1
|
Guo K, Zhou J. Insights into eukaryotic translation initiation factor 5A: Its role and mechanisms in protein synthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119849. [PMID: 39303786 DOI: 10.1016/j.bbamcr.2024.119849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The protein synthesis within eukaryotic cells is a complex process involving various translation factors. Among these factors, eukaryotic translation initiation factor 5 A (eIF5A) emerges as a crucial translation factor with high evolutionary conservation. eIF5A is unique as it is the only protein in eukaryotic cells containing the hypusine modification. Initially presumed to be a translation initiation factor, eIF5A was subsequently discovered to act mainly during the translation elongation phase. Notably, eIF5A facilitates the translation of peptide sequences containing polyproline stretches and exerts a universal regulatory effect on the elongation and termination phases of protein synthesis. Additionally, eIF5A indirectly affects various physiological processes within the cell by modulating the translation of specific proteins. This review provides a comprehensive overview of the structure, physiological functions, various post-translational modifications of eIF5A, and its association with various human diseases. The comparison between eIF5A and its bacterial homolog, EF-P, extends the discussion to the evolutionary conservation of eIF5A. This highlights its significance across different domains of life.
Collapse
Affiliation(s)
- Keying Guo
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|
3
|
Rezaeeyan H, Arabfard M, Rasouli HR, Shahriary A, Gh BFNM. Evaluation of common protein biomarkers involved in the pathogenesis of respiratory diseases with proteomic methods: A systematic review. Immun Inflamm Dis 2023; 11:e1090. [PMID: 38018577 PMCID: PMC10659759 DOI: 10.1002/iid3.1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023] Open
Abstract
AIM Respiratory disease (RD) is one of the most common diseases characterized by lung dysfunction. Many diagnostic mechanisms have been used to identify the pathogenic agents of responsible for RD. Among these, proteomics emerges as a valuable diagnostic method for pinpointing the specific proteins involved in RD pathogenesis. Therefore, in this study, for the first time, we examined the protein markers involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, bronchiolitis obliterans (BO), and chemical warfare victims exposed to mustard gas, using the proteomics method as a systematic study. MATERIALS AND METHODS A systematic search was performed up to September 2023 on several databases, including PubMed, Scopus, ISI Web of Science, and Cochrane. In total, selected 4246 articles were for evaluation according to the criteria. Finally, 119 studies were selected for this systematic review. RESULTS A total of 13,806 proteins were identified, 6471 in COPD, 1603 in Asthma, 5638 in IPF, three in BO, and 91 in mustard gas exposed victims. Alterations in the expression of these proteins were observed in the respective diseases. After evaluation, the results showed that 31 proteins were found to be shared among all five diseases. CONCLUSION Although these 31 proteins regulate different factors and molecular pathways in all five diseases, they ultimately lead to the regulation of inflammatory pathways. In other words, the expression of some proteins in COPD and mustard-exposed patients increases inflammatory reactions, while in IPF, they cause lung fibrosis. Asthma, causes allergic reactions due to T-cell differentiation toward Th2.
Collapse
Affiliation(s)
- Hadi Rezaeeyan
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion MedicineIranian Blood Transfusion Organization (IBTO)TehranIran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Hamid R. Rasouli
- Trauma Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - B. Fatemeh Nobakht M. Gh
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Cruz-Pulido YE, Mounce BC. Good cop, bad cop: Polyamines play both sides in host immunity and viral replication. Semin Cell Dev Biol 2023; 146:70-79. [PMID: 36604249 PMCID: PMC10101871 DOI: 10.1016/j.semcdb.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
Viruses rely on host cells for energy and synthesis machinery required for genome replication and particle assembly. Due to the dependence of viruses on host cells, viruses have evolved multiple mechanisms by which they can induce metabolic changes in the host cell to suit their specific requirements. The host immune response also involves metabolic changes to be able to react to viral insult. Polyamines are small ubiquitously expressed polycations, and their metabolism is critical for viral replication and an adequate host immune response. This is due to the variety of functions that polyamines have, ranging from condensing DNA to enhancing the translation of polyproline-containing proteins through the hypusination of eIF5A. Here, we review the diverse mechanisms by which viruses exploit polyamines, as well as the mechanisms by which immune cells utilize polyamines for their functions. Furthermore, we highlight potential avenues for further study of the host-virus interface.
Collapse
Affiliation(s)
- Yazmin E Cruz-Pulido
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Infectious Disease and Immunology Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
5
|
Mudryi V, Peske F, Rodnina M. Translation Factor Accelerating Peptide Bond Formation on the Ribosome: EF-P and eIF5A as Entropic Catalysts and a Potential Drug Targets. BBA ADVANCES 2023; 3:100074. [PMID: 37082265 PMCID: PMC10074943 DOI: 10.1016/j.bbadva.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Elongation factor P (EF-P) and its eukaryotic homolog eIF5A are auxiliary translation factors that facilitate peptide bond formation when several sequential proline (Pro) residues are incorporated into the nascent chain. EF-P and eIF5A bind to the exit (E) site of the ribosome and contribute to favorable entropy of the reaction by stabilizing tRNA binding in the peptidyl transferase center of the ribosome. In most organisms, EF-P and eIF5A carry a posttranslational modification that is crucial for catalysis. The chemical nature of the modification varies between different groups of bacteria and between pro- and eukaryotes, making the EF-P-modification enzymes promising targets for antibiotic development. In this review, we summarize our knowledge of the structure and function of EF-P and eIF5A, describe their modification enzymes, and present an approach for potential drug screening aimed at EarP, an enzyme that is essential for EF-P modification in several pathogenic bacteria.
Collapse
|
6
|
Seoane R, Llamas-González YY, Vidal S, El Motiam A, Bouzaher YH, Fonseca D, Farrás R, García-Sastre A, González-Santamaría J, Rivas C. eIF5A is activated by virus infection or dsRNA and facilitates virus replication through modulation of interferon production. Front Cell Infect Microbiol 2022; 12:960138. [PMID: 35967877 PMCID: PMC9363599 DOI: 10.3389/fcimb.2022.960138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Active hypusine-modified initiation elongation factor 5A is critical for cell proliferation and differentiation, embryonic development, and innate immune response of macrophages to bacterial infection. Here, we demonstrate that both virus infection and double-stranded RNA viral mimic stimulation induce the hypusination of eIF5A. Furthermore, we show that activation of eIF5A is essential for the replication of several RNA viruses including influenza A virus, vesicular stomatitis virus, chikungunya virus, mayaro virus, una virus, zika virus, and punta toro virus. Finally, our data reveal that inhibition of eIF5A hypusination using the spermidine analog GC7 or siRNA-mediated downmodulation of eIF5A1 induce upregulation of endoplasmic reticulum stress marker proteins and trigger the transcriptional induction of interferon and interferon-stimulated genes, mechanisms that may explain the broad-spectrum antiviral activity of eIF5A inhibition.
Collapse
Affiliation(s)
- Rocío Seoane
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - Yessica Y. Llamas-González
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá, Panama
- Programa de Doctorado en Ciencias Biológicas, Universidad de la República, Montevideo, Uruguay
| | - Santiago Vidal
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - Yanis Hichem Bouzaher
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - Danae Fonseca
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rosa Farrás
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - José González-Santamaría
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá, Panama
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
- Cellular and Molecular Biology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- *Correspondence: Carmen Rivas,
| |
Collapse
|
7
|
Zhou GF, Chen CX, Cai QC, Yan X, Peng NN, Li XC, Cui JH, Han YF, Zhang Q, Meng JH, Tang HM, Cai CH, Long J, Luo KJ. Bracovirus Sneaks Into Apoptotic Bodies Transmitting Immunosuppressive Signaling Driven by Integration-Mediated eIF5A Hypusination. Front Immunol 2022; 13:901593. [PMID: 35664011 PMCID: PMC9156803 DOI: 10.3389/fimmu.2022.901593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
A typical characteristics of polydnavirus (PDV) infection is a persistent immunosuppression, governed by the viral integration and expression of virulence genes. Recently, activation of caspase-3 by Microplitis bicoloratus bracovirus (MbBV) to cleave Innexins, gap junction proteins, has been highlighted, further promoting apoptotic cell disassembly and apoptotic body (AB) formation. However, whether ABs play a role in immune suppression remains to be determined. Herein, we show that ABs transmitted immunosuppressive signaling, causing recipient cells to undergo apoptosis and dismigration. Furthermore, the insertion of viral–host integrated motif sites damaged the host genome, stimulating eIF5A nucleocytoplasmic transport and activating the eIF5A-hypusination translation pathway. This pathway specifically translates apoptosis-related host proteins, such as P53, CypA, CypD, and CypJ, to drive cellular apoptosis owing to broken dsDNA. Furthermore, translated viral proteins, such Vank86, 92, and 101, known to complex with transcription factor Dip3, positively regulated DHYS and DOHH transcription maintaining the activation of the eIF5A-hypusination. Mechanistically, MbBV-mediated extracellular vesicles contained inserted viral fragments that re-integrated into recipients, potentially via the homologous recombinant repair system. Meanwhile, this stimulation regulated activated caspase-3 levels via PI3K/AKT 308 and 473 dephosphorylation to promote apoptosis of granulocyte-like recipients Sf9 cell; maintaining PI3K/AKT 473 phosphorylation and 308 dephosphorylation inhibited caspase-3 activation leading to dismigration of plasmatocyte-like recipient High Five cells. Together, our results suggest that integration-mediated eIF5A hypusination drives extracellular vesicles for continuous immunosuppression.
Collapse
Affiliation(s)
- Gui-Fang Zhou
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xiang Yan
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Nan-Nan Peng
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xing-Cheng Li
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Ji-Hui Cui
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Yun-Feng Han
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qi Zhang
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Hong-Mei Tang
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chen-Hui Cai
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jin Long
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Farache D, Liu L, Lee ASY. Eukaryotic Initiation Factor 5A2 Regulates Expression of Antiviral Genes. J Mol Biol 2022; 434:167564. [PMID: 35358571 PMCID: PMC11906106 DOI: 10.1016/j.jmb.2022.167564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022]
Abstract
Translation factors are essential for regulation of protein synthesis. The eukaryotic translation initiation factor 5A (eIF5A) family is made up of two paralogues - eIF5A1 and eIF5A2 - which display high sequence homology but distinct tissue tropism. While eIF5A1 directly binds to the ribosome and regulates translation initiation, elongation, and termination, the molecular function of eIF5A2 remains poorly understood. Here, we engineer an eIF5A2 knockout allele in the SW480 colon cancer cell line. Using ribosome profiling and RNA-Sequencing, we reveal that eIF5A2 is functionally distinct from eIF5A1 and does not regulate transcript-specific or global protein synthesis. Instead, eIF5A2 knockout leads to decreased intrinsic antiviral gene expression, including members of the IFITM and APOBEC3 family. Furthermore, cells lacking eIF5A2 display increased permissiveness to virus infection. Our results uncover eIF5A2 as a factor involved regulating the antiviral transcriptome, and reveal an example of how gene duplications of translation factors can result in proteins with distinct functions.
