1
|
Carpinelli S, Ahlert J, Rubin M, Aratani A, Smith E, Floyd D, Potter RM, Al-Nakkash L. Deleterious impacts of Western diet on jejunum function and health are reversible. Am J Physiol Gastrointest Liver Physiol 2025; 328:G83-G93. [PMID: 39711223 DOI: 10.1152/ajpgi.00160.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024]
Abstract
The goal of this study was to determine whether the influence of a high-fat high-sugar diet (Western diet) on intestinal function and health was reversible. We measured transepithelial short circuit current (Isc), across freshly isolated segments of jejunum from male C57Bl/6J mice randomly assigned to one of the following groups for the study duration: high-fat high-sugar diet for 24 wk (HFHS), HFHS diet for 12 wk then switched to standard chow and water for a further 12 wk (Std), and lean controls (standard chow and water for 24 wk). At the completion of the study, segments of jejunum were frozen for Western blot determination of key proteins involved in secretory and absorptive functions, as well as senescence. Intestinal morphology was assessed. Serum and tissue assays were performed. Basal Isc was significantly decreased (by 42%, P < 0.05) in HFHS versus leans. This decrease in Isc was fully reversed by switching to Std diet. The HFHS-induced decrease in Isc was attributed to a significant loss of calcium-activated chloride channel (ClC2) expression. Changes in inflammatory state (TNF-α) and intestinal health [myeloperoxidase (MPO) activity] were associated with body weight changes. Our data suggests that the reduced basal jejunal Isc in HFHS mice is reversible. Better understanding of Western diet-mediated intestinal disturbances may permit for improved treatment options for gastrointestinal abnormalities in obese individuals.NEW & NOTEWORTHY Our data suggests that the reduced basal jejunal Isc (decreased secretory function) in Western diet-fed mice is reversible. A better understanding of Western diet-mediated intestinal disturbances may permit improved treatment options for gastrointestinal abnormalities in obese individuals.
Collapse
Affiliation(s)
- Sarah Carpinelli
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, United States
| | - John Ahlert
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, United States
| | - Maxwell Rubin
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, United States
| | - Alex Aratani
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, United States
| | - Emma Smith
- College of Veterinary Medicine, Midwestern University, Glendale, Arizona, United States
| | - Dana Floyd
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Arizona, United States
| | - Ross M Potter
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Layla Al-Nakkash
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, United States
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| |
Collapse
|
2
|
Woode RA, Strubberg AM, Liu J, Walker NM, Clarke LL. Increased activity of epithelial Cdc42 Rho GTPase and tight junction permeability in the Cftr knockout intestine. Am J Physiol Gastrointest Liver Physiol 2024; 327:G545-G557. [PMID: 39104325 DOI: 10.1152/ajpgi.00211.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/23/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Increased intestinal permeability is a manifestation of cystic fibrosis (CF) in people with CF (pwCF) and in CF mouse models. CF transmembrane conductance regulator knockout (Cftr KO) mouse intestine exhibits increased proliferation and Wnt/β-catenin signaling relative to wild-type mice (WT). Since the Rho GTPase Cdc42 plays a central role in intestinal epithelial proliferation and tight junction remodeling, we hypothesized that Cdc42 may be altered in the Cftr KO crypts. Immunofluorescence showed distinct tight junction localization of Cdc42 in Cftr KO fresh crypts and enteroids, the latter indicating an epithelial-autonomous feature. Quantitative PCR and immunoblots revealed similar expression of Cdc42 in the Cftr KO crypts/enteroids relative to WT, whereas pulldown assays showed increased GTP-bound (active) Cdc42 in proportion to total Cdc42 in Cftr KO enteroids. Cdc42 activity in the Cftr KO and WT enteroids could be reduced by inhibition of the Wnt transducer Disheveled. With the use of a dye permeability assay, Cftr KO enteroids exhibited increased paracellular permeability to 3 kDa dextran relative to WT. Leak permeability and Cdc42 tight junction localization were reduced to a greater extent by inhibition of Wnt/β-catenin signaling with endo-IWR1 in Cftr KO relative to WT enteroids. Increased proliferation or inhibition of Cdc42 activity with ML141 in WT enteroids had no effect on permeability. In contrast, inhibition of Cdc42 with ML141 increased permeability to both 3 kDa dextran and tight junction impermeant 500 kDa dextran in Cftr KO enteroids. These data suggest that increased constitutive Cdc42 activity may alter the stability of paracellular permeability in Cftr KO crypt epithelium.NEW & NOTEWORTHY Increased tight junction localization and GTP-bound activity of the Rho GTPase Cdc42 was identified in small intestinal crypts and enteroids of cystic fibrosis (CF) transmembrane conductance regulator knockout (Cftr KO) mice. The increase in epithelial Cdc42 activity was associated with increased Wnt signaling. Paracellular flux of an uncharged solute (3 kDa dextran) in Cftr KO enteroids indicated a moderate leak permeability under basal conditions that was strongly exacerbated by Cdc42 inhibition. These findings suggest increased activity of Cdc42 in the Cftr KO intestine underlies alterations in intestinal permeability.
Collapse
Affiliation(s)
- Rowena A Woode
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Ashlee M Strubberg
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Jinghua Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Nancy M Walker
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Lane L Clarke
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
3
|
Ciobanu C, Yanda M, Zeidan A, Izzi J, Guggino WB, Cebotaru L. Amelioration of airway and GI disease in G551D-CF ferrets by AAV1 and AAV6. Gene Ther 2024; 31:499-510. [PMID: 39069560 DOI: 10.1038/s41434-024-00469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Gene therapy for CF has concentrated on targeting the lung. Here we took a different approach by injecting into the cephalic vein and spraying into the trachea of G551D, CF ferrets either AAV1 or 6 containing Δ27-264-CFTR, a truncated version of CFTR. Treatment with the potentiator VX-770 was halted for 7 days before instillation to induce a disease phenotype. Indeed, all ferrets were pancreas-insufficient when they entered the study. Four ferrets (three receiving AAV1 and one AAV6) were necropsied 48 days after vector delivery, and four (three receiving AAV6, one AAV1) were euthanized or died prior to the planned necropsy. AAV1 or AAV6 vector genomes, mRNA expression, and CFTR protein were detected in all tracheal and lung samples and in the liver, pancreas, and ileum of the treated ferrets. Surface and basal airway cells, pancreatic and bile ducts, and ileal crypts and villi were successfully transduced. Obstruction of the airways accompanied by pulmonary hemorrhaging, plugged pancreatic and bile ducts as well as mucous plugs in the ileum were noticed in untreated but absent from transduced ferrets necropsied at 48 days. Transduction of G551D ferrets suggests that a combination of systemic and airway application may be the preferred route of delivery for CF.
Collapse
Affiliation(s)
- Cristian Ciobanu
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Murali Yanda
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Adi Zeidan
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica Izzi
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - William B Guggino
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Liudmila Cebotaru
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Ljungholm PL, Ermund A, Söderlund Garsveden MM, Pettersson VL, Gustafsson JK. The anion exchanger slc26a3 regulates colonic mucus expansion during steady state and in response to prostaglandin E 2, while Cftr regulates de novo mucus release in response to carbamylcholine. Pflugers Arch 2024; 476:1209-1219. [PMID: 38829391 PMCID: PMC11271379 DOI: 10.1007/s00424-024-02975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
The intestinal epithelium is covered by mucus that protects the tissue from the luminal content. Studies have shown that anion secretion via the cystic fibrosis conductance regulator (Cftr) regulates mucus formation in the small intestine. However, mechanisms regulating mucus formation in the colon are less understood. The aim of this study was to explore the role of anion transport in the regulation of mucus formation during steady state and in response to carbamylcholine (CCh) and prostaglandin E2 (PGE2). The broad-spectrum anion transport inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), CftrdF508 (CF) mice, and the slc26a3 inhibitor SLC26A3-IN-2 were used to inhibit anion transport. In the distal colon, steady-state mucus expansion was reduced by SLC26A3-IN-2 and normal in CF mice. PGE2 stimulated mucus expansion without de novo mucus release in wild type (WT) and CF colon via slc26a3 sensitive mechanisms, while CCh induced de novo mucus secretion in WT but not in CF colon. However, when added simultaneously, CCh and PGE2 stimulated de novo mucus secretion in the CF colon via DIDS-sensitive pathways. A similar response was observed in CF ileum that responded to CCh and PGE2 with DIDS-sensitive de novo mucus secretion. In conclusion, this study suggests that slc26a3 regulates colonic mucus expansion, while Cftr regulates CCh-induced de novo mucus secretion from ileal and distal colon crypts. Furthermore, these findings demonstrate that in the absence of a functional Cftr channel, parallel stimulation with CCh and PGE2 activates additional anion transport processes that help release mucus from intestinal goblet cells.
Collapse
Affiliation(s)
- Penny L Ljungholm
- Department of Physiology, University of Gothenburg, Medicinaregatan 11, Box 432, 405 30, Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Victor L Pettersson
- Department of Physiology, University of Gothenburg, Medicinaregatan 11, Box 432, 405 30, Gothenburg, Sweden
| | - Jenny K Gustafsson
- Department of Physiology, University of Gothenburg, Medicinaregatan 11, Box 432, 405 30, Gothenburg, Sweden.
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
O'Malley Y, Zarei K, Vanegas OGC, Singh P, Apak TI, Coleman M, Thornell IM, Uc A. Pancreatic duct organoid swelling is chloride-dependent. J Cyst Fibros 2024; 23:169-171. [PMID: 37633792 PMCID: PMC10891289 DOI: 10.1016/j.jcf.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/14/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Pancreatic secretions become viscous and acidic in Cystic fibrosis (CF), highlighting the role of CFTR in pancreatic fluid and bicarbonate secretion. Forskolin-induced swelling (FIS) assay developed in intestinal organoids measures residual CFTR function. It is not known whether FIS reflects bicarbonate secretion in pancreas, an organ that secretes near-isotonic NaHCO3 levels. To investigate this, we generated pancreatic duct organoids from CF and non-CF pigs. Epithelial and ductal origin was confirmed with epithelial markers, ion transporters and lack of acinar, islet cell markers. CF organoids were small with no identifiable lumen; CFTR was expressed only in non-CF organoids. Utilizing FIS, organoid size increased only in response to chloride, not bicarbonate. This report highlights pancreatic duct organoids isolated for the first time from CF pigs and evidence for chloride and not bicarbonate driving pancreatic organoid swelling. These organoids would be useful to test chloride permeability of CFTR mutations that cause CF pancreatic disease.
