1
|
Sun KT, Mok SA. Inducers and modulators of protein aggregation in Alzheimer's disease - Critical tools for understanding the foundations of aggregate structures. Neurotherapeutics 2025; 22:e00512. [PMID: 39755501 PMCID: PMC12047394 DOI: 10.1016/j.neurot.2024.e00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau. We aim to provide an overview of how specific molecular factors can impact aggregation kinetics and aggregate structure to promote disease. Looking toward the future, we highlight some research areas of focus that would accelerate efforts to effectively target protein aggregation in AD.
Collapse
Affiliation(s)
- Kerry T Sun
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
2
|
DeFranco JP, Telling GC. The Evolution of Experimental Rodent Models for Prion Diseases. J Neurochem 2025; 169:e70039. [PMID: 40108932 PMCID: PMC11968085 DOI: 10.1111/jnc.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Prion diseases are a group of fatal, neurodegenerative diseases that affect animals and humans. These diseases are characterized by the conformational conversion of normal, host-encoded PrPC into a disease-causing prion isoform, PrPSc. Significant advancements in biological, genetic, and prion research have led to the capability of studying this pathogenetic process using recombinant proteins, ex vivo systems, in vitro models, and mammalian hosts, the latter being the gold standard for assaying prion infectivity, transmission, and strain evolution. While devoid of nucleic acid, prions encipher strain information by the conformation of their constituent infectious proteins, with diversity altering pathogenesis, host-range dynamics, and the efficacy of therapeutics. To properly study the strain properties of natural prions and develop appropriate therapeutic strategies, it is essential to utilize models that authentically recapitulate these infectious agents in experimental mammalian hosts. In this review, we examine the evolution of research on prion diseases using non-transgenic and transgenic animals, primarily focusing on rodent models. We discuss the successes and limitations of each experimental system and provide insights based on recent findings in novel gene-targeted mice.
Collapse
Affiliation(s)
- Joseph P. DeFranco
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Glenn C. Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Fornara B, Igel A, Béringue V, Martin D, Sibille P, Pujo-Menjouet L, Rezaei H. The dynamics of prion spreading is governed by the interplay between the non-linearities of tissue response and replication kinetics. iScience 2024; 27:111381. [PMID: 39717079 PMCID: PMC11664133 DOI: 10.1016/j.isci.2024.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrPSc) of the cellular prion protein (PrPC). During the pathogenesis, the PrPSc seeds disseminate in the central nervous system and convert PrPC leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrPSc structures. In this work, we implemented the recent developments on PrPSc structural diversity and tissue response to prion replication into a stochastic reaction-diffusion model using an application of the Gillespie algorithm. We showed that this combination of non-linearities can lead prion propagation to behave as a complex system, providing an alternative to the current paradigm to explain strain-specific phenotypes, tissue tropisms, and strain co-propagation while also clarifying the role of the connectome in the neuro-invasion process.
Collapse
Affiliation(s)
- Basile Fornara
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Angélique Igel
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Vincent Béringue
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Davy Martin
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Pierre Sibille
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Laurent Pujo-Menjouet
- Université Claude Bernard Lyon 1, ICJ UMR5208, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, Inria Dracula, 69622 Villeurbanne, France
| | - Human Rezaei
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| |
Collapse
|
4
|
Erdenebat T, Komatsu Y, Uwamori N, Tanaka M, Hoshika T, Yamasaki T, Shimakura A, Suzuki A, Sato T, Horiuchi M. Excitatory neuron-prone prion propagation and excitatory neuronal loss in prion-infected mice. Front Mol Neurosci 2024; 17:1498142. [PMID: 39726739 PMCID: PMC11669680 DOI: 10.3389/fnmol.2024.1498142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The accumulation of a disease-specific isoform of prion protein (PrPSc) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrPSc and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection. However, the underlying mechanism is largely unknown. In this study, we provided evidence that the prion 22L strain propagates more efficiently in excitatory neurons than inhibitory neurons and that excitatory neurons in the thalamus are vulnerable to prion infection. PrPSc accumulation was less intense in the striatum, where GABAergic inhibitory neurons predominate, compared to the cerebral cortex and thalamus, where glutamatergic excitatory neurons are predominant, in mice intracerebrally or intraperitoneally inoculated with the 22L strain. PrPSc stains were observed along the needle track after stereotaxic injection into the striatum, whereas they were also observed away from the needle track in the thalamus. Consistent with inefficient prion propagation in the striatum, the 22L prion propagated more efficiently in glutamatergic neurons than GABAergic neurons in primary neuronal cultures. RNAscope in situ hybridization revealed a decrease in Vglut1- and Vglut2-expressing neurons in the ventral posterolateral nuclei of the thalamus in 22L strain-infected mice, whereas no decrease in Vgat-expressing neurons was observed in the adjacent reticular nucleus, mainly composed of Vgat-expressing interneurons. The excitatory neuron-prone prion propagation and excitatory neuronal loss in 22L strain-infected mice shed light on the neuropathological mechanism of prion diseases.
Collapse
Affiliation(s)
- Temuulen Erdenebat
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Yusuke Komatsu
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Nozomi Uwamori
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Misaki Tanaka
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Takashi Hoshika
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Ayano Shimakura
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
DeFranco JP, Bian J, Kim S, Crowell J, Barrio T, Webster BK, Atkinson ZN, Telling GC. Propagation of distinct CWD prion strains during peripheral and intracerebral challenges of gene-targeted mice. Proc Natl Acad Sci U S A 2024; 121:e2402726121. [PMID: 39083420 PMCID: PMC11317562 DOI: 10.1073/pnas.2402726121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
Since prion diseases result from infection and neurodegeneration of the central nervous system (CNS), experimental characterizations of prion strain properties customarily rely on the outcomes of intracerebral challenges. However, natural transmission of certain prions, including those causing chronic wasting disease (CWD) in elk and deer, depends on propagation in peripheral host compartments prior to CNS infection. Using gene-targeted GtE and GtQ mice, which accurately control cellular elk or deer PrP expression, we assessed the impact that peripheral or intracerebral exposures play on CWD prion strain propagation and resulting CNS abnormalities. Whereas oral and intraperitoneal transmissions produced identical neuropathological outcomes in GtE and GtQ mice and preserved the naturally convergent conformations of elk and deer CWD prions, intracerebral transmissions generated CNS prion strains with divergent biochemical properties in GtE and GtQ mice that were changed compared to their native counterparts. While CWD replication kinetics remained constant during iterative peripheral transmissions and brain titers reflected those found in native hosts, serial intracerebral transmissions produced 10-fold higher prion titers and accelerated incubation times. Our demonstration that peripherally and intracerebrally challenged Gt mice develop dissimilar CNS diseases which result from the propagation of distinct CWD prion strains points to the involvement of tissue-specific cofactors during strain selection in different host compartments. Since peripheral transmissions preserved the natural features of elk and deer prions, whereas intracerebral propagation produced divergent strains, our findings illustrate the importance of experimental characterizations using hosts that not only abrogate species barriers but also accurately recapitulate natural transmission routes of native strains.