Collapse
Affiliation(s)
- Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Luochen Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Amy S Y Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Li H, Wan B, Jiang D, Ji P, Zhao M, Li X, Li R, Qiao S. Proteomic Investigation Reveals Eukaryotic Translation Initiation Factor 5A Involvement in Porcine Reproductive and Respiratory Syndrome Virus Infection in vitro. Front Vet Sci 2022; 9:861137. [PMID: 35498732 PMCID: PMC9043857 DOI: 10.3389/fvets.2022.861137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 12/05/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), one of the most serious animal pathogens in the world, has caused enormous global swine industry losses. An in-depth investigation of the PRRSV-host interaction would be beneficial for preventing and controlling PRRSV infections and transmission. In this study, we performed label-free quantitative proteomic assays to investigate proteome dynamics of porcine alveolar macrophages (PAMs) during infection with highly pathogenic PRRSV (HP-PRRSV) strain HN07-1. Analysis of the results led to identification of 269 significantly differentially expressed host cellular proteins, of which levels of proteins belonging to the eukaryotic translation initiation factor (eIF) family were found to be decreased in abundance in HP-PRRSV-infected PAMs. Furthermore, knockdown of eIF5A expression was demonstrated to markedly suppress HP-PRRSV propagation, as reflected by reduced progeny virus titers in vitro. These results highlight the importance of eIF5A in PRRSV infection, while also demonstrating that PAMs down-regulate eIF5A expression as a host cell antiviral strategy. Results of the current study deepen our understanding of PRRSV pathogenesis and provide novel insights to guide development of effective strategies to combat the virus.
Collapse
Affiliation(s)
- Huawei Li
- Henan Key Laboratory of Innovation and Utilization of Unconventional Feed Resources, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dawei Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pengchao Ji
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xinfeng Li
- Henan Key Laboratory of Innovation and Utilization of Unconventional Feed Resources, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Rui Li
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Songlin Qiao
| |
Collapse
|
10
|
Xie H, Ai Q, Tong T, Liao M, Fan H. PEDV infection affects the expression of polyamine-related genes inhibiting viral proliferation. Virus Res 2022; 312:198708. [PMID: 35151773 PMCID: PMC8830936 DOI: 10.1016/j.virusres.2022.198708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/26/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an alpha-coronavirus that causes epidemic diarrhea in swines. The mortality of PEDV infection in one-week-old piglets is extremely high, which causes a huge significant economic loss to the global pig husbandry and blocks its healthy development. There was a lack of adequate studies to elucidate pathogenic mechanism associated with PEDV infection. In the present study, we detected the expression profiles of polyamine metabolism associated genes in Vero cells infected with PEDV by RT-qPCR. It is shown that PAOX(acetylpolyamine oxidase), SMOX(spermine oxidase), SAT1(spermidine-spermine acetyltransferase 1), ODC1(ornithine decarboxylase 1), DHPS(deoxyhypusine synthase) and EIF5A( eukaryotic initiation factor 5A) were significantly upregulated. Through intervening SAT1 level in PEDV-infected Vero cells, it is identified that overexpression of SAT1 inhibited PEDV replication by reducing polyamine levels. Furthermore, polyamine depletion and upregulation were found to regulate the proliferation of PEDV. PEDV infection in Vero cells did not result in a significant change in the protein level of eIF5A, and in addition, the activated eIF5A did not affect the proliferation of PEDV. Our results provided new insights into the influence of polyamine metabolism on the proliferation of PEDV.
Collapse
Affiliation(s)
- Hangao Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Qiangyun Ai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | | | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China.
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China.
| |
Collapse
|
11
|
Tauc M, Cougnon M, Carcy R, Melis N, Hauet T, Pellerin L, Blondeau N, Pisani DF. The eukaryotic initiation factor 5A (eIF5A1), the molecule, mechanisms and recent insights into the pathophysiological roles. Cell Biosci 2021; 11:219. [PMID: 34952646 PMCID: PMC8705083 DOI: 10.1186/s13578-021-00733-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Since the demonstration of its involvement in cell proliferation, the eukaryotic initiation factor 5A (eIF5A) has been studied principally in relation to the development and progression of cancers in which the isoform A2 is mainly expressed. However, an increasing number of studies report that the isoform A1, which is ubiquitously expressed in normal cells, exhibits novel molecular features that reveal its new relationships between cellular functions and organ homeostasis. At a first glance, eIF5A can be regarded, among other things, as a factor implicated in the initiation of translation. Nevertheless, at least three specificities: (1) its extreme conservation between species, including plants, throughout evolution, (2) its very special and unique post-translational modification through the activating-hypusination process, and finally (3) its close relationship with the polyamine pathway, suggest that the role of eIF5A in living beings remains to be uncovered. In fact, and beyond its involvement in facilitating the translation of proteins containing polyproline residues, eIF5A is implicated in various physiological processes including ischemic tolerance, metabolic adaptation, aging, development, and immune cell differentiation. These newly discovered physiological properties open up huge opportunities in the clinic for pathologies such as, for example, the ones in which the oxygen supply is disrupted. In this latter case, organ transplantation, myocardial infarction or stroke are concerned, and the current literature defines eIF5A as a new drug target with a high level of potential benefit for patients with these diseases or injuries. Moreover, the recent use of genomic and transcriptomic association along with metadata studies also revealed the implication of eIF5A in genetic diseases. Thus, this review provides an overview of eIF5A from its molecular mechanism of action to its physiological roles and the clinical possibilities that have been recently reported in the literature.
Collapse
Affiliation(s)
- Michel Tauc
- LP2M, CNRS, Université Côte d'Azur, Nice, France. .,Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France. .,Laboratoire de Physiomédecine Moléculaire, UMR7370, Faculté de Médecine, CNRS, Université Côte d'Azur, 28 Avenue de Valombrose, 06107, Nice Cedex, France.
| | - Marc Cougnon
- LP2M, CNRS, Université Côte d'Azur, Nice, France.,Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Romain Carcy
- Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, CHU Nice, Hôpital Pasteur 2, Nice, France
| | - Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Thierry Hauet
- INSERM, IRTOMIT, CHU de Poitiers, Université de Poitiers, La Milétrie, Poitiers, France
| | - Luc Pellerin
- INSERM, IRTOMIT, CHU de Poitiers, Université de Poitiers, La Milétrie, Poitiers, France
| | - Nicolas Blondeau
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France.,IPMC, CNRS, Université Côte d'Azur, Valbonne, France
| | - Didier F Pisani
- LP2M, CNRS, Université Côte d'Azur, Nice, France.,Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
12
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
13
|
Pereira KD, Tamborlin L, de Lima TI, Consonni SR, Silveira LR, Luchessi AD. Alternative human eIF5A protein isoform plays a critical role in mitochondria. J Cell Biochem 2021; 122:549-561. [PMID: 33459432 DOI: 10.1002/jcb.29884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is the only known protein containing the amino acid residue hypusine, essential for its activity. Hypusine residue is produced by a posttranslational modification involving deoxyhypusine synthetase and deoxyhypusine hydroxylase. Herein, we aimed to describe the role of the alternative human isoform A on mitochondrial processes. Isoform A depletion modulates oxidative metabolism in association with the downregulation of mitochondrial biogenesis-related genes. Through positive feedback, it increases cell respiration leading to highly reactive oxygen species production, which impacts mitochondrial bioenergetics. These metabolic changes compromise mitochondrial morphology, increasing its electron density and fission, observed by transmission electron microscopy. This set of changes leads the cells to apoptosis, evidenced by increased DNA fragmentation and proapoptotic BAK protein content increase. Thus, we show that the alternative eIF5A isoform A is crucial for energy metabolism controlled by mitochondria and cellular survival.
Collapse
Affiliation(s)
- Karina D Pereira
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Letícia Tamborlin
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Tanes I de Lima
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Silvio R Consonni
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leonardo R Silveira
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Augusto D Luchessi
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
14
|
D'Agostino M, Motta S, Romagnoli A, Orlando P, Tiano L, La Teana A, Di Marino D. Insights Into the Binding Mechanism of GC7 to Deoxyhypusine Synthase in Sulfolobus solfataricus: A Thermophilic Model for the Design of New Hypusination Inhibitors. Front Chem 2021; 8:609942. [PMID: 33392152 PMCID: PMC7773846 DOI: 10.3389/fchem.2020.609942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Translation factor 5A (eIF5A) is one of the most conserved proteins involved in protein synthesis. It plays a key role during the elongation of polypeptide chains, and its activity is critically dependent on hypusination, a post-translational modification of a specific lysine residue through two consecutive enzymatic steps carried out by deoxyhypusine synthase (DHS), with spermidine as substrate, and deoxyhypusine hydroxylase (DOHH). It is well-established that eIF5A is overexpressed in several cancer types, and it is involved in various diseases such as HIV-1 infection, malaria, and diabetes; therefore, the development of inhibitors targeting both steps of the hypusination process is considered a promising and challenging therapeutic strategy. One of the most efficient inhibitors of the hypusination process is the spermidine analog N1-guanyl-1,7-diaminoheptane (GC7). GC7 interacts in a specific binding pocket of the DHS completely blocking its activity; however, its therapeutic use is limited by poor selectivity and restricted bioavailability. Here we have performed a comparative study between human DHS (hDHS) and archaeal DHS from crenarchaeon Sulfolobus solfataricus (aDHS) to understand the structural and dynamical features of the GC7 inhibition. The advanced metadynamics (MetaD) classical molecular dynamics simulations show that the GC7 interaction is less stable in the thermophilic enzyme compared to hDHS that could underlie a lower inhibitory capacity of the hypusination process in Sulfolobus solfataricus. To confirm this hypothesis, we have tested GC7 activity on S. solfataricus by measuring cellular growth, and results have shown the lack of inhibition of aIF5A hypusination in contrast to the established effect on eukaryotic cellular growth. These results provide, for the first time, detailed molecular insights into the binding mechanism of GC7 to aDHS generating the basis for the design of new and more specific DHS inhibitors.