Collapse
Affiliation(s)
| | - Keyan Zarei
- Department of Internal Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | | | | - Aliye Uc
- Stead Family Department of Pediatrics, USA; Department of Radiation Oncology, USA; Fraternal Order of Eagles Diabetes Research Center , University of Iowa, Iowa, Iowa, USA.
| |
Collapse
|
6
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
7
|
Hegyi P, Seidler U, Kunzelmann K. CFTR-beyond the airways: Recent findings on the role of the CFTR channel in the pancreas, the intestine and the kidneys. J Cyst Fibros 2023; 22 Suppl 1:S17-S22. [PMID: 36621373 DOI: 10.1016/j.jcf.2022.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
With increased longevity of patients suffering from cystic fibrosis, and widespread lung transplantation facilities, the sequelae of defective CFTR in other organs than the airways come to the fore. This minireview highlights recent scientific progress in the understanding of CFTR function in the pancreas, the intestine and the kidney, and explores potential therapeutic strategies to combat defective CFTR function in these organs.
Collapse
Affiliation(s)
- Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; Center for Translational Medicine and Institute of Pancreatic Diseases, Semmelweis University, 1085 Budapest, Hungary; Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, 6725 Szeged, Hungary
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, 30625 Hannover, Germany.
| | - Karl Kunzelmann
- Institute of Physiology, Regensburg University, 93040 Regensburg, Germany
| |
Collapse
|
8
|
Whittamore JM, Hatch M. Oxalate secretion is stimulated by a cAMP-dependent pathway in the mouse cecum. Pflugers Arch 2023; 475:249-266. [PMID: 36044064 PMCID: PMC9851989 DOI: 10.1007/s00424-022-02742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023]
Abstract
Elevated levels of the intracellular second messenger cAMP can stimulate intestinal oxalate secretion however the membrane transporters responsible are unclear. Oxalate transport by the chloride/bicarbonate (Cl-/HCO3-) exchanger Slc26a6 or PAT-1 (Putative Anion Transporter 1), is regulated via cAMP when expressed in Xenopus oocytes and cultured cells but whether this translates to the native epithelia is unknown. This study investigated the regulation of oxalate transport by the mouse intestine focusing on transport at the apical membrane hypothesizing PAT-1 is the target of a cAMP-dependent signaling pathway. Adopting the Ussing chamber technique we measured unidirectional 14C-oxalate and 36Cl- flux ([Formula: see text] and [Formula: see text]) across distal ileum, cecum and distal colon, employing forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX) to trigger cAMP production. FSK/IBMX initiated a robust secretory response by all segments but the stimulation of net oxalate secretion was confined to the cecum only involving activation of [Formula: see text] and distinct from net Cl- secretion produced by inhibiting [Formula: see text]. Using the PAT-1 knockout (KO) mouse we determined cAMP-stimulated [Formula: see text] was not directly dependent on PAT-1, but it was sensitive to mucosal DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid), although unlikely to be another Cl-/HCO3- exchanger given the lack of trans-stimulation or cis-inhibition by luminal Cl- or HCO3-. The cAMP-activated oxalate efflux was reliant on CFTR (Cystic Fibrosis Transmembrane conductance Regulator) activity, but only in the presence of PAT-1, leading to speculation on the involvement of a multi-transporter regulatory complex. Further investigations at the cellular and molecular level are necessary to define the mechanism and transporter(s) responsible.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research | Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8885, USA.
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Bosáková V, De Zuani M, Sládková L, Garlíková Z, Jose SS, Zelante T, Hortová Kohoutková M, Frič J. Lung Organoids—The Ultimate Tool to Dissect Pulmonary Diseases? Front Cell Dev Biol 2022; 10:899368. [PMID: 35912110 PMCID: PMC9326165 DOI: 10.3389/fcell.2022.899368] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
Organoids are complex multicellular three-dimensional (3D) in vitro models that are designed to allow accurate studies of the molecular processes and pathologies of human organs. Organoids can be derived from a variety of cell types, such as human primary progenitor cells, pluripotent stem cells, or tumor-derived cells and can be co-cultured with immune or microbial cells to further mimic the tissue niche. Here, we focus on the development of 3D lung organoids and their use as disease models and drug screening tools. We introduce the various experimental approaches used to model complex human diseases and analyze their advantages and disadvantages. We also discuss validation of the organoids and their physiological relevance to the study of lung diseases. Furthermore, we summarize the current use of lung organoids as models of host-pathogen interactions and human lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, or SARS-CoV-2 infection. Moreover, we discuss the use of lung organoids derived from tumor cells as lung cancer models and their application in personalized cancer medicine research. Finally, we outline the future of research in the field of human induced pluripotent stem cell-derived organoids.
Collapse
Affiliation(s)
- Veronika Bosáková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Lucie Sládková
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Garlíková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Shyam Sushama Jose
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Jan Frič
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- *Correspondence: Jan Frič,
| |
Collapse
|
11
|
O’Malley Y, Coleman MC, Sun X, Lei J, Yao J, Pulliam CF, Kluz P, McCormick ML, Yi Y, Imai Y, Engelhardt JF, Norris AW, Spitz DR, Uc A. Oxidative stress and impaired insulin secretion in cystic fibrosis pig pancreas. ADVANCES IN REDOX RESEARCH 2022; 5:100040. [PMID: 35903252 PMCID: PMC9328447 DOI: 10.1016/j.arres.2022.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cystic fibrosis-related diabetes (CFRD) is one the most common comorbidities in cystic fibrosis (CF). Pancreatic oxidative stress has been postulated in the pathogenesis of CFRD, but no studies have been done to show an association. The main obstacle is the lack of suitable animal models and no immediate availability of pancreas tissue in humans. In the CF porcine model, we found increased pancreatic total glutathione (GSH), glutathione disulfide (GSSG), 3-nitrotyrosine- and 4-hydroxynonenal-modified proteins, and decreased copper zinc superoxide dismutase (CuZnSOD) activity, all indicative of oxidative stress. CF pig pancreas demonstrated increased DHE oxidation (as a surrogate marker of superoxide) in situ compared to non-CF and this was inhibited by a SOD-mimetic (GC4401). Catalase and glutathione peroxidase activities were not different between CF and non-CF pancreas. Isolated CF pig islets had significantly increased DHE oxidation, peroxide production, reduced insulin secretion in response to high glucose and diminished secretory index compared to non-CF islets. Acute treatment with apocynin or an SOD mimetic failed to restore insulin secretion. These results are consistent with the hypothesis that CF pig pancreas is under significant oxidative stress as a result of increased O2 ●- and peroxides combined with reduced antioxidant defenses against reactive oxygen species (ROS). We speculate that insulin secretory defects in CF may be due to oxidative stress.
Collapse
Affiliation(s)
- Yunxia O’Malley
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - Mitchell C. Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Junying Lei
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - Jianrong Yao
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - Casey F. Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Paige Kluz
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, Iowa 52242, USA
| | - Michael L. McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yumi Imai
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andrew W. Norris
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Aliye Uc
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
12
|
Talbi K, Cabrita I, Kraus A, Hofmann S, Skoczynski K, Kunzelmann K, Buchholz B, Schreiber R. The chloride channel CFTR is not required for cyst growth in an ADPKD mouse model. FASEB J 2021; 35:e21897. [PMID: 34473378 DOI: 10.1096/fj.202100843r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 01/01/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of bilateral renal cysts which enlarge continuously, leading to compression of adjacent intact nephrons. The growing cysts lead to a progressive decline in renal function. Cyst growth is driven by enhanced cell proliferation and chloride secretion into the cyst lumen. Chloride secretion is believed to occur mainly by the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR), with some contribution by the calcium-activated chloride channel TMEM16A. However, our previous work suggested TMEM16A as a major factor for renal cyst formation. The contribution of CFTR to cyst formation has never been demonstrated in an adult ADPKD mouse model. We used mice with an inducible tubule-specific Pkd1 knockout, which consistently develop polycystic kidneys upon deletion of Pkd1. Cellular properties, ion currents, and cyst development in these mice were compared with that of mice carrying a co-deletion of Pkd1 and Cftr. Knockout of Cftr did not reveal any significant impact on cyst formation in the ADPKD mouse model. Furthermore, knockout of Cftr did not attenuate the largely augmented cell proliferation observed in Pkd1 knockout kidneys. Patch clamp analysis on primary renal epithelial cells lacking expression of Pkd1 indicated an only marginal contribution of CFTR to whole cell Cl- currents, which were clearly dominated by calcium-activated TMEM16A currents. In conclusion, CFTR does not essentially contribute to renal cyst formation in mice caused by deletion of Pkd1. Enhanced cell proliferation and chloride secretion is caused primarily by upregulation of the calcium-activated chloride channel TMEM16A.
