1
|
Vickers TJ, Buckley DP, Khatoon N, Sheikh A, Setu B, Berndsen ZT, Fleckenstein JM. Parenteral vaccination with recombinant EtpA glycoprotein impairs enterotoxigenic E. coli colonization. Infect Immun 2025; 93:e0060124. [PMID: 40310293 DOI: 10.1128/iai.00601-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Enterotoxigenic E. coli (ETEC) causes hundreds of millions of cases of acute diarrheal illness in low- and middle-income regions, disproportionately in young children. To date, there is no licensed, broadly protective vaccine against these common but antigenically heterogeneous pathogens. One of the more highly conserved antigens of ETEC, EtpA, is an extracellular glycoprotein adhesin that preferentially binds to A blood group glycans on intestinal epithelia. EtpA contributes to increased severity of illness in A blood group individuals, elicits robust serologic and fecal antibody responses following infection, and has been associated with protection against subsequent infection. However, its utility as a protective antigen needs further examination. In the present studies, we examined whether parenteral vaccination with recombinant EtpA (rEtpA) could afford protection against intestinal colonization in a murine model of ETEC infection. Here, we demonstrate that intramuscular vaccination with rEtpA, adjuvanted with double mutant LT (dmLT), primes IgG predominant mucosal antibody responses to ETEC challenge. Notably, however, both antibody levels and avidity, as well as protection, were dependent on the vaccination schedule. Likewise, through electron microscopy polyclonal epitope mapping (EMPEM), we observed a different repertoire of epitopes targeted by antibodies after a more protracted vaccination schedule. Next, we explored the utility of IM immunization with alum-adjuvanted rEtpA. This elicited strong serologic and fecal IgG responses. Although accompanied by negligible IgA mucosal responses, EtpA alum-adjuvanted IM vaccination nevertheless protected against ETEC intestinal colonization. Collectively, these data suggest that EtpA could expand the portfolio of antigens targeted in ETEC subunit vaccine development.
Collapse
Affiliation(s)
- Tim J Vickers
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David P Buckley
- Department of Biochemistry, University of Missouri Columbia, Columbia, Missouri, USA
| | - Nazia Khatoon
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bipul Setu
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zachary T Berndsen
- Department of Biochemistry, University of Missouri Columbia, Columbia, Missouri, USA
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Infectious Diseases, Medicine Service, Veterans Affairs Saint Louis Health Care System, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Moniaux N, Geoffre N, Deshayes A, Dos Santos A, Job S, Lacoste C, Nguyen TS, Darnaud M, Friedel-Arboleas M, Guettier C, Purhonen J, Kallijärvi J, Amouyal G, Amouyal P, Bréchot C, Vivès RR, Buendia MA, Issad T, Faivre J. Tumor suppressive role of the antimicrobial lectin REG3A targeting the O -GlcNAc glycosylation pathway. Hepatology 2025; 81:1416-1432. [PMID: 38975812 PMCID: PMC11999098 DOI: 10.1097/hep.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND AIMS Antimicrobial proteins of the regenerating family member 3 alpha (REG3A) family provide a first line of protection against infections and transformed cells. Their expression is inducible by inflammation, which makes their role in cancer biology less clear since an immune-inflammatory context may preexist or coexist with cancer, as occurs in HCC. The aim of this study is to clarify the role of REG3A in liver carcinogenesis and to determine whether its carbohydrate-binding functions are involved. APPROACH AND RESULTS This study provides evidence for a suppressive role of REG3A in HCC by reducing O -GlcNAcylation in 2 mouse models of HCC, in vitro cell studies, and clinical samples. REG3A expression in hepatocytes significantly reduced global O -GlcNAcylation and O -GlcNAcylation of c-MYC in preneoplastic and tumor livers and markedly inhibited HCC development in REG3A-c-MYC double transgenic mice and mice exposed to diethylnitrosamine. REG3A modified O -GlcNAcylation without altering the expression or activity of O-linked N-acetylglucosaminyltransferase, O-linked N-acetylglucosaminyl hydrolase, or glutamine fructose-6-phosphate amidotransferase. Reduced O -GlcNAcylation was consistent with decreased levels of UDP-GlcNAc in precancerous and cancerous livers. This effect was linked to the ability of REG3A to bind glucose and glucose-6 phosphate, suggested by a REG3A mutant unable to bind glucose and glucose-6 phosphate and alter O -GlcNAcylation. Importantly, patients with cirrhosis with high hepatic REG3A expression had lower levels of O -GlcNAcylation and longer cancer-free survival than REG3A-negative cirrhotic livers. CONCLUSIONS REG3A helps fight liver cancer by reducing O -GlcNAcylation. This study suggests a new paradigm for the regulation of O -GlcNAc signaling in cancer-related pathways through interactions with the carbohydrate-binding function of REG3A.
Collapse
Affiliation(s)
- Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Nicolas Geoffre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sylvie Job
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Tung-Son Nguyen
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Catherine Guettier
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital Bicêtre, Laboratoire Anatomie Pathologique, Le Kremlin Bicêtre, France
| | - Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | - Marie Annick Buendia
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Tarik Issad
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Medical-University Department (DMU) Biology Genetics, Université Paris-Saclay, Paul-Brousse Hospital, Villejuif, France
| |
Collapse
|
3
|
Afsharnia A, Cai Y, Nauta A, Groeneveld A, Folkerts G, Wösten MMSM, Braber S. In Vivo Evidence on the Emerging Potential of Non-Digestible Oligosaccharides as Therapeutic Agents in Bacterial and Viral Infections. Nutrients 2025; 17:1068. [PMID: 40292455 PMCID: PMC11945282 DOI: 10.3390/nu17061068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
The issue of antibiotic-resistant bacterial infections, coupled with the rise in viral pandemics and the slow development of new antibacterial and antiviral treatments, underscores the critical need for novel strategies to mitigate the spread of drug-resistant pathogens, enhance the efficacy of existing therapies, and accelerate the discovery and deployment of innovative antimicrobial and antiviral solutions. One promising approach to address these challenges is the dietary supplementation of non-digestible oligosaccharides (NDOs). NDOs, including human milk oligosaccharides (HMOs), play a vital role in shaping and sustaining a healthy gut microbiota. Beyond stimulating the growth and activity of beneficial gut bacteria, NDOs can also interact directly with pathogenic bacteria and viruses. Their antiviral and antibacterial properties arise from their unique interactions with pathogens and their ability to modulate the host's immune system. NDOs can function as decoy receptors, inhibit pathogen growth, bind to bacterial toxins, stimulate the host immune response, exhibit anti-biofilm properties, and enhance barrier protection. However, a notable gap exists in the comprehensive assessment of in vivo and clinical data on this topic. This review aims to provide an in-depth overview of the in vivo evidence related to the antiviral and antibacterial effects of various NDOs and HMOs, with a focus on discussing their possible mechanisms of action.
Collapse
Affiliation(s)
- Amirmohammad Afsharnia
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| | - Yang Cai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Arjen Nauta
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (A.N.); (A.G.)
| | - Andre Groeneveld
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (A.N.); (A.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| | - Marc M. S. M. Wösten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| |
Collapse
|
4
|
Renata S, Verma N, Peddinti RK. Surface-enhanced Raman spectroscopy as effective tool for detection of sialic acid as cancer biomarker. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125631. [PMID: 39736186 DOI: 10.1016/j.saa.2024.125631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025]
Abstract
Sialic acid, a negatively charged nine-carbon monosaccharide, is mainly located at the terminal end of glycan chains on glycoproteins and glycolipids of cell surface and most secreted proteins. Elevated levels of sialylated glycans have been known as a hallmark in numerous cancers. As a result, sialic acid acts as a useful and accessible cancer biomarker for early cancer detection and monitoring the disease development during cancer treatment which is crucial in elevating the survival rate. The detection of sialic acid has been done by many tools including surface-enhanced Raman spectroscopy (SERS) which gained incredible attention due to its high selectivity and sensitivity. However, currently, comprehensive reviews of sialic acid detection and imaging as a cancer biomarker using SERS are still lacking. Here, we present the significant breakthroughs in SERS-based detection of sialic acid levels on cells, tissues, and body fluids due to the presence of cancer, different cancer metastasis stages, and in response to the external stimuli. This review covers the SERS substrate and novel SERS strategies, using lectin, boronic acid, metabolic glycan labelling and label-free methods, for sialic acid detection as cancer biomarker. The remaining challenges to detect sialic acid and prospect of future development of SERS for other carbohydrate-based cancer biomarker, for instance fucose, are also discussed.
Collapse
Affiliation(s)
- Septila Renata
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Nitish Verma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
5
|
Lisacek F, Schnider B, Imberty A. Tools for structural lectinomics: From structures to lectomes. BBA ADVANCES 2025; 7:100154. [PMID: 40166736 PMCID: PMC11957679 DOI: 10.1016/j.bbadva.2025.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Lectins are ubiquitous proteins that interact with glycans in a variety of molecular processes and as such, also play a role in diseases, whether infectious, chronic or cancer-related. The systematic study of lectins is therefore essential, in particular for understanding cell-cell communication. Accumulated protein three-dimensional structural data in the past decades boosted advance in AI-based prediction and opened up new options to characterise lectins that are known to often be multimeric and multivalent. This article reviews the methods to obtain structures of lectins, the current data available for lectin 3D structures and their interactions, how this knowledge is used to classify these proteins and shows that the combination of an array of bioinformatics tools should make the prediction of binding specificity possible in a near future.
Collapse
Affiliation(s)
- Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics CH-1227 Geneva, Switzerland
- Computer Science Department, UniGe CH-1227 Geneva, Switzerland
| | - Boris Schnider
- SIB Swiss Institute of Bioinformatics CH-1227 Geneva, Switzerland
- Computer Science Department, UniGe CH-1227 Geneva, Switzerland
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV 38000 Grenoble, France
| |
Collapse
|
6
|
Mimura S, Morishita A, Oura K, Takuma K, Nakahara M, Tadokoro T, Fujita K, Tani J, Kobara H. Galectins and Liver Diseases. Int J Mol Sci 2025; 26:790. [PMID: 39859504 PMCID: PMC11766161 DOI: 10.3390/ijms26020790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Galectins are widely distributed throughout the animal kingdom, from marine sponges to mammals. Galectins are a family of soluble lectins that specifically recognize β-galactoside-containing glycans and are categorized into three subgroups based on the number and function of their carbohydrate recognition domains (CRDs). The interaction of galectins with specific ligands mediates a wide range of biological activities, depending on the cell type, tissue context, expression levels of individual galectin, and receptor involvement. Galectins affect various immune cell processes through both intracellular and extracellular mechanisms and play roles in processes, such as apoptosis, angiogenesis, and fibrosis. Their importance has increased in recent years because they are recognized as biomarkers, therapeutic agents, and drug targets, with many other applications in conditions such as cardiovascular diseases and cancer. However, little is known about the involvement of galectins in liver diseases. Here, we review the functions of various galectins and evaluate their roles in liver diseases.