Collapse
Affiliation(s)
- Mattia D'Agostino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.,New York-Marche Structural Biology Center (Ny-Masbic), Polytechnic University of Marche, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Anna La Teana
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.,New York-Marche Structural Biology Center (Ny-Masbic), Polytechnic University of Marche, Ancona, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.,New York-Marche Structural Biology Center (Ny-Masbic), Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
15
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) proteome is expressed from alternatively spliced and unspliced genomic RNAs. However, HIV-1 RNAs that are not fully spliced are perceived by the host machinery as defective and are retained in the nucleus. During late infection, HIV-1 bypasses this regulatory mechanism by expression of the Rev protein from a fully spliced mRNA. Once imported into the nucleus, Rev mediates the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the production of the viral progeny. While regarded as a canonical RNA export factor, Rev has also been linked to HIV-1 RNA translation, stabilization, splicing and packaging. However, Rev's functions beyond RNA export have remained poorly understood. Here, we revisit this paradigmatic protein, reviewing recent data investigating its structure and function. We conclude by asking: what remains unknown about this enigmatic viral protein?
Collapse
Affiliation(s)
| | - Aino Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
16
|
Huang M, Zhang W, Chen H, Zeng J. Targeting Polyamine Metabolism for Control of Human Viral Diseases. Infect Drug Resist 2020; 13:4335-4346. [PMID: 33293837 PMCID: PMC7718961 DOI: 10.2147/idr.s262024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
A virus is an infectious particle which generally contains nucleic acid genome (DNA or RNA inside a protein shell), except for human immunodeficiency virus (HIV). Viruses have to reproduce by infecting their host cells. Polyamines are ubiquitous compounds in mammalian cells and play key roles in various cellular processes. The metabolic pathways of polyamines have been well studied. Targeting these metabolic pathways can reduce infections caused by viruses. In the study, we systematically reviewed the association of polyamine metabolic pathways and viruses including coxsackievirus B3 (CVB3), enterovirus 71 (EV71), poliovirus (PV), Zika virus (ZKV), hepatitis C virus (HCV), hepatitis B virus (HBV), dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), Ebola virus (EBOV), marburgvirus (MARV), chikungunya virus (CHIKV), sindbis virus (SINV), Semliki Forest virus (SFV), Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV), human cytomegalovirus (HCMV), vesicular stomatitis virus (VSV), Rabies virus (RABV), Rift Valley fever virus (RVFV), La Crosse virus (LACV), human immunodeficiency virus (HIV), Middle East respiratory syndrome virus (MERS-CoV), and coronavirus disease 2019 (SARS-CoV-2). This review revealed that targeting polyamine metabolic pathways may be a potential approach to control human viral infection.
Collapse
Affiliation(s)
- Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan523808, People’s Republic of China
| | - Weijian Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan523808, People’s Republic of China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong524023, People’s Republic of China
| |
Collapse
|
17
|
Balukoff NC, Ho JJD, Theodoridis PR, Wang M, Bokros M, Llanio LM, Krieger JR, Schatz JH, Lee S. A translational program that suppresses metabolism to shield the genome. Nat Commun 2020; 11:5755. [PMID: 33188200 PMCID: PMC7666154 DOI: 10.1038/s41467-020-19602-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Translatome reprogramming is a primary determinant of protein levels during stimuli adaptation. This raises the question: what are the translatome remodelers that reprogram protein output to activate biochemical adaptations. Here, we identify a translational pathway that represses metabolism to safeguard genome integrity. A system-wide MATRIX survey identified the ancient eIF5A as a pH-regulated translation factor that responds to fermentation-induced acidosis. TMT-pulse-SILAC analysis identified several pH-dependent proteins, including the mTORC1 suppressor Tsc2 and the longevity regulator Sirt1. Sirt1 operates as a pH-sensor that deacetylates nuclear eIF5A during anaerobiosis, enabling the cytoplasmic export of eIF5A/Tsc2 mRNA complexes for translational engagement. Tsc2 induction inhibits mTORC1 to suppress cellular metabolism and prevent acidosis-induced DNA damage. Depletion of eIF5A or Tsc2 leads to metabolic re-initiation and proliferation, but at the expense of incurring substantial DNA damage. We suggest that eIF5A operates as a translatome remodeler that suppresses metabolism to shield the genome.
Collapse
Affiliation(s)
- Nathan C Balukoff
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - J J David Ho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Phaedra R Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Lis M Llanio
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jonathan R Krieger
- The SickKids Proteomics, Analytics, Robotics & Chemical Biology Centre (SPARC Biocentre), The Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
- Bioinformatics Solutions Inc., Waterloo, ON, N2L 6J2, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
18
|
Gales JP, Kubina J, Geldreich A, Dimitrova M. Strength in Diversity: Nuclear Export of Viral RNAs. Viruses 2020; 12:E1014. [PMID: 32932882 PMCID: PMC7551171 DOI: 10.3390/v12091014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear export of cellular mRNAs is a complex process that requires the orchestrated participation of many proteins that are recruited during the early steps of mRNA synthesis and processing. This strategy allows the cell to guarantee the conformity of the messengers accessing the cytoplasm and the translation machinery. Most transcripts are exported by the exportin dimer Nuclear RNA export factor 1 (NXF1)-NTF2-related export protein 1 (NXT1) and the transcription-export complex 1 (TREX1). Some mRNAs that do not possess all the common messenger characteristics use either variants of the NXF1-NXT1 pathway or CRM1, a different exportin. Viruses whose mRNAs are synthesized in the nucleus (retroviruses, the vast majority of DNA viruses, and influenza viruses) exploit both these cellular export pathways. Viral mRNAs hijack the cellular export machinery via complex secondary structures recognized by cellular export factors and/or viral adapter proteins. This way, the viral transcripts succeed in escaping the host surveillance system and are efficiently exported for translation, allowing the infectious cycle to proceed. This review gives an overview of the cellular mRNA nuclear export mechanisms and presents detailed insights into the most important strategies that viruses use to export the different forms of their RNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Jón Pol Gales
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
- SVQV UMR-A 1131, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| |
Collapse
|
19
|
Mastracci TL, Colvin SC, Padgett LR, Mirmira RG. Hypusinated eIF5A is expressed in the pancreas and spleen of individuals with type 1 and type 2 diabetes. PLoS One 2020; 15:e0230627. [PMID: 32208453 PMCID: PMC7092972 DOI: 10.1371/journal.pone.0230627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/04/2020] [Indexed: 01/19/2023] Open
Abstract
The gene encoding eukaryotic initiation factor 5A (EIF5A) is found in diabetes-susceptibility loci in mouse and human. eIF5A is the only protein known to contain hypusine (hydroxyputrescine lysine), a polyamine-derived amino acid formed post-translationally in a reaction catalyzed by deoxyhypusine synthase (DHPS). Previous studies showed pharmacologic blockade of DHPS in type 1 diabetic NOD mice and type 2 diabetic db/db mice improved glucose tolerance and preserved beta cell mass, which suggests that hypusinated eIF5A (eIF5AHyp) may play a role in diabetes pathogenesis by direct action on the beta cells and/or altering the adaptive or innate immune responses. To translate these findings to human, we examined tissue from individuals with and without type 1 and type 2 diabetes to determine the expression of eIF5AHyp. We detected eIF5AHyp in beta cells, exocrine cells and immune cells; however, there was also unexpected enrichment of eIF5AHyp in pancreatic polypeptide-expressing PP cells. Interestingly, the presence of eIF5AHyp co-expressing PP cells was not enhanced with disease. These data identify new aspects of eIF5A biology and highlight the need to examine human tissue to understand disease.
Collapse
Affiliation(s)
- Teresa L. Mastracci
- Indiana Biosciences Research Institute, Indianapolis, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephanie C. Colvin
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Leah R. Padgett
- Indiana Biosciences Research Institute, Indianapolis, Indiana, United States of America
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
20
|
Meneguello L, Barbosa NM, Pereira KD, Proença ARG, Tamborlin L, Simabuco FM, Iwai LK, Zanelli CF, Valentini SR, Luchessi AD. The polyproline-motif of S6K2: eIF5A translational dependence and importance for protein-protein interactions. J Cell Biochem 2019; 120:6015-6025. [PMID: 30320934 DOI: 10.1002/jcb.27888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
Ribosomal S6 kinase 1 (S6K1) and S6K2 proteins are effectors of the mammalian target of rapamycin complex 1 pathway, which control the process of protein synthesis in eukaryotes. S6K2 is associated with tumor progression and has a conserved C-terminus polyproline rich motif predicted to be important for S6K2 interactions. It is noteworthy that the translation of proteins containing sequential prolines has been proposed to be dependent of eukaryotic translation initiation factor 5A (eIF5A) translation factor. Therefore, we investigated the importance of polyproline-rich region of the S6K2 for its intrinsic phosphorylation activity, protein-protein interaction and eIF5A role in S6K2 translation. In HeLa cell line, replacing S6K2 polyproline by the homologous S6K1-sequence did not affect its kinase activity and the S6K2 endogenous content was maintained after eIF5A gene silencing, even after near complete depletion of eIF5A protein. Moreover, no changes in S6K2 transcript content was observed, ruling out the possibility of compensatory regulation by increasing the mRNA content. However, in the budding yeast model, we observed that S6K2 production was impaired when compared with S6K2∆Pro, after reduction of eIF5A protein content. These results suggest that although the polyproline region of S6K2 is capable of generating ribosomal stalling, the depletion of eIF5A in HeLa cells seems to be insufficient to cause an expressive decrease in the content of endogenous S6K2. Finally, coimmunoprecipitation assays revealed that the replacement of the polyproline motif of S6K2 alters its interactome and impairs its interaction with RPS6, a key modulator of ribosome activity. These results evidence the importance of S6K2 polyproline motif in the context of S6Ks function.