Collapse
Affiliation(s)
- Khaoula Talbi
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Inês Cabrita
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Sascha Hofmann
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Kathrin Skoczynski
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Rainer Schreiber
- Department of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Gibson-Corley KN, Engelhardt JF. Animal Models and Their Role in Understanding the Pathophysiology of Cystic Fibrosis-Associated Gastrointestinal Lesions. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:51-67. [PMID: 33497264 DOI: 10.1146/annurev-pathol-022420-105133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The life expectancy of cystic fibrosis (CF) patients has greatly increased over the past decade, and researchers and clinicians must now navigate complex disease manifestations that were not a concern prior to the development of modern therapies. Explosive growth in the number of CF animal models has also occurred over this time span, clarifying CF disease pathophysiology and creating opportunities to understand more complex disease processes associated with an aging CF population. This review focuses on the CF-associated pathologies of the gastrointestinal system and how animal models have increased our understanding of this complex multisystemic disease. Although CF is primarily recognized as a pulmonary disease, gastrointestinal pathology occurs very commonly and can affect the quality of life for these patients. Furthermore, we discuss how next-generation genetic engineering of larger animal models will impact the field's understanding of CF disease pathophysiology and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katherine N Gibson-Corley
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.,Current affiliation: Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA;
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA;
| |
Collapse
|
14
|
Sanders M, Lawlor JMJ, Li X, Schuen JN, Millard SL, Zhang X, Buck L, Grysko B, Uhl KL, Hinds D, Stenger CL, Morris M, Lamb N, Levy H, Bupp C, Prokop JW. Genomic, transcriptomic, and protein landscape profile of CFTR and cystic fibrosis. Hum Genet 2021; 140:423-439. [PMID: 32734384 PMCID: PMC7855842 DOI: 10.1007/s00439-020-02211-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/25/2020] [Indexed: 01/18/2023]
Abstract
Cystic Fibrosis (CF) is caused most often by removal of amino acid 508 (Phe508del, deltaF508) within CFTR, yet dozens of additional CFTR variants are known to give rise to CF and many variants in the genome are known to contribute to CF pathology. To address CFTR coding variants, we developed a sequence-to-structure-to-dynamic matrix for all amino acids of CFTR using 233 vertebrate species, CFTR structure within a lipid membrane, and 20 ns of molecular dynamic simulation to assess known variants from the CFTR1, CFTR2, ClinVar, TOPmed, gnomAD, and COSMIC databases. Surprisingly, we identify 18 variants of uncertain significance within CFTR from diverse populations that are heritable and a likely cause of CF that have been understudied due to nonexistence in Caucasian populations. In addition, 15 sites within the genome are known to modulate CF pathology, where we have identified one genome region (chr11:34754985-34836401) that contributes to CF through modulation of expression of a noncoding RNA in epithelial cells. These 15 sites are just the beginning of understanding comodifiers of CF, where utilization of eQTLs suggests many additional genomics of CFTR expressing cells that can be influenced by genomic background of CFTR variants. This work highlights that many additional insights of CF genetics are needed, particularly as pharmaceutical interventions increase in the coming years.
Collapse
Affiliation(s)
- Morgan Sanders
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - James M J Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - John N Schuen
- Pediatric Pulmonology, Helen DeVos Children's Hospital, Grand Rapids, MI, 49503, USA
| | - Susan L Millard
- Pediatric Pulmonology, Helen DeVos Children's Hospital, Grand Rapids, MI, 49503, USA
| | - Xi Zhang
- Department of Pediatrics, Division of Pulmonary Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Leah Buck
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- Department of Mathematics, University of North Alabama, Florence, AL, 35632, USA
| | - Bethany Grysko
- Spectrum Health Medical Genetics, Grand Rapids, MI, 49503, USA
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - David Hinds
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Cynthia L Stenger
- Department of Mathematics, University of North Alabama, Florence, AL, 35632, USA
| | - Michele Morris
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Neil Lamb
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Hara Levy
- Department of Pediatrics, Division of Pulmonary Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Caleb Bupp
- Spectrum Health Medical Genetics, Grand Rapids, MI, 49503, USA
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA.
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Xu J, Livraghi-Butrico A, Hou X, Rajagopalan C, Zhang J, Song J, Jiang H, Wei HG, Wang H, Bouhamdan M, Ruan J, Yang D, Qiu Y, Xie Y, Barrett R, McClellan S, Mou H, Wu Q, Chen X, Rogers TD, Wilkinson KJ, Gilmore RC, Esther CR, Zaman K, Liang X, Sobolic M, Hazlett L, Zhang K, Frizzell RA, Gentzsch M, O'Neal WK, Grubb BR, Chen YE, Boucher RC, Sun F. Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene. JCI Insight 2021; 6:139813. [PMID: 33232302 PMCID: PMC7821608 DOI: 10.1172/jci.insight.139813] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Existing animal models of cystic fibrosis (CF) have provided key insights into CF pathogenesis but have been limited by short lifespans, absence of key phenotypes, and/or high maintenance costs. Here, we report the CRISPR/Cas9-mediated generation of CF rabbits, a model with a relatively long lifespan and affordable maintenance and care costs. CF rabbits supplemented solely with oral osmotic laxative had a median survival of approximately 40 days and died of gastrointestinal disease, but therapeutic regimens directed toward restoring gastrointestinal transit extended median survival to approximately 80 days. Surrogate markers of exocrine pancreas disorders were found in CF rabbits with declining health. CFTR expression patterns in WT rabbit airways mimicked humans, with widespread distribution in nasal respiratory and olfactory epithelia, as well as proximal and distal lower airways. CF rabbits exhibited human CF–like abnormalities in the bioelectric properties of the nasal and tracheal epithelia. No spontaneous respiratory disease was detected in young CF rabbits. However, abnormal phenotypes were observed in surviving 1-year-old CF rabbits as compared with WT littermates, and these were especially evident in the nasal respiratory and olfactory epithelium. The CF rabbit model may serve as a useful tool for understanding gut and lung CF pathogenesis and for the practical development of CF therapeutics.
Collapse
Affiliation(s)
- Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | | | - Hui Wang
- Department of Oncology, Karmanos Cancer Institute
| | | | - Jinxue Ruan
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Yining Qiu
- Center for Molecular Medicine and Genetics, and
| | - Youming Xie
- Department of Oncology, Karmanos Cancer Institute
| | - Ronald Barrett
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | - Sharon McClellan
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | - Hongmei Mou
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | - Troy D Rogers
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kristen J Wilkinson
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rodney C Gilmore
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Charles R Esther
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Khalequz Zaman
- Department of Pediatrics, Case Western Research University School of Medicine, Cleveland, Ohio, USA
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | - Linda Hazlett
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | | | - Raymond A Frizzell
- Department of Pediatrics and Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvnia, USA
| | - Martina Gentzsch
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Barbara R Grubb
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
16
|
Sharma J, Abbott J, Klaskala L, Zhao G, Birket SE, Rowe SM. A Novel G542X CFTR Rat Model of Cystic Fibrosis Is Sensitive to Nonsense Mediated Decay. Front Physiol 2020; 11:611294. [PMID: 33391025 PMCID: PMC7772197 DOI: 10.3389/fphys.2020.611294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Nonsense mutations that lead to the insertion of a premature termination codon (PTC) in the cystic fibrosis transmembrane conductance regulator (CFTR) transcript affect 11% of patients with cystic fibrosis (CF) worldwide and are associated with severe disease phenotype. While CF rat models have contributed significantly to our understanding of CF disease pathogenesis, there are currently no rat models available for studying CF nonsense mutations. Here we created and characterized the first homozygous CF rat model that bears the CFTR G542X nonsense mutation in the endogenous locus using CRISPR/Cas9 gene editing. In addition to displaying severe CF manifestations and developmental defects such as reduced growth, abnormal tooth enamel, and intestinal obstruction, CFTR G542X knockin rats demonstrated an absence of CFTR function in tracheal and intestinal sections as assessed by nasal potential difference and transepithelial short-circuit current measurements. Reduced CFTR mRNA levels in the model further suggested sensitivity to nonsense-mediated decay, a pathway elicited by the presence of PTCs that degrades the PTC-bearing transcripts and thus further diminishes the level of CFTR protein. Although functional restoration of CFTR was observed in G542X rat tracheal epithelial cells in response to single readthrough agent therapy, therapeutic efficacy was not observed in G542X knockin rats in vivo. The G542X rat model provides an invaluable tool for the identification and in vivo validation of potential therapies for CFTR nonsense mutations.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joseph Abbott
- Horizon Discovery Group, PLC, St. Louis, MO, United States
| | | | - Guojun Zhao
- Horizon Discovery Group, PLC, St. Louis, MO, United States
| | - Susan E. Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Steven M. Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
17
|
Abstract
The two main techniques used in biomedical research for the production of transgenic animals have several implications for animal welfare in terms of the Three Rs of Russell & Burch. Some are intrinsic to the transgenic objectives, while others relate to the effects of mutations, transgene expression, associated methodologies, and husbandry or production systems. All of these actual and potential implications for animal welfare demand serious consideration within a broad ethical analysis of the technology. In the light, of the Three Rs, this may require a fundamental reappraisal of the processes by which such scientific procedures are approved.
Collapse
Affiliation(s)
- Colin J. Moore
- Centre for Applied Bioethics, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - T. Ben Mepham
- Centre for Applied Bioethics, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| |
Collapse
|
18
|
Yoshie S, Omori K, Hazama A. Airway regeneration using iPS cell-derived airway epithelial cells with Cl - channel function. Channels (Austin) 2020; 13:227-234. [PMID: 31198082 PMCID: PMC6602574 DOI: 10.1080/19336950.2019.1628550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
induced pluripotent stem (iPS) cells can be differentiated into various cell types, including airway epithelial cells, since they have the capacity for self-renewal and pluripotency. Thus, airway epithelial cells generated from iPS cells are expected to be potent candidates for use in airway regeneration and the treatment of airway diseases such as cystic fibrosis (CF). Recently, it was reported that iPS cells can be differentiated into airway epithelial cells according to the airway developmental process. These studies demonstrate that airway epithelial cells generated from iPS cells are equivalent to their in vivo counterparts. However, it has not been evaluated in detail whether these cells exhibit physiological functions and are fully mature. Airway epithelial cells adequately control water volume on the airway surface via the function of Cl− channels. Reasonable environments on the airway surface cause ciliary movement with a constant rhythm and maintain airway clearance. Therefore, the generation of functional airway epithelial cells/tissues with Cl− channel function from iPS cells will be indispensable for cell/tissue replacement therapy, the development of a reliable airway disease model, and the treatment of airway disease. This review highlights the generation of functional airway epithelial cells from iPS cells and discusses the remaining challenges to the generation of functional airway epithelial cells for airway regeneration and the treatment of airway disease.
