1
|
Liu X, To KK, Zeng Q, Fu L. Effect of Extracellular Vesicles Derived From Tumor Cells on Immune Evasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417357. [PMID: 39899680 PMCID: PMC11948033 DOI: 10.1002/advs.202417357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Indexed: 02/05/2025]
Abstract
The crosstalk between immunity and cancer in the regulation of tumor growth is considered a hallmark of cancer. Antitumor immunity refers to the innate and adaptive immune responses that regulate cancer development and proliferation. Tumor immune evasion represents a major hindrance to effective anticancer treatment. Extracellular vesicles (EVs) are nano-sized and lipid-bilayer-enclosed particles that are secreted to the extracellular space by all cell types. They are critically involved in numerous biological functions including intercellular communication. Tumor-derived extracellular vesicles (TEVs) can transport a variety of cargo to modulate immune cells in the tumor microenvironment (TME). This review provides the latest update about how tumor cells evade immune surveillance by exploiting TEVs. First, the biogenesis of EVs and the cargo-sorting machinery are discussed. Second, how tumor cells modulate immune cell differentiation, activation, and function via TEVs to evade immune surveillance is illustrated. Last but not least, the novel antitumor strategies that can reverse immune escape are summarized.
Collapse
Affiliation(s)
- Xuanfan Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Kenneth K.W. To
- School of PharmacyThe Chinese University of Hong KongHong Kong999077P. R. China
| | - Qinsong Zeng
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
- Guangxi Hospital Division of The First Affiliated HospitalSun Yat‐sen UniversityNanning530025P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
2
|
Ababneh O, Nishizaki D, Kato S, Kurzrock R. Tumor necrosis factor superfamily signaling: life and death in cancer. Cancer Metastasis Rev 2024; 43:1137-1163. [PMID: 39363128 PMCID: PMC11554763 DOI: 10.1007/s10555-024-10206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Immune checkpoint inhibitors have shaped the landscape of cancer treatment. However, many patients either do not respond or suffer from later progression. Numerous proteins can control immune system activity, including multiple tumor necrosis factor (TNF) superfamily (TNFSF) and TNF receptor superfamily (TNFRSF) members; these proteins play a complex role in regulating cell survival and death, cellular differentiation, and immune system activity. Notably, TNFSF/TNFRSF molecules may display either pro-tumoral or anti-tumoral activity, or even both, depending on tumor type. Therefore, TNF is a prototype of an enigmatic two-faced mediator in oncogenesis. To date, multiple anti-TNF agents have been approved and/or included in guidelines for treating autoimmune disorders and immune-related toxicities after immune checkpoint blockade for cancer. A confirmed role for the TNFSF/TNFRSF members in treating cancer has proven more elusive. In this review, we highlight the cancer-relevant TNFSF/TNFRSF family members, focusing on the death domain-containing and co-stimulation members and their signaling pathways, as well as their complicated role in the life and death of cancer cells.
Collapse
Affiliation(s)
- Obada Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- WIN Consortium, Paris, France.
- Department of Medicine, MCW Cancer Center, Milwaukee, WI, USA.
- Department of Oncology, University of Nebraska, Omaha, NE, USA.
| |
Collapse
|
3
|
Lyu K, Tang B, Huang B, Xu Z, Liu T, Fang R, Li Y, Chen Y, Chen L, Zhang M, Chen L, Lei W. Exosomal circPVT1 promotes angiogenesis in laryngeal cancer by activating the Rap1b-VEGFR2 signaling pathway. Carcinogenesis 2024; 45:642-657. [PMID: 38824399 DOI: 10.1093/carcin/bgae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Laryngeal cancer (LC) is the second most common head and neck cancer and has a decreasing 5-year survival rate worldwide. Circular RNAs (circRNAs) regulate cancer development in diverse ways based on their distinct biogenesis mechanisms and expansive regulatory roles. However, currently, there is little research on how exosomal circRNAs are involved in the development of LC. Here, we demonstrated that circPVT1, a circRNA derived from the well-studied long noncoding RNA PVT1, is correlated with disease progression in LC and promotes angiogenesis both in vivo and in vitro. Mechanistically, circPVT1 is loaded into LC cell-secreted exosomes and taken up by vascular epithelium cells. By sponging miR-30c-5p, exosomal circPVT1 promotes Rap1b expression, which dramatically enhances vascular endothelial growth factor receptor 2 and the phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation, ultimately resulting in the induction of angiogenesis. Furthermore, our xenograft models demonstrated that the combination of short hairpin RNA-circPVT1 and cetuximab showed high efficacy in inhibiting tumor growth and angiogenesis. Collectively, these findings uncover a novel mechanism of exosomal circRNA-mediated angiogenesis modulation and provide a preclinical rationale for testing this analogous combination in patients with LC.
Collapse
Affiliation(s)
- Kexing Lyu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Bingjie Tang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
- Department of Otorhinolaryngology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, No. 82, Qinglong Street, Qingyang District, Chengdu, Sichuan 610014, China
| | - Bixue Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Zhenglin Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Tesi Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Ruihua Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Yun Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Yi Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Lin Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Minjuan Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Lifan Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| |
Collapse
|
4
|
Papadaki MA, Papadaki E, Chatziavraam S, Aggouraki D, Michaelidou K, Fotsitzoudis C, Vassilakopoulou M, Mavroudis D, Agelaki S. Prognostic Value of Fas/Fas Ligand Expression on Circulating Tumor Cells (CTCs) and Immune Cells in the Peripheral Blood of Patients with Metastatic Breast Cancer. Cancers (Basel) 2024; 16:2927. [PMID: 39272785 PMCID: PMC11393959 DOI: 10.3390/cancers16172927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The Fas/Fas ligand (FasL) system is a major apoptosis-regulating pathway with a key role in tumor immune surveillance and metastasis. The expression of Fas/FasL on mammary tumor tissues holds prognostic value for breast cancer (BC) patients. We herein assessed Fas/FasL expression on circulating tumor cells (CTCs) and matched peripheral blood mononuclear cells (PBMCs) from 98 patients with metastatic BC receiving first-line treatment. Fas+, FasL+, and Fas+/FasL+ CTCs were identified in 88.5%, 92.3%, and 84.6% of CTC-positive patients, respectively. In addition, Fas+/FasL+, Fas-/FasL+, and Fas-/FasL- PBMCs were identified in 70.3%, 24.2%, and 5.5% of patients, respectively. A reduced progression-free survival (PFS) was revealed among CTC-positive patients (median PFS: 9.5 versus 13.4 months; p = 0.004), and specifically among those harboring Fas+/FasL+ CTCs (median PFS: 9.5 vs. 13.4 months; p = 0.009). On the other hand, an increased overall survival (OS) was demonstrated among patients with Fas+/FasL+ PBMCs rather than those with Fas-/FasL+ and Fas-/FasL- PBMCs (median OS: 35.7 vs. 25.9 vs. 14.4 months, respectively; p = 0.008). These data provide for the first time evidence on Fas/FasL expression on CTCs and PBMCs with significant prognostic value for patients with metastatic BC, thus highlighting the role of the Fas/FasL system in the peripheral immune response and metastatic progression of BC.
Collapse
Affiliation(s)
- Maria A Papadaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Eleni Papadaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Sofia Chatziavraam
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Despoina Aggouraki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Maria Vassilakopoulou
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
5
|
Oberholtzer N, Mills S, Mehta S, Chakraborty P, Mehrotra S. Role of antioxidants in modulating anti-tumor T cell immune resposne. Adv Cancer Res 2024; 162:99-124. [PMID: 39069371 DOI: 10.1016/bs.acr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
It has been well established that in addition to oxygen's vital in cellular respiration, a disruption of oxygen balance can lead to increased stress and oxidative injury. Similarly, reduced oxygen during tumor proliferation and invasion generates a hypoxic tumor microenvironment, resulting in dysfunction of immune cells and providing a conducive milieu for tumors to adapt and grow. Strategies to improve the persistence tumor reactive T cells in the highly oxidative tumor environment are being pursued for enhancing immunotherapy outcomes. To this end, we have focused on various strategies that can help increase or maintain the antioxidant capacity of T cells, thus reducing their susceptibility to oxidative stress/damage. Herein we lay out an overview on the role of oxygen in T cell signaling and how pathways regulating oxidative stress or antioxidant signaling can be targeted to enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephanie Mills
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shubham Mehta
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Paramita Chakraborty
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
6
|
Ghosh C, Hu J, Kebebew E. Advances in translational research of the rare cancer type adrenocortical carcinoma. Nat Rev Cancer 2023; 23:805-824. [PMID: 37857840 DOI: 10.1038/s41568-023-00623-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 10/21/2023]
Abstract
Adrenocortical carcinoma is a rare malignancy with an annual worldwide incidence of 1-2 cases per 1 million and a 5-year survival rate of <60%. Although adrenocortical carcinoma is rare, such rare cancers account for approximately one third of patients diagnosed with cancer annually. In the past decade, there have been considerable advances in understanding the molecular basis of adrenocortical carcinoma. The genetic events associated with adrenocortical carcinoma in adults are distinct from those of paediatric cases, which are often associated with germline or somatic TP53 mutations and have a better prognosis. In adult primary adrenocortical carcinoma, the main somatic genetic alterations occur in genes that encode proteins involved in the WNT-β-catenin pathway, cell cycle and p53 apoptosis pathway, chromatin remodelling and telomere maintenance pathway, cAMP-protein kinase A (PKA) pathway or DNA transcription and RNA translation pathways. Recently, integrated molecular studies of adrenocortical carcinomas, which have characterized somatic mutations and the methylome as well as gene and microRNA expression profiles, have led to a molecular classification of these tumours that can predict prognosis and have helped to identify new therapeutic targets. In this Review, we summarize these recent translational research advances in adrenocortical carcinoma, which it is hoped could lead to improved patient diagnosis, treatment and outcome.