Collapse
Affiliation(s)
- Leticia Meneguello
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
- Institute of Biosciences, Department of Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Natália M Barbosa
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Karina D Pereira
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
- Institute of Biosciences, Department of Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - André R G Proença
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Leticia Tamborlin
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
- Institute of Biosciences, Department of Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Fernando M Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Leo K Iwai
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, LETA/ CeTICS, Butantan Institute, Butanta, Brazil
| | - Cleslei F Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Sandro R Valentini
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Augusto D Luchessi
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
- Institute of Biosciences, Department of Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
21
|
Imam S, Prathibha R, Dar P, Almotah K, Al-Khudhair A, Hasan SAM, Salim N, Jilani TN, Mirmira RG, Jaume JC. eIF5A inhibition influences T cell dynamics in the pancreatic microenvironment of the humanized mouse model of Type 1 Diabetes. Sci Rep 2019; 9:1533. [PMID: 30733517 PMCID: PMC6367423 DOI: 10.1038/s41598-018-38341-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
We have developed a transgenic mouse model of Type 1 Diabetes (T1D) in which human GAD65 is expressed in pancreatic β-cells, and human MHC-II is expressed on antigen presenting cells. Induced GAD65 antigen presentation activates T-cells, which initiates the downstream events leading to diabetes. In our humanized mice, we have shown downregulation of eukaryotic translation initiation factor 5 A (elF5A), expressed only in actively dividing mammalian cells. In-vivo inhibition of elF5A hypusination by deoxyhypusine synthase (DHS) inhibitor "GC7" was studied; DHS inhibitor alters the pathophysiology in our mouse model by catalyzing the crucial hypusination and the rate-limiting step of elF5A activation. In our mouse model, we have shown that inhibition of eIF5A resets the pro-inflammatory bias in the pancreatic microenvironment. There was: (a) reduction of Th1/Th17 response, (b) an increase in Treg numbers, (c) debase in IL17 and IL21 cytokines levels in serum, (d) lowering of anti-GAD65 antibodies, and (e) ablation of the ER stress that improved functionality of the β-cells, but minimal effect on the cytotoxic CD8 T-cell (CTL) mediated response. Conclusively, immune modulation, in the case of T1D, may help to manipulate inflammatory responses, decreasing disease severity, and may help manage T1D in early stages of disease. Our study also demonstrates that without manipulating the CTLs mediated response extensively, it is difficult to treat T1D.
Collapse
Affiliation(s)
- Shahnawaz Imam
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| | - R Prathibha
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Pervaiz Dar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shuhama, Srinagar, 190006, Jammu and Kashmir, India
| | - Khalil Almotah
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ahmed Al-Khudhair
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Syed Abdul-Moiz Hasan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Nancy Salim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Talha Naser Jilani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juan Carlos Jaume
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
22
|
Abstract
Polyamines are small, abundant, aliphatic molecules present in all mammalian cells. Within the context of the cell, they play a myriad of roles, from modulating nucleic acid conformation to promoting cellular proliferation and signaling. In addition, polyamines have emerged as important molecules in virus-host interactions. Many viruses have been shown to require polyamines for one or more aspects of their replication cycle, including DNA and RNA polymerization, nucleic acid packaging, and protein synthesis. Understanding the role of polyamines has become easier with the application of small-molecule inhibitors of polyamine synthesis and the use of interferon-induced regulators of polyamines. Here we review the diverse mechanisms in which viruses require polyamines and investigate blocking polyamine synthesis as a potential broad-spectrum antiviral approach.
Collapse
|
23
|
Hoque M, Park JY, Chang YJ, Luchessi AD, Cambiaghi TD, Shamanna R, Hanauske-Abel HM, Holland B, Pe'ery T, Tian B, Mathews MB. Regulation of gene expression by translation factor eIF5A: Hypusine-modified eIF5A enhances nonsense-mediated mRNA decay in human cells. ACTA ACUST UNITED AC 2017; 5:e1366294. [PMID: 29034140 DOI: 10.1080/21690731.2017.1366294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) couples protein synthesis to mRNA turnover. It eliminates defective transcripts and controls the abundance of certain normal mRNAs. Our study establishes a connection between NMD and the translation factor eIF5A (eukaryotic initiation factor 5A) in human cells. eIF5A modulates the synthesis of groups of proteins (the eIF5A regulon), and undergoes a distinctive two-step post-translational modification (hypusination) catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase. We show that expression of NMD-susceptible constructs was increased by depletion of the major eIF5A isoform, eIF5A1. NMD was also attenuated when hypusination was inhibited by RNA interference with either of the two eIF5A modifying enzymes, or by treatment with the drugs ciclopirox or deferiprone which inhibit deoxyhypusine hydroxylase. Transcriptome analysis by RNA-Seq identified human genes whose expression is coordinately regulated by eIF5A1, its modifying enzymes, and the pivotal NMD factor, Upf1. Transcripts encoding components of the translation system were highly represented, including some encoding ribosomal proteins controlled by alternative splicing coupled to NMD (AS-NMD). Our findings extend and strengthen the association of eIF5A with NMD, previously inferred in yeast, and show that hypusination is important for this function of human eIF5A. In addition, they advance drug-mediated NMD suppression as a therapeutic opportunity for nonsense-associated diseases. We propose that regulation of mRNA stability contributes to eIF5A's role in selective gene expression.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ji Yeon Park
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yun-Juan Chang
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.,Office of Advanced Research Computing, Rutgers University, Newark, NJ, USA
| | - Augusto D Luchessi
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Laboratory of Biotechnology, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Tavane D Cambiaghi
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Raghavendra Shamanna
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Hartmut M Hanauske-Abel
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bart Holland
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tsafi Pe'ery
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bin Tian
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Michael B Mathews
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
24
|
Mancone C, Grimaldi A, Refolo G, Abbate I, Rozera G, Benelli D, Fimia GM, Barnaba V, Tripodi M, Piacentini M, Ciccosanti F. Iron overload down-regulates the expression of the HIV-1 Rev cofactor eIF5A in infected T lymphocytes. Proteome Sci 2017; 15:18. [PMID: 28785172 PMCID: PMC5545036 DOI: 10.1186/s12953-017-0126-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Changes in iron metabolism frequently accompany HIV-1 infection. However, while many clinical and in vitro studies report iron overload exacerbates the development of infection, many others have found no correlation. Therefore, the multi-faceted role of iron in HIV-1 infection remains enigmatic. METHODS RT-qPCR targeting the LTR region, gag, Tat and Rev were performed to measure the levels of viral RNAs in response to iron overload. Spike-in SILAC proteomics comparing i) iron-treated, ii) HIV-1-infected and iii) HIV-1-infected/iron treated T lymphocytes was performed to define modifications in the host cell proteome. Data from quantitative proteomics were integrated with the HIV-1 Human Interaction Database for assessing any viral cofactors modulated by iron overload in infected T lymphocytes. RESULTS Here, we demonstrate that the iron overload down-regulates HIV-1 gene expression by decreasing the levels of viral RNAs. In addition, we found that iron overload modulates the expression of many viral cofactors. Among them, the downregulation of the REV cofactor eIF5A may correlate with the iron-induced inhibition of HIV-1 gene expression. Therefore, we demonstrated that eiF5A downregulation by shRNA resulted in a significant decrease of Nef levels, thus hampering HIV-1 replication. CONCLUSIONS Our study indicates that HIV-1 cofactors influenced by iron metabolism represent potential targets for antiretroviral therapy and suggests eIF5A as a selective target for drug development.
Collapse
Affiliation(s)
- Carmine Mancone
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Via Regina Elena 324, 00161 Rome, Italy
| | - Alessio Grimaldi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Via Regina Elena 324, 00161 Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, via Portuense 292, 00149 Rome, Italy
| | - Isabella Abbate
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, via Portuense 292, 00149 Rome, Italy
| | - Gabriella Rozera
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, via Portuense 292, 00149 Rome, Italy
| | - Dario Benelli
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Via Regina Elena 324, 00161 Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, via Portuense 292, 00149 Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Via Regina Elena 324, 00161 Rome, Italy
| | - Marco Tripodi
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Via Regina Elena 324, 00161 Rome, Italy.,Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, via Portuense 292, 00149 Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, via Portuense 292, 00149 Rome, Italy.,Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, via Portuense 292, 00149 Rome, Italy
| |
Collapse
|
25
|
Dlamini Z, Hull R. Can the HIV-1 splicing machinery be targeted for drug discovery? HIV AIDS-RESEARCH AND PALLIATIVE CARE 2017; 9:63-75. [PMID: 28331370 PMCID: PMC5354533 DOI: 10.2147/hiv.s120576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HIV-1 is able to express multiple protein types and isoforms from a single 9 kb mRNA transcript. These proteins are also expressed at particular stages of viral development, and this is achieved through the control of alternative splicing and the export of these transcripts from the nucleus. The nuclear export is controlled by the HIV protein Rev being required to transport incompletely spliced and partially spliced mRNA from the nucleus where they are normally retained. This implies a close relationship between the control of alternate splicing and the nuclear export of mRNA in the control of HIV-1 viral proliferation. This review discusses both the processes. The specificity and regulation of splicing in HIV-1 is controlled by the use of specific splice sites as well as exonic splicing enhancer and exonic splicing silencer sequences. The use of these silencer and enhancer sequences is dependent on the serine arginine family of proteins as well as the heterogeneous nuclear ribonucleoprotein family of proteins that bind to these sequences and increase or decrease splicing. Since alternative splicing is such a critical factor in viral development, it presents itself as a promising drug target. This review aims to discuss the inhibition of splicing, which would stall viral development, as an anti-HIV therapeutic strategy. In this review, the most recent knowledge of splicing in human immunodeficiency viral development and the latest therapeutic strategies targeting human immunodeficiency viral splicing are discussed.
Collapse
Affiliation(s)
- Zodwa Dlamini
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa
| | - Rodney Hull
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa
| |
Collapse
|
26
|
Olsen ME, Connor JH. Hypusination of eIF5A as a Target for Antiviral Therapy. DNA Cell Biol 2017; 36:198-201. [PMID: 28080131 PMCID: PMC5346904 DOI: 10.1089/dna.2016.3611] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 01/14/2023] Open
Affiliation(s)
- Michelle E Olsen
- Department of Microbiology, Boston University , Boston, Massachusetts
| | - John H Connor
- Department of Microbiology, Boston University , Boston, Massachusetts
| |
Collapse
|
27
|
Lyu Z, Whitman WB. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cell Mol Life Sci 2017; 74:183-212. [PMID: 27261368 PMCID: PMC11107668 DOI: 10.1007/s00018-016-2286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/05/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.