Collapse
Affiliation(s)
- Shima Mimura
- Departments of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Takamatsu 761-0793, Kagawa Prefecture, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Prevete G, Donati E, Ruggiero AP, Fardellotti S, Lilla L, Ramundi V, Nicoletti I, Mariani F, Mazzonna M. Encapsulation of Olea europaea Leaf Polyphenols in Liposomes: A Study on Their Antimicrobial Activity to Turn a Byproduct into a Tool to Treat Bacterial Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68850-68863. [PMID: 39631768 DOI: 10.1021/acsami.4c13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
According to the innovative and sustainable perspective of the circular economy model, Olea europaea leaves, a solid byproduct generated every year in large amounts by the olive oil production chain, are considered a valuable source of bioactive compounds, such as polyphenols, with many potential applications. In particular, the following study aimed to valorize olive leaves in order to obtain products with potential antibacterial activity. In this study, olive leaf extracts, rich in polyphenols, were prepared by ultrasound-assisted extraction using green solvents, such as ethanol and water. The extracts were found to be rich in polyphenols up to 26.7 mgGAE/gleaves; in particular, hydroxytyrosol-hexose isomers (up to 6.6 mg/gdry extract) and oleuropein (up to 324.1 mg/gdry extract) turned out to be the most abundant polyphenolic compounds in all of the extracts. The extracts were embedded in liposomes formulated with natural phosphocholine and cholesterol, in the presence or in the absence of a synthetic galactosylated amphiphile. All liposomes, prepared according to the thin-layer evaporation method coupled with an extrusion protocol, showed a narrow size distribution with a particle diameter between 79 and 120 nm and a good polydispersity index (0.10-0.20). Furthermore, all developed liposomes exhibited a great storage stability up to 90 days at 4 °C and at different pH values, with no significant changes in their size and polydispersity index. The effect of the encapsulation in liposomes of O. europaea leaf extracts on their antimicrobial activity was examined in vitro against two strains of Staphylococcus aureus: ATCC 25923 (wild-type strain) and ATCC 33591 (methicillin-resistant S. aureus, MRSA). The extracts demonstrated good antimicrobial activity against both bacterial strains under investigation, with the minimum inhibitory concentration ranging from 140 to 240 μgextract/mL and the minimum bactericidal concentration ranging from 180 to 310 μgextract/mL, depending on the specific extract and the bacterium tested. Moreover, a possible synergistic effect between the bioactive compounds inside the extracts tested was highlighted. Notably, their inclusion in galactosylated liposomes highlighted comparable or slightly increased antimicrobial activity compared to the free extracts against both bacterial strains tested.
Collapse
Affiliation(s)
- Giuliana Prevete
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Enrica Donati
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Anna Paola Ruggiero
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Silvia Fardellotti
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Laura Lilla
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Valentina Ramundi
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Isabella Nicoletti
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Francesca Mariani
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Marco Mazzonna
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| |
Collapse
|
8
|
Read JA, Ball TE, Miller BR, Jacobsen EN, Sigman MS. Computational Library Enables Pattern Recognition of Noncovalent Interactions and Application as a Modern Linear Free Energy Relationship. J Org Chem 2024; 89:17237-17247. [PMID: 39580661 PMCID: PMC11641053 DOI: 10.1021/acs.joc.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
A quantitative and predictive understanding of how attractive noncovalent interactions (NCIs) influence functional outcomes is a long-standing goal in mechanistic chemistry. In that context, better comprehension of how substituent effects influence NCI strengths, and the origin of those effects, is still needed. We sought to build a resource capable of elucidating fundamental origins of substituent effects in NCIs and diagnosing NCIs in chemical systems. To accomplish this, a library of 893 NCI energies was calculated encompassing cation-π, anion-π, CH-π, and π-π interactions across 60 different arenes and heteroarenes. The interaction energies (IEs) were calculated using symmetry-adapted perturbation theory (SAPT), which identifies electrostatic, inductive, exchange-repulsive, and dispersive contributions to total IE. This descriptor library provides a comprehensive platform for evaluating substituent effect trends beyond traditional molecular descriptors such as Hammett values, frontier molecular orbital energies, and electrostatic potential, thereby expanding the tools available to analyze modern chemical processes that involve NCIs. To demonstrate the application of this library, three case studies in asymmetric catalysis and supramolecular chemistry are presented. These case studies informed the development of an automated NCI analysis tool, which employs statistical analyses to diagnose a particular NCI in a chemical system of interest.
Collapse
Affiliation(s)
- Jacquelyne A Read
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Tyler E Ball
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Beck R Miller
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
9
|
Weiß A, Dutschke M, Vogt C, Zuber J. Determination of Binding Constants and Gas Phase Stabilities of Artificial Carbohydrate Receptor Complexes Using Electrospray Mass Spectrometry. ACS OMEGA 2024; 9:45309-45318. [PMID: 39554431 PMCID: PMC11561607 DOI: 10.1021/acsomega.4c06976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
In recent years, binding studies to determine complex stabilities and selectivities of artificial carbohydrate receptors with glycosides have been mainly performed using 1H NMR, isothermal titration calorimetry (ITC), and other spectroscopic titration techniques. Native electrospray ionization (ESI) mass spectrometry is used only to verify the complex stoichiometries, although determination of dissociation constants is also possible. Herein, the binding of a 1,3,5-substituted 2,4,6-triethylbenzene-based receptor (CHR) to four alkyl-β-d-glucosides with varying alkyl side chain lengths (methyl (MGP), hexyl (HGP), octyl (OGP), and dodecyl (DGP)-β-d-glucosides), which was analyzed by ESI Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) under optimized spray conditions in both ion modes, is reported. The complexes of the receptor with different sugars could be detected in 1:1 and 2:1 stoichiometries. Dissociation constants calculated for the 1:1 complexes showed a stability trend depending on the length of the alkyl side chain of the sugar: CHR:DGP > CHR:OGP > CHR:HGP > CHR:MGP. Gas phase stabilities determined by CID-MS confirm this relative trend in binding affinities. These findings substantiate the validity and applicability of ESI-MS as a method for investigating noncovalent complex stabilities and thus support research in the field of molecular recognition of carbohydrates by artificial receptors.
Collapse
Affiliation(s)
- Alexander Weiß
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Lessingstraße
45, Freiberg 09599, Germany
| | - Manuel Dutschke
- MFPA
Weimar—Materials Research and Testing Institute Weimar, Coudraystraße 9, Weimar 99423, Germany
| | - Carla Vogt
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Lessingstraße
45, Freiberg 09599, Germany
| | - Jan Zuber
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Lessingstraße
45, Freiberg 09599, Germany
| |
Collapse
|
10
|
Bektas S, Kaptan E. Microbial lectins as a potential therapeutics for the prevention of certain human diseases. Life Sci 2024; 346:122643. [PMID: 38614308 DOI: 10.1016/j.lfs.2024.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Lectins are protein or glycoprotein molecules with a specific ability to bind to carbohydrates. From viruses to mammals, they are found in various organisms and exhibit remarkable diverse structures and functions. They are significant contributors to defense mechanisms against microbial attacks in plants. They are also involved in functions such as controlling lymphocyte migration, regulating glycoprotein biosynthesis, cell-cell recognition, and embryonic development in animals. In addition, lectins serve as invaluable molecular tools in various biological and medical disciplines due to their reversible binding ability and enable the monitoring of cell membrane changes in physiological and pathological contexts. Microbial lectins, often referred to as adhesins, play an important role in microbial colonization, pathogenicity, and interactions among microorganisms. Viral lectins are located in the bilayered viral membrane, whereas bacterial lectins are found intracellularly and on the bacterial cell surface. Microfungal lectins are typically intracellular and have various functions in host-parasite interaction, and in fungal growth and morphogenesis. Although microbial lectin studies are less extensive than those of plants and animals, they provide insights into the infection mechanisms and potential interventions. Glycan specificity, essential functions in infectious diseases, and applications in the diagnosis and treatment of viral and bacterial infections are critical aspects of microbial lectin research. In this review, we will discuss the application and therapeutic potential of viral, bacterial and microfungal lectins.
Collapse
Affiliation(s)
- Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Istanbul 34116, Turkey.
| | - Engin Kaptan
- Istanbul University, Faculty of Science Department of Biology, 34134 Vezneciler, Istanbul, Turkey.
| |
Collapse
|
11
|
Kang S, Yuan D, Barber R, Davis JJ. Antigen-Mimic Nanoparticles in Ultrasensitive on-Chip Integrated Anti-p53 Antibody Quantification. ACS Sens 2024; 9:1475-1481. [PMID: 38441485 PMCID: PMC10964233 DOI: 10.1021/acssensors.3c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
As a tumor-suppressing protein, p53 plays a crucial role in preventing cancer development. Its utility as an early cancer detection tool is significant, potentially enabling clinicians to forestall disease advancement and improve patient prognosis. In response to the pathological overexpression of this antigen in tumors, the prevalence of anti-p53 antibodies increases in serum, in a manner quantitatively indicative of cancer progression. This spike can be detected through techniques, such as Western blotting, immunohistochemistry, and immunoprecipitation. In this study, we present an electrochemical approach that supports ultrasensitive and highly selective anti-p53 autoantibody quantification without the use of an immuno-modified electrode. We specifically employ antigen-mimicking and antibody-capturing peptide-coated magnetic nanoparticles, along with an AC magnetic field-promoted sample mixing, prior to the presentation of Fab-captured targets to simple lectin-modified sensors. The subfemtomolar assays are highly selective and support quantification from serum-spiked samples within minutes.