Collapse
Affiliation(s)
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Electron Kebebew
- Department of Surgery, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Kichina JV, Maslov A, Kandel ES. PAK1 and Therapy Resistance in Melanoma. Cells 2023; 12:2373. [PMID: 37830586 PMCID: PMC10572217 DOI: 10.3390/cells12192373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Malignant melanoma claims more lives than any other skin malignancy. While primary melanomas are usually cured via surgical excision, the metastatic form of the disease portents a poor prognosis. Decades of intense research has yielded an extensive armamentarium of anti-melanoma therapies, ranging from genotoxic chemo- and radiotherapies to targeted interventions in specific signaling pathways and immune functions. Unfortunately, even the most up-to-date embodiments of these therapies are not curative for the majority of metastatic melanoma patients, and the need to improve their efficacy is widely recognized. Here, we review the reports that implicate p21-regulated kinase 1 (PAK1) and PAK1-related pathways in the response of melanoma to various therapeutic modalities. Ample data suggest that PAK1 may decrease cell sensitivity to programmed cell death, provide additional stimulation to growth-promoting molecular pathways, and contribute to the creation of an immunosuppressive tumor microenvironment. Accordingly, there is mounting evidence that the concomitant inhibition of PAK1 enhances the potency of various anti-melanoma regimens. Overall, the available information suggests that a safe and effective inhibition of PAK1-dependent molecular processes would enhance the potency of the currently available anti-melanoma treatments, although considerable challenges in implementing such strategies still exist.
Collapse
Affiliation(s)
- Julia V. Kichina
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Eugene S. Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| |
Collapse
|
8
|
Lee YG, Yang N, Chun I, Porazzi P, Carturan A, Paruzzo L, Sauter CT, Guruprasad P, Pajarillo R, Ruella M. Apoptosis: a Janus bifrons in T-cell immunotherapy. J Immunother Cancer 2023; 11:e005967. [PMID: 37055217 PMCID: PMC10106075 DOI: 10.1136/jitc-2022-005967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 04/15/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of cancer. In particular, immune checkpoint blockade, bispecific antibodies, and adoptive T-cell transfer have yielded unprecedented clinical results in hematological malignancies and solid cancers. While T cell-based immunotherapies have multiple mechanisms of action, their ultimate goal is achieving apoptosis of cancer cells. Unsurprisingly, apoptosis evasion is a key feature of cancer biology. Therefore, enhancing cancer cells' sensitivity to apoptosis represents a key strategy to improve clinical outcomes in cancer immunotherapy. Indeed, cancer cells are characterized by several intrinsic mechanisms to resist apoptosis, in addition to features to promote apoptosis in T cells and evade therapy. However, apoptosis is double-faced: when it occurs in T cells, it represents a critical mechanism of failure for immunotherapies. This review will summarize the recent efforts to enhance T cell-based immunotherapies by increasing apoptosis susceptibility in cancer cells and discuss the role of apoptosis in modulating the survival of cytotoxic T lymphocytes in the tumor microenvironment and potential strategies to overcome this issue.
Collapse
Affiliation(s)
- Yong Gu Lee
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Nicholas Yang
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Inkook Chun
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Patrizia Porazzi
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alberto Carturan
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Luca Paruzzo
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Oncology, University of Turin, Torino, Piemonte, Italy
| | - Christopher Tor Sauter
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Puneeth Guruprasad
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Raymone Pajarillo
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marco Ruella
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Ahmed A, Reinhold C, Breunig E, Phan TS, Dietrich L, Kostadinova F, Urwyler C, Merk VM, Noti M, Toja da Silva I, Bode K, Nahle F, Plazzo AP, Koerner J, Stuber R, Menche C, Karamitopoulou E, Farin HF, Gollob KJ, Brunner T. Immune escape of colorectal tumours via local LRH-1/Cyp11b1-mediated synthesis of immunosuppressive glucocorticoids. Mol Oncol 2023. [PMID: 36861295 PMCID: PMC10399709 DOI: 10.1002/1878-0261.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
Control of tumour development and growth by the immune system critically defines patient fate and survival. What regulates the escape of colorectal tumours from destruction by the immune system remains currently unclear. Here, we investigated the role of intestinal synthesis of glucocorticoids in the tumour development during an inflammation-induced mouse model of colorectal cancer. We demonstrate that the local synthesis of immunoregulatory glucocorticoids has dual roles in the regulation of intestinal inflammation and tumour development. In the inflammation phase, LRH-1/Nr5A2-regulated and Cyp11b1-mediated intestinal glucocorticoid synthesis prevents tumour development and growth. In established tumours, however, tumour-autonomous Cyp11b1-mediated glucocorticoid synthesis suppresses anti-tumour immune responses and promotes immune escape. Transplantation of glucocorticoid synthesis-proficient colorectal tumour organoids into immunocompetent recipient mice resulted in rapid tumour growth, whereas transplantation of Cyp11b1-deleted and glucocorticoid synthesis-deficient tumour organoids was characterized by reduced tumour growth and increased immune cell infiltration. In human colorectal tumours, high expression of steroidogenic enzymes correlated with the expression of other immune checkpoints and suppressive cytokines, and negatively correlated with overall patients' survival. Thus, LRH-1-regulated tumour-specific glucocorticoid synthesis contributes to tumour immune escape and represents a novel potential therapeutic target.
Collapse
Affiliation(s)
- Asma Ahmed
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany.,Department of Pharmacology, Faculty of Medicine, University of Khartoum, Sudan
| | - Cindy Reinhold
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Eileen Breunig
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Truong San Phan
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Lea Dietrich
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Feodora Kostadinova
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Corinne Urwyler
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | - Verena M Merk
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Mario Noti
- Institute of Pathology, University of Bern, Switzerland
| | - Israel Toja da Silva
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology - Oncogenomics and Therapeutic Innovation (INCT-INOTE), São Paulo, Brazil
| | - Konstantin Bode
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Fatima Nahle
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Anna Pia Plazzo
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Germany
| | - Regula Stuber
- Institute of Pathology, University of Bern, Switzerland
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | | | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Kenneth J Gollob
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology - Oncogenomics and Therapeutic Innovation (INCT-INOTE), São Paulo, Brazil.,Albert Einstein Israelite Hospital, São Paulo, Brazil
| | - Thomas Brunner
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| |
Collapse
|
10
|
Mehdi A, Attias M, Arakelian A, Szyf M, Piccirillo CA, Rabbani SA. S-adenosylmethionine blocks tumorigenesis and with immune checkpoint inhibitor enhances anti-cancer efficacy against BRAF mutant and wildtype melanomas. Neoplasia 2023; 36:100874. [PMID: 36638586 PMCID: PMC9840362 DOI: 10.1016/j.neo.2022.100874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Despite marked success in treatment with immune checkpoint inhibitor (CPI), only a third of patients are responsive. Thus, melanoma still has one of the highest prevalence and mortality rates; which has led to a search for novel combination therapies that might complement CPI. Aberrant methylomes are one of the mechanisms of resistance to CPI therapy. S-adenosylmethionine (SAM), methyl donor of important epigenetic processes, has significant anti-cancer effects in several malignancies; however, SAM's effect has never been extensively investigated in melanoma. We demonstrate that SAM modulates phenotype switching of melanoma cells and directs the cells towards differentiation indicated by increased melanogenesis (melanin and melanosome synthesis), melanocyte-like morphology, elevated Mitf and Mitf activators' expression, increased antigen expression, reduced proliferation, and reduced stemness genes' expression. Consistently, providing SAM orally, reduced tumor growth and progression, and metastasis of syngeneic BRAF mutant and wild-type (WT) melanoma mouse models. Of note, SAM and anti-PD-1 antibody combination treatment had enhanced anti-cancer efficacy compared to monotherapies, showed significant reduction in tumor growth and progression, and increased survival. Furthermore, SAM and anti-PD-1 antibody combination triggered significantly higher immune cell infiltration, higher CD8+ T cells infiltration and effector functions, and polyfunctionality of CD8+ T cells in YUMMER1.7 tumors. Therefore, SAM combined with CPI provides a novel therapeutic strategy against BRAF mutant and WT melanomas and provides potential to be translated into clinic.
Collapse
Affiliation(s)
- A Mehdi
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada; Program in Metabolic Disorders and Complications (MeDiC), Research Institute of the McGill University Health Centre, 1001 Décarie Blvd. (Glen site), Room EM1.3232, Montréal, QC H4A 3J1, Canada
| | - M Attias
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - A Arakelian
- Program in Metabolic Disorders and Complications (MeDiC), Research Institute of the McGill University Health Centre, 1001 Décarie Blvd. (Glen site), Room EM1.3232, Montréal, QC H4A 3J1, Canada
| | - M Szyf
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3A 2B4, Canada
| | - C A Piccirillo
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - S A Rabbani
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H3A 2B4, Canada; Department of Oncology, McGill University, Montreal, QC H3A 2B4, Canada; Program in Metabolic Disorders and Complications (MeDiC), Research Institute of the McGill University Health Centre, 1001 Décarie Blvd. (Glen site), Room EM1.3232, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
11
|
Cao X, He J, Chen A, Ran J, Li J, Chen D, Zhang H. Comprehensive Analysis of Necroptosis Landscape in Skin Cutaneous Melanoma for Appealing its Implications in Prognosis Estimation and Microenvironment Status. J Pers Med 2023; 13:jpm13020245. [PMID: 36836481 PMCID: PMC9962795 DOI: 10.3390/jpm13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Due to poor prognosis and immunotherapy failure of skin cutaneous melanoma (SKCM), this study sought to find necroptosis-related biomarkers to predict prognosis and improve the situation with predicted immunotherapy drugs. EXPERIMENTAL DESIGN The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression Program (GTEx) database were utilized to recognize the differential necroptosis-related genes (NRGs). Univariate Cox (uni-Cox) and least absolute shrinkage and selection operator (LASSO) Cox analysis were utilized for prognostic signature establishment. The signature was verified in the internal cohort. To assess the signature's prediction performance, the area under the curve (AUC) of receiver operating characteristic (ROC) curves, Kaplan-Meier (K-M) analyses, multivariate Cox (multi-Cox) regression, nomogram, and calibration curves were performed. The molecular and immunological aspects were also reviewed using single-sample gene set enrichment analysis (ssGSEA). Cluster analysis was performed to identify the different types of SKCM. Finally, the expression of the signature gene was verified by immunohistochemical staining. RESULTS On basis of the 67 NRGs, 4 necroptosis-related genes (FASLG, PLK1, EGFR, and TNFRSF21) were constructed to predict SKCM prognosis. The area's 1-, 3-, and 5-year OS under the AUC curve was 0.673, 0.649, and 0.677, respectively. High-risk individuals had significantly lower overall survival (OS) compared to low-risk patients. Immunological status and tumor cell infiltration in high-risk groups were significantly lower, indicating an immune system that was suppressed. In addition, hot and cold tumors could be obtained by cluster analysis, which is helpful for accurate treatment. Cluster 1 was considered a hot tumor and more susceptible to immunotherapy. Immunohistochemical results were consistent with positive and negative regulation of coefficients in signature. CONCLUSION The results of this finding supported that NRGs could predict prognosis and help make a distinction between the cold and hot tumors for improving personalized therapy for SKCM.