Collapse
Affiliation(s)
- Joseph P. DeFranco
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Jifeng Bian
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Sehun Kim
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Jenna Crowell
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Tomás Barrio
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Bailey K. Webster
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Zoe N. Atkinson
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Glenn C. Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| |
Collapse
|
6
|
Mehra S, Bourkas ME, Kaczmarczyk L, Stuart E, Arshad H, Griffin JK, Frost KL, Walsh DJ, Supattapone S, Booth SA, Jackson WS, Watts JC. Convergent generation of atypical prions in knockin mouse models of genetic prion disease. J Clin Invest 2024; 134:e176344. [PMID: 39087478 PMCID: PMC11291267 DOI: 10.1172/jci176344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
Most cases of human prion disease arise due to spontaneous misfolding of WT or mutant prion protein, yet recapitulating this event in animal models has proven challenging. It remains unclear whether spontaneous prion generation can occur within the mouse lifespan in the absence of protein overexpression and how disease-causing mutations affect prion strain properties. To address these issues, we generated knockin mice that express the misfolding-prone bank vole prion protein (BVPrP). While mice expressing WT BVPrP (I109 variant) remained free from neurological disease, a subset of mice expressing BVPrP with mutations (D178N or E200K) causing genetic prion disease developed progressive neurological illness. Brains from spontaneously ill knockin mice contained prion disease-specific neuropathological changes as well as atypical protease-resistant BVPrP. Moreover, brain extracts from spontaneously ill D178N- or E200K-mutant BVPrP-knockin mice exhibited prion seeding activity and transmitted disease to mice expressing WT BVPrP. Surprisingly, the properties of the D178N- and E200K-mutant prions appeared identical before and after transmission, suggesting that both mutations guide the formation of a similar atypical prion strain. These findings imply that knockin mice expressing mutant BVPrP spontaneously develop a bona fide prion disease and that mutations causing prion diseases may share a uniform initial mechanism of action.
Collapse
Affiliation(s)
- Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases and
| | - Matthew E.C. Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases and
| | - Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Kathy L. Frost
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Surachai Supattapone
- Department of Biochemistry and Cell Biology and
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Stephanie A. Booth
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Walker S. Jackson
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Ernst S, Nonno R, Langeveld J, Andreoletti O, Acin C, Papasavva-Stylianou P, Sklaviadis T, Acutis PL, van Keulen L, Spiropoulos J, Keller M, Groschup MH, Fast C. Characterisation of European Field Goat Prion Isolates in Ovine PrP Overexpressing Transgenic Mice (Tgshp IX) Reveals Distinct Prion Strains. Pathogens 2024; 13:629. [PMID: 39204230 PMCID: PMC11357236 DOI: 10.3390/pathogens13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrPSc) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat TSE isolates, including atypical scrapie, CH1641 and goat BSE as reference prion strains were biochemically characterised and subsequently inoculated into seven rodent models for further analysis (already published results of this comprehensive study are reviewed here for comparative reasons). We report here the histopathological and immunohistochemical data of this goat TSE panel, obtained after the first passage in Tgshp IX (tg-shARQ) mice, which overexpress the ovine prion protein. In addition to the clear-cut discrimination of all reference prion strains from the classical scrapie (CS) isolates, we were further able to determine three categories of CS strains. The investigation further indicates the occurrence of sub-strains that slightly resemble distant TSE strains, such as BSE or CH1641, reinforcing the theory that CS is not a single strain but a mixture of sub-strains, existing at varying extents in one isolate. This study further proved that Tgshp IX is a potent and reliable tool for the in-depth characterisation of prion strains.
Collapse
Affiliation(s)
- Sonja Ernst
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jan Langeveld
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - Olivier Andreoletti
- UMR INRAe/ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza IA2 IIS Aragón, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | | | - Theodoros Sklaviadis
- School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Lucien van Keulen
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - John Spiropoulos
- Department of Pathology and Animal Science, APHA Weybridge, Addlestone KT15 3NB, Surrey, UK
| | - Markus Keller
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Christine Fast
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| |
Collapse
|
8
|
Song F, Kovac V, Mohammadi B, Littau JL, Scharfenberg F, Matamoros Angles A, Vanni I, Shafiq M, Orge L, Galliciotti G, Djakkani S, Linsenmeier L, Černilec M, Hartman K, Jung S, Tatzelt J, Neumann JE, Damme M, Tschirner SK, Lichtenthaler SF, Ricklefs FL, Sauvigny T, Schmitz M, Zerr I, Puig B, Tolosa E, Ferrer I, Magnus T, Rupnik MS, Sepulveda-Falla D, Matschke J, Šmid LM, Bresjanac M, Andreoletti O, Krasemann S, Foliaki ST, Nonno R, Becker-Pauly C, Monzo C, Crozet C, Haigh CL, Glatzel M, Curin Serbec V, Altmeppen HC. Cleavage site-directed antibodies reveal the prion protein in humans is shed by ADAM10 at Y226 and associates with misfolded protein deposits in neurodegenerative diseases. Acta Neuropathol 2024; 148:2. [PMID: 38980441 PMCID: PMC11233397 DOI: 10.1007/s00401-024-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.
Collapse
Affiliation(s)
- Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Valerija Kovac
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jessica L Littau
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Andreu Matamoros Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Leonor Orge
- National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Salma Djakkani
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maja Černilec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Katrina Hartman
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Sebastian Jung
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Sarah K Tschirner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Tim Magnus
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Marjan S Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lojze M Šmid
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mara Bresjanac
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Olivier Andreoletti
- UMR INRAE ENVT 1225, Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Simote T Foliaki
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Romolo Nonno
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Cecile Monzo
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Carole Crozet
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Cathryn L Haigh
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Vladka Curin Serbec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia.
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
9
|
Chang SC, Arifin MI, Tahir W, McDonald KJ, Zeng D, Schatzl HM, Hannaoui S, Gilch S. Extraneural infection route restricts prion conformational variability and attenuates the impact of quaternary structure on infectivity. PLoS Pathog 2024; 20:e1012370. [PMID: 38976748 PMCID: PMC11257401 DOI: 10.1371/journal.ppat.1012370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Prions can exist as different strains that consist of conformational variants of the misfolded, pathogenic prion protein isoform PrPSc. Defined by stably transmissible biological and biochemical properties, strains have been identified in a spectrum of prion diseases, including chronic wasting disease (CWD) of wild and farmed cervids. CWD is highly contagious and spreads via direct and indirect transmission involving extraneural sites of infection, peripheral replication and neuroinvasion of prions. Here, we investigated the impact of infection route on CWD prion conformational selection and propagation. We used gene-targeted mouse models expressing deer PrP for intracerebral or intraperitoneal inoculation with fractionated or unfractionated brain homogenates from white-tailed deer, harboring CWD strains Wisc-1 or 116AG. Upon intracerebral inoculation, Wisc-1 and 116AG-inoculated mice differed in conformational stability of PrPSc. In brains of mice infected intraperitoneally with either inoculum, PrPSc propagated with identical conformational stability and fewer PrPSc deposits in most brain regions than intracerebrally inoculated animals. For either inoculum, PrPSc conformational stability in brain and spinal cord was similar upon intracerebral infection but significantly higher in spinal cords of intraperitoneally infected animals. Inoculation with fractionated brain homogenates resulted in lower variance of survival times upon intraperitoneal compared to intracerebral infection. In summary, we demonstrate that extraneural infection mitigates the impact of PrPSc quaternary structure on infection and reduces conformational variability of PrPSc propagated in the brain. These findings provide new insights into the evolution of stable CWD strains in natural, extraneural transmissions.