Collapse
Affiliation(s)
- Zhe Lyu
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
28
|
Cáceres CJ, Angulo J, Contreras N, Pino K, Vera-Otarola J, López-Lastra M. Targeting deoxyhypusine hydroxylase activity impairs cap-independent translation initiation driven by the 5'untranslated region of the HIV-1, HTLV-1, and MMTV mRNAs. Antiviral Res 2016; 134:192-206. [PMID: 27633452 DOI: 10.1016/j.antiviral.2016.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Replication of the human immunodeficiency virus type 1 (HIV-1) is dependent on eIF5A hypusination. Hypusine is formed post-translationally on the eIF5A precursor by two consecutive enzymatic steps; a reversible reaction involving the enzyme deoxyhypusine synthase (DHS) and an irreversible step involving the enzyme deoxyhypusine hydroxylase (DOHH). In this study we explored the effect of inhibiting DOHH activity and therefore eIF5A hypusination, on HIV-1 gene expression. Results show that the expression of proteins from an HIV-1 molecular clone is reduced when DOHH activity is inhibited by Deferiprone (DFP) or Ciclopirox (CPX). Next we evaluated the requirement of DOHH activity for internal ribosome entry site (IRES)-mediated translation initiation driven by the 5'untranslated region (5'UTR) of the full length HIV-1 mRNA. Results show that HIV-1 IRES activity relies on DOHH protein concentration and enzymatic activity. Similar results were obtained for IRES-dependent translation initiation mediated by 5'UTR of the human T-cell lymphotropic virus type 1 (HTLV-1) and the mouse mammary tumor virus (MMTV) mRNAs. Interestingly, activity of the poliovirus IRES, was less sensitive to the targeting of DOHH suggesting that not all viral IRESs are equally dependent on the cellular concentration or the activity of DOHH. In summary we present evidence indicating that the cellular concentration of DOHH and its enzymatic activity play a role in HIV-1, HTLV-1 and MMTV IRES-mediated translation initiation.
Collapse
Affiliation(s)
- C Joaquín Cáceres
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Nataly Contreras
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
29
|
Ding X, Lu J, Yu R, Wang X, Wang T, Dong F, Peng B, Wu W, Liu H, Geng Y, Zhang R, Ma H, Cheng J, Yu M, Fang S. Preliminary Proteomic Analysis of A549 Cells Infected with Avian Influenza Virus H7N9 and Influenza A Virus H1N1. PLoS One 2016; 11:e0156017. [PMID: 27223893 PMCID: PMC4880285 DOI: 10.1371/journal.pone.0156017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
A newly emerged H7N9 influenza virus poses high risk to human beings. However, the pathogenic mechanism of the virus remains unclear. The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1 influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and 72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor acetylhydrolaseⅠb subunit beta (PAFAH1B2) were validated by western-blot analysis. The functional analysis revealed that the differential proteins in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics.
Collapse
Affiliation(s)
- Xiaoman Ding
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruoxi Yu
- Southern Medical University, Guangzhou, China
| | - Xin Wang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ting Wang
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Fangyuan Dong
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Bo Peng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Weihua Wu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hui Liu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yijie Geng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Renli Zhang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hanwu Ma
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinquan Cheng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Muhua Yu
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
- * E-mail: (MHY); (SSF)
| | - Shisong Fang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- * E-mail: (MHY); (SSF)
| |
Collapse
|
30
|
Ren XX, Wang HB, Li C, Jiang JF, Xiong SD, Jin X, Wu L, Wang JH. HIV-1 Nef-associated Factor 1 Enhances Viral Production by Interacting with CRM1 to Promote Nuclear Export of Unspliced HIV-1 gag mRNA. J Biol Chem 2016; 291:4580-8. [PMID: 26733199 PMCID: PMC4813482 DOI: 10.1074/jbc.m115.706135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
HIV-1 depends on host-cell-encoded factors to complete its life cycle. A comprehensive understanding of how HIV-1 manipulates host machineries during viral infection can facilitate the identification of host targets for antiviral drugs or gene therapy. The cellular protein Naf1 (HIV-1 Nef-associated factor 1) is a CRM1-dependent nucleo-cytoplasmic shuttling protein, and has been identified to regulate multiple receptor-mediated signal pathways in inflammation. The cytoplasm-located Naf1 can inhibit NF-κB activation through binding to A20, and the loss of Naf1 controlled NF-κB activation is associated with multiple autoimmune diseases. However, the effect of Naf1 on HIV-1 mRNA expression has not been characterized. In this study we found that the nucleus-located Naf1 could promote nuclear export of unspliced HIV-1 gag mRNA. We demonstrated that the association between Naf1 and CRM1 was required for this function as the inhibition or knockdown of CRM1 expression significantly impaired Naf1-promoted HIV-1 production. The mutation of Naf1 nuclear export signals (NESs) that account for CRM1 recruitment for nuclear export decreased Naf1 function. Additionally, the mutation of the nuclear localization signal (NLS) of Naf1 diminished its ability to promote HIV-1 production, demonstrating that the shuttling property of Naf1 is required for this function. Our results reveal a novel role of Naf1 in enhancing HIV-1 production, and provide a potential therapeutic target for controlling HIV-1 infection.
Collapse
Affiliation(s)
- Xiao-Xin Ren
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Hai-Bo Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Chuan Li
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Jin-Feng Jiang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Si-Dong Xiong
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xia Jin
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| |
Collapse
|
31
|
Schröder M, Kolodzik A, Windshügel B, Krepstakies M, Priyadarshini P, Hartjen P, van Lunzen J, Rarey M, Hauber J, Meier C. Linker-Region Modified Derivatives of the Deoxyhypusine Synthase Inhibitor CNI-1493 Suppress HIV-1 Replication. Arch Pharm (Weinheim) 2016; 349:91-103. [PMID: 26725082 DOI: 10.1002/ardp.201500323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 11/12/2022]
Abstract
The inhibition of cellular factors that are involved in viral replication may be an important alternative to the commonly used strategy of targeting viral enzymes. The guanylhydrazone CNI-1493, a potent inhibitor of the deoxyhypusine synthase (DHS), prevents the activation of the cellular factor eIF-5A and thereby suppresses HIV replication and a number of other diseases. Here, we report on the design, synthesis and biological evaluation of a series of CNI-1493 analogues. The sebacoyl linker in CNI-1493 was replaced by different alkyl or aryl dicarboxylic acids. Most of the tested derivatives suppress HIV-1 replication efficiently in a dose-dependent manner without showing toxic side effects. The unexpected antiviral activity of the rigid derivatives point to a second binding mode as previously assumed for CNI-1493. Moreover, the chemical stability of CNI-1493 was analysed, showing a successive hydrolysis of the imino bonds. By molecular dynamics simulations, the behaviour of the parent CNI-1493 in solution and its interactions with DHS were investigated.
Collapse
Affiliation(s)
- Marcus Schröder
- Institute of Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Hamburg, Germany
| | - Adrian Kolodzik
- ZBH Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Björn Windshügel
- ZBH Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Marcel Krepstakies
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Poornima Priyadarshini
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Philip Hartjen
- Department of Medicine, Infectious Diseases Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan van Lunzen
- Department of Medicine, Infectious Diseases Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Rarey
- ZBH Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Joachim Hauber
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Chris Meier
- Institute of Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
32
|
Pällmann N, Braig M, Sievert H, Preukschas M, Hermans-Borgmeyer I, Schweizer M, Nagel CH, Neumann M, Wild P, Haralambieva E, Hagel C, Bokemeyer C, Hauber J, Balabanov S. Biological Relevance and Therapeutic Potential of the Hypusine Modification System. J Biol Chem 2015; 290:18343-60. [PMID: 26037925 DOI: 10.1074/jbc.m115.664490] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 11/06/2022] Open
Abstract
Hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is emerging as a crucial regulator in cancer, infections, and inflammation. Although its contribution in translational regulation of proline repeat-rich proteins has been sufficiently demonstrated, its biological role in higher eukaryotes remains poorly understood. To establish the hypusine modification system as a novel platform for therapeutic strategies, we aimed to investigate its functional relevance in mammals by generating and using a range of new knock-out mouse models for the hypusine-modifying enzymes deoxyhypusine synthase and deoxyhypusine hydroxylase as well as for the cancer-related isoform eIF-5A2. We discovered that homozygous depletion of deoxyhypusine synthase and/or deoxyhypusine hydroxylase causes lethality in adult mice with different penetrance compared with haploinsufficiency. Network-based bioinformatic analysis of proline repeat-rich proteins, which are putative eIF-5A targets, revealed that these proteins are organized in highly connected protein-protein interaction networks. Hypusine-dependent translational control of essential proteins (hubs) and protein complexes inside these networks might explain the lethal phenotype observed after deletion of hypusine-modifying enzymes. Remarkably, our results also demonstrate that the cancer-associated isoform eIF-5A2 is dispensable for normal development and viability. Together, our results provide the first genetic evidence that the hypusine modification in eIF-5A is crucial for homeostasis in mammals. Moreover, these findings highlight functional diversity of the hypusine system compared with lower eukaryotes and indicate eIF-5A2 as a valuable and safe target for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Nora Pällmann
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center, the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Melanie Braig
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center, the Division of Hematology and
| | - Henning Sievert
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center
| | - Michael Preukschas
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center, the Department of Molecular Pathology, Institute for Hematopathology, 22547 Hamburg, Germany
| | | | | | - Claus Henning Nagel
- the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Melanie Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter Wild
- Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Eugenia Haralambieva
- Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Carsten Bokemeyer
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center
| | - Joachim Hauber
- the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Stefan Balabanov
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center, the Division of Hematology and
| |
Collapse
|
33
|
Saxena R, Gupta S, Singh K, Mitra K, Tripathi AK, Tripathi RK. Proteomic profiling of SupT1 cells reveal modulation of host proteins by HIV-1 Nef variants. PLoS One 2015; 10:e0122994. [PMID: 25874870 PMCID: PMC4395413 DOI: 10.1371/journal.pone.0122994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 02/26/2015] [Indexed: 01/14/2023] Open
Abstract
Nef is an accessory viral protein that promotes HIV-1 replication, facilitating alterations in cellular pathways via multiple protein-protein interactions. The advent of proteomics has expanded the focus on better identification of novel molecular pathways regulating disease progression. In this study, nef was sequenced from randomly selected patients, however, sequence variability identified did not elicited any specific mutation that could have segregated HIV-1 patients in different stages of disease progression. To explore the difference in Nef functionality based on sequence variability we used proteomics approach. Proteomic profiling was done to compare the effect of Nef variants in host cell protein expression. 2DGE in control and Nef transfected SupT1 cells demonstrated several differentially expressed proteins. Fourteen protein spots were detected with more than 1.5 fold difference. Significant down regulation was seen in six unique protein spots in the Nef treated cells. Proteins were identified as Cyclophilin A, EIF5A-1 isoform B, Rho GDI 1 isoform a, VDAC1, OTUB1 and α-enolase isoform 1 (ENO1) through LC-MS/MS. The differential expression of the 6 proteins was analyzed by Real time PCR, Western blotting and Immunofluorescence studies with two Nef variants (RP14 and RP01) in SupT1 cells. There was contrasting difference between the effect of these Nef variants upon the expression of these six proteins. Downregulation of α-enolase (ENO1), VDAC1 and OTUB1 was more significant by Nef RP01 whereas Cyclophilin A and RhoGDI were found to be more downregulated by Nef RP14. This difference in Nef variants upon host protein expression was also studied through a site directed mutant of Nef RP01 (55AAAAAAA61) and the effect was found to be reversed. Deciphering the role of these proteins mediated by Nef variants will open a new avenue of research in understanding Nef mediated pathogenesis. Overall study determines modulation of cellular protein expression in T cells by HIV-1 Nef variants.