Collapse
Affiliation(s)
- Xiaoying Cao
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming He
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - An Chen
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ran
- Neuroscience Research Center, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Dilong Chen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
- Correspondence: (D.C.); (H.Z.)
| | - Hengshu Zhang
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Correspondence: (D.C.); (H.Z.)
| |
Collapse
|
12
|
Du X, Wen S, Shi R, Xia J, Wang R, Zhang Y, Pan B, Wu X, Zhu W, Feng J, Wang X, Shen B. Peripheral blood lymphocytes differentiation patterns in responses / outcomes to immune checkpoint blockade therapies in non-small cell lung cancer: a retrospective study. BMC Cancer 2023; 23:83. [PMID: 36698098 PMCID: PMC9875514 DOI: 10.1186/s12885-023-10502-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES Programmed Cell Death-1/ Programmed Death-ligand 1 (PD-1 / PD-L1) inhibitor therapies targeting immunocytes induce persistent tumor remission in various cancers. However, the appropriate biomarkers for the therapeutic efficacy of PD-L1 and PD-1 blockade remain elusive. MATERIALS AND METHODS For a comprehensive analysis of peri-treatment lymphocyte differentiation, in the current study, we enrolled 146 non-small cell lung cancer patients who received α-PD-1 therapies for exploring the peripheral blood lymphocyte differentiation pattern at baseline and post-treatment (dynamic changes) by flow cytometry. RESULTS At baseline, CD4+ / CD8+ T cell ratio predicts good responses and outcomes, but activated T cell and cytotoxic T cell counts predict poor responses and outcomes. And for dynamic changes, after 6 weeks of immune checkpoint blockade (ICB) treatment, compared with baseline level, the elevation of total T and B cell counts indicate poor responses, and total T and TH cell counts indicate poor prognosis while activated T cell predicts good prognosis. And after 12 weeks, elevated total lymphocyte, cytotoxic T cell counts, and decreased total T cell counts and CD4+ / CD8+ T cell ratio predict good responses / outcomes. Our clinical predicting model shows good performance in predicting ICB treatment responses / outcomes. CONCLUSION Patients with favorable clinical responses / outcomes have distinctive peripheral blood immunocyte differentiation characteristics, indicating the potential of utilizing the peripheral immunocyte differentiation patterns for predicting ICB responses / outcomes.
Collapse
Affiliation(s)
- Xiaoyue Du
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Shaodi Wen
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Run Shi
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingwei Xia
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ruotong Wang
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yihan Zhang
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Banzhou Pan
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaoliu Wu
- grid.452509.f0000 0004 1764 4566Flow Cytometry Core Facility, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wei Zhu
- grid.440785.a0000 0001 0743 511XSchool of Medicine, Jiangsu University, Zhenjiang, China
| | - Jifeng Feng
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xin Wang
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
13
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 185.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
14
|
Elsaka RO, Helal SM, Abdelhady AM, Kolaib NM, Soliman MA. Immunohistochemical expression of CD8, CTLA4, and PD-L1 in NSCLC of smokers versus non smokers and its effect on prognosis. ALEXANDRIA JOURNAL OF MEDICINE 2022. [DOI: 10.1080/20905068.2022.2101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Rasha. O. Elsaka
- Department of Oncology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Suzan. M. Helal
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed. M. Abdelhady
- Department of Chest Disease, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nourhan. M. Kolaib
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Manal. A. Soliman
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Behrens LM, van Egmond M, van den Berg TK. Neutrophils as immune effector cells in antibody therapy in cancer. Immunol Rev 2022; 314:280-301. [PMID: 36331258 DOI: 10.1111/imr.13159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor-targeting monoclonal antibodies are available for a number of cancer cell types (over)expressing the corresponding tumor antigens. Such antibodies can limit tumor progression by different mechanisms, including direct growth inhibition and immune-mediated mechanisms, in particular complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC). ADCC can be mediated by various types of immune cells, including neutrophils, the most abundant leukocyte in circulation. Neutrophils express a number of Fc receptors, including Fcγ- and Fcα-receptors, and can therefore kill tumor cells opsonized with either IgG or IgA antibodies. In recent years, important insights have been obtained with respect to the mechanism(s) by which neutrophils engage and kill antibody-opsonized cancer cells and these findings are reviewed here. In addition, we consider a number of additional ways in which neutrophils may affect cancer progression, in particular by regulating adaptive anti-cancer immunity.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
- Department of Surgery, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
| | | |
Collapse
|
16
|
Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them. Br J Cancer 2022; 127:976-987. [DOI: 10.1038/s41416-022-01864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
|
17
|
Lei J, Coronel MM, Yolcu ES, Deng H, Grimany-Nuno O, Hunckler MD, Ulker V, Yang Z, Lee KM, Zhang A, Luo H, Peters CW, Zou Z, Chen T, Wang Z, McCoy CS, Rosales IA, Markmann JF, Shirwan H, García AJ. FasL microgels induce immune acceptance of islet allografts in nonhuman primates. SCIENCE ADVANCES 2022; 8:eabm9881. [PMID: 35559682 PMCID: PMC9106299 DOI: 10.1126/sciadv.abm9881] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/30/2022] [Indexed: 05/23/2023]
Abstract
Islet transplantation to treat insulin-dependent diabetes is greatly limited by the need for maintenance immunosuppression. We report a strategy through which cotransplantation of allogeneic islets and streptavidin (SA)-FasL-presenting microgels to the omentum under transient rapamycin monotherapy resulted in robust glycemic control, sustained C-peptide levels, and graft survival in diabetic nonhuman primates for >6 months. Surgical extraction of the graft resulted in prompt hyperglycemia. In contrast, animals receiving microgels without SA-FasL under the same rapamycin regimen rejected islet grafts acutely. Graft survival was associated with increased number of FoxP3+ cells in the graft site with no significant changes in T cell systemic frequencies or responses to donor and third-party antigens, indicating localized tolerance. Recipients of SA-FasL microgels exhibited normal liver and kidney metabolic function, demonstrating safety. This localized immunomodulatory strategy succeeded with unmodified islets and does not require long-term immunosuppression, showing translational potential in β cell replacement for treating type 1 diabetes.
Collapse
Affiliation(s)
- Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - María M. Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Esma S. Yolcu
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Hongping Deng
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Orlando Grimany-Nuno
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Michael D. Hunckler
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vahap Ulker
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Zhihong Yang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang M. Lee
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Zhang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hao Luo
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Cole W. Peters
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhongliang Zou
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tao Chen
- Cellular Therapy Department, Xiang’an Hospital, Xiamen University Medical School, Xiamen, China
| | - Zhenjuan Wang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Colleen S. McCoy
- Division of Comparative Medicine, Massachusetts Institute of Technology, Boston, MA, USA
| | - Ivy A. Rosales
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F. Markmann
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Haval Shirwan
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
18
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
19
|
Wilczyński JR, Nowak M. Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:1-57. [PMID: 35165859 DOI: 10.1007/978-3-030-91311-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emphasizing the dynamic processes between cancer and host immune system, the initially discovered concept of cancer immunosurveillance has been replaced by the current concept of cancer immunoediting consisting of three phases: elimination, equilibrium, and escape. Solid tumors composed of both cancer and host stromal cells are an example how the three phases of cancer immunoediting functionally evolve and how tumor shaped by the host immune system gets finally resistant phenotype. The elimination, equilibrium, and escape have been described in this chapter in details, including the role of immune surveillance, cancer dormancy, disruption of the antigen-presenting machinery, tumor-infiltrating immune cells, resistance to apoptosis, as well as the function of tumor stroma, microvesicles, exosomes, and inflammation.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| | - Marek Nowak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
- Department of Operative and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Li H, Liu S, Li C, Xiao Z, Hu J, Zhao C. TNF Family-Based Signature Predicts Prognosis, Tumor Microenvironment, and Molecular Subtypes in Bladder Carcinoma. Front Cell Dev Biol 2022; 9:800967. [PMID: 35174161 PMCID: PMC8842074 DOI: 10.3389/fcell.2021.800967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Tumor necrosis factor (TNF) family members play vital roles in cancer development and antitumor immune responses. However, the expression patterns, prognostic values, and immunological characteristics of TNF members in bladder carcinoma (BLCA) remain unclear. Methods: The training cohort, TCGA-BLCA, was downloaded from The Cancer Genome Atlas; another two Gene Expression Omnibus datasets (GSE13507 and GSE32894) and the Xiangya cohort (RNA-sequencing cohort collected from our hospital) were used as the external validation cohort. The least absolute shrinkage and selection operator (LASSO) algorithm and cross-validation were used to screen variables. Cox regression model and random survival forest (RSF) were used to develop the risk score, respectively. Then, we systematically correlated the TNF risk score with the tumor microenvironment (TME) cell infiltration, molecular subtypes of BLCA, and the potential value for predicting the efficacy of immunotherapy. Results: We developed two TNF-based patterns, named TNF cluster 1 and TNF cluster 2. TNF cluster 1 exhibited poorer survival outcome and an inflamed TME characteristic compared with TNF cluster 2. We then filtered out 196 differentially expressed genes between the two TNF clusters and applied the LASSO algorithm and cross-validation to screen out 22 genes to build the risk score. For risk score, we found that RSF exhibited higher efficacy than the Cox regression model, and we chose the risk score developed by RSF for the following analysis. BLCA patients in the higher risk score group showed significantly poorer survival outcomes. Moreover, these results could be validated in the external validation cohorts, including the GSE13507, GSE32894, and Xiangya cohorts. Then, we systematically correlated the risk score with TME cell infiltration and found that it was positively correlated with the infiltration of a majority of immune cells. Also, a higher risk score indicated a basal subtype of BLCA. Notably, the relationship between risk score, TME cell infiltration, and molecular subtypes could be validated in the Xiangya cohort. Conclusion: We developed and validated a robust TNF-based risk score, which could predict prognostic outcomes, TME, and molecular subtypes of BLCA. However, the value of risk score predicting the efficacy of immunotherapy needs further research.