Collapse
Affiliation(s)
- Sheng Chun Chang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | | | - Waqas Tahir
- Canadian and WOAH Reference Laboratory for BSE, Canadian Food Inspection Agency, Lethbridge, Canada
| | | | - Doris Zeng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Hermann M. Schatzl
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Samia Hannaoui
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
10
|
Marín-Moreno A, Benestad SL, Barrio T, Pirisinu L, Espinosa JC, Tran L, Huor A, Di Bari MA, Eraña H, Maddison BC, D'Agostino C, Fernández-Borges N, Canoyra S, Jerez-Garrido N, Castilla J, Spiropoulos J, Bishop K, Gough KC, Nonno R, Våge J, Andréoletti O, Torres JM. Classical BSE dismissed as the cause of CWD in Norwegian red deer despite strain similarities between both prion agents. Vet Res 2024; 55:62. [PMID: 38750594 PMCID: PMC11097568 DOI: 10.1186/s13567-024-01320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
The first case of CWD in a Norwegian red deer was detected by a routine ELISA test and confirmed by western blotting and immunohistochemistry in the brain stem of the animal. Two different western blotting tests were conducted independently in two different laboratories, showing that the red deer glycoprofile was different from the Norwegian CWD reindeer and CWD moose and from North American CWD. The isolate showed nevertheless features similar to the classical BSE (BSE-C) strain. Furthermore, BSE-C could not be excluded based on the PrPSc immunohistochemistry staining in the brainstem and the absence of detectable PrPSc in the lymphoid tissues. Because of the known ability of BSE-C to cross species barriers as well as its zoonotic potential, the CWD red deer isolate was submitted to the EURL Strain Typing Expert Group (STEG) as a BSE-C suspect for further investigation. In addition, different strain typing in vivo and in vitro strategies aiming at identifying the BSE-C strain in the red deer isolate were performed independently in three research groups and BSE-C was not found in it. These results suggest that the Norwegian CWD red deer case was infected with a previously unknown CWD type and further investigation is needed to determine the characteristics of this potential new CWD strain.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Tomas Barrio
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Linh Tran
- Norwegian Veterinary Institute, Ås, Norway
| | - Alvina Huor
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Hasier Eraña
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Basque Foundation for Science, Bizkaia Technology Park & IKERBASQUE, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
| | - Ben C Maddison
- RSK- ADAS Ltd, Technology Drive, Beeston, Nottingham, UK
| | - Claudia D'Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Natalia Fernández-Borges
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sara Canoyra
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nuria Jerez-Garrido
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Basque Foundation for Science, Bizkaia Technology Park & IKERBASQUE, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
| | | | - Keith Bishop
- RSK- ADAS Ltd, Technology Drive, Beeston, Nottingham, UK
| | | | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Jorn Våge
- Norwegian Veterinary Institute, Ås, Norway
| | - Olivier Andréoletti
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
11
|
Walsh DJ, Rees JR, Mehra S, Bourkas MEC, Kaczmarczyk L, Stuart E, Jackson WS, Watts JC, Supattapone S. Anti-prion drugs do not improve survival in novel knock-in models of inherited prion disease. PLoS Pathog 2024; 20:e1012087. [PMID: 38557815 PMCID: PMC10984475 DOI: 10.1371/journal.ppat.1012087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Prion diseases uniquely manifest in three distinct forms: inherited, sporadic, and infectious. Wild-type prions are responsible for the sporadic and infectious versions, while mutant prions cause inherited variants like fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). Although some drugs can prolong prion incubation times up to four-fold in rodent models of infectious prion diseases, no effective treatments for FFI and fCJD have been found. In this study, we evaluated the efficacy of various anti-prion drugs on newly-developed knock-in mouse models for FFI and fCJD. These models express bank vole prion protein (PrP) with the pathogenic D178N and E200K mutations. We applied various drug regimens known to be highly effective against wild-type prions in vivo as well as a brain-penetrant compound that inhibits mutant PrPSc propagation in vitro. None of the regimens tested (Anle138b, IND24, Anle138b + IND24, cellulose ether, and PSCMA) significantly extended disease-free survival or prevented mutant PrPSc accumulation in either knock-in mouse model, despite their ability to induce strain adaptation of mutant prions. Our results show that anti-prion drugs originally developed to treat infectious prion diseases do not necessarily work for inherited prion diseases, and that the recombinant sPMCA is not a reliable platform for identifying compounds that target mutant prions. This work underscores the need to develop therapies and validate screening assays specifically for mutant prions, as well as anti-prion strategies that are not strain-dependent.
Collapse
Affiliation(s)
- Daniel J. Walsh
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Judy R. Rees
- Department of Epidemiology Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Community and Family Medicine Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E. C. Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walker S. Jackson
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
12
|
Bridges LR. RNA as a component of scrapie fibrils. Sci Rep 2024; 14:5011. [PMID: 38424114 PMCID: PMC10904389 DOI: 10.1038/s41598-024-55278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Recently, electron cryo-microscopy (cryo-EM) maps of fibrils from the brains of mice and hamsters with five infectious scrapie strains have been published and deposited in the electron microscopy data bank (EMDB). As noted by the primary authors, the fibrils contain a second component other than protein. The aim of the present study was to identify the nature of this second component in the published maps using an in silico approach. Extra densities (EDs) containing this component were continuous, straight, axial, at right angles to protein rungs and within hydrogen-bonding distance of protein, consistent with a structural role. EDs co-located with strips of basic residues, notably lysines, and formed a conspicuous cladding over parts of the N-terminal lobe of the protein. A Y-shaped polymer consistent with RNA was found, in places forming a single chain and at one location forming a duplex, comprising two antiparallel chains, and raising the intriguing possibility of replicative behaviour. To reflect the monotonous nature of the protein interface, it is suggested that the RNA may be a short tandem repeat. Fibrils from brains of patients with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other neurodegenerations also contain EDs and may be of a similar aetiology.
Collapse
Affiliation(s)
- Leslie R Bridges
- Neuropathology, Cellular Pathology, South West London Pathology, St George's Hospital, St George's University Hospitals NHS Foundation Trust, London, UK.
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| |
Collapse
|
13
|
Simmons SM, Bartz JC. Strain-Specific Targeting and Destruction of Cells by Prions. BIOLOGY 2024; 13:57. [PMID: 38275733 PMCID: PMC10813089 DOI: 10.3390/biology13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Prion diseases are caused by the disease-specific self-templating infectious conformation of the host-encoded prion protein, PrPSc. Prion strains are operationally defined as a heritable phenotype of disease under controlled conditions. One of the hallmark phenotypes of prion strain diversity is tropism within and between tissues. A defining feature of prion strains is the regional distribution of PrPSc in the CNS. Additionally, in both natural and experimental prion disease, stark differences in the tropism of prions in secondary lymphoreticular system tissues occur. The mechanism underlying prion tropism is unknown; however, several possible hypotheses have been proposed. Clinical target areas are prion strain-specific populations of neurons within the CNS that are susceptible to neurodegeneration following the replication of prions past a toxic threshold. Alternatively, the switch from a replicative to toxic form of PrPSc may drive prion tropism. The normal form of the prion protein, PrPC, is required for prion formation. More recent evidence suggests that it can mediate prion and prion-like disease neurodegeneration. In vitro systems for prion formation have indicated that cellular cofactors contribute to prion formation. Since these cofactors can be strain specific, this has led to the hypothesis that the distribution of prion formation cofactors can influence prion tropism. Overall, there is evidence to support several mechanisms of prion strain tropism; however, a unified theory has yet to emerge.
Collapse
Affiliation(s)
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
14
|
Chang SC, Hannaoui S, Arifin MI, Huang YH, Tang X, Wille H, Gilch S. Propagation of PrP Sc in mice reveals impact of aggregate composition on prion disease pathogenesis. Commun Biol 2023; 6:1162. [PMID: 37964018 PMCID: PMC10645910 DOI: 10.1038/s42003-023-05541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Infectious prions consist of PrPSc, a misfolded, aggregation-prone isoform of the host's prion protein. PrPSc assemblies encode distinct biochemical and biological properties. They harbor a specific profile of PrPSc species, from small oligomers to fibrils in different ratios, where the highest infectivity aligns with oligomeric particles. To investigate the impact of PrPSc aggregate complexity on prion propagation, biochemical properties, and disease pathogenesis, we fractionated elk prions by sedimentation velocity centrifugation, followed by sub-passages of individual fractions in cervidized mice. Upon first passage, different fractions generated PrPSc with distinct biochemical, biophysical, and neuropathological profiles. Notably, low or high molecular weight PrPSc aggregates caused different clinical signs of hyperexcitability or lethargy, respectively, which were retained over passage, whereas other properties converged. Our findings suggest that PrPSc quaternary structure determines an initial selection of a specific replication environment, resulting in transmissible features that are independent of PrPSc biochemical and biophysical properties.