Collapse
Affiliation(s)
- Reshu Saxena
- Toxicology division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Sudipti Gupta
- Toxicology division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Kavita Singh
- Electron Microscopy Lab, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Kalyan Mitra
- Electron Microscopy Lab, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Anil Kumar Tripathi
- Department of Medicine, King George’s Medical University, Chowk, Lucknow, India
| | - Raj Kamal Tripathi
- Toxicology division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
- * E-mail:
| |
Collapse
|
34
|
Aligeti M, Behrens RT, Pocock GM, Schindelin J, Dietz C, Eliceiri KW, Swanson CM, Malim MH, Ahlquist P, Sherer NM. Cooperativity among Rev-associated nuclear export signals regulates HIV-1 gene expression and is a determinant of virus species tropism. J Virol 2014; 88:14207-21. [PMID: 25275125 PMCID: PMC4249125 DOI: 10.1128/jvi.01897-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/23/2014] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Murine cells exhibit a profound block to HIV-1 virion production that was recently mapped to a species-specific structural attribute of the murine version of the chromosomal region maintenance 1 (mCRM1) nuclear export receptor and rescued by the expression of human CRM1 (hCRM1). In human cells, the HIV-1 Rev protein recruits hCRM1 to intron-containing viral mRNAs encoding the Rev response element (RRE), thereby facilitating viral late gene expression. Here we exploited murine 3T3 fibroblasts as a gain-of-function system to study hCRM1's species-specific role in regulating Rev's effector functions. We show that Rev is rapidly exported from the nucleus by mCRM1 despite only weak contributions to HIV-1's posttranscriptional stages. Indeed, Rev preferentially accumulates in the cytoplasm of murine 3T3 cells with or without hCRM1 expression, in contrast to human HeLa cells, where Rev exhibits striking en masse transitions between the nuclear and cytoplasmic compartments. Efforts to bias Rev's trafficking either into or out of the nucleus revealed that Rev encoding a second CRM1 binding domain (Rev-2xNES) or Rev-dependent viral gag-pol mRNAs bearing tandem RREs (GP-2xRRE), rescue virus particle production in murine cells even in the absence of hCRM1. Combined, these results suggest a model wherein Rev-associated nuclear export signals cooperate to regulate the number or quality of CRM1's interactions with viral Rev/RRE ribonucleoprotein complexes in the nucleus. This mechanism regulates CRM1-dependent viral gene expression and is a determinant of HIV-1's capacity to produce virions in nonhuman cell types. IMPORTANCE Cells derived from mice and other nonhuman species exhibit profound blocks to HIV-1 replication. Here we elucidate a block to HIV-1 gene expression attributable to the murine version of the CRM1 (mCRM1) nuclear export receptor. In human cells, hCRM1 regulates the nuclear export of viral intron-containing mRNAs through the activity of the viral Rev adapter protein that forms a multimeric complex on these mRNAs prior to recruiting hCRM1. We demonstrate that Rev-dependent gene expression is poor in murine cells despite the finding that, surprisingly, the bulk of Rev interacts efficiently with mCRM1 and is rapidly exported from the nucleus. Instead, we map the mCRM1 defect to the apparent inability of this factor to engage Rev multimers in the context of large viral Rev/RNA ribonucleoprotein complexes. These findings shed new light on HIV-1 gene regulation and could inform the development of novel antiviral strategies that target viral gene expression.
Collapse
Affiliation(s)
- Mounavya Aligeti
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan T Behrens
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ginger M Pocock
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Johannes Schindelin
- Morgridge Institute for Research, Madison, Wisconsin, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Dietz
- Department of Computer and Information Science, University of Constance, Constance, Germany
| | - Kevin W Eliceiri
- Morgridge Institute for Research, Madison, Wisconsin, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Michael H Malim
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA Morgridge Institute for Research, Madison, Wisconsin, USA Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Abstract
In addition to the small and large ribosomal subunits, aminoacyl-tRNAs, and an mRNA, cellular protein synthesis is dependent on translation factors. The eukaryotic translation initiation factor 5A (eIF5A) and its bacterial ortholog elongation factor P (EF-P) were initially characterized based on their ability to stimulate methionyl-puromycin (Met-Pmn) synthesis, a model assay for protein synthesis; however, the function of these factors in cellular protein synthesis has been difficult to resolve. Interestingly, a conserved lysine residue in eIF5A is post-translationally modified to hypusine and the corresponding lysine residue in EF-P from at least some bacteria is modified by the addition of a β-lysine moiety. In this review, we provide a summary of recent data that have identified a novel role for the translation factor eIF5A and its hypusine modification in the elongation phase of protein synthesis and more specifically in stimulating the production of proteins containing runs of consecutive proline residues.
Collapse
Affiliation(s)
- Thomas E. Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erik Gutierrez
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Byung-Sik Shin
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Sievert H, Pällmann N, Miller KK, Hermans-Borgmeyer I, Venz S, Sendoel A, Preukschas M, Schweizer M, Boettcher S, Janiesch PC, Streichert T, Walther R, Hengartner MO, Manz MG, Brümmendorf TH, Bokemeyer C, Braig M, Hauber J, Duncan KE, Balabanov S. A novel mouse model for inhibition of DOHH-mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation. Dis Model Mech 2014; 7:963-76. [PMID: 24832488 PMCID: PMC4107325 DOI: 10.1242/dmm.014449] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 05/08/2014] [Indexed: 12/12/2022] Open
Abstract
The central importance of translational control by post-translational modification has spurred major interest in regulatory pathways that control translation. One such pathway uniquely adds hypusine to eukaryotic initiation factor 5A (eIF5A), and thereby affects protein synthesis and, subsequently, cellular proliferation through an unknown mechanism. Using a novel conditional knockout mouse model and a Caenorhabditis elegans knockout model, we found an evolutionarily conserved role for the DOHH-mediated second step of hypusine synthesis in early embryonic development. At the cellular level, we observed reduced proliferation and induction of senescence in 3T3 Dohh-/- cells as well as reduced capability for malignant transformation. Furthermore, mass spectrometry showed that deletion of DOHH results in an unexpected complete loss of hypusine modification. Our results provide new biological insight into the physiological roles of the second step of the hypusination of eIF5A. Moreover, the conditional mouse model presented here provides a powerful tool for manipulating hypusine modification in a temporal and spatial manner, to analyse both how this unique modification normally functions in vivo as well as how it contributes to different pathological conditions.
Collapse
Affiliation(s)
- Henning Sievert
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, 20246 Hamburg, Germany
| | - Nora Pällmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, 20246 Hamburg, Germany. Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Katharine K Miller
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, 17475 Greifswald, Germany
| | - Ataman Sendoel
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland. Division of Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Preukschas
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, 20246 Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Steffen Boettcher
- Division of Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - P Christoph Janiesch
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry, University Hospital of Cologne, 50924 Cologne, Germany
| | - Reinhard Walther
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, 17475 Greifswald, Germany
| | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Markus G Manz
- Division of Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Tim H Brümmendorf
- Clinic for Internal Medicine IV, Hematology and Oncology, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, 20246 Hamburg, Germany
| | - Melanie Braig
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, 20246 Hamburg, Germany
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Kent E Duncan
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Stefan Balabanov
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, 20246 Hamburg, Germany. Division of Hematology, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
37
|
Singh S, Raju K, Jatekar D, Dinesh N, Paul MS, Sobhia ME. Leishmania donovani eukaryotic initiation factor 5A: molecular characterization, localization and homology modelling studies. Microb Pathog 2014; 73:37-46. [PMID: 24909104 DOI: 10.1016/j.micpath.2014.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 11/16/2022]
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is a small acidic protein highly conserved from archaea to mammals. eIF5A is the only protein which undergoes a unique lysine residue modification to hypusine. Hypusinylation is important for the function of eIF5A which is reported to be essential for cell viability. eIF5A promotes formation of the first peptide bond at the onset of protein synthesis. However, its function in Leishmania donovani is unclear. The present study focuses on the characterization and localization of L. donovani eIF5A protein. The eIF5A gene contains an ORF of 501×bp encoding 166 amino acid residues with a predicted molecular mass and isoelectric point of 17.8 kDa and 4.83 respectively. A phylogenetic tree analysis revealed its close proximity to trypanosomes however it is distantly located from Trichomonas vaginalis and Plasmodium falciparum. The L. donovani eIF5A was expressed as a 6× His tagged protein whose identity was confirmed by western blot and MALDI. Biophysical investigation by CD revealed the predominant presence of 49% β sheet structure which correlated well with secondary structure prediction. To gain insight into the role of eIF5A in L. donovani, we investigated the subcellular distribution of eIF5A. A GFP-fusion of L. donovani eIF5A was found to be localized in cytoplasm as confirmed by subcellular fractionation. Our studies indicated that eIF5A is primarily localized to cytoplasm and is undetectable in nuclear fraction. The homology model of eIF5A of L. donovani was built and the resulting model showed acceptable Ramachandran statistics. The model is reliable and can be used to study eIF5A binding with its effector molecules.