Collapse
Affiliation(s)
- Shaoyu Kang
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Daohe Yuan
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Robert Barber
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
12
|
Parija I, Yadav S, Jayaraman N. Con A lectin binding by synthetic bivalent arabinomannan tri- and pentasaccharides reveals connectivity-dependent functional valencies. Carbohydr Res 2024; 536:109050. [PMID: 38335804 DOI: 10.1016/j.carres.2024.109050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Lectin Con A, with specificity to interact with α-d-mannopyranoside, achieves tight binding affinity with the aid of optimal multivalent ligand valencies, distances and orientations between the ligands. A series of synthetic arabinomannans, possessing arabinan core and mannan at the non-reducing ends, is studied to assess the above constraints involved with lectin binding in this report. Trisaccharides, with (1 → 2)(1 → 3), (1 → 2)(1 → 5) and (1 → 3)(1 → 5) glycosidic bond connectivities, and a pentasaccharide with mannopyranosides at the non-reducing ends are synthesized. The binding affinities of the mannose bivalent ligands are studied with tetrameric Con A lectin by isothermal titration calorimetry (ITC). Among the derivatives, trisaccharide with (1 → 2)(1 → 3) glycosidic bond connectivity and the pentasaccharide undergo lectin interaction, clearly fulfilling the bivalent structural and functional valencies. Remaining oligosaccharides exhibit only a functional monovalency, defying the bivalent structural valency. The trisaccharide fulfilling the structural and functional valencies represent the smallest bivalent ligand, undergoing the lectin interaction in a trans-mode.
Collapse
Affiliation(s)
- Ipsita Parija
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Shivender Yadav
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
13
|
Schnider B, M’Rad Y, el Ahmadie J, de Brevern AG, Imberty A, Lisacek F. HumanLectome, an update of UniLectin for the annotation and prediction of human lectins. Nucleic Acids Res 2024; 52:D1683-D1693. [PMID: 37889052 PMCID: PMC10767822 DOI: 10.1093/nar/gkad905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
The UniLectin portal (https://unilectin.unige.ch/) was designed in 2019 with the goal of centralising curated and predicted data on carbohydrate-binding proteins known as lectins. UniLectin is also intended as a support for the study of lectomes (full lectin set) of organisms or tissues. The present update describes the inclusion of several new modules and details the latest (https://unilectin.unige.ch/humanLectome/), covering our knowledge of the human lectome and comprising 215 unevenly characterised lectins, particularly in terms of structural information. Each HumanLectome entry is protein-centric and compiles evidence of carbohydrate recognition domain(s), specificity, 3D-structure, tissue-based expression and related genomic data. Other recent improvements regarding interoperability and accessibility are outlined.
Collapse
Affiliation(s)
- Boris Schnider
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Yacine M’Rad
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Jalaa el Ahmadie
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
- University Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Alexandre G de Brevern
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB Bioinformatics Team, F-75014 Paris, France
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Frederique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
- Section of Biology, University of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|
14
|
Hwang Y, Jeong JH, Lee DH, Lee SJ. Selective interactions of Co 2+-Ca 2+-concanavalin A with high mannose N-glycans. Dalton Trans 2024; 53:428-433. [PMID: 38086668 DOI: 10.1039/d3dt03575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Concanavalin A (ConA) has an intrinsic binding affinity to carbohydrates. Here, we obtained Co2+-Ca2+-ConA (2.83 Å, PDB: 8I7Q) via X-ray crystallography by substituting native ConA (Mn2+-Ca2+); it has binding selectivity for high-mannose N-glycan similar to native ConA. Our findings may thus inform antiviral reagent design.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Jae-Hee Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dong-Heon Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
- Institute of Molecular Biology and Genetics, Jeonbuk National University 54896, Republic of Korea
| |
Collapse
|
15
|
Gerdol M, Nerelli DE, Martelossi N, Ogawa Y, Fujii Y, Pallavicini A, Ozeki Y. Taxonomic Distribution and Molecular Evolution of Mytilectins. Mar Drugs 2023; 21:614. [PMID: 38132935 PMCID: PMC10744619 DOI: 10.3390/md21120614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
R-type lectins are a widespread group of sugar-binding proteins found in nearly all domains of life, characterized by the presence of a carbohydrate-binding domain that adopts a β-trefoil fold. Mytilectins represent a recently described subgroup of β-trefoil lectins, which have been functionally characterized in a few mussel species (Mollusca, Bivalvia) and display attractive properties, which may fuel the development of artificial lectins with different biotechnological applications. The detection of different paralogous genes in mussels, together with the description of orthologous sequences in brachiopods, supports the formal description of mytilectins as a gene family. However, to date, an investigation of the taxonomic distribution of these lectins and their molecular diversification and evolution was still lacking. Here, we provide a comprehensive overview of the evolutionary history of mytilectins, revealing an ancient monophyletic evolutionary origin and a very broad but highly discontinuous taxonomic distribution, ranging from heteroscleromorphan sponges to ophiuroid and crinoid echinoderms. Moreover, the overwhelming majority of mytilectins display a chimera-like architecture, which combines the β-trefoil carbohydrate recognition domain with a C-terminal pore-forming domain, suggesting that the simpler structure of most functionally characterized mytilectins derives from a secondary domain loss.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Daniela Eugenia Nerelli
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Nicola Martelossi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Yukiko Ogawa
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Yasuhiro Ozeki
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
16
|
Hayes G, Dias-Barbieri B, Yilmaz G, Shattock RJ, Becer CR. Poly(2-oxazoline)/saRNA Polyplexes for Targeted and Nonviral Gene Delivery. Biomacromolecules 2023; 24:5142-5151. [PMID: 37792545 PMCID: PMC10646937 DOI: 10.1021/acs.biomac.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Indexed: 10/06/2023]
Abstract
RNA delivery has been demonstrated to be a potent method of vaccine delivery, as demonstrated by the recent success of the COVID-19 vaccines. Polymers have been shown to be effective vehicles for RNA delivery, with poly(ethylene imine) (PEI) being the current gold standard for delivery. Nonetheless, PEI has toxicity concerns, and so finding alternatives is desirable. Poly(2-oxazoline)s are a promising alternative to PEI, as they are generally biocompatible and offer a high degree of control over the polymer structure. Here, we have synthesized an ionizable primary amine 2-oxazoline and combined it with a double bond containing oxazoline to synthesize a small library of charged statistical and block copolymers. The pendant double bonds were reacted further to decorate the polymers with glucose via a thiol-ene click reaction. All polymers were shown to have excellent cell viability, and the synthesized block polymers showed promising complexation efficiencies for the saRNA, demonstrating a clear structure-property relationship. The polymer transfection potential was tested in various cell lines, and a polymer composition with an amine/glucose ratio of 9:27 has demonstrated the best transfection potential across all cell lines tested. Overall, the results suggest that block polymers with a cationic segment and high levels of glycosylation have the best complexation efficiency and RNA expression levels.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Beatriz Dias-Barbieri
- Department
of Infectious Diseases, Imperial College
London, Norfolk Place, London W21PG, United Kingdom
| | - Gokhan Yilmaz
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Robin J. Shattock
- Department
of Infectious Diseases, Imperial College
London, Norfolk Place, London W21PG, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
17
|
Wu AM. Roles of the structural units, glycotopes / mammalian N-glycans for Con A-glycan interactions, their codes, and their recognition factors. Glycoconj J 2023; 40:587-608. [PMID: 37695422 DOI: 10.1007/s10719-023-10129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 09/12/2023]
Abstract
The binding property of Con A has been studied intensively and applied widely to glycoconjugates / glycobiology for over 80 years. However, its role and functional relationship of Con A with these mammalian structural units, glycotopes, N-glycan chains, as well as their polyvalent forms in N-glycoproteins involved in the Con A-glycan interactions have not been well defined and organized. In this study, the recognition factors involved in these interactions were analyzed by our well developed method- the enzyme linked lectinosorbent (ELLSA) and inhibition assay. Based on all the data obtained, it is concluded that Con A, as previously reported, has a relatively broad and wide recognition ability of the Manα1 → and Glcα1 → related glycans. It reacted not only strongly with yeast mannan and glycogens, but also bound well with a large number of mammalian N-glycans, including the N-glycans of rat sublingual gp (RSL), human Tamm-Horsfall glycoprotein (THGP), thyroglobulin and lactoferrin. The recognition specificity of Con A towards ligands, expressed by Molar Relative Potency (Molar R.P.), in a decreasing order is as follows: α1 → 3, α1 → 6 Mannopentaose (M5) and Biantennary N-linked core pentasaccharide (MDi) ≥ α1 → 3, α1 → 6 Mannotriose (M3) > Manα1 → 3Man (α1 → 3Mannobiose), Manα1 → 2Man (α1 → 2Mannobiose), Manα1 → 6Man (α1 → 6Mannobiose), Manα1 → 4Man (α1 → 4Mannobiose) > GlcNAcβ1 → 2Man (β1 → 2 N-Acetyl glucosamine-mannose) > Manα1 → /Glcα1 → > Man > Glc, while Gal / GalNAc were inactive. Furthermore, the Man related code system, in this study, is proposed to express by both numbers of Man and GlcNAcβ1 → branches (M3 to M9 / MMono to Penta etc.) and a table of three Manα1 → and Glcα1 → related biomasses of six recognition factors involved in the Con A-glycan interactions has also been demonstrated. These themes should be one of the most valuable advances since 1980s.
Collapse
Affiliation(s)
- Albert M Wu
- Glycome Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University, Kwei-san, Tao-yuan, 33302, Taiwan.
| |
Collapse
|
18
|
Chen S, Huang Y, Gao L, Zhang S, Chen Y, Zeng B, Dai H. Versatile MXene composite probe-mediated homogeneous electrochemiluminescence biosensor with integrated signal transduction and near-infrared modulation strategy for concanavalin A detection. Mikrochim Acta 2023; 190:372. [PMID: 37648806 DOI: 10.1007/s00604-023-05941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Based on the highly specific interaction between concanavalin A (Con A) and glucose (Glu), a competitive electrochemiluminescence (ECL) biosensor was constructed for ultrasensitive detection of Con A. Nanocomposites with excellent electrocatalytic and photothermal properties were obtained by covalently bonding zinc oxide quantum dots (ZnO QDs) to vanadium carbide MXene (V2C MXene) surfaces. The modification of ZnO QDs hinders the aggregation of V2C MXene and increases the catalytic activity of oxygen reduction reaction, thus amplifying the luminol cathodic emission. In addition, the excellent photothermal performance of the V2C MXene-ZnO QDs can convert light energy into heat energy under the irradiation of 808 nm near infrared laser, thus increasing the temperature of the reaction system and accelerating the electron transfer process to realize the synergistic amplified homogeneous ECL system. This innovative work not only enriches the fundamental research on multifunctional MXene nanomaterials for biosensing, but also provides an effective strategy for ECL signal amplification.