Collapse
Affiliation(s)
- Sheng Chun Chang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Samia Hannaoui
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria Immaculata Arifin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuan-Hung Huang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xinli Tang
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Holger Wille
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sabine Gilch
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
15
|
Bohl J, Moudjou M, Herzog L, Reine F, Sailer F, Klute H, Halgand F, Rest GVD, Boulard Y, Béringue V, Igel A, Rezaei H. The Smallest Infectious Substructure Encoding the Prion Strain Structural Determinant Revealed by Spontaneous Dissociation of Misfolded Prion Protein Assemblies. J Mol Biol 2023; 435:168280. [PMID: 37730082 DOI: 10.1016/j.jmb.2023.168280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
It is commonly accepted that the prion replicative propensity and strain structural determinant (SSD) are encoded in the fold of PrPSc amyloid fibril assemblies. By exploring the quaternary structure dynamicity of several prion strains, we revealed that all mammalian prion assemblies exhibit the generic property of spontaneously generating two sets of discreet infectious tetrameric and dimeric species differing significantly by their specific infectivity. By using perturbation approaches such as dilution and ionic strength variation, we demonstrated that these two oligomeric species were highly dynamic and evolved differently in the presence of chaotropic agents. In general, our observations of seven different prion strains from three distinct species highlight the high dynamicity of PrPSc assemblies as a common and intrinsic property of mammalian prions. The existence of such small infectious PrPSc species harboring the SSD indicates that the prion infectivity and the SSD are not restricted only to the amyloid fold but can also be encoded in other alternative quaternary structures. Such diversity in the quaternary structure of prion assemblies tends to indicate that the structure of PrPSc can be divided into two independent folding domains: a domain encoding the strain structural determinant and a second domain whose fold determines the type of quaternary structure that could adopt PrPSc assemblies.
Collapse
Affiliation(s)
- Jan Bohl
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France; ICP, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Mohammed Moudjou
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Fiona Sailer
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Hannah Klute
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | | | | | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Vincent Béringue
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France.
| | - Angelique Igel
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France.
| |
Collapse
|
16
|
Thackray AM, McNulty EE, Nalls AV, Cardova A, Tran L, Telling G, Benestad SL, Gilch S, Mathiason CK, Bujdoso R. Genetic modulation of CWD prion propagation in cervid PrP Drosophila. Biochem J 2023; 480:1485-1501. [PMID: 37747806 PMCID: PMC10586768 DOI: 10.1042/bcj20230247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Chronic wasting disease is a fatal prion condition of cervids such as deer, elk, moose and reindeer. Secretion and excretion of prion infectivity from North American cervids with this condition causes environmental contamination and subsequent efficient lateral transmission in free-ranging and farmed cervids. Variants of cervid PrP exist that affect host susceptibility to chronic wasting disease. Cervid breeding programmes aimed at increasing the frequency of PrP variants associated with resistance to chronic wasting disease may reduce the burden of this condition in animals and lower the risk of zoonotic disease. This strategy requires a relatively rapid and economically viable model system to characterise and support selection of prion disease-modifying cervid PrP variants. Here, we generated cervid PrP transgenic Drosophila to fulfil this purpose. We have generated Drosophila transgenic for S138 wild type cervid PrP, or the N138 variant associated with resistance to chronic wasting disease. We show that cervid PrP Drosophila accumulate bona fide prion infectivity after exposure to cervid prions. Furthermore, S138 and N138 PrP fly lines are susceptible to cervid prion isolates from either North America or Europe when assessed phenotypically by accelerated loss of locomotor ability or survival, or biochemically by accumulation of prion seeding activity. However, after exposure to European reindeer prions, N138 PrP Drosophila accumulated prion seeding activity with slower kinetics than the S138 fly line. These novel data show that prion susceptibility characteristics of cervid PrP variants are maintained when expressed in Drosophila, which highlights this novel invertebrate host in modelling chronic wasting disease.
Collapse
Affiliation(s)
- Alana M. Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| | - Erin E. McNulty
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Amy V. Nalls
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Alzbeta Cardova
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| | - Linh Tran
- Department of Biohazard and Pathology, WOAH Reference Laboratory for CWD (SLB), National Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Glenn Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Sylvie L. Benestad
- Department of Biohazard and Pathology, WOAH Reference Laboratory for CWD (SLB), National Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Candace K. Mathiason
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| |
Collapse
|
17
|
Walsh DJ, Rees JR, Mehra S, Bourkas MEC, Kaczmarczyk L, Stuart E, Jackson WS, Watts JC, Supattapone S. Anti-prion drugs do not improve survival in knock-in models of inherited prion disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559951. [PMID: 37808761 PMCID: PMC10557747 DOI: 10.1101/2023.09.28.559951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Prion diseases uniquely manifest in three distinct forms: inherited, sporadic, and infectious. Wild-type prions are responsible for the sporadic and infectious versions, while mutant prions cause inherited variants like fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). Although some drugs can prolong prion incubation times up to four-fold in rodent models of infectious prion diseases, no effective treatments for FFI and fCJD have been found. In this study, we evaluated the efficacy of various anti-prion drugs on newly-developed knock-in mouse models for FFI and fCJD. These models express bank vole prion protein (PrP) with the pathogenic D178N and E200K mutations. We applied various drug regimens known to be highly effective against wild-type prions in vivo as well as a brain-penetrant compound that inhibits mutant PrP Sc propagation in vitro . None of the regimens tested (Anle138b, IND24, Anle138b + IND24, cellulose ether, and PSCMA) significantly extended disease-free survival or prevented mutant PrP Sc accumulation in either knock-in mouse model, despite their ability to induce strain adaptation of mutant prions. Paradoxically, the combination of Anle138b and IND24 appeared to accelerate disease by 16% and 26% in kiBVI E200K and kiBVI D178N mice, respectively, and accelerated the aggregation of mutant PrP molecules in vitro . Our results show that anti-prion drugs originally developed to treat infectious prion diseases do not necessarily work for inherited prion diseases, and that the recombinant sPMCA is not a reliable platform for identifying compounds that target mutant prions. This work underscores the need to develop therapies and validate screening assays specifically for mutant prions.
Collapse
|
18
|
Gunnels T, Shikiya RA, York TC, Block AJ, Bartz JC. Evidence for preexisting prion substrain diversity in a biologically cloned prion strain. PLoS Pathog 2023; 19:e1011632. [PMID: 37669293 PMCID: PMC10503715 DOI: 10.1371/journal.ppat.1011632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Prion diseases are a group of inevitably fatal neurodegenerative disorders affecting numerous mammalian species, including Sapiens. Prions are composed of PrPSc, the disease specific conformation of the host encoded prion protein. Prion strains are operationally defined as a heritable phenotype of disease under controlled transmission conditions. Treatment of rodents with anti-prion drugs results in the emergence of drug-resistant prion strains and suggest that prion strains are comprised of a dominant strain and substrains. While much experimental evidence is consistent with this hypothesis, direct observation of substrains has not been observed. Here we show that replication of the dominant strain is required for suppression of a substrain. Based on this observation we reasoned that selective reduction of the dominant strain may allow for emergence of substrains. Using a combination of biochemical methods to selectively reduce drowsy (DY) PrPSc from biologically-cloned DY transmissible mink encephalopathy (TME)-infected brain resulted in the emergence of strains with different properties than DY TME. The selection methods did not occur during prion formation, suggesting the substrains identified preexisted in the DY TME-infected brain. We show that DY TME is biologically stable, even under conditions of serial passage at high titer that can lead to strain breakdown. Substrains therefore can exist under conditions where the dominant strain does not allow for substrain emergence suggesting that substrains are a common feature of prions. This observation has mechanistic implications for prion strain evolution, drug resistance and interspecies transmission.