Collapse
Affiliation(s)
- Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India.
| | - K Raju
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Deepika Jatekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Neeradi Dinesh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - M Stanley Paul
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar Mohali 160062, Punjab, India
| | - M E Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar Mohali 160062, Punjab, India
| |
Collapse
|
38
|
Sun J, Han Z, Shao Y, Cao Z, Kong X, Liu S. Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection. Proteomics 2014; 14:1403-23. [PMID: 24610701 PMCID: PMC7167649 DOI: 10.1002/pmic.201300404] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 02/16/2014] [Accepted: 03/04/2014] [Indexed: 01/29/2023]
Abstract
Infectious bronchitis coronavirus (IBV), Newcastle disease virus (NDV), and avian influenza virus (AIV) H9 subtype are major pathogens of chickens causing serious respiratory tract disease and heavy economic losses. To better understand the replication features of these viruses in their target organs and molecular pathogenesis of these different viruses, comparative proteomic analysis was performed to investigate the proteome changes of primary target organ during IBV, NDV, and AIV H9 infections, using 2D‐DIGE followed MALDI‐TOF/TOF‐MS. In total, 44, 39, 41, 48, and 38 proteins were identified in the tracheal tissues of the chickens inoculated with IBV (ck/CH/LDL/97I, H120), NDV (La Sota), and AIV H9, and between ck/CH/LDL/97I and H120, respectively. Bioinformatics analysis showed that IBV, NDV, and AIV H9 induced similar core host responses involved in biosynthetic, catabolic, metabolic, signal transduction, transport, cytoskeleton organization, macromolecular complex assembly, cell death, response to stress, and immune system process. Comparative analysis of host response induced by different viruses indicated differences in protein expression changes induced by IBV, NDV, and AIV H9 may be responsible for the specific pathogenesis of these different viruses. Our result reveals specific host response to IBV, NDV, and AIVH9 infections and provides insights into the distinct pathogenic mechanisms of these avian respiratory viruses.
Collapse
Affiliation(s)
- Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | | | | | | | | | | |
Collapse
|
39
|
Schroeder M, Kolodzik A, Pfaff K, Priyadarshini P, Krepstakies M, Hauber J, Rarey M, Meier C. In silico design, synthesis, and screening of novel deoxyhypusine synthase inhibitors targeting HIV-1 replication. ChemMedChem 2014; 9:940-52. [PMID: 24616161 DOI: 10.1002/cmdc.201300481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/29/2014] [Indexed: 01/26/2023]
Abstract
The human enzyme deoxyhypusine synthase (DHS) is an important host cell factor that participates in the post-translational hypusine modification of eukaryotic initiation factor 5A (eIF-5A). Hypusine-modified eIF-5A plays a role in a number of diseases, including HIV infection/AIDS. Thus, DHS represents a novel and attractive drug target. So far, four crystal structures are available, and various substances have been tested for inhibition of human DHS. Among these inhibitors, N-1-guanyl-1,7-diaminoheptane (GC7) has been co-crystallized in the active site of DHS. However, despite its potency, GC7 is not selective enough to be used in drug applications. Therefore, new compounds that target DHS are needed. Herein we report the in silico design, chemical synthesis, and biological evaluation of new DHS inhibitors. One of these inhibitors showed dose-dependent inhibition of DHS in vitro, as well as suppression of HIV replication in cell cultures. Furthermore, the compound exhibited no cytotoxic effects at active concentrations. Thus, this designed compound demonstrated proof of principle and represents a promising starting point for the development of new drug candidates to specifically interfere with DHS activity.
Collapse
Affiliation(s)
- Marcus Schroeder
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Banerjee A, Benjamin R, Balakrishnan K, Ghosh P, Banerjee S. Human protein Staufen-2 promotes HIV-1 proliferation by positively regulating RNA export activity of viral protein Rev. Retrovirology 2014; 11:18. [PMID: 24520823 PMCID: PMC4016256 DOI: 10.1186/1742-4690-11-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/05/2014] [Indexed: 11/24/2022] Open
Abstract
Background The export of intron containing viral RNAs from the nucleus to the cytoplasm is an essential step in the life cycle of Human Immunodeficiency Virus-1 (HIV-1). As the eukaryotic system does not permit the transport of intron containing RNA out of the nucleus, HIV-1 makes a regulatory protein, Rev, that mediates the transportation of unspliced and partially spliced viral mRNA from the nucleus to the cytoplasm, thereby playing a decisive role in the generation of new infectious virus particles. Therefore, the host factors modulating the RNA export activity of Rev can be major determinants of virus production in an infected cell. Results In this study, human Staufen-2 (hStau-2) was identified as a host factor interacting with HIV-1 Rev through affinity chromatography followed by MALDI analyses. Our experiments involving transient expressions, siRNA mediated knockdowns and infection assays conclusively established that hStau-2 is a positive regulator of HIV-1 pathogenesis. We demonstrated that Rev-hStau-2 interactions positively regulated the RNA export activity of Rev and promoted progeny virus synthesis. The Rev-hStau-2 interaction was independent of RNA despite both being RNA binding proteins. hStau-2 mutant, with mutations at Q314R-A318F-K319E, deficient of binding Rev, failed to promote hStau-2 dependent Rev activity and viral production, validating the essentiality of this protein-protein interaction. The expression of this positive regulator was elevated upon HIV-1 infection in both human T-lymphocyte and astrocyte cell lines. Conclusions With this study, we establish that human Staufen-2, a host factor which is up-regulated upon HIV-1 infection, interacts with HIV-1 Rev, thereby promoting its RNA export activity and progeny virus formation. Altogether, our study provides new insights into the emerging role of the Staufen family of mRNA transporters in host-pathogen interaction and supports the notion that obliterating interactions between viral and host proteins that positively regulate HIV-1 proliferation can significantly contribute to anti-retroviral treatments.
Collapse
Affiliation(s)
| | | | | | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Andhra Pradesh 500046, India.
| |
Collapse
|
41
|
Colvin SC, Maier B, Morris DL, Tersey SA, Mirmira RG. Deoxyhypusine synthase promotes differentiation and proliferation of T helper type 1 (Th1) cells in autoimmune diabetes. J Biol Chem 2013; 288:36226-35. [PMID: 24196968 DOI: 10.1074/jbc.m113.473942] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In type 1 diabetes, cytokines arising from immune cells cause islet β cell dysfunction even before overt hyperglycemia. Deoxyhypusine synthase catalyzes the crucial hypusine modification of the factor eIF5A, which promotes the translation of a subset of mRNAs involved in cytokine responses. Here, we tested the hypothesis that deoxyhypusine synthase and, secondarily, hypusinated eIF5A contribute to the pathogenesis of type 1 diabetes using the non-obese diabetic (NOD) mouse model. Pre-diabetic NOD mice that received injections of the deoxyhypusine inhibitor N1-guanyl-1,7-diaminoheptane (GC7) demonstrated significantly improved glucose tolerance, more robust insulin secretion, and reduced insulitis compared with control animals. Analysis of tissues from treated mice revealed selective reductions in diabetogenic T helper type 1 (Th1) cells in the pancreatic lymph nodes, a primary site of antigen presentation. Isolated mouse CD90.2(+) splenocytes stimulated in vitro with anti-CD3/anti-CD28 and IL-2 to mimic autoimmune T cell activation exhibited proliferation and differentiation of CD4(+) T cell subsets (Th1, Th17, and Treg), but those treated with the deoxyhypusine synthase inhibitor GC7 showed a dose-dependent block in T cell proliferation with selective reduction in Th1 cells, similar to that observed in NOD mice. Inhibition of deoxyhypusine synthase blocked post-transcriptional expression of CD25, the high affinity IL-2 receptor α chain. Our results suggest a previously unrecognized role for deoxyhypusine synthase in promoting T cell proliferation and differentiation via regulation of CD25. Inhibition of deoxyhypusine synthase may provide a strategy for reducing diabetogenic Th1 cells and preserving β cell function in type 1 diabetes.
Collapse
Affiliation(s)
- Stephanie C Colvin
- From the Department of Pediatrics and the Herman B. Wells Center for Pediatric Research and
| | | | | | | | | |
Collapse
|
42
|
Hanauske-Abel HM, Saxena D, Palumbo PE, Hanauske AR, Luchessi AD, Cambiaghi TD, Hoque M, Spino M, Gandolfi DD, Heller DS, Singh S, Park MH, Cracchiolo BM, Tricta F, Connelly J, Popowicz AM, Cone RA, Holland B, Pe’ery T, Mathews MB. Drug-induced reactivation of apoptosis abrogates HIV-1 infection. PLoS One 2013; 8:e74414. [PMID: 24086341 PMCID: PMC3781084 DOI: 10.1371/journal.pone.0074414] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal antivirals that eliminate viral infection by destroying infected cells. A drug-based drug discovery program, based on these compounds, is warranted to determine the potential of such agents in clinical trials of HIV-infected patients.
Collapse
Affiliation(s)
- Hartmut M. Hanauske-Abel
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Deepti Saxena
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Paul E. Palumbo
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Axel-Rainer Hanauske
- Oncology Center and Medical Clinic III, Asklepios Clinic St. George, Hamburg, Germany
| | - Augusto D. Luchessi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tavane D. Cambiaghi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Mainul Hoque
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael Spino
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ApoPharma Inc., Toronto, Ontario, Canada
| | | | - Debra S. Heller
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Sukhwinder Singh
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute for Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Bernadette M. Cracchiolo
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | | | | | - Anthony M. Popowicz
- Department of Information Technology, Rockefeller University, New York, New York, United States of America
| | - Richard A. Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bart Holland
- Department of Preventive Medicine & Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tsafi Pe’ery
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael B. Mathews
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
43
|
Gao G, Wu X, Zhou J, He M, He JJ, Guo D. Inhibition of HIV-1 transcription and replication by a newly identified cyclin T1 splice variant. J Biol Chem 2013; 288:14297-14309. [PMID: 23569210 DOI: 10.1074/jbc.m112.438465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of cellular factors participates in the HIV-1 life cycle. Among them is the well characterized cyclin T1 (CYCT1). CycT1 binds to cyclin-dependent kinase 9 (CDK9) and forms the positive transcription elongation factor-b (P-TEFb). P-TEFb is then recruited by HIV-1 TAT to the HIV-1 long terminal repeat (LTR) promoter and subsequently leads to phosphorylation of the C-terminal domain of RNA polymerase II (pol II), enhanced processivity of pol II, and transcription of a full-length HIV-1 RNA. In this study, we report the identification of a new CYCT1 splice variant, designated as CYCT1b, and accordingly we renamed CYCT1 as CYCT1a. CYCT1b was detected in several cell lines, including primary human CD4 T cells, and its expression was subject to cell cycle regulation. Similar to CYCT1a, CYCT1b was primarily localized in the nucleus. CYCT1b expression was found to be inversely correlated with HIV-1 gene expression and replication. This inverse correlation appeared to involve TAT transactivation, CDK9 binding, and subsequent recruitment of P-TEFb to the HIV-1 LTR promoter and pol II C-terminal domain phosphorylation. In agreement with these findings, CYCT1b expression led to direct inhibition of TAT-transactivated transcription of the HIV-1 LTR promoter. Taken together, these results show that the newly identified CYCT1b splice variant inhibits HIV-1 transcription and may provide new clues for the development of anti-HIV strategies.