Collapse
Affiliation(s)
- Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siyuan Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenxuan Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Zhao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Advances in Allogeneic Cancer Cell Therapy and Future Perspectives on “Off-the-Shelf” T Cell Therapy Using iPSC Technology and Gene Editing. Cells 2022; 11:cells11020269. [PMID: 35053386 PMCID: PMC8773622 DOI: 10.3390/cells11020269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
The concept of allogeneic cell therapy was first presented over 60 years ago with hematopoietic stem cell transplantation. However, complications such as graft versus host disease (GVHD) and regimen-related toxicities remained as major obstacles. To maximize the effect of graft versus leukemia, while minimizing the effect of GVHD, donor lymphocyte infusion was utilized. This idea, which was used against viral infections, postulated that adoptive transfer of virus-specific cytotoxic T lymphocytes could reconstitute specific immunity and eliminate virus infected cells and led to the idea of banking third party cytotoxic T cells (CTLs). T cell exhaustion sometimes became a problem and difficulty arose in creating robust CTLs. However, the introduction of induced pluripotent stem cells (iPSCs) lessens such problems, and by using iPSC technology, unlimited numbers of allogeneic rejuvenated CTLs with robust and proliferative cytotoxic activity can be created. Despite this revolutionary concept, several concerns still exist, such as immunorejection by recipient cells and safety issues of gene editing. In this review, we describe approaches to a feasible “off-the-shelf” therapy that can be distributed rapidly worldwide. We also offer perspectives on the future of allogeneic cell cancer immunotherapy.
Collapse
|
22
|
Georgantzoglou N, Kokkali S, Tsourouflis G, Theocharis S. Tumor Microenvironment in Adrenocortical Carcinoma: Barrier to Immunotherapy Success? Cancers (Basel) 2021; 13:1798. [PMID: 33918733 PMCID: PMC8069982 DOI: 10.3390/cancers13081798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Adrenocortical carcinoma is a rare malignancy with aggressive behavior, with up to 40% of patients presenting with metastases at the time of diagnosis. Both conventional chemotherapeutic regimens and novel immunotherapeutic agents, many of which are currently being tested in ongoing clinical trials, have yielded modest results so far, bringing the need for a deeper understanding of adrenal cancer behavior to the forefront. In the recent years, the tumor microenvironment has emerged as a major determinant of cancer response to immunotherapy and an increasing number of studies on other solid tumors have focused on manipulating the microenvironment in the favor of the host and discovering new potential target molecules. In the present review we aim to explore the characteristics of adrenocortical cancer's microenvironment, highlighting the mechanisms of immune evasion responsible for the modest immunotherapeutic results, and identify novel potential strategies.
Collapse
Affiliation(s)
- Natalia Georgantzoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (N.G.); (S.K.)
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (N.G.); (S.K.)
- First Medical Oncology Clinic, Saint-Savvas Anti Cancer Hospital, 115 27 Athens, Greece
| | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (N.G.); (S.K.)
| |
Collapse
|
23
|
Ali SR, Dobbs TD, Slade R, Whitaker IS. Multidimensional indicators of scholarly impact in the skin oncology literature: is there a correlation between bibliometric and altmetric profiles? J Plast Surg Hand Surg 2020; 55:232-241. [PMID: 33356756 DOI: 10.1080/2000656x.2020.1858842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Bibliometric and altmetric analyses are used to identify landmark publications in their respective research field. We hypothesised that highly cited skin oncology articles correlate positively with the Oxford Evidence Based Medicine scoring level, altmetric score (AS) and rank within the top 100 manuscripts.Methods: Thomson Reuter's Web of Science citation indexing database was searched to identify all English-language skin oncology full-text articles in the last 75 years. The top 100 articles with the highest citation count were analysed by subject matter, publishing journal, author, year, institution, individual and five-year impact factor, AS and Oxford EBM level. Results: 180,132 articles were identified. The most cited article (Hodi et al.) demonstrated improved survival with ipilimumab in patients with metastatic melanoma (7894 citations). The article with the highest AS was Esteva et al. (AS = 576.7, 'dermatologist-level classification of skin cancer with deep neural networks'). No difference was found between evidence level and citation count (r = -0.1239, p = 0.2291), but a significant difference was seen for AS (r = -0.3024, p = 0.0028). AS scores increased over time, whereas bibliometrics did not. Conclusion: This work highlights the most influential work in the skin oncology field in the last 75 years. We have identified a differential relationship between commonly used metrics and evidence level in the field of skin oncology. As the digitalisation of research output and consumption increases, both bibliometric and altmetric analyses need to be considered when an article's impact is being assessed.
Collapse
Affiliation(s)
- Stephen R Ali
- Reconstructive Surgery and Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea, UK.,Welsh Centre for Burns and Plastic Surgery Morriston Hospital, Swansea, UK
| | - Thomas D Dobbs
- Reconstructive Surgery and Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea, UK.,Welsh Centre for Burns and Plastic Surgery Morriston Hospital, Swansea, UK
| | - Robert Slade
- Welsh Centre for Burns and Plastic Surgery Morriston Hospital, Swansea, UK
| | - Iain S Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea, UK.,Welsh Centre for Burns and Plastic Surgery Morriston Hospital, Swansea, UK
| |
Collapse
|
24
|
Aslam N, Abusharieh E, Abuarqoub D, Ali D, Al-Hattab D, Wehaibi S, Al-Kurdi B, Jamali F, Alshaer W, Jafar H, Awidi AS. Anti-oncogenic activities exhibited by paracrine factors of MSCs can be mediated by modulation of KITLG and DKK1 genes in glioma SCs in vitro. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:147-165. [PMID: 33575478 PMCID: PMC7851499 DOI: 10.1016/j.omto.2020.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) use their stemness properties to perpetuate their lineage and survive chemotherapy. Currently cell-based and cell-free therapies are under investigation to develop novel anti-cancer treatment modalities. We designed this study to investigate how cell extracts of mesenchymal stem cells affect the growth of glioma stem cells in vitro. Gliospheres were generated from the U87MG cell line and treated with conditioned media of Wharton’s jelly and bone marrow mesenchymal stem cells. The effects were investigated at the functional and molecular levels. Our results showed that conditioned media from both types of mesenchymal stem cells changed the morphology of spheres and inhibited the proliferation, invasion, and self-renewal ability of glioma stem cells. At the molecular level, metabolism interruption at oxidative phosphorylation, cell cycle arrest, cell differentiation, and upregulation of the immune response were observed. Furthermore, this effect was mediated by the upregulation of the DKK1 gene inhibiting the Wnt pathway mediated by growth factor activity and downregulation of the KITLG gene activated by growth factor and cytokine activity, inhibiting multiple pathways. We conclude that different types of mesenchymal stem cells possess antitumor properties and their paracrine factors, in combination with anti-immune modalities, can provide practical therapeutic targets for glioblastoma treatment.
Collapse
Affiliation(s)
- Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Elham Abusharieh
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.,Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Dana Al-Hattab
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.,Laboratory for Nanomedicine, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Ban Al-Kurdi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Fatima Jamali
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.,Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Abdalla S Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.,Department of Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan.,Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
25
|
Solanine Inhibits Immune Escape Mediated by Hepatoma Treg Cells via the TGF β/Smad Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9749631. [PMID: 33204731 PMCID: PMC7655262 DOI: 10.1155/2020/9749631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/05/2020] [Accepted: 10/15/2020] [Indexed: 01/14/2023]
Abstract
Objective To observe the inhibitory effect of solanine on regulatory T cells (Treg) in transplanted hepatoma mice and to study the mechanism of solanine inhibiting tumor growth. Methods The levels of Treg cells and IL-2, IL-10, and TGFβ in the blood of patients with liver cancer were detected by flow cytometry and ELISA, respectively. A mouse hepatocellular carcinoma (HCC) graft model was established and randomly divided into four groups: control group, solanine group, TGFβ inhibitor group (SB-431542), and solanine +TGFβ inhibitor combined group. Tumor volume of each group was recorded, tumor inhibition rate was calculated, and tumor metastasis was counted. The proportion of CD4+CD25+Foxp3+ Treg in transplanted tumor tissues was detected by flow cytometry. The expression levels of Foxp3 and TGFβ in transplanted tumor tissues were detected by quantitative fluorescence PCR. Results Compared with healthy people, Treg cells and IL-2, IL-10, and TGFβ contents in peripheral blood of liver cancer patients were increased. The results of the transplanted tumor model in mice showed that the tumor volume of the transplanted mice in the solanine group and the TGFβ inhibitor mice was reduced compared with the control group. The combined group had the smallest tumor volume. The proportion of CD4+CD25+Foxp3+ Treg in the transplanted tumor tissues of mice in the solanine treatment group was significantly lower than that in the control group. The expressions of Foxp3 and TGFβ in the transplanted tumor tissues of mice in the solanine group were significantly lower than those in the control group. Conclusion Solanine may enhance the antitumor immune response by downregulating the proportion of CD4+CD25+ Treg and the expression of Foxp3 and TGFβ in tumor tissues.