Collapse
Affiliation(s)
- Susumu Yoshie
- a Department of Cellular and Integrative Physiology, School of Medicine , Fukushima Medical University , Fukushima , Japan
| | - Koichi Omori
- b Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine , Kyoto University , Kyoto , Japan
| | - Akihiro Hazama
- a Department of Cellular and Integrative Physiology, School of Medicine , Fukushima Medical University , Fukushima , Japan
| |
Collapse
|
19
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
20
|
Hynes D, Harvey BJ. Dexamethasone reduces airway epithelial Cl - secretion by rapid non-genomic inhibition of KCNQ1, KCNN4 and KATP K + channels. Steroids 2019; 151:108459. [PMID: 31330137 DOI: 10.1016/j.steroids.2019.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 11/26/2022]
Abstract
Basolateral membrane K+ channels play a key role in basal and agonist stimulated Cl- transport across airway epithelial cells by generating a favourable electrical driving force for Cl- efflux. The K+ channel sub-types and molecular mechanisms of regulation by hormones and secretagoues are still poorly understood. Here we have identified the type of K+ channels involved in cAMP and Ca2+ stimulated Cl- secretion and uncovered a novel anti-secretory effect of dexamethasone mediated by inhibition of basolateral membrane K+ channels in a human airway cell model of 16HBE14o- cells commonly used for ion transport studies. Dexamethasone produced a rapid inhibition of transepithelial chloride ion secretion under steady state conditions and after stimulation with cAMP agonist (forskolin) or a Ca2+ mobilizing agonist (ATP). Our results show three different types of K+ channels are targeted by dexamethasone to reduce airway secretion, namely Ca2+-activated secretion via KCNN4 (KCa3.1) channels and cAMP-activated secretion via KCNQ1 (Kv7.1) and KATP (Kir6.1,6.2) channels. The down-regulation of KCNN4 and KCNQ1 channel activities by dexamethasone involves rapid non-genomic activation of PKCα and PKA signalling pathways, respectively. Dexamethasone signal transduction for PKC and PKA activation was demonstrated to occur through a rapid non-genomic pathway that did not implicate the classical nuclear receptors for glucocorticoids or mineralocorticoids but occurred via a novel signalling cascade involving sequentially a Gi-protein coupled receptor, PKC, adenylyl cyclase Type IV, cAMP, PKA and ERK1/2 activation. The rapid, non-genomic, effects of dexamethasone on airway epithelial ion transport and cell signalling introduces a new paradigm for glucocorticoid actions in lung epithelia which may serve to augment the anti-inflammatory activity of the steroid and enhance its therapeutic potential in treating airway hypersecretion in asthma and COPD.
Collapse
Affiliation(s)
- Darina Hynes
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; Centro di Estudios Cientificos CECs, Valdivia, Chile.
| |
Collapse
|
21
|
Markov AG, Vishnevskaya ON, Okorokova LS, Fedorova AA, Kruglova NM, Rybalchenko OV, Aschenbach JR, Amasheh S. Cholera toxin perturbs the paracellular barrier in the small intestinal epithelium of rats by affecting claudin-2 and tricellulin. Pflugers Arch 2019; 471:1183-1189. [PMID: 31222489 DOI: 10.1007/s00424-019-02294-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/07/2023]
Abstract
Cholera toxin is commonly known to induce chloride secretion of the intestine. In recent years, effects on epithelial barrier function have been reported, indicating synergistic co-regulation of transporters and tight junction proteins. Our current study focused on the analysis of cholera toxin effects on transepithelial resistance and on tight junction proteins, the latter known as structural correlates of barrier function. Ligated segments of the rat jejunum were injected with buffered solution containing cholera toxin (1 μg/ml) and incubated for 4 h. Subsequently, selfsame tissue specimens were mounted in Ussing chambers, and cholera toxin (1 μg/ml) was added on the apical side. Transepithelial resistance and permeability of sodium fluorescein (376 Da) were analyzed. Subsequently, tissues were removed, expression and localization of claudins were analyzed, and morphological studies were performed employing transmission electron microscopy and confocal laser scanning microscopy. Cholera toxin induced a marked decrease in transepithelial resistance in the rat jejunal epithelium and an increase in paracellular permeability for sodium fluorescein. Immunoblotting of tight junction proteins revealed an increase in claudin-2 signals, which was verified by confocal laser scanning immunofluorescence microscopy, and a decrease in tricellulin, whereas other tight junction proteins remained unchanged. Transmission electron microscopy showed a reduction in the number of microvilli after incubation with cholera toxin. Moreover, cholera toxin led to a widening of the intercellular space between enterocytes. In accordance with the commonly known prosecretory effect of cholera toxin, our study revealed a complementary effect on small intestinal barrier function and integrity, which might constitute a pathomechanism with high relevance for prevention and therapeutic approaches.
Collapse
Affiliation(s)
- Alexander G Markov
- Department of General Physiology, St. Petersburg State University, St. Petersburg, 197374, Russia
| | - Olga N Vishnevskaya
- Department of General Physiology, St. Petersburg State University, St. Petersburg, 197374, Russia
| | - Larisa S Okorokova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, 197374, Russia
| | - Arina A Fedorova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, 197374, Russia
| | - Natalia M Kruglova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, 197374, Russia
| | - Oksana V Rybalchenko
- Faculty of Medicine, St. Petersburg State University, St. Petersburg, 197374, Russia
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163, Berlin, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163, Berlin, Germany.
| |
Collapse
|
22
|
Model systems inform rare disease diagnosis, therapeutic discovery and pre-clinical efficacy. Emerg Top Life Sci 2019; 3:1-10. [DOI: 10.1042/etls20180057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 01/12/2023]
Abstract
Abstract
Model systems have played a large role in understanding human diseases and are instrumental in taking basic research findings to the clinic; however, for rare diseases, model systems play an even larger role. Here, we outline how model organisms are crucial for confirming causal associations, understanding functional mechanisms and developing therapies for disease. As diseases that have been studied extensively through genetics and molecular biology, cystic fibrosis and Rett syndrome are portrayed as primary examples of how genetic diagnosis, model organism development and therapies have led to improved patient health. Considering which model to use, yeast, worms, flies, fish, mice or larger animals requires a careful evaluation of experimental genetic tools and gene pathway conservation. Recent advances in genome editing will aid in confirming diagnoses and developing model systems for rare disease. Genetic or chemical screening for disease suppression may reveal functional pathway members and provide candidate entry points for developing therapies. Model organisms may also be used in drug discovery and as preclinical models as a prelude to testing treatments in patient populations. Now, model organisms will increasingly be used as platforms for understanding variation in rare disease severity and onset, thereby informing therapeutic intervention.
Collapse
|
23
|
Farkas C, Fuentes-Villalobos F, Rebolledo-Jaramillo B, Benavides F, Castro AF, Pincheira R. Streamlined computational pipeline for genetic background characterization of genetically engineered mice based on next generation sequencing data. BMC Genomics 2019; 20:131. [PMID: 30755158 PMCID: PMC6373082 DOI: 10.1186/s12864-019-5504-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/31/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Genetically engineered mice (GEM) are essential tools for understanding gene function and disease modeling. Historically, gene targeting was first done in embryonic stem cells (ESCs) derived from the 129 family of inbred strains, leading to a mixed background or congenic mice when crossed with C57BL/6 mice. Depending on the number of backcrosses and breeding strategies, genomic segments from 129-derived ESCs can be introgressed into the C57BL/6 genome, establishing a unique genetic makeup that needs characterization in order to obtain valid conclusions from experiments using GEM lines. Currently, SNP genotyping is used to detect the extent of 129-derived ESC genome introgression into C57BL/6 recipients; however, it fails to detect novel/rare variants. RESULTS Here, we present a computational pipeline implemented in the Galaxy platform and in BASH/R script to determine genetic introgression of GEM using next generation sequencing data (NGS), such as whole genome sequencing (WGS), whole exome sequencing (WES) and RNA-Seq. The pipeline includes strategies to uncover variants linked to a targeted locus, genome-wide variant visualization, and the identification of potential modifier genes. Although these methods apply to congenic mice, they can also be used to describe variants fixed by genetic drift. As a proof of principle, we analyzed publicly available RNA-Seq data from five congenic knockout (KO) lines and our own RNA-Seq data from the Sall2 KO line. Additionally, we performed target validation using several genetics approaches. CONCLUSIONS We revealed the impact of the 129-derived ESC genome introgression on gene expression, predicted potential modifier genes, and identified potential phenotypic interference in KO lines. Our results demonstrate that our new approach is an effective method to determine genetic introgression of GEM.