Collapse
Affiliation(s)
- Guozhen Gao
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaoyun Wu
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China
| | - Jieqiong Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China
| | - Mingfeng He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Johnny J He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana 46202; University of North Texas Health Science Center, Fort Worth, Texas 76107.
| | - Deyin Guo
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China; Institute of Medical Virology, Wuhan University School of Medicine, 430071 Wuhan, China.
| |
Collapse
|
44
|
Galvão FC, Rossi D, Silveira WDS, Valentini SR, Zanelli CF. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity. PLoS One 2013; 8:e60140. [PMID: 23573236 PMCID: PMC3613415 DOI: 10.1371/journal.pone.0060140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/21/2013] [Indexed: 11/19/2022] Open
Abstract
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity.
Collapse
Affiliation(s)
- Fabio Carrilho Galvão
- Department of Biological Sciences, Univ Estadual Paulista – UNESP, Araraquara-Saõ Paulo, Brazil
| | - Danuza Rossi
- Department of Biological Sciences, Univ Estadual Paulista – UNESP, Araraquara-Saõ Paulo, Brazil
| | | | | | | |
Collapse
|
45
|
Sievert H, Venz S, Platas-Barradas O, Dhople VM, Schaletzky M, Nagel CH, Braig M, Preukschas M, Pällmann N, Bokemeyer C, Brümmendorf TH, Pörtner R, Walther R, Duncan KE, Hauber J, Balabanov S. Protein-protein-interaction network organization of the hypusine modification system. Mol Cell Proteomics 2012; 11:1289-305. [PMID: 22888148 PMCID: PMC3494187 DOI: 10.1074/mcp.m112.019059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/27/2012] [Indexed: 12/12/2022] Open
Abstract
Hypusine modification of eukaryotic initiation factor 5A (eIF-5A) represents a unique and highly specific post-translational modification with regulatory functions in cancer, diabetes, and infectious diseases. However, the specific cellular pathways that are influenced by the hypusine modification remain largely unknown. To globally characterize eIF-5A and hypusine-dependent pathways, we used an approach that combines large-scale bioreactor cell culture with tandem affinity purification and mass spectrometry: "bioreactor-TAP-MS/MS." By applying this approach systematically to all four components of the hypusine modification system (eIF-5A1, eIF-5A2, DHS, and DOHH), we identified 248 interacting proteins as components of the cellular hypusine network, with diverse functions including regulation of translation, mRNA processing, DNA replication, and cell cycle regulation. Network analysis of this data set enabled us to provide a comprehensive overview of the protein-protein interaction landscape of the hypusine modification system. In addition, we validated the interaction of eIF-5A with some of the newly identified associated proteins in more detail. Our analysis has revealed numerous novel interactions, and thus provides a valuable resource for understanding how this crucial homeostatic signaling pathway affects different cellular functions.
Collapse
Affiliation(s)
- Henning Sievert
- From the ‡Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Simone Venz
- §Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Oscar Platas-Barradas
- ¶Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Vishnu M. Dhople
- ‖Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Martin Schaletzky
- ¶Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Claus-Henning Nagel
- **Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Melanie Braig
- From the ‡Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Michael Preukschas
- From the ‡Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Nora Pällmann
- From the ‡Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- From the ‡Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Tim H. Brümmendorf
- ‡‡Clinic for Internal Medicine IV, Hematology and Oncology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Ralf Pörtner
- ¶Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Reinhard Walther
- §Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Kent E. Duncan
- §§Neuronal Translational Control Group, Center for Molecular Neurobiology, ZMNH, University of Hamburg Medical School, Hamburg, Germany
| | - Joachim Hauber
- **Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Stefan Balabanov
- From the ‡Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
- ¶¶Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Proteomics of DF-1 cells infected with avian leukosis virus subgroup J. Virus Res 2012; 167:314-21. [DOI: 10.1016/j.virusres.2012.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 02/05/2023]
|
47
|
Kula A, Marcello A. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression. BIOLOGY 2012; 1:116-33. [PMID: 24832221 PMCID: PMC4009772 DOI: 10.3390/biology1020116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/08/2023]
Abstract
Gene expression of the human immunodeficiency virus type 1 (HIV-1) is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE). These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function.
Collapse
Affiliation(s)
- Anna Kula
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| |
Collapse
|
48
|
Hoffmann D, Schwarck D, Banning C, Brenner M, Mariyanna L, Krepstakies M, Schindler M, Millar DP, Hauber J. Formation of trans-activation competent HIV-1 Rev:RRE complexes requires the recruitment of multiple protein activation domains. PLoS One 2012; 7:e38305. [PMID: 22675540 PMCID: PMC3366918 DOI: 10.1371/journal.pone.0038305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/07/2012] [Indexed: 12/13/2022] Open
Abstract
The HIV-1 Rev trans-activator is a nucleocytoplasmic shuttle protein that is essential for virus replication. Rev directly binds to unspliced and incompletely spliced viral RNA via the cis-acting Rev Response Element (RRE) sequence. Subsequently, Rev oligomerizes cooperatively and interacts with the cellular nuclear export receptor CRM1. In addition to mediating nuclear RNA export, Rev also affects the stability, translation and packaging of Rev-bound viral transcripts. Although it is established that Rev function requires the multimeric assembly of Rev molecules on the RRE, relatively little is known about how many Rev monomers are sufficient to form a trans-activation competent Rev:RRE complex, or which specific activity of Rev is affected by its oligomerization. We here analyzed by functional studies how homooligomer formation of Rev affects the trans-activation capacity of this essential HIV-1 regulatory protein. In a gain-of-function approach, we fused various heterologous dimerization domains to an otherwise oligomerization-defective Rev mutant and were able to demonstrate that oligomerization of Rev is not required per se for the nuclear export of this viral trans-activator. In contrast, however, the formation of Rev oligomers on the RRE is a precondition to trans-activation by directly affecting the nuclear export of Rev-regulated mRNA. Moreover, experimental evidence is provided showing that at least two protein activation domains are required for the formation of trans-activation competent Rev:RRE complexes. The presented data further refine the model of Rev trans-activation by directly demonstrating that Rev oligomerization on the RRE, thereby recruiting at least two protein activation domains, is required for nuclear export of unspliced and incompletely spliced viral RNA.
Collapse
Affiliation(s)
- Dirk Hoffmann
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Doreen Schwarck
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carina Banning
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Matthias Brenner
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lakshmikanth Mariyanna
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Marcel Krepstakies
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Michael Schindler
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - David P. Millar
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
49
|
Kaiser A. Translational control of eIF5A in various diseases. Amino Acids 2012; 42:679-84. [PMID: 21818564 DOI: 10.1007/s00726-011-1042-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Translational control is a crucial component in the development and progression of different diseases. Translational control may involve selective translation of specific mRNAs, which promote cell proliferation or lead to alterations in translation factor levels and activities. Eukaryotic initiation factor 5A (eIF5A) is the only known protein to contain the unusual amino acid hypusine [N (ε)-(4-amino-2-hydroxybutyl)-lysine], which is formed from the polyamine spermidine by two catalytic steps. eIF5A is involved in translation, elongation and stimulating peptide bond formation. Hypusination of eIF5A is essential for its activity in promoting cell proliferation. Meanwhile, there is evidence that eIF5A is a key protein in the pathogenicity of different diseases, such as diabetes, several human cancers, malaria and HIV-1 infections. Hitherto, the available data suggest that eIF5A has a role of a cell context-dependent function being more proliferative in the case of several human cancers and being involved under stress conditions in diabetes. Secondly, in HIV-1 infections and in diabetes, eIF5A also has a nuclear function by its sequence-specific binding of mRNAs as an mRNA-shuttle in conjunction with nuclear membrane export proteins. This binding may also influence the half-lives of mRNAs or their sequestration. Based on these data, there is a considerable therapeutic interest in eIF5A as a selective target for drug development through inhibition of hypusination.
Collapse
Affiliation(s)
- Annette Kaiser
- Institut für Technische Chemie und Pharmazeutische Chemie, University of Applied Sciences, Cologne, Betzdorfer Str.2, 50679, Cologne, Germany.
| |
Collapse
|
50
|
Yao Y, Li J, Lu Z, Tong A, Wang W, Su X, Zhou Y, Mu B, Zhou S, Li X, Chen L, Gou L, Song H, Yang J, Wei Y. Proteomic analysis of the interleukin-4 (IL-4) response in hepatitis B virus-positive human hepatocelluar carcinoma cell line HepG2.2.15. Electrophoresis 2011; 32:2004-12. [PMID: 21739463 DOI: 10.1002/elps.201100147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) infection is the leading cause of liver cirrhosis and hepatocellular carcinoma worldwide. In recent decades, significant progress toward understanding the molecular virology and pathogenesis of HBV infection has been made. In addition, multiple treatment modalities have been developed for persons with HBV infection. In the present study, we demonstrated that IL-4 inhibits the expression of hepatitis B surface antigen and hepatitis B e antigen in a HBV stably transfected hepatocellular carcinoma cell line (HepG2.2.15). To reveal the anti-HBV mechanism of IL-4 by proteomics, 2-DE and MS technology were utilized to profile global changes in protein expression in HepG2.2.15 cells after IL-4 treatment. A total of 56 differentially expressed proteins were identified in IL-4-treated HepG2.2.15 cells. To find out the interaction of these changed proteins by bioinformatics, signaling network analysis with the STRING tool showed that the identified proteins are primarily involved in transcription and proteolysis. Taken together, these results offer valuable clues for understanding the molecular mechanisms of the IL-4-mediated anti-HBV response.
Collapse
Affiliation(s)
- Yuqin Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|