Collapse
Affiliation(s)
- Sisi Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Yitian Huang
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Lihong Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Yanjie Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Baoshan Zeng
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China.
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| |
Collapse
|
19
|
Wang X, Terrie L, Wu G, Van Damme EJM, Thorrez L, Fooks AR, Banyard AC, Jochmans D, Neyts J. Urtica dioica Agglutinin Prevents Rabies Virus Infection in a Muscle Explant Model. Pharmaceutics 2023; 15:pharmaceutics15051353. [PMID: 37242595 DOI: 10.3390/pharmaceutics15051353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Infection with the rabies virus (RABV) results in a 100% lethal neurological disease once symptoms develop. Post-exposure prophylaxis (PEP) consists of a combination of vaccination and anti-rabies immunoglobulins (RIGs); it is 100% effective if administered early after exposure. Because of its limited availability, alternatives for RIGs are needed. To that end, we evaluated a panel of 33 different lectins for their effect on RABV infection in cell culture. Several lectins, with either mannose or GlcNAc specificity, elicited anti-RABV activity, of which the GlcNAc-specific Urtica dioica agglutinin (UDA) was selected for further studies. UDA was found to prevent the entry of the virus into the host cell. To further assess the potential of UDA, a physiologically relevant RABV infection muscle explant model was developed. Strips of dissected swine skeletal muscle that were kept in a culture medium could be productively infected with the RABV. When the infection of the muscle strips was carried out in the presence of UDA, RABV replication was completely prevented. Thus, we developed a physiologically relevant RABV muscle infection model. UDA (i) may serve as a reference for further studies and (ii) holds promise as a cheap and simple-to-produce alternative for RIGs in PEP.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Lisanne Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, Campus Kulak, KU Leuven, 8500 Kortrijk, Belgium
| | - Guanghui Wu
- Animal and Plant Health Agency (APHA), Woodham Lane, Weybridge KT15 3NB, UK
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - Lieven Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, Campus Kulak, KU Leuven, 8500 Kortrijk, Belgium
| | - Anthony R Fooks
- Animal and Plant Health Agency (APHA), Woodham Lane, Weybridge KT15 3NB, UK
| | - Ashley C Banyard
- Animal and Plant Health Agency (APHA), Woodham Lane, Weybridge KT15 3NB, UK
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Fernandes SRG, Mohajershojai T, Lundsten S, Sarmento B, Tomé JPC, Nestor M, Jha P. Photoactive immunoconjugates for targeted photodynamic therapy of cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 243:112716. [PMID: 37126865 DOI: 10.1016/j.jphotobiol.2023.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/26/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Photodynamic therapy (PDT) has been used as an alternative or as a complement of conventional approaches for cancer treatment. In PDT, the reactive oxygen species (ROS) produced from the interaction between the photosensitizer (PS), visible light and molecular oxygen, kill malignant cells by triggering a cascade of cytotoxic reactions. In this process, the PS plays an extremely important role in the effectiveness of the therapy. In the present work, a new photoimmunoconjugate (PIC), based on cetuximab and the known third generation PS-glycophthalocyanine ZnPcGal4, was synthesized via reductive amination. The rationale behind this was the simultaneous cancer-associated specific targeting of PIC and photosensitization of targeted receptor positive cells. Varied reaction parameters and photodynamic conditions, such as PS concentrations and both type and intensities of light, were optimized. ZnPcGal4 showed significant photoactivity against EGFR expressing A431, EGFR-transfected HCT116 and HT29 cells when irradiated with white light of stronger intensity (38 mW/cm2). Similarly, the synthesized PICs-T1 and T2 also demonstrated photoactivity with high intensity white light. The best optimized PIC: sample 28 showed no precipitation and aggregation when inspected visually and analyzed through SE-HPLC. Fluorescence excitation of sample 28 and 125I-sample 28 radioconjugate (125I-PIC, 125I-radiolabeling yield ≥95%, determined with ITLC) at 660 nm showed presence of appended ZnPcGal4. In addition, simultaneous fluorescence and radioactivity detection of the 125I-PIC in serum and PBS (pH 7.4) for the longest incubated time point of 72 h, respectively, and superimposed signals thereof demonstrated ≥99% of loading and/or labeling yield, assuring overall stability of the PIC and corresponding PIC-radioconjugate w.r.t. both the appended ZnPcGal4 and bound-125I. Moreover, real-time binding analyses on EGFR-transfected HCT116 cells showed specific binding of 125I-PIC, suggesting no alternation in the binding kinetics of the mAb after appending it with ZnPcGal4. These results suggest dual potential applications of synthesized PICs both for PDT and radio-immunotherapy of cancer.
Collapse
Affiliation(s)
- Sara R G Fernandes
- Centro de Química Estrutural, Institute of Molecular Sciences & Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden
| | - Tabassom Mohajershojai
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden
| | - Sara Lundsten
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden; Ridgeview Instruments AB, Uppsala University, Uppsala 752 37, Sweden
| | - Bruno Sarmento
- INEB - Instituto Nacional de Engenharia Biomédica, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto Universitário de Ciências da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal.
| | - João P C Tomé
- Centro de Química Estrutural, Institute of Molecular Sciences & Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden.
| | - Preeti Jha
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden; Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala 75123, Sweden; Department of Radiology, University of Texas Southwestern Medical Centre, Dallas, TX 75390, United States.
| |
Collapse
|
21
|
Gao Q, Yin X, Wang F, Hu S, Liu W, Chen L, Dai X, Liang M. OsJRL40, a Jacalin-Related Lectin Gene, Promotes Salt Stress Tolerance in Rice. Int J Mol Sci 2023; 24:ijms24087441. [PMID: 37108614 PMCID: PMC10138497 DOI: 10.3390/ijms24087441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
High salinity is a major stress factor affecting the quality and productivity of rice (Oryza sativa L.). Although numerous salt tolerance-related genes have been identified in rice, their molecular mechanisms remain unknown. Here, we report that OsJRL40, a jacalin-related lectin gene, confers remarkable salt tolerance in rice. The loss of function of OsJRL40 increased sensitivity to salt stress in rice, whereas its overexpression enhanced salt tolerance at the seedling stage and during reproductive growth. β-glucuronidase (GUS) reporter assays indicated that OsJRL40 is expressed to higher levels in roots and internodes than in other tissues, and subcellular localization analysis revealed that the OsJRL40 protein localizes to the cytoplasm. Further molecular analyses showed that OsJRL40 enhances antioxidant enzyme activities and regulates Na+-K+ homeostasis under salt stress. RNA-seq analysis revealed that OsJRL40 regulates salt tolerance in rice by controlling the expression of genes encoding Na+/K+ transporters, salt-responsive transcription factors, and other salt response-related proteins. Overall, this study provides a scientific basis for an in-depth investigation of the salt tolerance mechanism in rice and could guide the breeding of salt-tolerant rice cultivars.
Collapse
Affiliation(s)
- Qinmei Gao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Xiaolin Yin
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Feng Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Shuchang Hu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Weihao Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Xiaojun Dai
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Manzhong Liang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
22
|
Morishita A, Oura K, Tadokoro T, Shi T, Fujita K, Tani J, Atsukawa M, Masaki T. Galectin-9 in Gastroenterological Cancer. Int J Mol Sci 2023; 24:ijms24076174. [PMID: 37047155 PMCID: PMC10094448 DOI: 10.3390/ijms24076174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Immunochemotherapy has become popular in recent years. The detailed mechanisms of cancer immunity are being elucidated, and new developments are expected in the future. Apoptosis allows tissues to maintain their form, quantity, and function by eliminating excess or abnormal cells. When apoptosis is inhibited, the balance between cell division and death is disrupted and tissue homeostasis is impaired. This leads to dysfunction and the accumulation of genetically abnormal cells, which can contribute to carcinogenesis. Lectins are neither enzymes nor antibodies but proteins that bind sugar chains. Among soluble endogenous lectins, galectins interact with cell surface sugar chains outside the cell to regulate signal transduction and cell growth. On the other hand, intracellular lectins are present at the plasma membrane and regulate signal transduction by regulating receptor–ligand interactions. Galectin-9 expressed on the surface of thymocytes induces apoptosis of T lymphocytes and plays an essential role in immune self-tolerance by negative selection in the thymus. Furthermore, the administration of extracellular galectin-9 induces apoptosis of human cancer and immunodeficient cells. However, the detailed pharmacokinetics of galectin-9 in vivo have not been elucidated. In addition, the cell surface receptors involved in galectin-9-induced apoptosis of cancer cells have not been identified, and the intracellular pathways involved in apoptosis have not been fully investigated. We have previously reported that galectin-9 induces apoptosis in various gastrointestinal cancers and suppresses tumor growth. However, the mechanism of galectin-9 and apoptosis induction in gastrointestinal cancers and the detailed mechanisms involved in tumor growth inhibition remain unknown. In this article, we review the effects of galectin-9 on gastrointestinal cancers and its mechanisms.
Collapse
|
23
|
Roncoletta M, de Sales NAA, Rey FSB, Ferraz GC, Morani EDSC. Galectin-1 Used in Assisted Reproduction-Embryo Safety and Toxicology Studies. Molecules 2023; 28:859. [PMID: 36677917 PMCID: PMC9861859 DOI: 10.3390/molecules28020859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Galectin-1 has been cited as a mediator involved in preventing early embryonic death in mammals and is implicated in maternal-fetal tolerance. Galectin-1 is also a reasonable tool to improve fertility in assisted reproduction procedures. As recommended in the ICH guidelines (S5-R2 and S6-R1) and based on bioethical concerns, we chose bovine embryos (BE) to assess in vitro embryo development as part of a larger reproductive safety and toxicology study in progress. The design considered in vitro embryo development using rHGAL-1 supplementations (in three different concentrations) of the in vitro embryo culture (IVP) media. Based on procedures for the commercial in vitro production of BE using oocytes aspirated from slaughterhouse ovaries, rHGAL-1 supplementation was performed in two experiments: In Experiment 1 on oocyte maturation, involving IVM medium supplementation, and in Experiment 2 on culture step IVC, involving supplementation with an SOF medium. IVP commercial procedures were used, with three IVP replicates per experiment, and the oocytes we distributed into four groups of treatment (one control group and three different dosages of rHGAL-1 to supplement both IVM and SOF media using 2, 20, and 40 µg·mL-1, respectively. A total of 967 (Experiment 1) and 1213 (Experiment 2) oocytes were aspirated and submitted to the IVP procedure. There was no damage to the in vitro bovine embryo growth when considering cleavage percentage (%CLE), blastocyst development (Bl, Bx, Bh, and B) at Days 7 and 8, or an amount of rHGAL-1 supplementation ≤20 µg·mL-1. The immunohistochemistry assay with D8 embryos cultivated using rHGAL-1 supplementation on the culture medium (SOF medium) demonstrated the presence of exogenous GAL-1 distributed in mass cell and trophoblastic cells, and the profile observed was dependent on exogenous supplementation, which was most evident in hatched embryos. The findings confirmed the use of a reasonable amount of rHGAL-1 for in vitro embryonic development and would make the use of rHGAL-1 in assisted reproduction in humans more reliable and safer. Even though it was not the objective of the study, we verified that supplementation with 2 µg·mL-1 significantly improved some of the evaluated parameters of embryonic development (%BlD7, %BD7, %BlD8, %BhD8, and %BD8).