Collapse
Affiliation(s)
- C Farkas
- Laboratorio de Transducción de Señales y Cáncer. Departamento de Bioquímica y Biología Molecular. Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Fuentes-Villalobos
- Laboratorio de Transducción de Señales y Cáncer. Departamento de Bioquímica y Biología Molecular. Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - F Benavides
- Department of Epigenetics and Molecular Carcinogenesis, M.D. Anderson Cancer Center, Smithville, TX, USA
| | - A F Castro
- Laboratorio de Transducción de Señales y Cáncer. Departamento de Bioquímica y Biología Molecular. Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - R Pincheira
- Laboratorio de Transducción de Señales y Cáncer. Departamento de Bioquímica y Biología Molecular. Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
24
|
O'Malley Y, Rotti PG, Thornell IM, Vanegas Calderón OG, Febres-Aldana C, Durham K, Yao J, Li X, Zhu Z, Norris AW, Zabner J, Engelhardt JF, Uc A. Development of a polarized pancreatic ductular cell epithelium for physiological studies. J Appl Physiol (1985) 2018; 125:97-106. [PMID: 29517421 PMCID: PMC6086968 DOI: 10.1152/japplphysiol.00043.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023] Open
Abstract
Pancreatic ductular epithelial cells comprise the majority of duct cells in pancreas, control cystic fibrosis transmembrane conductance regulator (CFTR)-dependent bicarbonate ([Formula: see text]) secretion, but are difficult to grow as a polarized monolayer. Using NIH-3T3-J2 fibroblast feeder cells and a Rho-associated kinase inhibitor, we produced well-differentiated and polarized porcine pancreatic ductular epithelial cells. Cells grown on semipermeable filters at the air-liquid interface developed typical epithelial cell morphology and stable transepithelial resistance and expressed epithelial cell markers (zona occludens-1 and β-catenin), duct cell markers (SOX-9 and CFTR), but no acinar (amylase) or islet cell (chromogranin) markers. Polarized cells were studied in Ussing chambers bathed in Krebs-Ringer [Formula: see text] solution at 37°C gassed with 5% CO2 to measure short-circuit currents ( Isc). Ratiometric measurement of extracellular pH was performed with fluorescent SNARF-conjugated dextran at 5% CO2. Cells demonstrated a baseline Isc (12.2 ± 3.2 μA/cm2) that increased significantly in response to apical forskolin-IBMX (∆ Isc: 35.4 ± 3.8 μA/cm2, P < 0.001) or basolateral secretin (∆ Isc: 31.4 ± 2.5 μA/cm2, P < 0.001), both of which increase cellular levels of cAMP. Subsequent addition of apical GlyH-101, a CFTR inhibitor, decreased the current (∆ Isc: 20.4 ± 3.8 μA/cm2, P < 0.01). Extracellular pH and [Formula: see text] concentration increased significantly after forskolin-IBMX (pH: 7.18 ± 0.23 vs. 7.53 ± 0.19; [Formula: see text] concentration, 14.5 ± 5.9 vs. 31.8 ± 13.4 mM; P < 0.05 for both). We demonstrate the development of a polarized pancreatic ductular epithelial cell epithelium with CFTR-dependent [Formula: see text] secretion in response to secretin and cAMP. This model is highly relevant, as porcine pancreas physiology is very similar to humans and pancreatic damage in the cystic fibrosis pig model recapitulates that of humans. NEW & NOTEWORTHY Pancreas ductular epithelial cells control cystic fibrosis transmembrane conductance regulator (CFTR)-dependent bicarbonate secretion. Their function is critical because when CFTR is deficient in cystic fibrosis bicarbonate secretion is lost and the pancreas is damaged. Mechanisms that control pancreatic bicarbonate secretion are incompletely understood. We generated well-differentiated and polarized porcine pancreatic ductular epithelial cells and demonstrated feasibility of bicarbonate secretion. This novel method will advance our understanding of pancreas physiology and mechanisms of bicarbonate secretion.
Collapse
Affiliation(s)
- Yunxia O'Malley
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Pavana G Rotti
- Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Ian M Thornell
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa
| | | | - Christopher Febres-Aldana
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center , Miami Beach, Florida
| | - Katelin Durham
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Jianrong Yao
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Xiaopeng Li
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa
| | - Zheng Zhu
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Andrew W Norris
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa , Iowa City, Iowa
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| |
Collapse
|
25
|
McHugh DR, Steele MS, Valerio DM, Miron A, Mann RJ, LePage DF, Conlon RA, Cotton CU, Drumm ML, Hodges CA. A G542X cystic fibrosis mouse model for examining nonsense mutation directed therapies. PLoS One 2018; 13:e0199573. [PMID: 29924856 PMCID: PMC6010256 DOI: 10.1371/journal.pone.0199573] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
Nonsense mutations are present in 10% of patients with CF, produce a premature termination codon in CFTR mRNA causing early termination of translation, and lead to lack of CFTR function. There are no currently available animal models which contain a nonsense mutation in the endogenous Cftr locus that can be utilized to test nonsense mutation therapies. In this study, we create a CF mouse model carrying the G542X nonsense mutation in Cftr using CRISPR/Cas9 gene editing. The G542X mouse model has reduced Cftr mRNA levels, demonstrates absence of CFTR function, and displays characteristic manifestations of CF mice such as reduced growth and intestinal obstruction. Importantly, CFTR restoration is observed in G542X intestinal organoids treated with G418, an aminoglycoside with translational readthrough capabilities. The G542X mouse model provides an invaluable resource for the identification of potential therapies of CF nonsense mutations as well as the assessment of in vivo effectiveness of these potential therapies targeting nonsense mutations.
Collapse
Affiliation(s)
- Daniel R. McHugh
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Miarasa S. Steele
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dana M. Valerio
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alexander Miron
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rachel J. Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David F. LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ronald A. Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Calvin U. Cotton
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mitchell L. Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Craig A. Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
26
|
Hall CL, Lee VT. Cyclic-di-GMP regulation of virulence in bacterial pathogens. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:10.1002/wrna.1454. [PMID: 28990312 PMCID: PMC5739959 DOI: 10.1002/wrna.1454] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Signaling pathways allow bacteria to adapt to changing environments. For pathogenic bacteria, signaling pathways allow for timely expression of virulence factors and the repression of antivirulence factors within the mammalian host. As the bacteria exit the mammalian host, signaling pathways enable the expression of factors promoting survival in the environment and/or nonmammalian hosts. One such signaling pathway uses the dinucleotide cyclic-di-GMP (c-di-GMP), and many bacterial genomes encode numerous proteins that are responsible for synthesizing and degrading c-di-GMP. Once made, c-di-GMP binds to individual protein and RNA receptors to allosterically alter the macromolecule function to drive phenotypic changes. Each bacterial genome encodes unique sets of genes for c-di-GMP signaling and virulence factors so the regulation by c-di-GMP is organism specific. Recent works have pointed to evidence that c-di-GMP regulates virulence in different bacterial pathogens of mammalian hosts. In this review, we discuss the criteria for determining the contribution of signaling nucleotides to pathogenesis using a well-characterized signaling nucleotide, cyclic AMP (cAMP), in Pseudomonas aeruginosa. Using these criteria, we review the roles of c-di-GMP in mediating virulence and highlight common themes that exist among eight diverse pathogens that cause different diseases through different routes of infection and transmission. WIREs RNA 2018, 9:e1454. doi: 10.1002/wrna.1454 This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Cherisse L Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD, USA
| |
Collapse
|
27
|
Molecular Structure of the Human CFTR Ion Channel. Cell 2017; 169:85-95.e8. [PMID: 28340353 DOI: 10.1016/j.cell.2017.02.024] [Citation(s) in RCA: 375] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 01/13/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that uniquely functions as an ion channel. Here, we present a 3.9 Å structure of dephosphorylated human CFTR without nucleotides, determined by electron cryomicroscopy (cryo-EM). Close resemblance of this human CFTR structure to zebrafish CFTR under identical conditions reinforces its relevance for understanding CFTR function. The human CFTR structure reveals a previously unresolved helix belonging to the R domain docked inside the intracellular vestibule, precluding channel opening. By analyzing the sigmoid time course of CFTR current activation, we propose that PKA phosphorylation of the R domain is enabled by its infrequent spontaneous disengagement, which also explains residual ATPase and gating activity of dephosphorylated CFTR. From comparison with MRP1, a feature distinguishing CFTR from all other ABC transporters is the helix-loop transition in transmembrane helix 8, which likely forms the structural basis for CFTR's channel function.
Collapse
|
28
|
Crosby JR, Zhao C, Jiang C, Bai D, Katz M, Greenlee S, Kawabe H, McCaleb M, Rotin D, Guo S, Monia BP. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice. J Cyst Fibros 2017; 16:671-680. [PMID: 28539224 DOI: 10.1016/j.jcf.2017.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Epithelial sodium channel (ENaC, Scnn1) hyperactivity in the lung leads to airway surface dehydration and mucus accumulation in cystic fibrosis (CF) patients and in mice with CF-like lung disease. METHODS We identified several potent ENaC specific antisense oligonucleotides (ASOs) and tested them by inhalation in mouse models of CF-like lung disease. RESULTS The inhaled ASOs distributed into lung airway epithelial cells and decreased ENaC expression by inducing RNase H1-dependent degradation of the targeted Scnn1a mRNA. Aerosol delivered ENaC ASO down-regulated mucus marker expression and ameliorated goblet cell metaplasia, inflammation, and airway hyper-responsiveness. Lack of systemic activity of ASOs delivered via the aerosol route ensures the safety of this approach. CONCLUSIONS Our results demonstrate that antisense inhibition of ENaC in airway epithelial cells could be an effective and safe approach for the prevention and reversal of lung symptoms in CF and potentially other inflammatory diseases of the lung.
Collapse
Affiliation(s)
- Jeff R Crosby
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA.
| | - Chenguang Zhao
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Chong Jiang
- The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
| | - Dong Bai
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Melanie Katz
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Sarah Greenlee
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hiroshi Kawabe
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Michael McCaleb
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Daniela Rotin
- The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
| | - Shuling Guo
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Brett P Monia
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
29
|
Livraghi A, Randell SH. Cystic Fibrosis and Other Respiratory Diseases of Impaired Mucus Clearance. Toxicol Pathol 2016; 35:116-29. [PMID: 17325980 DOI: 10.1080/01926230601060025] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Exposed to a diverse array of potentially noxious agents, the respiratory tract is protected by a highly developed innate defense system. Physiologically regulated epithelial ion and water transport coordinated with mucin secretion, beating cilia, and cough results in continuous flow of fluid and mucus over airway surfaces toward the larynx. This cleansing action is the initial and perhaps most quantitatively important innate defense mechanism. Repeated lung infections and eventual respiratory insufficiency characteristic of human cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) illustrate the consequences of impaired mucus clearance. Altered mucus clearance likely contributes to the initiation, progression, and chronicity of other airway diseases characterized by inflammation and mucous secretory cell hyper/metaplasia that afflict millions worldwide, including chronic obstructive pulmonary disease (COPD). This review concisely discusses the pathophysiology of human diseases characterized by genetic defects that impair mucus clearance. It then explores animal models in which components of the mucus clearance system have been disrupted. These models firmly establish the importance of mucus clearance for respiratory health, and will help elucidate disease mechanisms and therapeutic strategies in CF, PCD and COPD.
