuolar membrane is formed from protein and lipid components of the RBC plasma membrane. Integral membrane proteins band 3 and glycophorin A and the cytoskeletal protein spectrin are associated with the PVM of the B. divergens, but are absent from the PVM of P. falciparum at the ring or the trophozoite stage. Our results provide evidence that the biophysical properties of the RBC cytoskeleton per se do not preclude the internalization of cytoskeletal proteins by invading parasites.
Collapse
Affiliation(s)
- Urska Repnik
- Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0316, Norway
| | - Preetish Gangopadhyay
- Department of Parasitology, Philipps University Marburg, Karl-von-Frisch-Strasse 8, Marburg, 35043, Germany
| | - Sven Bietz
- Department of Parasitology, Philipps University Marburg, Karl-von-Frisch-Strasse 8, Marburg, 35043, Germany
| | - Jude M Przyborski
- Department of Parasitology, Philipps University Marburg, Karl-von-Frisch-Strasse 8, Marburg, 35043, Germany
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0316, Norway
| | - Klaus Lingelbach
- Department of Parasitology, Philipps University Marburg, Karl-von-Frisch-Strasse 8, Marburg, 35043, Germany
| |
Collapse
|
35
|
Asmat TM, Agarwal V, Saleh M, Hammerschmidt S. Endocytosis of Streptococcus pneumoniae via the polymeric immunoglobulin receptor of epithelial cells relies on clathrin and caveolin dependent mechanisms. Int J Med Microbiol 2014; 304:1233-46. [PMID: 25455218 DOI: 10.1016/j.ijmm.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/18/2014] [Accepted: 10/05/2014] [Indexed: 12/17/2022] Open
Abstract
Colonization of Streptococcus pneumoniae (pneumococci) is a prerequisite for bacterial dissemination and their capability to enter the bloodstream. Pneumococci have evolved various successful strategies to colonize the mucosal epithelial barrier of humans. A pivotal mechanism of host cell invasion implicated with invasive diseases is promoted by the interaction of pneumococcal PspC with the polymeric Ig-receptor (pIgR). However, the mechanism(s) of pneumococcal endocytosis and the intracellular route of pneumococci upon uptake by the PspC-pIgR-interaction are not known. Here, we demonstrate by using a combination of pharmacological inhibitors and genetics interference approaches the involvement of active dynamin-dependent caveolae and clathrin-coated vesicles for pneumococcal uptake via the PspC-pIgR mechanism. Depleting cholesterol from host cell membranes and disruption of lipid microdomains impaired pneumococcal internalization. Moreover, chemical inhibition of clathrin or functional inactivation of dynamin, caveolae or clathrin by RNA interference significantly affected pneumococcal internalization suggesting that clathrin-mediated endocytosis (CME) and caveolae are involved in the bacterial uptake process. Confocal fluorescence microscopy of pIgR-expressing epithelial cells infected with pneumococci or heterologous Lactococcus lactis expressing PspC demonstrated bacterial co-localization with fluorescent-tagged clathrin and early as well as recycling or late endosomal markers such as Lamp1, Rab5, Rab4, and Rab7, respectively. In conclusion these data suggest that PspC-promoted uptake is mediated by both CME and caveolae. After endocytosis pneumococci are routed via the endocytic pathway into early endosomes and are then sorted into recycling or late endosomes, which can result in pneumococcal killing in phagolysosomes or transcytosis via recycling endosomes.
Collapse
Affiliation(s)
- Tauseef M Asmat
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany; Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vaibhav Agarwal
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany; Department of Laboratory Medicine, Medical Protein Chemistry, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Malek Saleh
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany.
| |
Collapse
|
36
|
Avirulent strains of Toxoplasma gondii infect macrophages by active invasion from the phagosome. Proc Natl Acad Sci U S A 2014; 111:6437-42. [PMID: 24733931 DOI: 10.1073/pnas.1316841111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Unlike most intracellular pathogens that gain access into host cells through endocytic pathways, Toxoplasma gondii initiates infection at the cell surface by active penetration through a moving junction and subsequent formation of a parasitophorous vacuole. Here, we describe a noncanonical pathway for T. gondii infection of macrophages, in which parasites are initially internalized through phagocytosis, and then actively invade from within a phagosomal compartment to form a parasitophorous vacuole. This phagosome to vacuole invasion (PTVI) pathway may represent an intermediary link between the endocytic and the penetrative routes for host cell entry by intracellular pathogens. The PTVI pathway is preferentially used by avirulent strains of T. gondii and confers an infectious advantage over virulent strains for macrophage tropism.