Collapse
Affiliation(s)
- Marcelo Roncoletta
- Yoni Group, Inprenha Biotecnologia, Jaboticabal 14897-899, São Paulo, Brazil
| | - Nathali Adrielli Agassi de Sales
- Laboratório de Fisiologia do Exercício e Farmacologia (LAFEQ), Departamento de Morfologia e Fisiologia Animal, Universidade Estadual Paulista (UNESP), Jaboticabal 14884-900, São Paulo, Brazil
| | | | - Guilherme Camargo Ferraz
- Laboratório de Fisiologia do Exercício e Farmacologia (LAFEQ), Departamento de Morfologia e Fisiologia Animal, Universidade Estadual Paulista (UNESP), Jaboticabal 14884-900, São Paulo, Brazil
| | | |
Collapse
|
24
|
Leibiger B, Stapf M, Mazik M. Cycloalkyl Groups as Building Blocks of Artificial Carbohydrate Receptors: Studies with Macrocycles Bearing Flexible Side-Arms. Molecules 2022; 27:7630. [PMID: 36364458 PMCID: PMC9654292 DOI: 10.3390/molecules27217630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 09/29/2023] Open
Abstract
The cyclopentyl group was expected to act as a building block for artificial carbohydrate receptors and to participate in van der Waals contacts with the carbohydrate substrate in a similar way as observed for the pyrrolidine ring of proline in the crystal structures of protein-carbohydrate complexes. Systematic binding studies with a series of 1,3,5-trisubstituted 2,4,6-triethylbenzenes bearing various cycloalkyl groups as recognition units provided indications of the involvement of these groups in the complexation process and showed the influence of the ring size on the receptor efficiency. Representatives of compounds that exhibit a macrocyclic backbone and flexible side arms were now chosen as further model systems to investigate whether the previously observed effects represent a general trend. Binding studies with these macrocycles towards β-D-glucopyranoside, an all-equatorial substituted carbohydrate substrate, included 1H NMR spectroscopic titrations and microcalorimetric investigations. The performed studies confirmed the previously observed tendency and showed that the compound bearing cyclohexyl groups displays the best binding properties.
Collapse
Affiliation(s)
| | | | - Monika Mazik
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09596 Freiberg, Germany
| |
Collapse
|
25
|
Preparation of a novel monoclonal antibody against active components of PHA-L from Phaseolus vulgaris and its functional characteristics. BMC Biotechnol 2022; 22:32. [PMID: 36309691 PMCID: PMC9618193 DOI: 10.1186/s12896-022-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Leukocyte phytohemagglutinin (PHA-L), derived from the L4 tetramer of PHA, has been frequently employed as a mitogen to induce T lymphocyte proliferation in vitro. The biological application of PHA-L in cancer diagnosis and treatment has gained traction in recent years. However, it has been noted that PHA-L obtained using traditional procedures has a massive amount of impurities or toxic components, which interfere with the activity of PHA-L. Preparation of a monoclonal antibody against active PHA-L is a significant tool for studying PHA-L's function and therapeutic potential. Results We successfully prepared monoclonal antibodies against the active components of PHA-L based on the whole PHA-L protein as an antigen, and found that monoclonal antibody 3C1C6G11 can be employed in western blot, immunofluorescence, and immunohistochemistry detection. Importantly, preliminary result shows that the mAb 3C1C6G11 may prevent PHA-L-induced cell aggregation and AICD (activation-induced cell death). Conclusions The monoclonal antibody mAb 3C1C6G11 prepared in this study can be used as an effective tool for detecting PHA-L active components, investigating PHA-L's function and antineoplastic application. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00761-7.
Collapse
|
26
|
Zanetti C, Gaspar RDL, Zhdanov AV, Maguire NM, Joyce SA, Collins SG, Maguire AR, Papkovsky DB. Heterosubstituted Derivatives of PtPFPP for O 2 Sensing and Cell Analysis: Structure–Activity Relationships. Bioconjug Chem 2022; 33:2161-2169. [DOI: 10.1021/acs.bioconjchem.2c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiara Zanetti
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | | | - Alexander V. Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Nuala M. Maguire
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Susan A. Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Stuart G. Collins
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Anita R. Maguire
- School of Chemistry and School of Pharmacy, University College Cork, Cork T12 YN60, Ireland
| | - Dmitri B. Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| |
Collapse
|
27
|
Zhang W, Dhumal D, Zhu X, Ralahy B, Ellert-Miklaszewska A, Wu J, Laurini E, Yao YW, Kao CL, Iovanna JL, Pricl S, Kaminska B, Xia Y, Peng L. Bola-Amphiphilic Glycodendrimers: New Carbohydrate-Mimicking Scaffolds to Target Carbohydrate-Binding Proteins. Chemistry 2022; 28:e202201400. [PMID: 35820051 DOI: 10.1002/chem.202201400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 01/07/2023]
Abstract
Dendrimers are appealing scaffolds for creating carbohydrate mimics with unique multivalent cooperativity. We report here novel bola-amphiphilic glycodendrimers bearing mannose and glucose terminals, and a hydrophobic thioacetal core responsive to reactive oxygen species. The peculiar bola-amphiphilic feature enabled stronger binding to lectin compared to conventional amphiphiles. In addition, these dendrimers are able to target mannose receptors and glucose transporters expressed at the surface of cells, thus allowing effective and specific cellular uptake. This highlights their great promise for targeted delivery.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| | - Dinesh Dhumal
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| | - Xiaolei Zhu
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| | - Brigino Ralahy
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| | - Aleksandra Ellert-Miklaszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, 02-093, Poland
| | - Jing Wu
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| | - Erik Laurini
- Molecular Biology and Nanotechnology (MolBNL@UniTS) Laboratory DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Yi-Wen Yao
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM) INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, 13288, France
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology (MolBNL@UniTS) Laboratory DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
- Department of General Biophysics Faculty of Biology and Environmental Protection, University of Lodz, Łódź, 90-236, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, 02-093, Poland
| | - Yi Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Ling Peng
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| |
Collapse
|
28
|
Mukhina T, Brezesinski G, Schneck E. Phase Behavior and Miscibility in Two-Component Glycolipid Monolayers. J Phys Chem B 2022; 126:6464-6471. [PMID: 35976765 DOI: 10.1021/acs.jpcb.2c05016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycolipids are known to be involved in the formation of ordered functional domains in biological membranes. Since the structural characterization of such domains is difficult, most studies have so far dealt with lipid mixtures containing only one glycolipid component at a time, although biological membranes usually contain several glycolipid species, which can result in more complex structures and phase behavior. Here, we combine classical isotherm measurements with surface-sensitive grazing-incidence X-ray diffraction to investigate the phase behavior and miscibility in Langmuir monolayers of binary glycolipid mixtures. We find that the phase behavior has a subtle dependence on the saccharide headgroup chemistry. For compatible chemistries, molecular superlattice structures formed by one of the glycolipid species are conserved and can host foreign glycolipids up to a defined stoichiometry. In contrast, for sterically incompatible saccharide chemistries, the superlattice is lost even if both species are able to form such structures in their pure forms. Our results suggest that related phenomena may play important roles also in biological contexts.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Gerald Brezesinski
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
29
|
Osman MEFM, Dirar AI, Konozy EHE. Genome-wide screening of lectin putative genes from Sorghum bicolor L., distribution in QTLs and a probable implications of lectins in abiotic stress tolerance. BMC PLANT BIOLOGY 2022; 22:397. [PMID: 35963996 PMCID: PMC9375933 DOI: 10.1186/s12870-022-03792-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Sorghum bicolor is one of the most important crops worldwide with the potential to provide resilience when other economic staples might fail against the continuous environmental changes. Many physiological, developmental and tolerance traits in plants are either controlled or influenced by lectins; carbohydrate binding proteins. Hence, we aimed at providing a comprehensive in silico account on sorghum's lectins and study their possible implication on various desired agronomical traits. RESULTS We have searched sorghum's genome from grain and sweet types for lectins putative genes that encode proteins with domains capable of differentially binding carbohydrate moieties and trigger various physiological responses. Of the 12 known plant lectin families, 8 were identified regarding their domain architectures, evolutionary relationships, physiochemical characteristics, and gene expansion mechanisms, and they were thoroughly addressed. Variations between grain and sweet sorghum lectin homologs in term of the presence/absence of certain other joint domains like dirigent and nucleotide-binding adaptor shared by APAF-1, R-proteins, and CED-4 (NB-ARC) indicate a possible neofunctionalization. Lectin sequences were found to be preferentially overrepresented in certain quantitative trait loci (QTLs) related to various traits under several subcategories such as cold, drought, salinity, panicle/grain composition, and leaf morphology. The co-localization and distribution of lectins among multiple QTLs provide insights into the pleiotropic effects that could be played by one lectin gene in numerous traits. CONCLUSION Our study offers a first-time inclusive details on sorghum lectins and their possible role in conferring tolerance against abiotic stresses and other economically important traits that can be informative for future functional analysis and breeding studies.
Collapse
Affiliation(s)
| | - Amina Ibrahim Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| | | |
Collapse
|
30
|
Gabius H, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo KH, Murphy PV, Oscarson S, Roy R, Schedlbauer A, Toegel S, Romero A. What is the Sugar Code? Chembiochem 2022; 23:e202100327. [PMID: 34496130 PMCID: PMC8901795 DOI: 10.1002/cbic.202100327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Indexed: 12/18/2022]
Abstract
A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.