Collapse
Affiliation(s)
- Tess Gunnels
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Ronald A. Shikiya
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Taylor C. York
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Alyssa J. Block
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| |
Collapse
|
19
|
Mazza M, Tran L, Loprevite D, Cavarretta MC, Meloni D, Dell’Atti L, Våge J, Madslien K, Vuong TT, Bozzetta E, Benestad SL. Are rapid tests and confirmatory western blot used for cattle and small ruminants TSEs reliable tools for the diagnosis of Chronic Wasting Disease in Europe? PLoS One 2023; 18:e0286266. [PMID: 37647272 PMCID: PMC10468065 DOI: 10.1371/journal.pone.0286266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/12/2023] [Indexed: 09/01/2023] Open
Abstract
The first case of CWD in Europe was detected in a Norwegian reindeer in 2016, followed later by two CWD cases in Norwegian moose. To prevent the potential spread of CWD to the EU, the European Commission (Regulation EU 2017_1972) implemented a CWD surveillance programme in cervids in the six countries having reindeer and or moose (Estonia, Finland, Latvia, Lithuania, Poland, and Sweden). Each country had to test a minimum of 3000 cervids for CWD using diagnostic rapid tests approved by the EC Regulation. Experimental transmission studies in rodents have demonstrated that the CWD strains found in Norwegian reindeer are different from those found in moose and that these European strains are all different from the North American ones. Data on the performances of authorised rapid tests are limited for CWD (from North America) and are currently minimal for CWD from Europe, due to the paucity of positive material. The aim of this study was to evaluate the diagnostic performances of three of the so-called "rapid" tests, commercially available and approved for TSE diagnosis in cattle and small ruminants, to detect the CWD strains circulating in Europe. The performances of these three tests were also compared to two different confirmatory western blot methods. Using parallel testing on the same panel of available samples, we evaluated here the analytical sensitivity of these methods for TSE diagnosis of CWD in Norwegian cervids tissues. Our results show that all the methods applied were able to detect the CWD positive samples even if differences in analytical sensitivity were clearly observed. Although this study could not assess the test accuracy, due to the small number of samples available, it is conceivable that the rapid and confirmatory diagnostic systems applied for CWD surveillance in Northern Europe are reliable tools.
Collapse
Affiliation(s)
- Maria Mazza
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Linh Tran
- World Organisation for Animal Health (WOAH, founded as OIE) - Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, Oslo, Norway
| | - Daniela Loprevite
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Maria C. Cavarretta
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Daniela Meloni
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Luana Dell’Atti
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Jørn Våge
- World Organisation for Animal Health (WOAH, founded as OIE) - Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, Oslo, Norway
| | - Knut Madslien
- World Organisation for Animal Health (WOAH, founded as OIE) - Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, Oslo, Norway
| | - Tram T. Vuong
- World Organisation for Animal Health (WOAH, founded as OIE) - Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, Oslo, Norway
| | - Elena Bozzetta
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Sylvie L. Benestad
- World Organisation for Animal Health (WOAH, founded as OIE) - Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
20
|
Bridges LR. Replicating RNA as a component of scrapie fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553578. [PMID: 37645951 PMCID: PMC10462133 DOI: 10.1101/2023.08.17.553578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Recently, electron cryo-microscopy (cryo-EM) maps of fibrils from the brains of mice and hamsters with five infectious scrapie strains have been published1-5 and deposited in the electron microscopy data bank (EMDB)6. This represents long-awaited near-atomic level structural evidence, widely expected to confirm the protein-only prion hypothesis7,8. Instead, the maps reveal a second component, other than protein. The aim of the present study was to identify the nature of this second component, in the published maps1-5, using an in silico approach. Extra densities (EDs) containing this component were continuous, straight, axial, at right angles to protein rungs and within hydrogen-bonding distance of protein, consistent with a role as guide and support in fibril construction. EDs co-located with strips of basic residues, notably lysines, and formed a conspicuous cladding over parts of the N-terminal lobe of the protein. In one ED, there was evidence of a Y-shaped polymer forming two antiparallel chains, consistent with replicating RNA. Although the protein-only prion hypothesis7 is still popular, convincing counter-evidence for an essential role of RNA as a cofactor has amassed in the last 20 years8. The present findings go beyond this in providing evidence for RNA as the genetic element of scrapie. To reflect the monotonous nature of the protein interface, it is suggested that the RNA may be a tandem repeat. This is against the protein-only prion hypothesis and in favour of a more orthodox agent, more akin to a virus. Fibrils from brains of patients with Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and other neurodegenerations also contain EDs9 and may be of a similar aetiology.
Collapse
Affiliation(s)
- Leslie R Bridges
- Neuropathology, Cellular Pathology, South West London Pathology, St George's Hospital, St George's University Hospitals NHS Foundation Trust, London, UK and Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
21
|
Arar S, Haque MA, Kayed R. Protein aggregation and neurodegenerative disease: Structural outlook for the novel therapeutics. Proteins 2023:10.1002/prot.26561. [PMID: 37530227 PMCID: PMC10834863 DOI: 10.1002/prot.26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Before the controversial approval of humanized monoclonal antibody lecanemab, which binds to the soluble amyloid-β protofibrils, all the treatments available earlier, for Alzheimer's disease (AD) were symptomatic. The researchers are still struggling to find a breakthrough in AD therapeutic medicine, which is partially attributable to lack in understanding of the structural information associated with the intrinsically disordered proteins and amyloids. One of the major challenges in this area of research is to understand the structural diversity of intrinsically disordered proteins under in vitro conditions. Therefore, in this review, we have summarized the in vitro applications of biophysical methods, which are aimed to shed some light on the heterogeneity, pathogenicity, structures and mechanisms of the intrinsically disordered protein aggregates associated with proteinopathies including AD. This review will also rationalize some of the strategies in modulating disease-relevant pathogenic protein entities by small molecules using structural biology approaches and biophysical characterization. We have also highlighted tools and techniques to simulate the in vivo conditions for native and cytotoxic tau/amyloids assemblies, urge new chemical approaches to replicate tau/amyloids assemblies similar to those in vivo conditions, in addition to designing novel potential drugs.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| |
Collapse
|
22
|
Kim A, Martinez-Valbuena I, Li J, Lang AE, Kovacs GG. Disease-Specific α-Synuclein Seeding in Lewy Body Disease and Multiple System Atrophy Are Preserved in Formaldehyde-Fixed Paraffin-Embedded Human Brain. Biomolecules 2023; 13:936. [PMID: 37371515 DOI: 10.3390/biom13060936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies have been able to detect α-synuclein (αSyn) seeding in formaldehyde-fixed paraffin-embedded (FFPE) tissues from patients with synucleinopathies using seed amplification assays (SAAs), but with relatively low sensitivity due to limited protein extraction efficiency. With the aim of introducing an alternative option to frozen tissues, we developed a streamlined protein extraction protocol for evaluating disease-specific seeding in FFPE human brain. We evaluated the protein extraction efficiency of different tissue preparations, deparaffinizations, and protein extraction buffers using formaldehyde-fixed and FFPE tissue of a single Lewy body disease (LBD) subject. Alternatively, we incorporated heat-induced antigen retrieval and dissociation using a commercially available kit. Our novel protein extraction protocol has been optimized to work with 10 sections of 4.5-µm-thickness or 2-mm-diameter micro-punch of FFPE tissue that can be used to seed SAAs. We demonstrated that extracted proteins from FFPE still preserve seeding potential and further show disease-specific seeding in LBD and multiple system atrophy. To the best of our knowledge, our study is the first to recapitulate disease-specific αSyn seeding behaviour in FFPE human brain. Our findings open new perspectives in re-evaluating archived human brain tissue, extending the disease-specific seeding assays to larger cohorts to facilitate molecular subtyping of synucleinopathies.