Collapse
|
26
|
Ichiki Y, Shigematsu Y, Baba T, Shiota H, Fukuyama T, Nagata Y, So T, Yasuda M, Takenoyama M, Yasumoto K. Development of adoptive immunotherapy with KK-LC-1-specific TCR-transduced γδT cells against lung cancer cells. Cancer Sci 2020; 111:4021-4030. [PMID: 32780528 PMCID: PMC7648040 DOI: 10.1111/cas.14612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
The present study analyzed the antitumor effect of γδT cells transduced with the TCR of cancer-specific CTLs to establish forceful cancer-specific adoptive immunotherapy. We cloned the TCRαβ genes from CTLs showing HLA-B15 restricted recognition of Kita-Kyushu lung cancer antigen-1 (KK-LC-1), a cancer/germline gene antigen, identified in a lung adenocarcinoma case (F1121). The TCRαβ and CD8 genes were transduced into γδT cells induced from PBLs of healthy volunteers stimulated with zoledronate and IL-2. The KK-LC-1-specific TCRαβ-CD8 γδT cells showed cytotoxic activity against the KK-LC-1 positive lung cancer cell line F1121L and produced IFN-γ against F1121L and KK-LC-1 peptide-pulsed F1121 EBV-B cells. These responses were blocked by HLA class I and HLA-B/C antibodies. An in vivo assay using NOD/SCID mice with xenotransplantation of human lung cancer cells was performed, and the TCRαβ-CD8 transduced γδT cells (TCRαβ-CD8 γδT cells) were intravenously injected. Growth inhibition of KK-LC-1+ , HLA-B15+ lung cancer cells was confirmed in mice with injection of the TCRαβ-CD8 γδT cells from 1 wk after xenotransplantation of cancer cells but not in those treated 2 wk after xenotransplantation. The resected specimens of the tumor, 2 wk after xenotransplantation, highly expressed FasL but not programmed death ligand-1 (PD-L1) by immunohistochemical staining. FasL highly expressed cancer cells xenotransplanted 2 wk ago were resistant to TCRαβ-CD8 γδT cells injection. These results suggested that apoptosis of Fas-positive TCRαβ-CD8 γδT cells may be induced by a Fas-mediated signal after interacting with FasL-positive cancer cells.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Disease Models, Animal
- Humans
- Immunomodulation
- Immunotherapy, Adoptive
- Lung Neoplasms/etiology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice, Transgenic
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Transduction, Genetic
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Grants
- Cancer Translational Research Project; Ministry of Health, Labour and Welfare of Japan
- Cancer Research Institute, UOEH Research Grant for Promotion of Occupational Health
- JP20390375 Ministry of Education, Culture, Sports, Science and Technology, Japan
- JP21659327 Ministry of Education, Culture, Sports, Science and Technology, Japan
- JP18K08806 Ministry of Education, Culture, Sports, Science and Technology, Japan
- JP19K09294 Ministry of Education, Culture, Sports, Science and Technology, Japan
Collapse
Affiliation(s)
- Yoshinobu Ichiki
- Department of General Thoracic SurgeryNational Hospital Organization, Saitama HospitalWakoJapan
- Second Department of SurgerySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Yoshiki Shigematsu
- Second Department of SurgerySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- Department of Respiratory SurgeryIchinomiya‐Nishi HospitalIchinomiyaJapan
| | - Tetsuro Baba
- Second Department of SurgerySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- Baba ClinicKasuya‐gunJapan
| | - Hironobu Shiota
- Second Department of SurgerySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- Department of General Thoracic SurgeryChiba Rosai HospitalIchiharaJapan
| | - Takashi Fukuyama
- Second Department of SurgerySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- Division of Biomedical ResearchKitasato University Medical CenterKitamotoJapan
| | - Yoshika Nagata
- Second Department of SurgerySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- Department of Breast SurgeryShonan Kamakura General HospitalKamakuraJapan
| | - Tetsuya So
- Second Department of SurgerySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- Department of Thoracic SurgeryShin‐Komonji HospitalKitakyusyuJapan
| | - Manabu Yasuda
- Second Department of SurgerySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- Department of Chest SurgeryIizuka HospitalIizukaJapan
| | - Mitsuhiro Takenoyama
- Second Department of SurgerySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- Department of Thoracic OncologyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Kosei Yasumoto
- Second Department of SurgerySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- Kitakyushu Municipal Moji HospitalKitakyushuJapan
| |
Collapse
|
27
|
Cao X, Tan T, Zhu D, Yu H, Liu Y, Zhou H, Jin Y, Xia Q. Paclitaxel-Loaded Macrophage Membrane Camouflaged Albumin Nanoparticles for Targeted Cancer Therapy. Int J Nanomedicine 2020; 15:1915-1928. [PMID: 32256068 PMCID: PMC7090179 DOI: 10.2147/ijn.s244849] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Melanoma is the most common symptom of aggressive skin cancer, and it has become a serious health concern worldwide in recent years. The metastasis rate of malignant melanoma remains high, and it is highly difficult to cure with the currently available treatment options. Effective yet safe therapeutic options are still lacking. Alternative treatment options are in great demand to improve the therapeutic outcome against advanced melanoma. This study aimed to develop albumin nanoparticles (ANPs) coated with macrophage plasma membranes (RANPs) loaded with paclitaxel (PTX) to achieve targeted therapy against malignant melanoma. METHODS Membrane derivations were achieved by using a combination of hypotonic lysis, mechanical membrane fragmentation, and differential centrifugation to empty the harvested cells of their intracellular contents. The collected membrane was then physically extruded through a 400 nm porous polycarbonate membrane to form macrophage cell membrane vesicles. Albumin nanoparticles were prepared through a well-studied nanoprecipitation process. At last, the two components were then coextruded through a 200 nm porous polycarbonate membrane. RESULTS Using paclitaxel as the model drug, PTX-loaded RANPs displayed significantly enhanced cytotoxicity and apoptosis rates compared to albumin nanoparticles without membrane coating in the murine melanoma cell line B16F10. RANPs also exhibited significantly higher internalization efficiency in B16F10 cells than albumin nanoparticles without a membrane coating. Next, a B16F10 tumor xenograft mouse model was established to explore the biodistribution profiles of RANPs, which showed prolonged blood circulation and selective accumulation at the tumor site. PTX-loaded RANPs also demonstrated greatly improved antitumor efficacy in B16F10 tumor-bearing mouse xenografts. CONCLUSION Albumin-based nanoscale delivery systems coated with macrophage plasma membranes offer a highly promising approach to achieve tumor-targeted therapy following systemic administration.
Collapse
Affiliation(s)
- Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Tingfei Tan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Dongchun Zhu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Haixia Yu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Yaru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Haiyun Zhou
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Yong Jin
- Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
28
|
De Guillebon E, Dardenne A, Saldmann A, Séguier S, Tran T, Paolini L, Lebbe C, Tartour E. Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. Int J Cancer 2020; 147:1509-1518. [DOI: 10.1002/ijc.32889] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/28/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | - Antoine Dardenne
- Department of Gastro‐enterology and Gastro‐intestinal OncologyHopital Européen Georges Pompidou, APHP Paris France
| | - Antonin Saldmann
- Université de Paris, PARCC, INSERM Paris France
- Department of Immunology, AP‐HPHopital Européen Georges Pompidou Paris France
| | - Sylvie Séguier
- Université de Paris, PARCC, INSERM Paris France
- Faculté de Chirurgie DentaireHôpital Louis Mourier Montrouge France
| | - Thi Tran
- Université de Paris, PARCC, INSERM Paris France
| | - Lea Paolini
- Université de Paris, PARCC, INSERM Paris France
| | - Celeste Lebbe
- Department of DermatologySaint‐Louis University Hospital Paris France
- Université de Paris, INSERM U976 Paris France
| | - Eric Tartour
- Université de Paris, PARCC, INSERM Paris France
- Department of Immunology, AP‐HPHopital Européen Georges Pompidou Paris France
- Equipe Labellisée Ligue Contre le Cancer Paris France
| |
Collapse
|
29
|
Nevi L, Costantini D, Safarikia S, Di Matteo S, Melandro F, Berloco PB, Cardinale V. Cholest-4,6-Dien-3-One Promote Epithelial-To-Mesenchymal Transition (EMT) in Biliary Tree Stem/Progenitor Cell Cultures In Vitro. Cells 2019; 8:cells8111443. [PMID: 31731674 PMCID: PMC6912632 DOI: 10.3390/cells8111443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Human biliary tree stem/progenitor cells (hBTSCs), reside in peribiliary glands, are mainly stimulated by primary sclerosing cholangitis (PSC) and cholangiocarcinoma. In these pathologies, hBTSCs displayed epithelial-to-mesenchymal transition (EMT), senescence characteristics, and impaired differentiation. Here, we investigated the effects of cholest-4,6-dien-3-one, an oxysterol involved in cholangiopathies, on hBTSCs biology. hBTSCs were isolated from donor organs, cultured in self-renewal control conditions, differentiated in mature cholangiocytes by specifically tailored medium, or exposed for 10 days to concentration of cholest-4,6-dien-3-one (0.14 mM). Viability, proliferation, senescence, EMT genes expression, telomerase activity, interleukin 6 (IL6) secretion, differentiation capacity, and HDAC6 gene expression were analyzed. Although the effect of cholest-4,6-dien-3-one was not detected on hBTSCs viability, we found a significant increase in cell proliferation, senescence, and IL6 secretion. Interestingly, cholest-4.6-dien-3-one impaired differentiation in mature cholangiocytes and, simultaneously, induced the EMT markers, significantly reduced the telomerase activity, and induced HDAC6 gene expression. Moreover, cholest-4,6-dien-3-one enhanced bone morphogenic protein 4 (Bmp-4) and sonic hedgehog (Shh) pathways in hBTSCs. The same pathways activated by human recombinant proteins induced the expression of EMT markers in hBTSCs. In conclusion, we demonstrated that chronic exposition of cholest-4,6-dien-3-one induced cell proliferation, EMT markers, and senescence in hBTSC, and also impaired the differentiation in mature cholangiocytes.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
- Correspondence: (L.N.); (V.C.); Tel.: +39-3392335294 (L.N.); +39-3495601492 (V.C.)
| | - Daniele Costantini
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Samira Safarikia
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Sabina Di Matteo
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Fabio Melandro
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, 0016 Rome, Italy; (F.M.); (P.B.B.)
| | - Pasquale Bartolomeo Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, 0016 Rome, Italy; (F.M.); (P.B.B.)