Collapse
|
37
|
|
38
|
Beiting DP, Peixoto L, Akopyants NS, Beverley SM, Wherry EJ, Christian DA, Hunter CA, Brodsky IE, Roos DS. Differential induction of TLR3-dependent innate immune signaling by closely related parasite species. PLoS One 2014; 9:e88398. [PMID: 24505488 PMCID: PMC3914978 DOI: 10.1371/journal.pone.0088398] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 12/20/2022] Open
Abstract
The closely related protozoan parasites Toxoplasma gondii and Neospora caninum display similar life cycles, subcellular ultrastructure, invasion mechanisms, metabolic pathways, and genome organization, but differ in their host range and disease pathogenesis. Type II (γ) interferon has long been known to be the major mediator of innate and adaptive immunity to Toxoplasma infection, but genome-wide expression profiling of infected host cells indicates that Neospora is a potent activator of the type I (α/β) interferon pathways typically associated with antiviral responses. Infection of macrophages from mice with targeted deletions in various innate sensing genes demonstrates that host responses to Neospora are dependent on the toll-like receptor Tlr3 and the adapter protein Trif. Consistent with this observation, RNA from Neospora elicits TLR3-dependent type I interferon responses when targeted to the host endo-lysosomal system. Although live Toxoplasma fail to induce type I interferon, heat-killed parasites do trigger this response, albeit much weaker than Neospora, and co-infection studies reveal that T. gondii actively suppresses the production of type I interferon. These findings reveal that eukaryotic pathogens can be potent inducers of type I interferon and that related parasite species interact with this pathway in distinct ways.
Collapse
Affiliation(s)
- Daniel P. Beiting
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Lucia Peixoto
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Natalia S. Akopyants
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
| | - E. John Wherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David A. Christian
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
39
|
Cortes HD, Lillico DME, Zwozdesky MA, Pemberton JG, O'Brien A, Montgomery BCS, Wiersma L, Chang JP, Stafford JL. Induction of phagocytosis and intracellular signaling by an inhibitory channel catfish leukocyte immune-type receptor: evidence for immunoregulatory receptor functional plasticity in teleosts. J Innate Immun 2014; 6:435-55. [PMID: 24504017 DOI: 10.1159/000356963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/01/2013] [Indexed: 12/21/2022] Open
Abstract
Immunoregulatory receptors are categorized as stimulatory or inhibitory based on their engagement of unique intracellular signaling networks. These proteins also display functional plasticity, which adds versatility to the control of innate immunity. Here we demonstrate that an inhibitory catfish leukocyte immune-type receptor (IpLITR) also displays stimulatory capabilities in a representative myeloid cell model. Previously, the receptor IpLITR 1.1b was shown to inhibit natural killer cell-mediated cytotoxicity. Here we expressed IpLITR 1.1b in rat basophilic leukemia-2H3 cells and monitored intracellular signaling and functional responses. Although IpLITR 1.1b did not stimulate cytokine secretion, activation of this receptor unexpectedly induced phagocytosis as well as extracellular signal-related kinase 1/2- and protein kinase B (Akt)-dependent signal transduction. This novel IpLITR 1.1b-mediated response was independent of an association with the FcRγ chain and was likely due to phosphotyrosine-dependent adaptors associating with prototypical signaling motifs within the distal region of its cytoplasmic tail. Furthermore, compared to a stimulatory IpLITR, IpLITR 1.1b displayed temporal differences in the induction of intracellular signaling, and IpLITR 1.1b-mediated phagocytosis had reduced sensitivity to EDTA and cytochalasin D. Overall, this is the first demonstration of functional plasticity for teleost LITRs, a process likely important for the fine-tuning of conserved innate defenses.