Collapse
Affiliation(s)
- Ain Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S6, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S6, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
23
|
Lau HHC, Martinez-Valbuena I, So RWL, Mehra S, Silver NRG, Mao A, Stuart E, Schmitt-Ulms C, Hyman BT, Ingelsson M, Kovacs GG, Watts JC. The G51D SNCA mutation generates a slowly progressive α-synuclein strain in early-onset Parkinson's disease. Acta Neuropathol Commun 2023; 11:72. [PMID: 37138318 PMCID: PMC10155462 DOI: 10.1186/s40478-023-01570-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023] Open
Abstract
Unique strains of α-synuclein aggregates have been postulated to underlie the spectrum of clinical and pathological presentations seen across the synucleinopathies. Whereas multiple system atrophy (MSA) is associated with a predominance of oligodendroglial α-synuclein inclusions, α-synuclein aggregates in Parkinson's disease (PD) preferentially accumulate in neurons. The G51D mutation in the SNCA gene encoding α-synuclein causes an aggressive, early-onset form of PD that exhibits clinical and neuropathological traits reminiscent of both PD and MSA. To assess the strain characteristics of G51D PD α-synuclein aggregates, we performed propagation studies in M83 transgenic mice by intracerebrally inoculating patient brain extracts. The properties of the induced α-synuclein aggregates in the brains of injected mice were examined using immunohistochemistry, a conformational stability assay, and by performing α-synuclein seed amplification assays. Unlike MSA-injected mice, which developed a progressive motor phenotype, G51D PD-inoculated animals remained free of overt neurological illness for up to 18 months post-inoculation. However, a subclinical synucleinopathy was present in G51D PD-inoculated mice, characterized by the accumulation of α-synuclein aggregates in restricted regions of the brain. The induced α-synuclein aggregates in G51D PD-injected mice exhibited distinct properties in a seed amplification assay and were much more stable than those present in mice injected with MSA extract, which mirrored the differences observed between human MSA and G51D PD brain samples. These results suggest that the G51D SNCA mutation specifies the formation of a slowly propagating α-synuclein strain that more closely resembles α-synuclein aggregates associated with PD than MSA.
Collapse
Affiliation(s)
- Heather H C Lau
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
| | - Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
| | - Nicholas R G Silver
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alison Mao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
| | - Cian Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Martin Ingelsson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Manka SW, Wenborn A, Betts J, Joiner S, Saibil HR, Collinge J, Wadsworth JDF. A structural basis for prion strain diversity. Nat Chem Biol 2023; 19:607-613. [PMID: 36646960 PMCID: PMC10154210 DOI: 10.1038/s41589-022-01229-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/18/2022] [Indexed: 01/17/2023]
Abstract
Recent cryogenic electron microscopy (cryo-EM) studies of infectious, ex vivo, prion fibrils from hamster 263K and mouse RML prion strains revealed a similar, parallel in-register intermolecular β-sheet (PIRIBS) amyloid architecture. Rungs of the fibrils are composed of individual prion protein (PrP) monomers that fold to create distinct N-terminal and C-terminal lobes. However, disparity in the hamster/mouse PrP sequence precludes understanding of how divergent prion strains emerge from an identical PrP substrate. In this study, we determined the near-atomic resolution cryo-EM structure of infectious, ex vivo mouse prion fibrils from the ME7 prion strain and compared this with the RML fibril structure. This structural comparison of two biologically distinct mouse-adapted prion strains suggests defined folding subdomains of PrP rungs and the way in which they are interrelated, providing a structural definition of intra-species prion strain-specific conformations.
Collapse
Affiliation(s)
- Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Adam Wenborn
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Jemma Betts
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Susan Joiner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Helen R Saibil
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK.
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK.
| |
Collapse
|
25
|
Bruno R, Riccardi G, Iacobone F, Chiarotti F, Pirisinu L, Vanni I, Marcon S, D'Agostino C, Giovannelli M, Parchi P, Agrimi U, Nonno R, Di Bari MA. Strain-Dependent Morphology of Reactive Astrocytes in Human- and Animal-Vole-Adapted Prions. Biomolecules 2023; 13:biom13050757. [PMID: 37238627 DOI: 10.3390/biom13050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Reactive astrogliosis is one of the pathological hallmarks of prion diseases. Recent studies highlighted the influence of several factors on the astrocyte phenotype in prion diseases, including the brain region involved, the genotype backgrounds of the host, and the prion strain. Elucidating the influence of prion strains on the astrocyte phenotype may provide crucial insights for developing therapeutic strategies. Here, we investigated the relationship between prion strains and astrocyte phenotype in six human- and animal-vole-adapted strains characterized by distinctive neuropathological features. In particular, we compared astrocyte morphology and astrocyte-associated PrPSc deposition among strains in the same brain region, the mediodorsal thalamic nucleus (MDTN). Astrogliosis was detected to some extent in the MDTN of all analyzed voles. However, we observed variability in the morphological appearance of astrocytes depending on the strain. Astrocytes displayed variability in thickness and length of cellular processes and cellular body size, suggesting strain-specific phenotypes of reactive astrocytes. Remarkably, four out of six strains displayed astrocyte-associated PrPSc deposition, which correlated with the size of astrocytes. Overall, these data show that the heterogeneous reactivity of astrocytes in prion diseases depends at least in part on the infecting prion strains and their specific interaction with astrocytes.
Collapse
Affiliation(s)
- Rosalia Bruno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Floriana Iacobone
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Flavia Chiarotti
- Reference Center for the Behavioral Sciences and Mental Health, Italian National Institute of Health, 00161 Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudia D'Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Matteo Giovannelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
26
|
Block AJ, Bartz JC. Prion strains: shining new light on old concepts. Cell Tissue Res 2023; 392:113-133. [PMID: 35796874 PMCID: PMC11318079 DOI: 10.1007/s00441-022-03665-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
Prion diseases are a group of inevitably fatal neurodegenerative disorders affecting numerous mammalian species, including humans. The existence of heritable phenotypes of disease in the natural host suggested that prions exist as distinct strains. Transmission of sheep scrapie to rodent models accelerated prion research, resulting in the isolation and characterization of numerous strains with distinct characteristics. These strains are grouped into categories based on the incubation period of disease in different strains of mice and also by how stable the strain properties were upon serial passage. These classical studies defined the host and agent parameters that affected strain properties, and, prior to the advent of the prion hypothesis, strain properties were hypothesized to be the result of mutations in a nucleic acid genome of a conventional pathogen. The development of the prion hypothesis challenged the paradigm of infectious agents, and, initially, the existence of strains was difficult to reconcile with a protein-only agent. In the decades since, much evidence has revealed how a protein-only infectious agent can perform complex biological functions. The prevailing hypothesis is that strain-specific conformations of PrPSc encode prion strain diversity. This hypothesis can provide a mechanism to explain the observed strain-specific differences in incubation period of disease, biochemical properties of PrPSc, tissue tropism, and subcellular patterns of pathology. This hypothesis also explains how prion strains mutate, evolve, and adapt to new species. These concepts are applicable to prion-like diseases such as Parkinson's and Alzheimer's disease, where evidence of strain diversity is beginning to emerge.
Collapse
Affiliation(s)
- Alyssa J Block
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
27
|
Sun JL, Telling GC. New developments in prion disease research using genetically modified mouse models. Cell Tissue Res 2023; 392:33-46. [PMID: 36929219 DOI: 10.1007/s00441-023-03761-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
While much of what we know about the general principles of protein-based information transfer derives from studies of experimentally adapted rodent prions, these laboratory strains are limited in their ability to recapitulate features of human and animal prions and the diseases they produce. Here, we review how recent approaches using genetically modified mice have informed our understanding of naturally occurring prion diseases, their strain properties, and the factors controlling their transmission and evolution. In light of the increasing importance of chronic wasting disease, the application of mouse transgenesis to study this burgeoning and highly contagious prion disorder, in particular recent insights derived from gene-targeting approaches, will be a major focus of this review.