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, “Sapienza” University of Rome, 04100 Latina, Italy
- Correspondence: (L.N.); (V.C.); Tel.: +39-3392335294 (L.N.); +39-3495601492 (V.C.)
| |
Collapse
|
30
|
Zhu J, Petit PF, Van den Eynde BJ. Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunol Immunother 2019; 68:835-847. [PMID: 30406374 PMCID: PMC11028327 DOI: 10.1007/s00262-018-2269-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy based on checkpoint inhibitors is providing substantial clinical benefit, but only to a minority of cancer patients. The current priority is to understand why the majority of patients fail to respond. Besides T-cell dysfunction, T-cell apoptosis was reported in several recent studies as a relevant mechanism of tumoral immune resistance. Several death receptors (Fas, DR3, DR4, DR5, TNFR1) can trigger apoptosis when activated by their respective ligands. In this review, we discuss the immunomodulatory role of the main death receptors and how these are shaping the tumor microenvironment, with a focus on Fas and its ligand. Fas-mediated apoptosis of T cells has long been known as a mechanism allowing the contraction of T-cell responses to prevent immunopathology, a phenomenon known as activation-induced cell death, which is triggered by induction of Fas ligand (FasL) expression on T cells themselves and qualifies as an immune checkpoint mechanism. Recent evidence indicates that other cells in the tumor microenvironment can express FasL and trigger apoptosis of tumor-infiltrating lymphocytes (TIL), including endothelial cells and myeloid-derived suppressor cells. The resulting disappearance of TIL prevents anti-tumor immunity and may in fact contribute to the absence of TIL that is typical of "cold" tumors that fail to respond to immunotherapy. Interfering with the Fas-FasL pathway in the tumor microenvironment has the potential to increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Jingjing Zhu
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium
| | - Pierre-Florent Petit
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium.
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.
| |
Collapse
|
31
|
Jiang X, Wu J, Wang J, Huang R. Tobacco and oral squamous cell carcinoma: A review of carcinogenic pathways. Tob Induc Dis 2019; 17:29. [PMID: 31582940 PMCID: PMC6752112 DOI: 10.18332/tid/105844] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/18/2019] [Accepted: 03/20/2019] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Tobacco is one of the most important risk factors for premature death globally. More than 60 toxic chemicals in tobacco can invade the body’s various systems. Oral squamous cell carcinoma (OSCC) is a pathological type of oral cancer, accounting for over 90% of oral cancers. A vast quantity of scientific, clinical and epidemiological data shows that tobacco is associated with the development of oral squamous cell carcinoma, and its carcinogenic pathways may be complicated. METHODS We conducted a thorough electronic search by Cochrane, EMBASE and PubMed to identify relevant studies. Studies published up to the end of October 2018 were included. After assessing and selecting articles based on eligibility criteria, studies were classified and elaborated according to the pathogenesis. RESULTS Tobacco as an important risk factor can cause epigenetic alteration of oral epithelial cells, inhibit multiple systemic immune functions of the host, and its toxic metabolites can cause oxidative stress on tissues and induce OSCC. In addition, some specific viruses such as EBV and HPV are thought to play a role in the development of OSCC. CONCLUSIONS Oral cancer ranks eighth among the most common causes of cancer-related deaths worldwide, and tobacco is one the most important carcinogenic factors of OSCC. This review of the literature attempts to provide directions and ideas for future related research, and emphasizes the need for efforts to reduce tobacco consumption.
Collapse
Affiliation(s)
- Xiaoge Jiang
- Department of Pediatric Dentistry, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaxin Wu
- Department of Pediatric Dentistry, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiexue Wang
- Department of Pediatric Dentistry, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruijie Huang
- Department of Pediatric Dentistry, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Yajima T, Hoshino K, Muranushi R, Mogi A, Onozato R, Yamaki E, Kosaka T, Tanaka S, Shirabe K, Yoshikai Y, Kuwano H. Fas/FasL signaling is critical for the survival of exhausted antigen-specific CD8 + T cells during tumor immune response. Mol Immunol 2019; 107:97-105. [PMID: 30711908 DOI: 10.1016/j.molimm.2019.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/30/2018] [Accepted: 01/25/2019] [Indexed: 01/22/2023]
Abstract
Antigen (Ag)-specific activated CD8+ T cells are critical for tumor elimination but become exhausted, and thus, dysfunctional during immune response against the tumor due to chronic antigen stimulation. The signaling of immune checkpoint receptors is known to be a critical component in this exhaustion; however, the fate of these exhausted CD8+ T cells remains unclear. Therefore, to elucidate this, we followed the fate of Ag-specific CD8+ T cells by directly visualizing them using MHC class I tetramers coupled with ovoalubumin257-264 in C57BL/6 mice inoculated with EG.7. We found that the number of generated Ag-specific activated CD8+ T cells decreased via apoptosis during a prolonged tumor immune response. However, the number of Ag-specific CD8+ T cells was significantly higher in Fas ligand (FasL)-dysfunctional gld mice than in control mice, resulting in suppressed tumor growth. In contrast, the enforced expression of Bcl-2 failed to rescue apoptosis of the exhausted CD8+ T cells following EG.7 inoculation. These results suggest that Fas/FasL signaling is critical for the survival of exhausted CD8+ T cells during the tumor immune response.
Collapse
Affiliation(s)
- Toshiki Yajima
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan.
| | - Kouki Hoshino
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ryo Muranushi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Akira Mogi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ryoichi Onozato
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ei Yamaki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Takayuki Kosaka
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Shigebumi Tanaka
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| |
Collapse
|
33
|
Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev 2019; 99:115-160. [DOI: 10.1152/physrev.00045.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
34
|
Zhou J, Yang Y, Wang W, Zhang Y, Chen Z, Hao C, Zhang J. Melanoma-released exosomes directly activate the mitochondrial apoptotic pathway of CD4 + T cells through their microRNA cargo. Exp Cell Res 2018; 371:364-371. [PMID: 30149000 DOI: 10.1016/j.yexcr.2018.08.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/02/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022]
Abstract
Tumor-derived exosomes (TEX) play an important role in the escape of tumor cells from immune surveillance. However, the details of the mechanism are not fully understood. In this study, the apoptosis of CD4+ T cells increased during treatment with B16-derived exosomes in vitro and in vivo, resulting in accelerated growth of melanoma cells in mice. While the release of exosomes was blocked by disrupting the expression of Rab27a, tumor growth was clearly inhibited, and the percentage of T cells in the tumor environment increased. At the same time, Western blot showed that TEX could increase the activation of caspase-3, caspase-7 and caspase-9 but not caspase-8, down-regulating the anti-apoptotic proteins, including BCL-2, MCL-1 and BCL-xL in CD4+ T cells, and indicating that the TEX activates the mitochondrial apoptotic pathway of CD4+ T cells. These reductions were probably associated with the release of microRNAs, such as miR-690, from TEX to T cells. Our present study reveals for the first time that melanoma-released exosomes may directly activate the mitochondrial apoptotic pathway of CD4+ T cells through their microRNA cargo.
Collapse
Affiliation(s)
- Ji Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, People's Republic of China
| | - Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, People's Republic of China
| | - WenWen Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, People's Republic of China
| | - Yuan Zhang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, People's Republic of China
| | - ZhengRong Chen
- Department of respiratory disease, Children's hospital of Soochow University, Suzhou, Jiangsu Province 215025, People's Republic of China
| | - ChuangLi Hao
- Department of respiratory disease, Children's hospital of Soochow University, Suzhou, Jiangsu Province 215025, People's Republic of China
| | - JinPing Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, People's Republic of China.
| |
Collapse
|
35
|
Cai L, Liu J, Wang Y, Chen H, Ma Y, Wang Y, Wang Y. Enhanced anti-melanoma efficacy of interferon α-2b via overexpression of ING4 by enhanced Fas/FasL-mediated apoptosis. Oncol Lett 2018; 15:9577-9583. [PMID: 29805679 DOI: 10.3892/ol.2018.8534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/18/2018] [Indexed: 11/05/2022] Open
Abstract
Melanoma, is a highly aggressive and the most lethal form of skin cancer, and is known to be resistant to current therapeutic modalities. Interferon (IFN)-α2b is an immunostimulatory cytokine and is used to treat melanoma by inhibiting proliferation and promoting apoptosis of cells. However, there is a need to improve the efficacy of IFN-α2b. Inhibitor of growth family member 4 (ING4) has been reported to function as a tumor suppressor and is involved in regulating cell cycle progression, apoptosis, cell migration and invasion. Previously studies have also reported that caspase-3, caspase-8, poly (ADP-ribose) polymerase (PARP) and Fas/Fas ligand (FasL) pathways are involved in the process of apoptosis. In the present study, it was investigated whether overexpression of ING4 is able to enhance IFN-α2b response in human melanoma cells. It was determined that the overexpression of ING4 was able to increase the effects of IFN-α2b, and induce cell death and apoptosis in melanoma cells. Furthermore, the overexpression of ING4 resulted in decreased expression of PARP, caspase-3 and -8. The expression of cleaved PARP, cleaved caspase-3, cleaved caspase-8, Fas and FasL was increased in the A375 melanoma cell line. These results demonstrate that the overexpression of ING4 is able to enhance the anti-melanoma activity of IFN-α2b. These findings provide a potential therapeutic strategy where a combination of ING4 overexpression and IFN-α2b treatment may lead to higher levels of apoptosis in melanoma cells.