Collapse
Affiliation(s)
- Herman D Cortes
- Department of Biological Sciences, University of Alberta, Edmonton, Alta., Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Antibodies are major molecular effectors of adaptive immune responses. Most, if not all, biological activities of antibodies, however, depend on the functional properties of cells that express receptors for the Fc portion of antibodies (FcR). Most FcR are activating receptors; some are inhibitory. When engaged by antibodies and antigen, the various FcR expressed by a given cell trigger a mixture of positive and negative signals whose integration determines cellular responses. Responses of cell populations can be either protective or pathogenic. As a consequence, FcR are potential target/tools in a variety of diseases including infection, allergy, autoimmune diseases, and cancer.
Collapse
|
41
|
Kubori T, Hubber AM, Nagai H. Hijacking the host proteasome for the temporal degradation of bacterial effectors. Methods Mol Biol 2014; 1197:141-52. [PMID: 25172279 DOI: 10.1007/978-1-4939-1261-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To establish infection, intracellular pathogens need to modulate host cellular processes. Modulation of host processes is achieved by the action of various "effector proteins" which are delivered from the bacteria to the host cell cytosol. In order to orchestrate host cell reprogramming, the function of effectors inside host cells is regulated both temporally and spatially. In eukaryotes one of the most prominent processes used to degrade proteins is the ubiquitin-proteasome system. Recently it has emerged that the intracellular pathogen Legionella pneumophila is able to achieve temporal regulation of an effector using the ubiquitin-proteasome system. After establishing its replicative niche, the L. pneumophila effector SidH is degraded by the host proteasome. Most remarkably another effector protein LubX is able to mimic the function of an eukaryotic E3 ubiquitin ligase and polyubiquitinates SidH, targeting it for degradation. In this paper we describe a method to detect the polyubiquitin-modified forms of SidH in vitro and in vivo. Analyzing the temporal profile of polyubiquitination and degradation of bacterial effectors aids towards our understanding of how bacteria hijack host systems.
Collapse
Affiliation(s)
- Tomoko Kubori
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|
42
|
Abstract
Most biological activities of antibodies depend on their ability to engage Receptors for the Fc portion of immunoglobulins (FcRs) on a variety of cell types. As FcRs can trigger positive and negative signals, as these signals control several biological activities in individual cells, as FcRs are expressed by many cells of hematopoietic origin, mostly of the myeloid lineage, as these cells express various combinations of FcRs, and as FcR-expressing cells have different functional repertoires, antibodies can exert a wide spectrum of biological activities. Like B and T Cell Receptors (BCRs and TCRs), FcRs are bona fide immunoreceptors. Unlike BCRs and TCRs, however, FcRs are immunoreceptors with an adaptive specificity for antigen, with an adaptive affinity for antibodies, with an adaptive structure and with an adaptive signaling. They induce adaptive biological responses that depend on their tissue distribution and on FcR-expressing cells that are selected locally by antibodies. They critically determine health and disease. They are thus exquisitely adaptive therapeutic tools.
Collapse
Affiliation(s)
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
43
|
Muniz-Feliciano L, Van Grol J, Portillo JAC, Liew L, Liu B, Carlin CR, Carruthers VB, Matthews S, Subauste CS. Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite. PLoS Pathog 2013; 9:e1003809. [PMID: 24367261 PMCID: PMC3868508 DOI: 10.1371/journal.ppat.1003809] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/19/2013] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome-lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3(+) structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival.
Collapse
Affiliation(s)
- Luis Muniz-Feliciano
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jennifer Van Grol
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jose-Andres C. Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Lloyd Liew
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Bing Liu
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Stephen Matthews
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Carlos S. Subauste
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
44
|
The spreading process of Ehrlichia canis in macrophages is dependent on actin cytoskeleton, calcium and iron influx and lysosomal evasion. Vet Microbiol 2013; 168:442-6. [PMID: 24378068 DOI: 10.1016/j.vetmic.2013.11.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/25/2013] [Accepted: 11/30/2013] [Indexed: 12/28/2022]
Abstract
Ehrlichia canis is an obligate intracellular microorganism and the etiologic agent of canine monocytic ehrlichiosis. The invasion process has already been described for some bacteria in this genus, such as E. muris and E. chaffeensis, and consists of four stages: adhesion, internalisation, intracellular proliferation and intercellular spreading. However, little is known about the spreading process of E. canis. The aim of this study was to analyse the role of the actin cytoskeleton, calcium, iron and lysosomes from the host cell in the spreading of E. canis in dog macrophages in vitro. Different inhibitory drugs were used: cytochalasin D (actin polymerisation inhibitor), verapamil (calcium channel blocker) and deferoxamine (iron chelator). Our results showed a decrease in the number of bacteria in infected cells treated with all drugs when compared to controls. Lysosomes in infected cells were cytochemically labelled with acid phosphatase to allow the visualisation of phagosome-lysosome fusion and were further analysed by transmission electron microscopy. Phagosome-lysosome fusion was rarely observed in vacuoles containing viable E. canis. These data suggest that the spreading process of E. canis in vitro is dependent on cellular components analysed and lysosomal evasion.