Collapse
Affiliation(s)
- Hans‐Joachim Gabius
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Maré Cudic
- Department of Chemistry and BiochemistryCharles E. Schmidt College of ScienceFlorida Atlantic University777 Glades RoadBoca RatonFlorida33431USA
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Herbert Kaltner
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Jürgen Kopitz
- Institute of PathologyDepartment of Applied Tumor BiologyFaculty of MedicineRuprecht-Karls-University HeidelbergIm Neuenheimer Feld 22469120HeidelbergGermany
| | - Kevin H. Mayo
- Department of BiochemistryMolecular Biology & BiophysicsUniversity of MinnesotaMinneapolisMN 55455USA
| | - Paul V. Murphy
- CÚRAM – SFI Research Centre for Medical Devices and theSchool of ChemistryNational University of Ireland GalwayUniversity RoadGalwayH91 TK33Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical BiologyUniversity College DublinBelfieldDublin 4Ireland
| | - René Roy
- Département de Chimie et BiochimieUniversité du Québec à MontréalCase Postale 888Succ. Centre-Ville MontréalQuébecH3C 3P8Canada
| | - Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Antonio Romero
- Department of Structural and Chemical BiologyCIB Margarita Salas, CSICRamiro de Maeztu 928040MadridSpain
| |
Collapse
|
31
|
Expression of Modified Snowdrop Lectin ( Galanthus nivalis Agglutinin) Protein Confers Aphids and Plutella xylostella Resistance in Arabidopsis and Cotton. Genes (Basel) 2022; 13:genes13071169. [PMID: 35885952 PMCID: PMC9316576 DOI: 10.3390/genes13071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Cotton is a major fiber crop in the world that can be severely infested by pests in agricultural fields. Identifying new insect-resistance genes and increasing the expression of known insect-resistance genes are imperative in cultivated cotton. Galanthus nivalis agglutinin (GNA), a lectin that is toxic to both chewing and sucking pests, is mainly expressed in monocotyledons. It is necessary to improve the expression of the GNA protein and to test whether the lectin confers insect resistance to dicotyledons plants. We report a modified GNA gene (ASGNA) via codon optimization, its insertion into Arabidopsis thaliana, and transient expression in cotton to test its efficacy as an insect-resistance gene against cotton aphids and Plutella xylostella. The amount of ASGNA in transgenic plants reached approximately 6.5 μg/g of fresh weight. A feeding bioassay showed that the survival rate of aphids feeding on the leaves of ASGNA transgenic plants was lower than those of aphids feeding on the leaves of non-optimized GNA (NOGNA) transgenic plants and wild-type plants. Meanwhile, the fertility rate was 36% when fed on the ASGNA transgenic plants, while the fertility was 70% and 95% in NOGNA transgenic plants and wild-type plants. Correspondingly, the highest mortality of 55% was found in ASGNA transgenic lines, while only 35% and 20% mortality was observed in NOGNA transgenic plants and wild-type plants, respectively. Similar results were recorded for aphids feeding on cotton cotyledons with transient expression of ASGNA. Taken together, the results show that ASGNA exhibited high insecticidal activity towards sap-sucking insects and thus is a promising candidate gene for improving insect resistance in cotton and other dicotyledonous plants.
Collapse
|
32
|
Liu Y, Wang P, Tian J, Seidi F, Guo J, Zhu W, Xiao H, Song J. Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment. Polymers (Basel) 2022; 14:1806. [PMID: 35566977 PMCID: PMC9100146 DOI: 10.3390/polym14091806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Great interests have recently been aroused in the independent associative domain of glycoside hydrolases that utilize insoluble polysaccharides-carbohydrate-binding module (CBM), which responds to binding while the catalytic domain reacts with the substrate. In this mini-review, we first provide a brief introduction on CBM and its subtypes including the classifications, potential sources, structures, and functions. Afterward, the applications of CBMs in substrate recognition based on different types of CBMs have been reviewed. Additionally, the progress of CBMs in paper industry as a new type of environmentally friendly auxiliary agent for fiber treatment is summarized. At last, other applications of CBMs and the future outlook have prospected. Due to the specificity in substrate recognition and diversity in structures, CBM can be a prosperous and promising 'tool' for wood and fiber processing in the future.
Collapse
Affiliation(s)
- Yena Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Peipei Wang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jing Tian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jiaqi Guo
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Wenyuan Zhu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| |
Collapse
|
33
|
Mukhina T, Brezesinski G, Shen C, Schneck E. Phase behavior and miscibility in lipid monolayers containing glycolipids. J Colloid Interface Sci 2022; 615:786-796. [PMID: 35176545 DOI: 10.1016/j.jcis.2022.01.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/02/2023]
Abstract
HYPOTHESIS Glycolipids in biological membranes are ubiquitous and believed to be involved in the formation of ordered functional domains. However, our current knowledge about such glycolipid-enriched domains is limited because they are inherently difficult to characterize. EXPERIMENTS We use grazing-incidence X-ray diffraction, isotherm measurements, and Brewster angle microscopy to investigate the phase behavior and miscibility in Langmuir lipid monolayers containing glycolipids. FINDINGS Glycolipid-enriched domains give rise to distinct diffraction patterns that allow for a systematic structural investigation and reveal a rich phenomenology, ranging from near-complete demixing to the formation of mixed domains with unique features. The phase behavior is governed by the headgroup chemistry and by the length and saturation of the tails.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Gerald Brezesinski
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| |
Collapse
|
34
|
Comparison of Enzyme-Linked Lectin Sorbent Assay and Flow Cytometry for Profiling Microbial Glycans. Appl Biochem Biotechnol 2022; 194:2047-2060. [DOI: 10.1007/s12010-021-03772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
|
35
|
Khan S, Sbeity M, Foulquier F, Barré L, Ouzzine M. TMEM165 a new player in proteoglycan synthesis: loss of TMEM165 impairs elongation of chondroitin- and heparan-sulfate glycosaminoglycan chains of proteoglycans and triggers early chondrocyte differentiation and hypertrophy. Cell Death Dis 2021; 13:11. [PMID: 34930890 PMCID: PMC8688514 DOI: 10.1038/s41419-021-04458-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/23/2023]
Abstract
TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains. We demonstrated that the blockage in elongation of glycosaminoglycan chains is not due to defect in the Golgi elongating enzymes but rather to availability of the co-factor Mn2+. Supplementation of cell with Mn2+ rescue the elongation process, confirming a role of TMEM165 in Mn2+ Golgi homeostasis. Additionally, we showed that TMEM165 deficiency functionally impairs TGFβ and BMP signaling pathways in chondrocytes and in fibroblast cells of TMEM165 deficient patients. Finally, we found that loss of TMEM165 impairs chondrogenic differentiation by accelerating the timing of Ihh expression and promoting early chondrocyte maturation and hypertrophy. Collectively, our results indicate that TMEM165 plays an important role in proteoglycan synthesis and underline the critical role of glycosaminoglycan chains structure in the regulation of chondrogenesis. Our data also suggest that Mn2+ supplementation may be a promising therapeutic strategy in the treatment of TMEM165 deficient patients.
Collapse
Affiliation(s)
- Sajida Khan
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France
| | - Malak Sbeity
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France
| | | | - Lydia Barré
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France
| | - Mohamed Ouzzine
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France.
| |
Collapse
|
36
|
Amrhein F, Mazik M. Compounds Combining a Macrocyclic Building Block and Flexible Side‐Arms as Carbohydrate Receptors: Syntheses and Structure‐Binding Activity Relationship Studies. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Felix Amrhein
- Institut für Organische Chemie Technische Universität Bergakademie Freiberg Leipziger Strasse 29 09599 Freiberg Germany
| | - Monika Mazik
- Institut für Organische Chemie Technische Universität Bergakademie Freiberg Leipziger Strasse 29 09599 Freiberg Germany
| |
Collapse
|
37
|
Jang H, Lee C, Hwang Y, Lee SJ. Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences. Dalton Trans 2021; 50:17817-17831. [PMID: 34806716 DOI: 10.1039/d1dt03501k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding ability of lectins has gained attention owing to the carbohydrate-specific interactions of these proteins. Such interactions can be applied to diverse fields of biotechnology, including the detection, isolation, and concentration of biological target molecules. The physiological aspects of the lectin concanavalin A (ConA) have been intensively studied through structural and functional investigations. X-ray crystallography studies have proven that ConA has two β-sheets and a short α-helix and that it exists in the form of a metalloprotein containing Mn2+ and Ca2+. These heterometals are coordinated with side chains located in a metal-coordinated domain (MCD), and they affect the structural environment in the carbohydrate-binding domain (CBD), which interacts with carbohydrates through hydrogen bonds. Recent studies have shown that ConA can regulate biophysical interactions with glycoproteins in virus envelopes because it specifically interacts with diverse polysaccharides through its CBD (Tyr, Asn, Asp, and Arg residues positioned next to the MCD). Owing to their protein-protein interaction abilities, ConA can form diverse self-assembled complexes including monomers, dimers, trimers, and tetramers, thus affording unique results in different applications. In this regard, herein, we present a review of the structural modifications in ConA through metal-ion coordination and their effect on complex formation. In recent approaches, ConA has been applied for viral protein detection, on the basis of the interactions of ConA. These aspects indicate that lectins should be thoroughly investigated with respect to their biophysical interactions, for avoiding unexpected changes in their interaction abilities.
Collapse
Affiliation(s)
- Hara Jang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Chaemin Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Yunha Hwang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seung Jae Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
38
|
Boffoli D, Bellato F, Avancini G, Gurnani P, Yilmaz G, Romero M, Robertson S, Moret F, Sandrelli F, Caliceti P, Salmaso S, Cámara M, Mantovani G, Mastrotto F. Tobramycin-loaded complexes to prevent and disrupt Pseudomonas aeruginosa biofilms. Drug Deliv Transl Res 2021; 12:1788-1810. [PMID: 34841492 DOI: 10.1007/s13346-021-01085-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
Carbohydrate-based materials are increasingly investigated for a range of applications spanning from healthcare to advanced functional materials. Synthetic glycopolymers are particularly attractive as they possess low toxicity and immunogenicity and can be used as multivalent ligands to target sugar-binding proteins (lectins). Here, we utilised RAFT polymerisation to synthesize two families of novel diblock copolymers consisting of a glycopolymers block containing either mannopyranose or galactopyranose pendant units, which was elongated with sodium 2-acrylamido-2-methyl-1-propanesulfonate (AMPS) to generate a polyanionic block. The latter enabled complexation of cationic aminoglycoside antibiotic tobramycin through electrostatic interactions (loading efficiency in the 0.5-6.3 wt% range, depending on the copolymer). The resulting drug vectors were characterized by dynamic light scattering, zeta-potential, and transmission electron microscopy. Tobramycin-loaded complexes were tested for their ability to prevent clustering or disrupt biofilm of the Pseudomonas aeruginosa Gram-negative bacterium responsible for a large proportion of nosocomial infection, especially in immunocompromised patients. P. aeruginosa possesses two specific tetrameric carbohydrate-binding adhesins, LecA (PA-IL, galactose/N-acetyl-D-galactosamine-binding) and LecB (PA-IIL, fucose/mannose-binding), and the cell-associated and extracellular adhesin CdrA (Psl/mannose-binding) thus ideally suited for targeted drug delivery using sugar-decorated tobramycin-loaded complexes here developed. Both aliphatic and aromatic linkers were utilised to link the sugar pendant units to the polyacrylamide polymer backbone to assess the effect of the nature of such linkers on bactericidal/bacteriostatic properties of the complexes. Results showed that tobramycin-loaded complexes efficiently suppressed (40 to 60% of inhibition) in vitro biofilm formation in PAO1-L P. aeruginosa and that preferential targeting of PAO1-L biofilm can be achieved using mannosylated glycopolymer-b-AMPSm.