Collapse
Affiliation(s)
- Limin Cai
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jing Liu
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu Wang
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongxiao Chen
- Department of Dermatology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Yanli Ma
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanhua Wang
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yongchen Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
36
|
Staibano S, Mascolo M, Tranfa F, Salvatore G, Mignogna C, Bufo P, Nugnes L, Bonavolontà G, De Rosa G. Tumor Infiltrating Lymphocytes in Uveal Melanoma: A Link with Clinical Behavior? Int J Immunopathol Pharmacol 2018. [DOI: 10.1177/205873920601900117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Experimental and clinical evidence indicate that immunological mechanisms might be important in the clinical course of uveal malignant melanoma (UMM). We analyzed the amount and phenotype of tumor infiltrating lymphocytes (TIL) and the expression of the apoptosis-inducing molecule Fas and its ligand, FasL, on tumor cells and TIL in a selected series of UMM with the aim to establish if a correlation between their expression and the clinical behavior of UMM exists. TIL phenotype and Fas/FasL expression were evaluated by immunohistochemistry in 61 cases of formalin-fixed, paraffin-embedded UMM. Results were compared with the follow-up data of patients. Most of the UMM showed a prevalence of CD8+ CD3+ T lymphocytes, or CD4+ and CD8+ cells in equal amounts. UMM showed a variable expression of FasL, ranging from 0 to > 40% of neoplastic cells. Fas was always expressed in TIL, although with a variable extent. A subgroup of UMM showed in TIL a strongly reduced or even absent expression of TCR ζ-chain, involved in activation of T-lymphocytes. This subgroup was characterized by a worse outcome. We hypothesized that an impaired cytotoxic immune response due to the loss of the ζ-chain expression plays a primary role in the biological course of UMM. Our results indicate that the overcoming of the impairment of TCR function may represent a prerequisite for the development of new therapeutic strategies for managing UMM, suggesting that elimination of tumor cells may be possible by activation of cytotoxic cells present within ocular melanomas.
Collapse
Affiliation(s)
- S. Staibano
- Department of Biomorphological and Functional Sciences, Pathology Section,
| | - M. Mascolo
- Department of Biomorphological and Functional Sciences, Pathology Section,
| | - F. Tranfa
- Department of Ophthalmology, University of Naples “Federico II”, Naples
| | - G. Salvatore
- Department of Medicine, University of Naples “Federico II”, Naples
| | - C. Mignogna
- Department of Biomorphological and Functional Sciences, Pathology Section,
| | - P. Bufo
- Department of Surgical Sciences, University of Foggia, Foggia, Italy
| | - L. Nugnes
- Department of Biomorphological and Functional Sciences, Pathology Section,
| | - G. Bonavolontà
- Department of Ophthalmology, University of Naples “Federico II”, Naples
| | - G. De Rosa
- Department of Biomorphological and Functional Sciences, Pathology Section,
| |
Collapse
|
37
|
Woroniecka KI, Rhodin KE, Chongsathidkiet P, Keith KA, Fecci PE. T-cell Dysfunction in Glioblastoma: Applying a New Framework. Clin Cancer Res 2018; 24:3792-3802. [PMID: 29593027 DOI: 10.1158/1078-0432.ccr-18-0047] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
A functional, replete T-cell repertoire is an integral component to adequate immune surveillance and to the initiation and maintenance of productive antitumor immune responses. Glioblastoma (GBM), however, is particularly adept at sabotaging antitumor immunity, eliciting severe T-cell dysfunction that is both qualitative and quantitative. Understanding and countering such dysfunction are among the keys to harnessing the otherwise stark potential of anticancer immune-based therapies. Although T-cell dysfunction in GBM has been long described, newer immunologic frameworks now exist for reclassifying T-cell deficits in a manner that better permits their study and reversal. Herein, we divide and discuss the various T-cell deficits elicited by GBM within the context of the five relevant categories: senescence, tolerance, anergy, exhaustion, and ignorance. Categorization is appropriately made according to the molecular bases of dysfunction. Likewise, we review the mechanisms by which GBM elicits each mode of T-cell dysfunction and discuss the emerging immunotherapeutic strategies designed to overcome them. Clin Cancer Res; 24(16); 3792-802. ©2018 AACR.
Collapse
Affiliation(s)
- Karolina I Woroniecka
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Kristen E Rhodin
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Pakawat Chongsathidkiet
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Kristin A Keith
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
38
|
Effect of the lymphocyte-to-monocyte ratio on the clinical outcome of chemotherapy administration in advanced melanoma patients. Melanoma Res 2018; 27:32-42. [PMID: 27824739 DOI: 10.1097/cmr.0000000000000290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Skin cancer affects more individuals in the USA than any other malignancy and malignant melanoma is particularly deadly because of its metastatic potential. Melanoma has been recognized as one of the most immunogenic malignancies; therefore, understanding the mechanisms of tumor-immune interaction is key for developing more efficient treatments. As the tumor microenvironment shows an immunosuppressive action, immunotherapeutic agents promoting endogenous immune response to cancer have been tested (interleukin-2, anticytotoxic-T-lymphocyte-associated antigen 4, and antiprogrammed cell death protein 1 monoclonal antibodies) as well as combinations of cytotoxic chemotherapy agents and inhibitors of angiogenesis (taxol/carboplatin/avastin). However, clinical outcomes are variable, with only a minority of patients achieving durable complete responses. The variability of immune homeostasis, which may be more active or more tolerant at any given time, in cancer patients and the interaction of the immune system with the tumor could explain the inconsistency in clinical outcomes among these patients. Recently, the role of the lymphocyte-to-monocyte-ratio (LMR) in the peripheral blood has been investigated and has been proven to be an independent predictor of survival in different hematological malignancies and in solid tumors. In melanoma, our group has validated the significance of LMR as a predictor of relapse after resection of advanced melanoma. In this study, we examined the dynamics in the immune system of patients with advanced melanoma by performing serial multiday concentration measurements of cytokines and immune cell subsets in the peripheral blood. The analysis of outcomes of chemotherapy administration as related to LMR on the day of treatment initiation showed that progression-free survival was improved in the patients who received chemotherapy on the day when LMR was elevated.
Collapse
|
39
|
de Melo Gagliato D, Cortes J, Curigliano G, Loi S, Denkert C, Perez-Garcia J, Holgado E. Tumor-infiltrating lymphocytes in Breast Cancer and implications for clinical practice. Biochim Biophys Acta Rev Cancer 2017; 1868:527-537. [DOI: 10.1016/j.bbcan.2017.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/15/2017] [Accepted: 10/15/2017] [Indexed: 12/22/2022]
|
40
|
Cai L, Li H, Chen C, Cheng X, Wang Y, Liu J, Wang Y, Hao L. Role of inhibitor of growth 4 in the suppression of human melanoma cells through the Fas/FasL-mediated apoptosis pathway. Int J Mol Med 2017; 41:1055-1061. [PMID: 29207034 DOI: 10.3892/ijmm.2017.3274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 10/27/2017] [Indexed: 11/05/2022] Open
Abstract
Melanoma, the most aggressive form of skin cancer, is notoriously resistant to all current available therapies. Inhibitor of growth 4 (ING4), a novel member of the ING family of proteins, has previously been shown to play a critical role in the development of multiple tumors by regulating apoptosis, proliferation, cell cycle progress, migration and invasion. However, the functional role of ING4 in human melanoma remains unclear. To fully understand its potential role in human melanoma, in the present study, lentivirus (LV)‑ING4 and LV‑ING4‑short hairpin RNA were constructed and transfected into human melanoma A375 cells. First, the effect of overexpressing or downregulating ING4 on the apoptosis of the transfected melanoma cells and cluster of differentiation (CD)3+ T cells was investigated. In the present study, we found that the late apoptotic cells, and not the early apoptotic cells, were more in LV-ING4 group compared with LV-control, and both the early and late apoptosis of CD3+ T cells was significantly observed in A375 cells transfected with LV-ING4 compared with LV-control. Importantly, it was determined whether the overexpression of ING4 significantly induce apoptotic cell death via Fas/FasL (Fas death receptor/FasL) pathway activation and downregulation of poly(ADP‑ribose) polymerase, caspase‑3 and caspase‑8 in the melanoma cells and CD3+ T cells. These results demonstrated that overexpression of ING4 can induce the apoptosis of melanoma cells and CD3+ T cells through signaling pathways such as the Fas/FasL pathway, and that ING4 gene therapy for melanoma treatment is a novel approach.
Collapse
Affiliation(s)
- Limin Cai
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| | - Haiyan Li
- Department of Dermatology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| | - Cui Chen
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| | - Xue Cheng
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| | - Yu Wang
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| | - Jing Liu
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| | - Yongchen Wang
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| | - Lijun Hao
- Department of Plastic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| |
Collapse
|
41
|
Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat Commun 2017; 8:1404. [PMID: 29123081 PMCID: PMC5680273 DOI: 10.1038/s41467-017-00784-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 07/27/2017] [Indexed: 12/15/2022] Open
Abstract
Despite impressive clinical success, cancer immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance. Here we use the autochthonous TiRP melanoma model, which recapitulates the tumoral resistance signature observed in human melanomas. TiRP tumors resist immunotherapy based on checkpoint blockade, cancer vaccines or adoptive T-cell therapy. TiRP tumors recruit and activate tumor-specific CD8+ T cells, but these cells then undergo apoptosis. This does not occur with isogenic transplanted tumors, which are rejected after adoptive T-cell therapy. Apoptosis of tumor-infiltrating lymphocytes can be prevented by interrupting the Fas/Fas-ligand axis, and is triggered by polymorphonuclear-myeloid-derived suppressor cells, which express high levels of Fas-ligand and are enriched in TiRP tumors. Blocking Fas-ligand increases the anti-tumor efficacy of adoptive T-cell therapy in TiRP tumors, and increases the efficacy of checkpoint blockade in transplanted tumors. Therefore, tumor-infiltrating lymphocytes apoptosis is a relevant mechanism of immunotherapy resistance, which could be blocked by interfering with the Fas/Fas-ligand pathway. Cancer immunotherapy is ineffective in a subset of patients. Here the authors show that, in a mouse model of melanoma, resistance to immune checkpoint inhibitors relies on loss of tumor-specific T cells through FasL-mediated apoptosis triggered by polymorphonuclear-myeloid-derived suppressor cells.