Collapse
|
45
|
CD40 induces anti-Toxoplasma gondii activity in nonhematopoietic cells dependent on autophagy proteins. Infect Immun 2013; 81:2002-11. [PMID: 23509150 DOI: 10.1128/iai.01145-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Toxoplasma gondii infects both hematopoietic and nonhematopoietic cells and can cause cerebral and ocular toxoplasmosis, as a result of either congenital or postnatally acquired infections. Host protection likely acts at both cellular levels to control the parasite. CD40 is a key factor for protection against cerebral and ocular toxoplasmosis. We determined if CD40 induces anti-T. gondii activity at the level of nonhematopoietic cells. Engagement of CD40 on various endothelial cells including human microvascular brain endothelial cells, human umbilical vein endothelial cells, and a mouse endothelial cell line as well as human and mouse retinal pigment epithelial cells resulted in killing of T. gondii. CD40 stimulation increased expression of the autophagy proteins Beclin 1 and LC3 II, enhanced autophagy flux, and led to recruitment of LC3 around the parasite. The late endosomal/lysosomal marker LAMP-1 accumulated around the parasite in CD40-stimulated cells. This was accompanied by killing of T. gondii dependent on lysosomal enzymes. Accumulation of LAMP-1 and killing of T. gondii were dependent on the autophagy proteins Beclin 1 and Atg7. Together, these studies revealed that CD40 induces toxoplasmacidal activity in various nonhematopoietic cells dependent on proteins of the autophagy machinery.
Collapse
|
46
|
Kotsias F, Hoffmann E, Amigorena S, Savina A. Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells. Antioxid Redox Signal 2013; 18:714-29. [PMID: 22827577 DOI: 10.1089/ars.2012.4557] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The NADPH oxidase 2 (NOX2) is known to play a major role in innate immunity for several decades. Phagocytic cells provide host defense by ingesting microbes and destroy them by different mechanisms, including the generation of reactive oxygen species (ROS) by NOX2, a process known as oxidative burst. The phagocytic pathway of dendritic cells (DCs), highly adapted to antigen processing, has been shown to display remarkable differences compared to other phagocytes. Contrary to macrophages and neutrophils, the main function of DC phagosomes is antigen presentation rather than pathogen killing or clearance of cell debris. RECENT ADVANCES In the last few years, it became clear that NOX2 is also involved in the establishment of adaptive immunity. Several studies support the idea of a relationship between antigen presentation and the level of antigen degradation, the latter one being regulated by the pH and ROS within phagosomes. CRITICAL ISSUES The regulation of phagosomal pH exerted by NOX2, and thereby of the efficacy of antigen cross-presentation in DCs, represents a clear illustration of how NOX2 can influence CD8(+) T lymphocyte responses. In this review, we want to put emphasis on the relationship between ROS generation and antigen processing and presentation, since there is growing evidence that the low levels of ROS generated by DCs play an important role in these processes. FUTURE DIRECTIONS In the next years, it will be interesting to unravel possible mechanisms involved and to find other possible connections between NOX family members and adaptive immune responses.