Collapse
Affiliation(s)
- Julianna L Sun
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA.
| |
Collapse
|
28
|
Myskiw J, Lamoureux L, Peterson A, Knox D, Jansen GH, Coulthart MB, Booth SA. Development of an Automated Capillary Immunoassay to Detect Prion Glycotypes in Creutzfeldt-Jakob Disease. J Transl Med 2023; 103:100029. [PMID: 36925197 DOI: 10.1016/j.labinv.2022.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 09/23/2022] [Accepted: 11/07/2022] [Indexed: 01/11/2023] Open
Abstract
Creutzfeldt-Jakob disease (CJD) comprises a group of transmissible neurodegenerative diseases with vast phenotypic diversity. Sporadic CJD heterogeneity is predominantly influenced by the genotype at codon 129 of the prion-encoding gene and the molecular weight of PrPSc fragments after protease digestion, resulting in a classification of 6 subtypes of CJD (MM1, MM2, MV1, MV2, VV1, and VV2). The majority of cases with CJD can be distinguished using this classification system. However, a number of reported CJD cases are phenotypically unique from others within their same subtype, such as variably protease-sensitive prionopathies, or exist as a mixture of subtypes within the same patient. Western blotting of brain tissue, along with the genotyping of codon 129 of the prion-encoding gene, is considered the "gold standard" for the biochemical characterization of CJD. Western blotting requires a significant amount of prion protein for detection, is labor-intensive, and is also associated with high interassay variability. In addition to these limitations, a growing body of research suggests that unique subtypes of CJD are often undetected or misdiagnosed using standard diagnostic western blotting protocols. Consequently, we successfully optimized and developed a capillary-based western assay using the JESS Simple Western (ProteinSimple) to detect and characterize prion proteins from patients with CJD. We found that this novel assay consistently differentiated CJD type 1 and type 2 cases with a limit of detection 10 to 100× higher than traditional western blotting. Cases with CJD in which type 1 and type 2 coexist within the same brain region can be detected using type 1-specific and type 2-specific antibodies, and we found that there was remarkable specificity for the detection of cases with variably protease-sensitive prionopathy. The assay presented displays outstanding sensitivity, allowing for the preservation of valuable samples and enhancing current detection methods.
Collapse
Affiliation(s)
- Jennifer Myskiw
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lise Lamoureux
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Anne Peterson
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - David Knox
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Gerard H Jansen
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael B Coulthart
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Stephanie A Booth
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
29
|
Sun JL, Kim S, Crowell J, Webster BK, Raisley EK, Lowe DC, Bian J, Korpenfelt SL, Benestad SL, Telling GC. Novel Prion Strain as Cause of Chronic Wasting Disease in a Moose, Finland. Emerg Infect Dis 2023; 29:323-332. [PMID: 36692340 PMCID: PMC9881765 DOI: 10.3201/eid2902.220882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Our previous studies using gene-targeted mouse models of chronic wasting disease (CWD) demonstrated that Norway and North America cervids are infected with distinct prion strains that respond differently to naturally occurring amino acid variation at residue 226 of the prion protein. Here we performed transmissions in gene-targeted mice to investigate the properties of prions causing newly emergent CWD in moose in Finland. Although CWD prions from Finland and Norway moose had comparable responses to primary structural differences at residue 226, other distinctive criteria, including transmission kinetics, patterns of neuronal degeneration, and conformational features of prions generated in the brains of diseased mice, demonstrated that the strain properties of Finland moose CWD prions are different from those previously characterized in Norway CWD. Our findings add to a growing body of evidence for a diverse portfolio of emergent strains in Nordic countries that are etiologically distinct from the comparatively consistent strain profile of North America CWD.
Collapse
|
30
|
Walsh DJ, Schwind AM, Noble GP, Supattapone S. Conformational diversity in purified prions produced in vitro. PLoS Pathog 2023; 19:e1011083. [PMID: 36626391 PMCID: PMC9870145 DOI: 10.1371/journal.ppat.1011083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/23/2023] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Prion diseases are caused by misfolding of either wild-type or mutant forms of the prion protein (PrP) into self-propagating, pathogenic conformers, collectively termed PrPSc. Both wild-type and mutant PrPSc molecules exhibit conformational diversity in vivo, but purified prions generated by the serial protein misfolding cyclic amplification (sPMCA) technique do not display this same diversity in vitro. This discrepancy has left a gap in our understanding of how conformational diversity arises at the molecular level in both types of prions. Here, we use continuous shaking instead of sPMCA to generate conformationally diverse purified prions in vitro. Using this approach, we show for the first time that wild type prions initially seeded by different native strains can propagate as metastable PrPSc conformers with distinguishable strain properties in purified reactions containing a single active cofactor. Propagation of these metastable PrPSc conformers requires appropriate shaking conditions, and changes in these conditions cause all the different PrPSc conformers to converge irreversibly into the same single conformer as that produced in sPMCA reactions. We also use continuous shaking to show that two mutant PrP molecules with different pathogenic point mutations (D177N and E199K) adopt distinguishable PrPSc conformations in reactions containing pure protein substrate without cofactors. Unlike wild-type prions, the conformations of mutant prions appear to be dictated by substrate sequence rather than seed conformation. Overall, our studies using purified substrates in shaking reactions show that wild-type and mutant prions use fundamentally different mechanisms to generate conformational diversity at the molecular level.
Collapse
Affiliation(s)
- Daniel J. Walsh
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Abigail M. Schwind
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Geoffrey P. Noble
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Surachai Supattapone
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
31
|
Chen Z, Chen K, Xie C, Liao K, Xu F, Pan L. Cyclic transitions of DNA origami dimers driven by thermal cycling. NANOTECHNOLOGY 2022; 34:065601. [PMID: 36332233 DOI: 10.1088/1361-6528/aca02f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
It is widely observed that life activities are regulated through conformational transitions of biological macromolecules, which inspires the construction of environmental responsive nanomachines in recent years. Here we present a thermal responsive DNA origami dimers system, whose conformations can be cyclically switched by thermal cycling. In our strategy, origami dimers are assembled at high temperatures and disassembled at low temperatures, which is different from the conventional strategy of breaking nanostructures using high temperatures. The advantage of this strategy is that the dimers system can be repeatedly operated without significant performance degradation, compared to traditional strategies such as conformational transitions via i-motif and G-quadruplexes, whose performance degrades with sample dilution due to repeated addition of trigger solutions. The cyclic conformational transitions of the dimers system are verified by fluorescence curves and AFM images. This research offered a new way to construct cyclic transformational nanodevices, such as reusable nanomedicine delivery systems or nanorobots with long service lifetimes.
Collapse
Affiliation(s)
- Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Kangchao Liao
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Fei Xu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| |
Collapse
|
32
|
Hoyt F, Alam P, Artikis E, Schwartz CL, Hughson AG, Race B, Baune C, Raymond GJ, Baron GS, Kraus A, Caughey B. Cryo-EM of prion strains from the same genotype of host identifies conformational determinants. PLoS Pathog 2022; 18:e1010947. [PMID: 36342968 PMCID: PMC9671466 DOI: 10.1371/journal.ppat.1010947] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Prion strains in a given type of mammalian host are distinguished by differences in clinical presentation, neuropathological lesions, survival time, and characteristics of the infecting prion protein (PrP) assemblies. Near-atomic structures of prions from two host species with different PrP sequences have been determined but comparisons of distinct prion strains of the same amino acid sequence are needed to identify purely conformational determinants of prion strain characteristics. Here we report a 3.2 Å resolution cryogenic electron microscopy-based structure of the 22L prion strain purified from the brains of mice engineered to express only PrP lacking glycophosphatidylinositol anchors [anchorless (a) 22L]. Comparison of this near-atomic structure to our recently determined structure of the aRML strain propagated in the same inbred mouse reveals that these two mouse prion strains have distinct conformational templates for growth via incorporation of PrP molecules of the same sequence. Both a22L and aRML are assembled as stacks of PrP molecules forming parallel in-register intermolecular β-sheets and intervening loops, with single monomers spanning the ordered fibril core. Each monomer shares an N-terminal steric zipper, three major arches, and an overall V-shape, but the details of these and other conformational features differ markedly. Thus, variations in shared conformational motifs within a parallel in-register β-stack fibril architecture provide a structural basis for prion strain differentiation within a single host genotype.