Collapse
Affiliation(s)
- Alessandra Livraghi
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Medicine, The University of North Carolina at Chapel Hill, 27599, USA
| | | |
Collapse
|
30
|
Metabolism and Pathogenicity of Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis. Microbiol Spectr 2016; 3. [PMID: 26350318 DOI: 10.1128/microbiolspec.mbp-0003-2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals with the genetic disease cystic fibrosis (CF) accumulate mucus or sputum in their lungs. This sputum is a potent growth substrate for a range of potential pathogens, and the opportunistic bacterium Pseudomonas aeruginosa is generally most difficult of these to eradicate. As a result, P. aeruginosa infections are frequently maintained in the CF lung throughout life, and are the leading cause of death for these individuals. While great effort has been expended to better understand and treat these devastating infections, only recently have researchers begun to rigorously examine the roles played by specific nutrients in CF sputum to cue P. aeruginosa pathogenicity. This chapter summarizes the current state of knowledge regarding how P. aeruginosa metabolism in CF sputum affects initiation and maintenance of these infections. It contains an overview of CF lung disease and the mechanisms of P. aeruginosa pathogenicity. Several model systems used to study these infections are described with emphasis on the challenge of replicating the chronic infections observed in humans with CF. Nutrients present in CF sputum are surveyed, and the impacts of these nutrients on the infection are discussed. The chapter concludes by addressing the future of this line of research including the use of next-generation technologies and the potential for metabolism-based therapeutics.
Collapse
|
31
|
Kis A, Krick S, Baumlin N, Salathe M. Airway Hydration, Apical K(+) Secretion, and the Large-Conductance, Ca(2+)-activated and Voltage-dependent Potassium (BK) Channel. Ann Am Thorac Soc 2016; 13 Suppl 2:S163-8. [PMID: 27115952 PMCID: PMC5015721 DOI: 10.1513/annalsats.201507-405kv] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/08/2015] [Indexed: 01/20/2023] Open
Abstract
Large-conductance, calcium-activated, and voltage-gated K(+) (BK) channels are expressed in many tissues of the human body, where they play important roles in signaling not only in excitable but also in nonexcitable cells. Because BK channel properties are rendered in part by their association with four β and four γ subunits, their channel function can differ drastically, depending on in which cellular system they are expressed. Recent studies verify the importance of apically expressed BK channels for airway surface liquid homeostasis and therefore of their significant role in mucociliary clearance. Here, we review evidence that inflammatory cytokines, which contribute to airway diseases, can lead to reduced BK activity via a functional down-regulation of the γ regulatory subunit LRRC26. Therefore, manipulation of LRRC26 and pharmacological opening of BK channels represent two novel concepts of targeting epithelial dysfunction in inflammatory airway diseases.
Collapse
Affiliation(s)
- Adrian Kis
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Stefanie Krick
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| |
Collapse
|
32
|
Hegyi P, Wilschanski M, Muallem S, Lukacs GL, Sahin-Tóth M, Uc A, Gray MA, Rakonczay Z, Maléth J. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. Rev Physiol Biochem Pharmacol 2016; 170:37-66. [PMID: 26856995 PMCID: PMC5232416 DOI: 10.1007/112_2015_5002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that conducts chloride and bicarbonate ions across epithelial cell membranes. Mutations in the CFTR gene diminish the ion channel function and lead to impaired epithelial fluid transport in multiple organs such as the lung and the pancreas resulting in cystic fibrosis. Heterozygous carriers of CFTR mutations do not develop cystic fibrosis but exhibit increased risk for pancreatitis and associated pancreatic damage characterized by elevated mucus levels, fibrosis, and cyst formation. Importantly, recent studies demonstrated that pancreatitis causing insults, such as alcohol, smoking, or bile acids, strongly inhibit CFTR function. Furthermore, human studies showed reduced levels of CFTR expression and function in all forms of pancreatitis. These findings indicate that impairment of CFTR is critical in the development of pancreatitis; therefore, correcting CFTR function could be the first specific therapy in pancreatitis. In this review, we summarize recent advances in the field and discuss new possibilities for the treatment of pancreatitis.
Collapse
Affiliation(s)
- Péter Hegyi
- Institute for Translational Medicine and 1st Department of Medicine, University of Pécs, Pécs, Hungary.
- MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary.
- First Department of Medicine, University of Szeged, Szeged, Hungary.
| | - Michael Wilschanski
- Pediatric Gastroenterology Unit, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Shmuel Muallem
- National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | | | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Aliye Uc
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Michael A Gray
- Institute for Cell & Molecular Biosciences, University Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary
| |
Collapse
|
33
|
Roberts AE, Kragh KN, Bjarnsholt T, Diggle SP. The Limitations of In Vitro Experimentation in Understanding Biofilms and Chronic Infection. J Mol Biol 2015; 427:3646-61. [DOI: 10.1016/j.jmb.2015.09.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/12/2015] [Accepted: 09/01/2015] [Indexed: 11/28/2022]
|
34
|
Bertrand J, Dannhoffer L, Antigny F, Vachel L, Jayle C, Vandebrouck C, Becq F, Norez C. A functional tandem between transient receptor potential canonical channels 6 and calcium-dependent chloride channels in human epithelial cells. Eur J Pharmacol 2015; 765:337-45. [DOI: 10.1016/j.ejphar.2015.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/21/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
|
35
|
Mou H, Brazauskas K, Rajagopal J. Personalized medicine for cystic fibrosis: establishing human model systems. Pediatr Pulmonol 2015; 50 Suppl 40:S14-23. [PMID: 26335952 DOI: 10.1002/ppul.23233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
With over 1,500 identifiable mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that result in distinct functional and phenotypical abnormalities, it is virtually impossible to perform randomized clinical trials to identify the best therapeutics for all patients. Therefore, a personalized medicine approach is essential. The only way to realistically accomplish this is through the development of improved in vitro human model systems. The lack of a readily available and infinite supply of human CFTR-expressing airway epithelial cells is a key bottleneck. We propose that a concerted two-pronged approach is necessary for patient-specific cystic fibrosis research to continue to prosper and realize its potential: (1) more effective culture and differentiation conditions for growing primary human airway and nasal epithelial cells and (2) the development of collective protocols for efficiently differentiating disease- and patient-specific induced pluripotent stem cells (iPSC) into pure populations of adult epithelial cells. Ultimately, we need a personalized human model system for cystic fibrosis with the capacity for uncomplicated bankability, widespread availability, and universal applicability for patient-specific disease modeling, novel pharmacotherapy investigation and screening, and readily executable genetic modification.
Collapse
Affiliation(s)
- Hongmei Mou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Karissa Brazauskas
- Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Pulmonary Critical Care Unit, Internal Medicine and Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
36
|
Kang SB, Marchelletta RR, Penrose H, Docherty MJ, McCole DF. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa. Pharmacol Res Perspect 2015; 3:e00128. [PMID: 26038704 PMCID: PMC4448989 DOI: 10.1002/prp2.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 01/19/2015] [Indexed: 12/17/2022] Open
Abstract
Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (Isc). Subsequent Isc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. Isc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation.
Collapse
Affiliation(s)
- Sang Bum Kang
- Division of Gastroenterology, Department of Internal Medicine, St. Mary's Hospital, Catholic University of Korea Seoul, Korea ; Division of Gastroenterology, School of Medicine, University of California, San Diego La Jolla, California
| | - Ronald R Marchelletta
- Division of Gastroenterology, School of Medicine, University of California, San Diego La Jolla, California
| | - Harrison Penrose
- Division of Gastroenterology, School of Medicine, University of California, San Diego La Jolla, California
| | - Michael J Docherty
- Division of Gastroenterology, School of Medicine, University of California, San Diego La Jolla, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside Riverside, California
| |
Collapse
|
37
|
Rayyan E, Polito S, Leung L, Bhakta A, Kang J, Willey J, Mansour W, Drumm ML, Al-Nakkash L. Effect of genistein on basal jejunal chloride secretion in R117H CF mice is sex and route specific. Clin Exp Gastroenterol 2015; 8:77-87. [PMID: 25674010 PMCID: PMC4321419 DOI: 10.2147/ceg.s72111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cystic fibrosis (CF) results from the loss or reduction in function of the CFTR (cystic fibrosis transmembrane conductance regulatory protein) chloride channel. The third most common CFTR mutation seen clinically is R117H. Genistein, a naturally occurring phytoestrogen, is known to stimulate CFTR function in vitro. We aimed to determine whether route of administration of genistein could mediate differential effects in R117H male and female CF mice. Mice were fed (4 weeks) or injected subcutaneously (1 week) with the following: genistein 600 mg/kg diet (600Gd); genistein-free diet (0Gd); genistein injection 600 mg/kg body weight (600Gi); dimethyl sulfoxide control (0Gi). In male R117H mice fed 600Gd, basal short circuit current (Isc) was unchanged. In 600Gd-fed female mice, there was a subgroup that demonstrated a significant increase in basal Isc (53.14±7.92 μA/cm(2), n=6, P<0.05) and a subgroup of nonresponders (12.05±6.59 μA/cm(2), n=4), compared to 0Gd controls (29.3±6.5 μA/cm(2), n=7). In R117H mice injected with 600Gi, basal Isc was unchanged in both male and female mice compared to 0Gi controls. Isc was measured in response to the following: the adenylate cyclase activator forskolin (10 μM, bilateral), bumetanide (100 μM, basolateral) to indicate the Cl(-) secretory component, and acetazolamide (100 μM, bilateral) to indicate the HCO3 (-) secretory component; however, there was no effect of genistein (diet or injection) on any of these parameters. Jejunal morphology (ie, villi length, number of goblet cells per villus, crypt depth, and number of goblet cells per crypt) in R117H mice suggested no genistein-mediated difference among the groups. Serum levels of genistein were significantly elevated, compared to respective controls, by either 600Gd (equally elevated in males and females) or 600Gi (elevated more in females versus males). These data suggest a sex-dependent increase in basal Isc of R117H mice and that the increase is also specific for route of administration.