Collapse
|
47
|
Yue Y, Wu C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater Sci 2013; 1:152-170. [DOI: 10.1039/c2bm00030j] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Skariah S, Bednarczyk RB, McIntyre MK, Taylor GA, Mordue DG. Discovery of a novel Toxoplasma gondii conoid-associated protein important for parasite resistance to reactive nitrogen intermediates. THE JOURNAL OF IMMUNOLOGY 2012; 188:3404-15. [PMID: 22387554 DOI: 10.4049/jimmunol.1101425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Toxoplasma gondii modifies its host cell to suppress its ability to become activated in response to IFN-γ and TNF-α and to develop intracellular antimicrobial effectors, including NO. Mechanisms used by T. gondii to modulate activation of its infected host cell likely underlie its ability to hijack monocytes and dendritic cells during infection to disseminate to the brain and CNS where it converts to bradyzoites contained in tissue cysts to establish persistent infection. To identify T. gondii genes important for resistance to the effects of host cell activation, we developed an in vitro murine macrophage infection and activation model to identify parasite insertional mutants that have a fitness defect in infected macrophages following activation but normal invasion and replication in naive macrophages. We identified 14 independent T. gondii insertional mutants out of >8000 screened that share a defect in their ability to survive macrophage activation due to macrophage production of reactive nitrogen intermediates (RNIs). These mutants have been designated counter-immune mutants. We successfully used one of these mutants to identify a T. gondii cytoplasmic and conoid-associated protein important for parasite resistance to macrophage RNIs. Deletion of the entire gene or just the region encoding the protein in wild-type parasites recapitulated the RNI-resistance defect in the counter-immune mutant, confirming the role of the protein in resistance to macrophage RNIs.
Collapse
Affiliation(s)
- Sini Skariah
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
49
|
Franco IS, Shohdy N, Shuman HA. The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 2012; 8:e1002546. [PMID: 22383880 PMCID: PMC3285593 DOI: 10.1371/journal.ppat.1002546] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/09/2012] [Indexed: 12/30/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, invades and replicates within macrophages and protozoan cells inside a vacuole. The type IVB Icm/Dot secretion system is necessary for the translocation of effector proteins that modulate vesicle trafficking pathways in the host cell, thus avoiding phagosome-lysosome fusion. The Legionella VipA effector was previously identified by its ability to interfere with organelle trafficking in the Multivesicular Body (MVB) pathway when ectopically expressed in yeast. In this study, we show that VipA binds actin in vitro and directly polymerizes microfilaments without the requirement of additional proteins, displaying properties distinct from other bacterial actin nucleators. Microscopy studies revealed that fluorescently tagged VipA variants localize to puncta in eukaryotic cells. In yeast these puncta are associated with actin-rich regions and components of the Multivesicular Body pathway such as endosomes and the MVB-associated protein Bro1. During macrophage infection, native translocated VipA associated with actin patches and early endosomes. When ectopically expressed in mammalian cells, VipA-GFP displayed a similar distribution ruling out the requirement of additional effectors for binding to its eukaryotic targets. Interestingly, a mutant form of VipA, VipA-1, that does not interfere with organelle trafficking is also defective in actin binding as well as association with early endosomes and shows a homogeneous cytosolic localization. These results show that the ability of VipA to bind actin is related to its association with a specific subcellular location as well as its role in modulating organelle trafficking pathways. VipA constitutes a novel type of actin nucleator that may contribute to the intracellular lifestyle of Legionella by altering cytoskeleton dynamics to target host cell pathways.
Collapse
Affiliation(s)
- Irina Saraiva Franco
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.
| | | | | |
Collapse
|
50
|
Machado FS, Rodriguez NE, Adesse D, Garzoni LR, Esper L, Lisanti MP, Burk RD, Albanese C, Van Doorslaer K, Weiss LM, Nagajyothi F, Nosanchuk JD, Wilson ME, Tanowitz HB. Recent developments in the interactions between caveolin and pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:65-82. [PMID: 22411314 DOI: 10.1007/978-1-4614-1222-9_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of caveolin and caveolae in the pathogenesis of infection has only recently been appreciated. In this chapter, we have highlighted some important new data on the role of caveolin in infections due to bacteria, viruses and fungi but with particular emphasis on the protozoan parasites Leishmania spp., Trypanosoma cruzi and Toxoplasma gondii. This is a continuing area of research and the final chapter has not been written on this topic.
Collapse
Affiliation(s)
- Fabiana S Machado
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|