Collapse
Affiliation(s)
- Delia Boffoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Greta Avancini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy.,Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Gokhan Yilmaz
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Shaun Robertson
- School of Life Sciences, Nottingham University Biodiscovery Institute, National Biofilms Innovation Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Francesca Moret
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy.,School of Life Sciences, Nottingham University Biodiscovery Institute, National Biofilms Innovation Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Federica Sandrelli
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Miguel Cámara
- School of Life Sciences, Nottingham University Biodiscovery Institute, National Biofilms Innovation Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Giuseppe Mantovani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy.
| |
Collapse
|
39
|
Hegde P, B R S, Ballal S, Swamy BM, Inamdar SR. Rhizoctonia bataticola lectin induces apoptosis and inhibits metastasis in ovarian cancer cells by interacting with CA 125 antigen differentially expressed on ovarian cells. Glycoconj J 2021; 38:669-688. [PMID: 34748163 DOI: 10.1007/s10719-021-10027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
A N-glycan specific lectin from Rhizoctonia bataticola [RBL] was shown to induce growth inhibitory and apoptotic effect in human ovarian, colon and leukemic cells but mitogenic effect on normal PBMCs as reported earlier, revealing its clinical potential. RBL has unique specificity for high mannose tri and tetra antennary N-glycans, expressed in ovarian cancer and also recognizes glycans which are part of CA 125 antigen, a well known ovarian cancer marker. Hence, in the present study diagnostic and therapeutic potential of RBL was investigated using human ovarian epithelial cancer SKOV3 and OVCAR3 cells known for differentially expressing CA 125. RBL binds differentially to human ovarian normal, cyst and cancer tissues. Flow cytometry, western blot analysis of membrane proteins showed the competitive binding of RBL and CA 125 antibody for the same binding sites on SKOV3 and OVCAR3 cells. RBL has strong binding to both SKOV3 and OVCAR3 cells with MFI of 173 and 155 respectively. RBL shows dose and time dependent growth inhibitory effect with IC50 of 2.5 and 8 μg/mL respectively for SKOV3 and OVCAR3 cells. RBL induces reproductive cell death, morphological changes, nuclear degradation and increased release of ROS in SKOV3 and OVCAR3 cells leading to cell death. This is also supported by increase in hypodiploid population, altered MMP leading to apoptosis possibly involving intrinsic pathway. Adhesion, wound healing, invasion and migration assays demonstrated anti-metastasis effect of RBL apart from its growth inhibitory effect. These results show the promising potential of RBL both as a diagnostic and therapeutic agent.
Collapse
Affiliation(s)
- Prajna Hegde
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Sindhura B R
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Suhas Ballal
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India.
| |
Collapse
|
40
|
Singh Aidhen I, Thoti N. Natural Products & Bioactivity Inspired Synthetic Pursuits Interfacing with Carbohydrates: Ongoing Journey with C-Glycosides. CHEM REC 2021; 21:3131-3177. [PMID: 34714570 DOI: 10.1002/tcr.202100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Natural products, remains the most important source for the discovery of new drugs for the treatment of human diseases. This has inspired the synthetic community to design and develop mimics of natural products either to answer important questions in biology or to explore their therapeutic potentials. Glycosides present themselves abundantly in nature, right from the cell surface receptors to natural products of any origin. The O-Glycosides are hydrolytically less stable compared to C-glycosides and this feature has presented a great opportunity for drug discovery. The discovery of Dapagliflozin, an SGLT inhibitor and C-glucoside, for the treatment of diabetes is one such example. Aryl acyl-anion chemistry has been explored for the synthesis of 2-deoxy-C-aryl furanoside/pyranoside/septanosides. Besides success, the studies have provided valuable insight into the natural propensities of the architectural framework for the cascade to furan derivatives. The aryl acyl-anion chemistry has also enabled the synthesis of biologically active diaryl heptanoids. Inspired from sucesss of Dapagliflozin, new analogues have been synthesized with pyridine and isocoumarin heterocycle as the proximal ring. C-glucosides of isoliquiritigenin have been synthesized for the first time and evaluated as an efficient aldose reductase inhibitor. The synthesis and evaluation of acyl-C-β-D-glucosides and benzyl-C-β-D-glucoside as glucose-uptake promoters has revealed promise in small molecules. The concept of building blocks has been used to obtain natural oxylipins, D-xylo and L-xylo-configured alkane tetrols and novel lipophilic ketones with erythro/threo configured trihydroxy polar head-group as possible anti-mycobacterial agents.
Collapse
Affiliation(s)
- Indrapal Singh Aidhen
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Naveenkumar Thoti
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
41
|
Hartweg M, Jiang Y, Yilmaz G, Jarvis CM, Nguyen HVT, Primo GA, Monaco A, Beyer VP, Chen KK, Mohapatra S, Axelrod S, Gómez-Bombarelli R, Kiessling LL, Becer CR, Johnson JA. Synthetic Glycomacromolecules of Defined Valency, Absolute Configuration, and Topology Distinguish between Human Lectins. JACS AU 2021; 1:1621-1630. [PMID: 34723265 PMCID: PMC8549053 DOI: 10.1021/jacsau.1c00255] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrate-binding proteins (lectins) play vital roles in cell recognition and signaling, including pathogen binding and innate immunity. Thus, targeting lectins, especially those on the surface of immune cells, could advance immunology and drug discovery. Lectins are typically oligomeric; therefore, many of the most potent ligands are multivalent. An effective strategy for lectin targeting is to display multiple copies of a single glycan epitope on a polymer backbone; however, a drawback to such multivalent ligands is they cannot distinguish between lectins that share monosaccharide binding selectivity (e.g., mannose-binding lectins) as they often lack molecular precision. Here, we describe the development of an iterative exponential growth (IEG) synthetic strategy that enables facile access to synthetic glycomacromolecules with precisely defined and tunable sizes up to 22.5 kDa, compositions, topologies, and absolute configurations. Twelve discrete mannosylated "glyco-IEGmers" are synthesized and screened for binding to a panel of mannoside-binding immune lectins (DC-SIGN, DC-SIGNR, MBL, SP-D, langerin, dectin-2, mincle, and DEC-205). In many cases, the glyco-IEGmers had distinct length, stereochemistry, and topology-dependent lectin-binding preferences. To understand these differences, we used molecular dynamics and density functional theory simulations of octameric glyco-IEGmers, which revealed dramatic effects of glyco-IEGmer stereochemistry and topology on solution structure and reveal an interplay between conformational diversity and chiral recognition in selective lectin binding. Ligand function also could be controlled by chemical substitution: by tuning the side chains of glyco-IEGmers that bind DC-SIGN, we could alter their cellular trafficking through alteration of their aggregation state. These results highlight the power of precision synthetic oligomer/polymer synthesis for selective biological targeting, motivating the development of next-generation glycomacromolecules tailored for specific immunological or other therapeutic applications.
Collapse
Affiliation(s)
- Manuel Hartweg
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yivan Jiang
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gokhan Yilmaz
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cassie M. Jarvis
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hung V.-T. Nguyen
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gastón A. Primo
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, United Kingdom
| | - Alessandra Monaco
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Valentin P. Beyer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Kathleen K. Chen
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Somesh Mohapatra
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Simon Axelrod
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rafael Gómez-Bombarelli
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Laura L. Kiessling
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - C. Remzi Becer
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, United Kingdom
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jeremiah A. Johnson
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Gulzar H, Nawaz MA, Jan A, Khan FA, Naz S, Zahoor M, Naz D, Ullah R, Ali EA, Hussain H. Semi-Quantification of Lectins in Rice (Oryza sativa L.) Genotypes via Hemagglutination. AGRONOMY 2021; 11:1899. [DOI: 10.3390/agronomy11101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Lectins are unique glycoproteins that react with specific sugar residues on cell surfaces resulting in agglutination. They offer enormous applications in therapeutics, diagnostics, medicine, and agriculture. Rice lectins are naturally expressed during biotic and abiotic stresses suggesting their importance in stress resistance physiology. The objective of this study was to determine the presence and relative concentration of lectins in different accessions of rice obtained from IABGR/NARC Islamabad mainly originated from Pakistan. About 210 rice accessions including 02 local varieties and 05 transgenic seeds were screened for seed lectins using a hemagglutination (HA) assay with 5% Californian bred rabbits’ erythrocytes. A protein concentration of 3–8 mg/100 mg of seed flour was measured for all the rice accessions; the highest was 8.03 mg for accession 7600, while the lowest noted was 3.05 mg for accession 7753. Out of 210 accessions, 106 showed the highest HA activity. These 106 genotypes were further screened for titer analysis and specific activity. The highest titer and specific activity were observed for accession 7271 as 1024 and 236 hemagglutination unit (HAU), respectively. The selected accessions’ relative affinity and HA capability were evaluated using blood from four different sources: human, broiler chicken, local rabbit, and Californian-breed rabbit. The highest HA activity was observed with Californian-breed rabbit RBCs. The lectin assay was stable for about 1–2 h. After the required investigations, the accessions with higher lectin concentration and HA capability could be used as a readily available source of lectins for further characterization and utilization in crop improvement programs.