Collapse
Affiliation(s)
- Esa Rayyan
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Sarah Polito
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Lana Leung
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Ashesh Bhakta
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Jonathan Kang
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Justin Willey
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Wasim Mansour
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Mitchell L Drumm
- Pediatric Pulmonology Division, Case Western Reserve University, Cleveland, OH, USA
| | - Layla Al-Nakkash
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
38
|
d'Angelo I, Conte C, La Rotonda MI, Miro A, Quaglia F, Ungaro F. Improving the efficacy of inhaled drugs in cystic fibrosis: challenges and emerging drug delivery strategies. Adv Drug Deliv Rev 2014; 75:92-111. [PMID: 24842473 DOI: 10.1016/j.addr.2014.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/23/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians associated with early death. Although the faulty gene is expressed in epithelia throughout the body, lung disease is still responsible for most of the morbidity and mortality of CF patients. As a local delivery route, pulmonary administration represents an ideal way to treat respiratory infections, excessive inflammation and other manifestations typical of CF lung disease. Nonetheless, important determinants of the clinical outcomes of inhaled drugs are the concentration/permanence at the lungs as well as the ability of the drug to overcome local extracellular and cellular barriers. This review focuses on emerging delivery strategies used for local treatment of CF pulmonary disease. After a brief description of the disease and formulation rules dictated by CF lung barriers, it describes current and future trends in inhaled drugs for CF. The most promising advanced formulations are discussed, highlighting the advantages along with the major challenges for researchers working in this field.
Collapse
Affiliation(s)
- Ivana d'Angelo
- Di.S.T.A.B.i.F., Second University of Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Conte
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Immacolata La Rotonda
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Agnese Miro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Fabiana Quaglia
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Francesca Ungaro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
39
|
Nichols JE, Niles JA, Vega SP, Argueta LB, Eastaway A, Cortiella J. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp Biol Med (Maywood) 2014; 239:1135-69. [PMID: 24962174 DOI: 10.1177/1535370214536679] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models.
Collapse
Affiliation(s)
- Joan E Nichols
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA University of Texas Medical Branch, School of Medicine, Galveston, TX 77555-0435, USA
| | - Jean A Niles
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA
| | - Stephanie P Vega
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA
| | - Lissenya B Argueta
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA
| | - Adriene Eastaway
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, School of Medicine, Galveston, TX 77555-0435, USA
| | - Joaquin Cortiella
- University of Texas Medical Branch, Department of Anesthesiology, Galveston, TX 77555-0435, USA
| |
Collapse
|
40
|
Molinski SV, Gonska T, Huan LJ, Baskin B, Janahi IA, Ray PN, Bear CE. Genetic, cell biological, and clinical interrogation of the CFTR mutation c.3700 A>G (p.Ile1234Val) informs strategies for future medical intervention. Genet Med 2014; 16:625-32. [PMID: 24556927 DOI: 10.1038/gim.2014.4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/06/2014] [Indexed: 01/12/2023] Open
Abstract
PURPOSE The purpose of this study was to determine the molecular consequences of the variant c.3700 A>G in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, a variant that has been predicted to cause a missense mutation in the CFTR protein (p.Ile1234Val). METHODS Clinical assays of CFTR function were performed, and genomic DNA from patients homozygous for c.3700 A>G and their family members was sequenced. Total RNA was extracted from epithelial cells of the patients, transcribed into complementary DNA, and sequenced. CFTR complementary DNA clones containing the missense mutation p.Ile1234Val or a truncated exon 19 (p.Ile1234_Arg1239del) were constructed and heterologously expressed to test CFTR protein synthesis and processing. RESULTS In vivo functional measurements revealed that the individuals homozygous for the variant c.3700 A>G exhibited defective CFTR function. We show that this mutation in exon 19 activates a cryptic donor splice site 18 bp upstream of the original donor splice site, resulting in deletion of six amino acids (r.3700_3717del; p.Ile1234_Arg1239del). This deletion, similar to p.Phe508del, causes a primary defect in folding and processing. Importantly, Lumacaftor (VX-809), currently in clinical trial for cystic fibrosis patients with the major cystic fibrosis-causing mutation, p.Phe508del, partially ameliorated the processing defect caused by p.Ile1234_Arg1239del. CONCLUSION These studies highlight the need to verify molecular and clinical consequences of CFTR variants to define possible therapeutic strategies.
Collapse
Affiliation(s)
- Steven V Molinski
- 1] Programme in Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada [2] Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tanja Gonska
- 1] Programme in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada [2] Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ling Jun Huan
- Programme in Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Berivan Baskin
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ibrahim A Janahi
- Section of Pediatric Pulmonology, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Peter N Ray
- 1] Programme in Genetics and Genomic Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada [2] Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Christine E Bear
- 1] Programme in Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada [2] Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada [3] Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Lee RJ, Foskett JK. Ca²⁺ signaling and fluid secretion by secretory cells of the airway epithelium. Cell Calcium 2014; 55:325-36. [PMID: 24703093 DOI: 10.1016/j.ceca.2014.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic Ca(2+) is a master regulator of airway physiology; it controls fluid, mucus, and antimicrobial peptide secretion, ciliary beating, and smooth muscle contraction. The focus of this review is on the role of cytoplasmic Ca(2+) in fluid secretion by airway exocrine secretory cells. Airway submucosal gland serous acinar cells are the primary fluid secreting cell type of the cartilaginous conducting airways, and this review summarizes the current state of knowledge of the molecular mechanisms of serous cell ion transport, with an emphasis on their regulation by intracellular Ca(2+). Many neurotransmitters that regulate secretion from serous acinar cells utilize Ca(2+) as a second messenger. Changes in intracellular Ca(2+) concentration regulate the activities of ion transporters and channels involved in transepithelial ion transport and fluid secretion, including Ca(2+)-activated K(+) channels and Cl(-) channels. We also review evidence of interactions of Ca(2+) signaling with other signaling pathways (cAMP, NO) that impinge upon different ion transport pathways, including the cAMP/PKA-activated cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel. A better understanding of Ca(2+) signaling and its targets in airway fluid secretion may identify novel strategies to intervene in airway diseases, for example to enhance fluid secretion in CF airways.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
42
|
Leung L, Kang J, Rayyan E, Bhakta A, Barrett B, Larsen D, Jelinek R, Willey J, Cochran S, Broderick TL, Al-Nakkash L. Decreased basal chloride secretion and altered cystic fibrosis transmembrane conductance regulatory protein, Villin, GLUT5 protein expression in jejunum from leptin-deficient mice. Diabetes Metab Syndr Obes 2014; 7:321-30. [PMID: 25092993 PMCID: PMC4112754 DOI: 10.2147/dmso.s63714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Patients with diabetes and obesity are at increased risk of developing disturbances in intestinal function. In this study, we characterized jejunal function in the clinically relevant leptin-deficient ob/ob mouse, a model of diabetes and obesity. We measured transepithelial short circuit current (Isc), across freshly isolated segments of jejunum from 12-week-old ob/ob and lean C57BL/6J (female and male) mice. The basal Isc was significantly decreased (~30%) in the ob/ob mice (66.5±5.7 μA/cm(2) [n=20]) (P< 0.05) compared with their lean counterparts (95.1±9.1 μA/cm(2) [n=19]). Inhibition with clotrimazole (100 μM, applied bilaterally) was significantly reduced in the ob/ob mice (-7.92%±3.67% [n=15]) (P<0.05) compared with the lean mice (10.44%±7.92% [n=15]), indicating a decreased contribution of Ca(2+)-activated K(+) (KCa) channels in the ob/ob mice. Inhibition with ouabain (100 μM, applied serosally) was significantly reduced in the ob/ob mice (1.40%±3.61%, n=13) (P< 0.05) versus the lean mice (18.93%±3.76% [n=18]), suggesting a potential defect in the Na(+)/K(+)-adenosine triphosphate (ATP)ase pump with leptin-deficiency. Expression of cystic fibrosis transmembrane conductance regulatory protein (CFTR) (normalized to glyceraldehyde-3-phosphate dehydrogenase [GAPDH]) was significantly decreased ~twofold (P<0.05) in the ob/ob mice compared with the leans, whilst crypt depth was unchanged. Villi length was significantly increased by ~25% (P<0.05) in the ob/ob mice compared with the leans and was associated with an increase in Villin and GLUT5 expression. GLUT2 and SGLT-1 expression were both unchanged. Our data suggests that reduced basal jejunal Isc in ob/ob mice is likely a consequence of reduced CFTR expression and decreased activity of the basolateral KCa channel and Na(+)/K(+)-ATPase. Understanding intestinal dysfunctions in ob/ob jejunum may allow for the development of novel drug targets to treat obesity and diabetes.
Collapse
Affiliation(s)
- Lana Leung
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Jonathan Kang
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Esa Rayyan
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Ashesh Bhakta
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Brennan Barrett
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - David Larsen
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Ryan Jelinek
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Justin Willey
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Scott Cochran
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Tom L Broderick
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Layla Al-Nakkash
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
- Correspondence: Layla Al-Nakkash, Department of Physiology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ, 85308, USA, Tel +1 623 572 3719, Fax +1 623 572 3673, Email
| |
Collapse
|
43
|
Sweeney WE, Avner ED. Pathophysiology of childhood polycystic kidney diseases: new insights into disease-specific therapy. Pediatr Res 2014; 75:148-57. [PMID: 24336431 PMCID: PMC3953890 DOI: 10.1038/pr.2013.191] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/11/2013] [Indexed: 12/22/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are significant causes of morbidity and mortality in children and young adults. ADPKD, with an incidence of 1:400 to 1:1,000, affects more than 13 million individuals worldwide and is a major cause of end-stage renal disease in adults. However, symptomatic disease is increasingly recognized in children. ARPKD is a dual-organ hepatorenal disease with an incidence of 1:20,000 to 1:40,000 and a heterozygote carrier rate of 1 in 70. Currently, no clinically significant disease-specific therapy exists for ADPKD or ARPKD. The genetic basis of both ADPKD and ARPKD have been identified, and delineation of the basic molecular and cellular pathophysiology has led to the discovery that abnormal ADPKD and ARPKD gene products interact to create "polycystin complexes" located at multiple sites within affected cells. The extracellular matrix and vessels produce a variety of soluble factors that affect the biology of adjacent cells in many dynamic ways. This review will focus on the molecular and cellular bases of the abnormal cystic phenotype and discuss the clinical translation of such basic data into new therapies that promise to alter the natural history of disease for children with genetic PKDs.