Collapse
|
42
|
Carter CA, Oronsky BT, Roswarski J, Oronsky AL, Oronsky N, Scicinski J, Lybeck H, Kim MM, Lybeck M, Reid TR. No patient left behind: The promise of immune priming with epigenetic agents. Oncoimmunology 2017; 6:e1315486. [PMID: 29123948 PMCID: PMC5665084 DOI: 10.1080/2162402x.2017.1315486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitors, monoclonal antibodies that inhibit PD-1 or CTLA-4, have revolutionized the treatment of multiple cancers. Despite the enthusiasm for the clinical successes of checkpoint inhibitors, and immunotherapy, in general, only a minority of patients with specific tumor types actually benefit from treatment. Emerging evidence implicates epigenetic alterations as a mechanism of clinical resistance to immunotherapy. This review presents evidence for that association, summarizes the epi-based mechanisms by which tumors evade immunogenic cell death, discusses epigenetic modulation as a component of an integrated strategy to boost anticancer T cell effector function in relation to a tumor immunosuppression cycle and, finally, makes the case that the success of this no-patient-left-behind strategy critically depends on the toxicity profile of the epigenetic agent(s).
Collapse
Affiliation(s)
- Corey A Carter
- Walter Reed National Military Medical Center, Murtha Cancer Center, Bethesda, MD, USA
| | | | - Joseph Roswarski
- Walter Reed National Military Medical Center, Murtha Cancer Center, Bethesda, MD, USA
| | | | | | | | - Harry Lybeck
- University of Helsinki, Department of Physiology, Helsinki, Finland
| | - Michelle M Kim
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, USA
| | | | - Tony R Reid
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
43
|
Mahmoud F, Shields B, Makhoul I, Avaritt N, Wong HK, Hutchins LF, Shalin S, Tackett AJ. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther 2017; 18:451-469. [PMID: 28513269 DOI: 10.1080/15384047.2017.1323596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacologic inhibition of the cytotoxic T lymphocyte antigen 4 (CTLA4) and the programmed death receptor-1 (PD1) has resulted in unprecedented durable responses in metastatic melanoma. However, resistance to immunotherapy remains a major challenge. Effective immune surveillance against melanoma requires 4 essential steps: activation of the T lymphocytes, homing of the activated T lymphocytes to the melanoma microenvironment, identification and episode of melanoma cells by activated T lymphocytes, and the sensitivity of melanoma cells to apoptosis. At each of these steps, there are multiple factors that may interfere with the immune surveillance machinery, thus allowing melanoma cells to escape immune attack and develop resistance to immunotherapy. We provide a comprehensive review of the complex immune surveillance mechanisms at play in melanoma, and a detailed discussion of how these mechanisms may allow for the development of intrinsic or acquired resistance to immunotherapeutic modalities, and potential avenues for overcoming this resistance.
Collapse
Affiliation(s)
- Fade Mahmoud
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Bradley Shields
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Issam Makhoul
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Nathan Avaritt
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Henry K Wong
- c Department of Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Laura F Hutchins
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Sara Shalin
- d Departments of Pathology and Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Alan J Tackett
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| |
Collapse
|
44
|
Yamada A, Arakaki R, Saito M, Kudo Y, Ishimaru N. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance. Front Immunol 2017; 8:403. [PMID: 28424702 PMCID: PMC5380675 DOI: 10.3389/fimmu.2017.00403] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL.
Collapse
Affiliation(s)
- Akiko Yamada
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masako Saito
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
45
|
The role and prognostic value of inducible nitric oxide synthase (iNOS) and interleukin-33 (IL-33) in serous and mucinous epithelial ovarian tumours. Ann Diagn Pathol 2017; 27:62-68. [PMID: 28325363 DOI: 10.1016/j.anndiagpath.2017.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/09/2016] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
Understanding different mechanisms contributing to the aggressive behaviour of epithelial ovarian cancer (EOC) is a large challenge. Interaction between inflammation, immunity and carcinogenesis occurs in different cancers; however, the potential roles of different molecules involved in these processes in relation to ovarian carcinogenesis were not fully investigated. Inducible nitric oxide synthase (iNOS) and interleukin-33 (IL-33) are implicated in carcinogenesis. iNOS is an NOS isoform that generates nitric oxide, which plays important roles in various stages of carcinogenesis. IL-33 is a cytokine implicated in modulation of anti-tumour immunity and tumour growth. This work aimed at studying the immunohistochemical expression of iNOS and IL-33 in serous and mucinous epithelial ovarian tumours to investigate their role and prognostic significance. Immunohistochemical expressions of iNOS and IL-33 were assessed in 90 patients with epithelial ovarian tumours (45 serous and 45 mucinous tumours, categorized as benign, borderline, and malignant tumours). iNOS and IL-33 showed significantly higher expressions in borderline and malignant serous and mucinous tumours compared to benign ones (p=0.0001). The differences between borderline and malignant tumours were statistically insignificant (p=0.2351&0.6321). iNOS showed significantly higher expression with increasing tumour grade in malignant mucinous tumours (p=0.0011). IL-33 showed significantly higher expression with increasing tumour grade in both malignant serous and mucinous tumours (p=0.0074 and 0.0007). Upregulation of iNOS and IL-33 expression in borderline and malignant epithelial ovarian tumours indicates their involvement in the development and progression of EOC, and their increased expression in less differentiated cancers suggests their association with poor prognosis in this category of tumours.
Collapse
|
46
|
Ando M, Nakauchi H. 'Off-the-shelf' immunotherapy with iPSC-derived rejuvenated cytotoxic T lymphocytes. Exp Hematol 2016; 47:2-12. [PMID: 27826124 DOI: 10.1016/j.exphem.2016.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
Adoptive T-cell therapy to target and kill tumor cells shows promise and induces durable remissions in selected malignancies. However, for most cancers, clinical utility is limited. Cytotoxic T lymphocytes continuously exposed to viral or tumor antigens, with long-term expansion, may become unable to proliferate ("exhausted"). To exploit fully rejuvenated induced pluripotent stem cell (iPSC)-derived antigen-specific cytotoxic T lymphocytes is a potentially powerful approach. We review recent progress in engineering iPSC-derived T cells and prospects for clinical translation. We also describe the importance of introducing a suicide gene safeguard system into adoptive T-cell therapy, including iPSC-derived T-cell therapy, to protect from unexpected events in first-in-humans clinical trials.
Collapse
Affiliation(s)
- Miki Ando
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan.
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
47
|
Sarrabayrouse G, Pich C, Teiti I, Tilkin-Mariame AF. Regulatory properties of statins and rho gtpases prenylation inhibitiors to stimulate melanoma immunogenicity and promote anti-melanoma immune response. Int J Cancer 2016; 140:747-755. [PMID: 27616679 DOI: 10.1002/ijc.30422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 01/13/2023]
Abstract
Melanoma is a highly lethal cutaneous tumor, killing affected patients through development of multiple poorly immunogenic metastases. Suboptimal activation of immune system by melanoma cells is often due to molecular modifications occurring during tumor progression that prevent efficient recognition of melanoma cells by immune effectors. Statins are HMG-CoA reductase inhibitors, which block the mevalonate synthesis pathway, used by millions of people as hypocholesterolemic agents in cardiovascular and cerebrovascular diseases. They are also known to inhibit Rho GTPase activation and Rho dependent signaling pathways. Rho GTPases are regarded as molecular switches that regulate a wide spectrum of cellular functions and their dysfunction has been characterized in various oncogenic process notably in melanoma progression. Moreover, these molecules can modulate the immune response. Since 10 years we have demonstrated that Statins and other Rho GTPases inhibitors are critical regulators of molecules involved in adaptive and innate anti-melanoma immune response. In this review we summarize our major observations demonstrating that these pharmacological agents stimulate melanoma immunogenicity and suggest a potential use of these molecules to promote anti-melanoma immune response.
Collapse
Affiliation(s)
- Guillaume Sarrabayrouse
- Digestive System Research Unit, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119-129, Barcelona, Spain
| | - Christine Pich
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Iotefa Teiti
- INSERM UMR 1037, CRCT, Université de Toulouse, UPS, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France
| | | |
Collapse
|
48
|
Volpe E, Sambucci M, Battistini L, Borsellino G. Fas-Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis. Front Immunol 2016; 7:382. [PMID: 27729910 PMCID: PMC5037862 DOI: 10.3389/fimmu.2016.00382] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas–FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas–FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas–FasL in regulating Th17 and Treg cells’ functions, in the context of MS.
Collapse
|
49
|
Affiliation(s)
- Michael A. Steller
- Program in Women's Oncology, Women and Infants' Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Brown University School of Medicine, Providence, Rhode Island; St. Elizabeth's Medical Center, Division of Gynecologic Oncology, 736 Cambridge Street, Boston, MA 02135-2997
| |
Collapse
|
50
|
The modulation of Dicer regulates tumor immunogenicity in melanoma. Oncotarget 2016; 7:47663-47673. [PMID: 27356752 PMCID: PMC5216969 DOI: 10.18632/oncotarget.10273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/12/2016] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that regulate most cellular protein networks by targeting mRNAs for translational inhibition or degradation. Dicer, a type III endoribonuclease, is a critical component in microRNA biogenesis and is required for mature microRNA production. Abnormal Dicer expression occurs in numerous cancer types and correlates with poor patient prognosis. For example, increased Dicer expression in melanoma is associated with more aggressive tumors (higher tumor mitotic index and depth of invasion) and poor patient prognosis. However, the role that Dicer plays in melanoma development and immune evasion remains unclear. Here, we report on a newly discovered relationship between Dicer expression and tumor immunogenicity. To investigate Dicer's role in regulating melanoma immunogenicity, Dicer knockdown studies were performed. We found that B16F0-Dicer deficient cells exhibited decreased tumor growth compared to control cells and were capable of inducing anti-tumor immunity. The decrease in tumor growth was abrogated in immunodeficient NSG mice and was shown to be dependent upon CD8+ T cells. Dicer knockdown also induced a more responsive immune gene profile in melanoma cells. Further studies demonstrated that CD8+ T cells preferentially killed Dicer knockdown tumor cells compared to control cells. Taken together, we present evidence which links Dicer expression to tumor immunogenicity in melanoma.
Collapse
|