Collapse
Affiliation(s)
- Haseena Gulzar
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal Dir Upper, Peshawar 18000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal Dir Upper, Peshawar 18000, Khyber Pakhtunkhwa, Pakistan
| | - Asad Jan
- Institute of Biotechnology and Genetic Engineering, Agriculture University Peshawar, Peshawar 18000, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Ali Khan
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper, Peshawar 18000, Khyber Pakhtunkhwa, Pakistan
| | - Sumaira Naz
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower, Malakand 18800, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower, Malakand 18800, Khyber Pakhtunkhwa, Pakistan
| | - Dil Naz
- Department of Zoology, University of Malakand, Chakdara Dir Lower, Malakand 18800, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Salle), Germany
| |
Collapse
|
43
|
Volov AN, Volov NA, Burtsev ID. New amphiphilic platinum(II) phthalocyanine with peracetylated β-galactose moiety – Synthesis and photophysical properties. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Yadav S, Naresh K, Jayaraman N. "Surface Density of Ligands Controls In-Plane and Aggregative Modes of Multivalent Glycovesicle-Lectin Recognitions". Chembiochem 2021; 22:3075-3081. [PMID: 34375491 DOI: 10.1002/cbic.202100321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Indexed: 11/09/2022]
Abstract
Glycovesicles are ideal tools to delineate finer mechanisms of the interactions at the biological cell membranes. Multivalency forms the basis which, in turn, should surpass more than one mechanism in order to maintain multiple roles that the ligand-lectin interactions encounter. Ligand densities hold a prime control to attenuate the interactions. In the present study, mannose trisaccharide interacting with a cognate receptor, namely, Con A, is assessed at the vesicle surfaces. A synthetic (1→3)(1→6)-branched mannose trisaccharide is tethered with a diacetylene monomer and glycovesicles of varying sugar densities are prepared. The polydiacetylene vesicles are prepared by maintaining uniform lipid concentrations. The interactions of the glycovesicles with the lectin are probed through dynamic light scattering and UV-Vis spectroscopy techniques. Binding efficacies are assessed by surface plasmon resonance technique. Aggregative and in-plane modes of interactions follow a ligand density-dependant manner at the vesicle surface. Vesicles with sparsely populated ligands engage lectin in an aggregative mode (trans-), leading to a cross-linked complex formation. Whereas glycovesicles imbedded with dense ligands engage lectin interaction in an in-plane mode intramolecularly (cis-). Sub-nanomolar dissociation constants govern the intramolecular interaction occurring within the plane of the vesicle, relatively more efficacious than the aggregative intermolecular interactions.
Collapse
Affiliation(s)
- Shivender Yadav
- Indian Institute of Science, Department of Organic Chemistry, INDIA
| | - Kottari Naresh
- Indian Institute of Science, Department of Organic Chemistry, INDIA
| | - Narayanaswamy Jayaraman
- Indian Institute of Science, Department of Organic Chemistry, Sir C.V. Raman Avenue, 560 012, Bangalore, INDIA
| |
Collapse
|
45
|
Wang F, Sha X, Wu R, Zhang L, Song X, Tian X, Pan G, Liu L. A versatile pH-responsive peptide based dynamic biointerface for tracking bacteria killing and infection resistance. Biomater Sci 2021; 9:5785-5790. [PMID: 34350905 DOI: 10.1039/d1bm00950h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we reported a versatile dynamic biointerface based on pH-responsive peptide self-assembly and disassembly to capture the bacteria to avoid bacteria further infected tissue around that can release peptides from the surface in a slightly acidic environment to kill the bacteria with the specificity. The exposed biointerface still presented infection resistance.
Collapse
Affiliation(s)
- Fenghua Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mahmood RI, Abbass AK, Razali N, Al-Saffar AZ, Al-Obaidi JR. Protein profile of MCF-7 breast cancer cell line treated with lectin delivered by CaCO 3NPs revealed changes in molecular chaperones, cytoskeleton, and membrane-associated proteins. Int J Biol Macromol 2021; 184:636-647. [PMID: 34174302 DOI: 10.1016/j.ijbiomac.2021.06.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/09/2023]
Abstract
The second most predominant cancer in the world and the first among women is breast cancer. We aimed to study the protein abundance profiles induced by lectin purified from the Agaricus bisporus mushroom (ABL) and conjugated with CaCO3NPs in the MCF-7 breast cancer cell line. Two-dimensional electrophoresis (2-DE) and orbitrap mass spectrometry techniques were used to reveal the protein abundance pattern induced by lectin. Flow cytometric analysis showed the accumulation of ABL-CaCO3NPs treated cells in the G1 phase than the positive control. Thirteen proteins were found different in their abundance in breast cancer cells after 24 h exposure to lectin conjugated with CaCO3NPs. Most of the identified proteins were showing a low abundance in ABL-CaCO3NPs treated cells in comparison to the positive and negative controls, including V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP. Hornerin, tropomyosin alpha-1 chain, annexin A2, and protein disulfide-isomerase were up-regulated in comparison to the positive. Bioinformatic analyses revealed the regulation changes of these proteins mainly affected the pathways of 'Bcl-2-associated athanogene 2 signalling pathway', 'Unfolded protein response', 'Caveolar-mediated endocytosis signalling', 'Clathrin-mediated endocytosis signalling', 'Calcium signalling' and 'Sucrose degradation V', which are associated with breast cancer. We concluded that lectin altered the abundance in molecular chaperones/heat shock proteins, cytoskeletal, and metabolic proteins. Additionally, lectin induced a low abundance of MCF-7 cancer cell proteins in comparison to the positive and negative controls, including; V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP.
Collapse
Affiliation(s)
- Rana I Mahmood
- Department of Biology, College of Science, Baghdad University, Baghdad, Iraq; Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Amal Kh Abbass
- Department of Biology, College of Science, Baghdad University, Baghdad, Iraq
| | - Nurhanani Razali
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, 658-8558, Kobe, Japan; Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan, 904-0495
| | - Ali Z Al-Saffar
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
| |
Collapse
|
47
|
Sun H, Yu Y, Zhang Y, Li J, Cheng Y, Huang S, Wang W, Zhang X. Glycosylated Nanotherapeutics with β-Lactamase Reversible Competitive Inhibitory Activity Reinvigorates Antibiotics against Gram-Negative Bacteria. Biomacromolecules 2021; 22:2834-2849. [PMID: 34164980 DOI: 10.1021/acs.biomac.1c00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotics are currently first-line therapy for bacterial infections. However, the curative effect of antibiotic remedies is limited due to increasingly prevalent bacterial resistance. The strategy to reverse intrinsic acquired drug resistance presents a promising option for reinvigorating antibiotic therapy. Here, we developed a β-lactamase-inhibiting macromolecule composed of benzoxaborole and dextran for precise transport of β-lactam antibiotics to strains overexpressing β-lactamase. Benzoxaborole-derived nanotherapeutics enabled specific recognition and rapid internalization, and the nanotherapeutics with a high affinity toward bacteria distinctly inhibited the catalytic activity of bacterially secreted β-lactamase by a reversible competitive mechanism. Thus, the system entrapping cefoxitin harbored a significantly enhanced ability to kill drug-resistant Escherichia coli compared to the ability of the drug by specifically overcoming the membrane barrier and acquired resistance mechanism of β-lactamase overproduction. The reversible competitive nanotherapeutics exhibited a robust therapeutic efficacy in rat wounds infected with drug-resistant bacteria; the efficacy was due to efficient bacterial elimination and collateral benzoxaborole-dependent amelioration of the inflammatory response. The above results offered insights into the facile design of precise macromolecular adjuvants to exclusively reverse the acquired bacterial resistance mechanism and increase the utility of antibiotic therapies against antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Haonan Sun
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijie Cheng
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenbo Wang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
48
|
Qin Q, Lang S, Huang X. Synthetic linear glycopolymers and their biological applications. J Carbohydr Chem 2021; 40:1-44. [PMID: 35308080 PMCID: PMC8932951 DOI: 10.1080/07328303.2021.1928156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
As typical affinities of carbohydrates with their receptors are modest, polymers of carbohydrates (glycopolymers) are exciting tools to probe the multifaceted biological activities of glycans. In this review, the linear glycopolymers and the multivalency effects are first introduced. This is followed by discussions of methods to synthesize these polymers. Subsequently, the interactions of glycopolymers with plant lectins and viral/bacterial carbohydrate binding proteins are discussed. In addition, applications of the glycopolymers in facilitating glycan microarray studies, mimicking cell surface glycans, modulation of the immune system, cryoprotection of protein, and electron-beam lithography are presented to stimulate further development of this fascinating technology.
Collapse
Affiliation(s)
- Qian Qin
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
49
|
Hou J, Liu X, Zhou S. Programmable materials for efficient CTCs isolation: From micro/nanotechnology to biomimicry. VIEW 2021. [DOI: 10.1002/viw.20200023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xia Liu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
| |
Collapse
|
50
|
Pinzner F, Keller T, Mut J, Bechold J, Seibel J, Groll J. Polyoxazolines with a Vicinally Double-Bioactivated Terminus for Biomacromolecular Affinity Assessment. SENSORS (BASEL, SWITZERLAND) 2021; 21:3153. [PMID: 34062922 PMCID: PMC8125408 DOI: 10.3390/s21093153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
Interactions between proteins and carbohydrates with larger biomacromolecules, e.g., lectins, are usually examined using self-assembled monolayers on target gold surfaces as a simplified model measuring setup. However, most of those measuring setups are either limited to a single substrate or do not allow for control over ligand distance and spacing. Here, we develop a synthetic strategy, consisting of a cascade of a thioesterification, native chemical ligation (NCL) and thiol-ene reaction, in order to create three-component polymer conjugates with a defined double bioactivation at the chain end. The target architecture is the vicinal attachment of two biomolecule residues to the α telechelic end point of a polymer and a thioether group at the ω chain end for fixating the conjugate to a gold sensor chip surface. As proof-of-principle studies for affinity measurements, we demonstrate the interaction between covalently bound mannose and ConA in surface acoustic wave (SAW) and surface plasmon resonance (SPR) experiments.
Collapse
Affiliation(s)
- Florian Pinzner
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (F.P.); (T.K.)
| | - Thorsten Keller
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (F.P.); (T.K.)
| | - Jürgen Mut
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97070 Würzburg, Germany; (J.M.); (J.B.); (J.S.)
| | - Julian Bechold
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97070 Würzburg, Germany; (J.M.); (J.B.); (J.S.)
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97070 Würzburg, Germany; (J.M.); (J.B.); (J.S.)
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (F.P.); (T.K.)
| |
Collapse
|