Collapse
Affiliation(s)
- William E. Sweeney
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin and Children’s Hospital Health System of Wisconsin, Milwaukee, WI
| | - Ellis D. Avner
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin and Children’s Hospital Health System of Wisconsin, Milwaukee, WI,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
44
|
Griffin MA, Restrepo MS, Abu-El-Haija M, Wallen T, Buchanan E, Rokhlina T, Chen YH, McCray PB, Davidson BL, Divekar A, Uc A. A novel gene delivery method transduces porcine pancreatic duct epithelial cells. Gene Ther 2013; 21:123-30. [PMID: 24257348 PMCID: PMC3946305 DOI: 10.1038/gt.2013.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/17/2013] [Accepted: 09/27/2013] [Indexed: 01/02/2023]
Abstract
Gene therapy offers the possibility to treat pancreatic disease in Cystic Fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene; however gene transfer to the pancreas is untested in humans. The pancreatic disease phenotype is very similar between humans and pigs with CF, thus CF pigs create an excellent opportunity to study gene transfer to the pancreas. There are no studies showing efficient transduction of pig pancreas with gene transfer vectors. Our objective is to develop a safe and efficient method to transduce wild-type (WT) porcine pancreatic ducts that express CFTR. We catheterized the umbilical artery of WT newborn pigs and delivered an adeno-associated virus serotype 9 vector expressing green fluorescent protein (AAV9CMV.sceGFP) or vehicle to the celiac artery, the vessel that supplies major branches to the pancreas. This technique resulted in stable and dose-dependent transduction of pancreatic duct epithelial cells that expressed CFTR. Intravenous injection of AAV9CMV.sceGFP did not transduce the pancreas. Our technique offers an opportunity to deliver the CFTR gene to the pancreas of CF pigs. The celiac artery can be accessed via umbilical artery in newborns and via femoral artery at older ages; delivery approaches which can be translated to humans.
Collapse
Affiliation(s)
- M A Griffin
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - M S Restrepo
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - M Abu-El-Haija
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - T Wallen
- Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - E Buchanan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - T Rokhlina
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Y H Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - P B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - B L Davidson
- 1] Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA [2] Department of Neurology and Physiology & Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A Divekar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A Uc
- 1] Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA [2] Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
45
|
Frizzell RA, Hanrahan JW. Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2013; 2:a009563. [PMID: 22675668 DOI: 10.1101/cshperspect.a009563] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial salt and water secretion serves a variety of functions in different organ systems, such as the airways, intestines, pancreas, and salivary glands. In cystic fibrosis (CF), the volume and/or composition of secreted luminal fluids are compromised owing to mutations in the gene encoding CFTR, the apical membrane anion channel that is responsible for salt secretion in response to cAMP/PKA stimulation. This article examines CFTR and related cellular transport processes that underlie epithelial anion and fluid secretion, their regulation, and how these processes are altered in CF disease to account for organ-specific secretory phenotypes.
Collapse
Affiliation(s)
- Raymond A Frizzell
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
46
|
Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathogens 2013; 2:288-356. [PMID: 25437038 PMCID: PMC4235718 DOI: 10.3390/pathogens2020288] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022] Open
Abstract
The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.
Collapse
Affiliation(s)
- David Lebeaux
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Ashwini Chauhan
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Olaya Rendueles
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
47
|
Bederman I, Perez A, Henderson L, Freedman JA, Poleman J, Guentert D, Ruhrkraut N, Drumm ML. Altered de novo lipogenesis contributes to low adipose stores in cystic fibrosis mice. Am J Physiol Gastrointest Liver Physiol 2012; 303:G507-18. [PMID: 22679004 PMCID: PMC3774510 DOI: 10.1152/ajpgi.00451.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 06/06/2012] [Indexed: 01/31/2023]
Abstract
Cystic fibrosis (CF) mouse models exhibit exocrine pancreatic function, yet they do not develop adipose stores to the levels of non-CF mice. CF mice homozygous for the Cftr mutation (F508del) at 3 wk (postweaning) and 6 wk (young adult) of age had markedly less adipose tissue than non-CF mice. Food intake was markedly lower in 3-wk-old CF mice but normalized by 6 wk of age. Both 3- and 6-wk-old mice had dietary lipid absorption and fecal lipid excretion comparable to non-CF mice. Hepatic de novo lipogenesis (DNL), determined by (2)H incorporation, was reduced in CF mice. At 3 wk, F508del mice had significantly decreased DNL of palmitate and stearate, by 83% and 80%, respectively. By 6 wk, DNL rates in non-CF mice remained unchanged compared with 3-wk-old mice, while DNL rates of F508del mice were still reduced, by 33% and 40%, respectively. Adipose tissue fatty acid (FA) profiles were comparable in CF and non-CF mice, indicating that adipose differences are quantitative, not qualitative. A correspondingly lower content of (2)H-labeled FA was found in CF adipose tissue, consistent with reduced deposition of newly made hepatic triglycerides and/or decreased adipose tissue lipogenesis. Hepatic transcriptome analysis revealed lower mRNA expression from several genes involved in FA biosynthesis, suggesting downregulation of this pathway as a mechanism for the reduced lipogenesis. These novel data provide a model for altered lipid metabolism in CF, independent of malabsorption, and may partly explain the inability of pancreatic enzyme replacement therapy to completely restore normal body mass to CF patients.
Collapse
Affiliation(s)
- Ilya Bederman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
GUSTAFSSON JK, HANSSON GC, SJÖVALL H. Ulcerative colitis patients in remission have an altered secretory capacity in the proximal colon despite macroscopically normal mucosa. Neurogastroenterol Motil 2012; 24:e381-91. [PMID: 22726848 PMCID: PMC4871264 DOI: 10.1111/j.1365-2982.2012.01958.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND One of the hallmarks of acute colitis is loss of epithelial transport. For unknown reasons, many patients still suffer from GI symptoms during remission, indicating a sustained imbalance between absorption and secretion. We hypothesize that the colonic epithelium becomes more reactive to secretagogues to compensate for a failing barrier. METHODS Biopsies from ascending colon and sigmoid colon of UC patients in remission and controls were mounted in Ussing chambers. Membrane current (Im) and epithelial capacitance (Cp) were used as markers for anion secretion and mucus exocytosis. Carbachol (1 mmol L(-1) ) and forskolin (10 μmol L(-1) ) were used to study Ca(2+) and cAMP-mediated secretion. KEY RESULTS Baseline values showed segmental patterns with higher Im in ascending colon and higher Cp in sigmoid colon of both UC patients and controls, but the patterns did not differ between the groups. The Im response to forskolin was increased (+35%) in the ascending colon of UC patients and the Im response to carbachol was decreased (-40%) in the same segment. No group differences were seen in the distal colon for either the forskolin or carbachol-induced Im responses. The Cp response to carbachol was instead up-regulated in the distal colon of UC patients, but remained unaffected in the proximal colon. CONCLUSIONS & INFERENCES The proximal colonic mucosa of UC patients in remission seems to shift its reactivity to secretagogues, becoming more sensitive to cAMP-dependent secretion and less sensitive to Ca(2+) -dependent secretion. This phenomenon may contribute to residual diarrhea in this patient group, despite resolution of inflammation.
Collapse
Affiliation(s)
- J. K. GUSTAFSSON
- Department of Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - G. C. HANSSON
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - H. SJÖVALL
- Department of Internal Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, Sicilian L, Izvolsky K, Musunuru K, Cowan C, Rajagopal J. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 2012; 10:385-97. [PMID: 22482504 DOI: 10.1016/j.stem.2012.01.018] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/15/2011] [Accepted: 01/19/2012] [Indexed: 12/15/2022]
Abstract
Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice.
Collapse
Affiliation(s)
- Hongmei Mou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Iwashita H, Fujimoto K, Morita S, Nakanishi A, Kubo K. Increased human Ca²⁺-activated Cl⁻ channel 1 expression and mucus overproduction in airway epithelia of smokers and chronic obstructive pulmonary disease patients. Respir Res 2012; 13:55. [PMID: 22731784 PMCID: PMC3489697 DOI: 10.1186/1465-9921-13-55] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/18/2012] [Indexed: 11/21/2022] Open
Abstract
Background The mechanisms underlying the association between smoking and mucus overproduction remain unknown. Because of its involvement in other airway diseases, such as asthma, we hypothesized that Ca2+-activated Cl- channel 1 (CLCA1) was associated with overproduction of mucus in the airways of smokers and COPD patients. Methods Using real-time quantitative PCR analyses, we compared the CLCA1 mRNA expression levels in induced-sputum cells from COPD patients (n = 20), smokers without COPD (n = 5), and non-smokers (n =13). We also examined the relationship between CLCA1 protein expression and mucus production in lung airway epithelia of COPD patients (n = 6), smokers without COPD (n = 7), and non-smokers (n = 7). Results CLCA1 mRNA expression was significantly up-regulated in the induced-sputum cells of COPD patients compared with cells of non-smokers (p = 0.02), but there was no significant difference compared with cells of smokers without COPD. Using immunostaining with an anti-CLCA1 antibody, semi-quantitative image analyses of airway epithelium demonstrated significantly increased CLCA1 expression in smokers without COPD (p = 0.02) and in COPD patients (p = 0.002) compared with non-smokers. There were significant negative correlations between CLCA1 protein expression and FEV1/FVC (r = −0.57, p = 0.01) and %predicted FEV1 (r = −0.56, p = 0.01). PAS staining for mucus showed that there was a significant positive correlation between CLCA1 protein expression and mucus production (r = 0.67, p = 0.001). These markers were significantly increased in smokers without COPD (p = 0.04) and in COPD patients (p = 0.003) compared with non-smokers (non-smokers < smokers ≤ COPD). Conclusions CLCA1 expression is significantly related to mucus production in the airway epithelia of smokers and COPD patients, and may contribute to the development and pathogenesis of COPD by inducing mucus production.
Collapse
Affiliation(s)
- Hiroki Iwashita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | | | | | | | | |
Collapse
|