Collapse
Affiliation(s)
- Forrest Hoyt
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Parvez Alam
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Cindi L. Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Andrew G. Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Chase Baune
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Gregory J. Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Gerald S. Baron
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
33
|
Emergence of CWD strains. Cell Tissue Res 2022; 392:135-148. [PMID: 36201049 PMCID: PMC10113326 DOI: 10.1007/s00441-022-03688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
Abstract
Chronic wasting disease (CWD) strains present a novel challenge to defining and mitigating this contagious prion disease of deer, elk, moose, and reindeer. Similar to strains of other prion diseases (bovine spongiform encephalopathy, sheep scrapie), CWD strains can affect biochemical and neuropathological properties of the infectious agent, and importantly interspecies transmission. To date, ten CWD strains have been characterized. The expanding range of CWD in North America and its presence in South Korea as well as Scandinavian countries will potentially result in millions of cervids infected with CWD; thus, novel strains will continue to emerge. In this review, we will summarize the characteristics of known CWD strains and describe the impact of prion protein gene polymorphisms on the generation of strains. We will also discuss the evidence that individual cervids can harbor more than one CWD strain, complicating strain analysis, and affecting selection and adaptation of strains in new hosts.
Collapse
|
34
|
Otaki H, Taguchi Y, Nishida N. Conformation-Dependent Influences of Hydrophobic Amino Acids in Two In-Register Parallel β-Sheet Amyloids, an α-Synuclein Amyloid and a Local Structural Model of PrP Sc. ACS OMEGA 2022; 7:31271-31288. [PMID: 36092583 PMCID: PMC9453792 DOI: 10.1021/acsomega.2c03523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Prions are unconventional pathogens that encode the pathogenic information in conformations of the constituent abnormal isoform of prion protein (PrPSc), independently of the nucleotide genome. Therefore, conformational diversity of PrPSc underlies the existence of many prion strains and species barriers of prions, although the conformational information is extremely limited. Interestingly, differences between polymorphic or species-specific residues responsible for the species/strain barriers are often caused by conservative replacements between hydrophobic amino acids. This implies that subtle differences among hydrophobic amino acids are significant for PrPSc structures. Here we analyzed the influence of different hydrophobic residues on the structures of an in-register parallel β-sheet amyloid of α-synuclein (αSyn) using molecular dynamics (MD) simulation and applied the knowledge from the αSyn amyloid to modeling a local structure of human PrPSc encompassing residues 107-143. We found that mutations equivalent to polymorphisms that cause transmission barriers substantially affect the stabilities of the local structures; for example, the G127V mutation, which makes the host resistant to various human prion diseases, greatly destabilized the local structure of the model amyloid. Our study indicates that subtle differences among hydrophobic side chains can considerably affect the interaction network, including hydrogen bonds, and demonstrates specifically how and in what structures hydrophobic residues can exert unique effects on in-register parallel β-sheet amyloids.
Collapse
Affiliation(s)
- Hiroki Otaki
- Center
for Bioinformatics and Molecular Medicine, Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yuzuru Taguchi
- Department
of Molecular Microbiology and Immunology, Graduate School of Biomedical
Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Noriyuki Nishida
- Department
of Molecular Microbiology and Immunology, Graduate School of Biomedical
Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
35
|
Manka SW, Wenborn A, Collinge J, Wadsworth JDF. Prion strains viewed through the lens of cryo-EM. Cell Tissue Res 2022; 392:167-178. [PMID: 36028585 PMCID: PMC10113314 DOI: 10.1007/s00441-022-03676-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Mammalian prions are lethal transmissible pathogens that cause fatal neurodegenerative diseases in humans and animals. They consist of fibrils of misfolded, host-encoded prion protein (PrP) which propagate through templated protein polymerisation. Prion strains produce distinct clinicopathological phenotypes in the same host and appear to be encoded by distinct misfolded PrP conformations and assembly states. Despite fundamental advances in our understanding of prion biology, key knowledge gaps remain. These include precise delineation of prion replication mechanisms, detailed explanation of the molecular basis of prion strains and inter-species transmission barriers, and the structural definition of neurotoxic PrP species. Central to addressing these questions is the determination of prion structure. While high-resolution definition of ex vivo prion fibrils once seemed unlikely, recent advances in cryo-electron microscopy (cryo-EM) and computational methods for 3D reconstruction of amyloids have now made this possible. Recently, near-atomic resolution structures of highly infectious, ex vivo prion fibrils from hamster 263K and mouse RML prion strains were reported. The fibrils have a comparable parallel in-register intermolecular β-sheet (PIRIBS) architecture that now provides a structural foundation for understanding prion strain diversity in mammals. Here, we review these new findings and discuss directions for future research.
Collapse
Affiliation(s)
- Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Adam Wenborn
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
36
|
Gelpi E, Baiardi S, Nos C, Dellavalle S, Aldecoa I, Ruiz-Garcia R, Ispierto L, Escudero D, Casado V, Barranco E, Boltes A, Molina-Porcel L, Bargalló N, Rossi M, Mammana A, Tiple D, Vaianella L, Stoegmann E, Simonitsch-Klupp I, Kasprian G, Klotz S, Höftberger R, Budka H, Kovacs GG, Ferrer I, Capellari S, Sanchez-Valle R, Parchi P. Sporadic Creutzfeldt-Jakob disease VM1: phenotypic and molecular characterization of a novel subtype of human prion disease. Acta Neuropathol Commun 2022; 10:114. [PMID: 35978418 PMCID: PMC9387077 DOI: 10.1186/s40478-022-01415-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
The methionine (M)—valine (V) polymorphic codon 129 of the prion protein gene (PRNP) plays a central role in both susceptibility and phenotypic expression of sporadic Creutzfeldt-Jakob diseases (sCJD). Experimental transmissions of sCJD in humanized transgenic mice led to the isolation of five prion strains, named M1, M2C, M2T, V2, and V1, based on two major conformations of the pathological prion protein (PrPSc, type 1 and type 2), and the codon 129 genotype determining susceptibility and propagation efficiency. While the most frequent sCJD strains have been described in codon 129 homozygosis (MM1, MM2C, VV2) and heterozygosis (MV1, MV2K, and MV2C), the V1 strain has only been found in patients carrying VV. We identified six sCJD cases, 4 in Catalonia and 2 in Italy, carrying MV at PRNP codon 129 in combination with PrPSc type 1 and a new clinical and neuropathological profile reminiscent of the VV1 sCJD subtype rather than typical MM1/MV1. All patients had a relatively long duration (mean of 20.5 vs. 3.5 months of MM1/MV1 patients) and lacked electroencephalographic periodic sharp-wave complexes at diagnosis. Distinctive histopathological features included the spongiform change with vacuoles of larger size than those seen in sCJD MM1/MV1, the lesion profile with prominent cortical and striatal involvement, and the pattern of PrPSc deposition characterized by a dissociation between florid spongiform change and mild synaptic deposits associated with coarse, patch-like deposits in the cerebellar molecular layer. Western blot analysis of brain homogenates revealed a PrPSc type 1 profile with physicochemical properties reminiscent of the type 1 protein linked to the VV1 sCJD subtype. In summary, we have identified a new subtype of sCJD with distinctive clinicopathological features significantly overlapping with those of the VV1 subtype, possibly representing the missing evidence of V1 sCJD strain propagation in the 129MV host genotype.
Collapse
Affiliation(s)
- Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna and Austrian Reference Center for Human Prion Diseases (ÖRPE), AKH Leitstelle 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.
| | - Simone Baiardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Carlos Nos
- General Subdirectorate of Surveillance and Response to Emergencies in Public Health, Department of Public Health in Catalonia, Barcelona, Spain
| | - Sofia Dellavalle
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139, Bologna, Italy
| | - Iban Aldecoa
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Department of Pathology, Center for Biomedical Diagnosis, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Raquel Ruiz-Garcia
- Department of Immunology, Center for Biomedical Diagnosis, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Lourdes Ispierto
- Cognitive and Movement Disorders Unit, Hospital Germans Trias I Pujol de Badalona, Barcelona, Spain
| | - Domingo Escudero
- Cognitive and Movement Disorders Unit, Hospital Germans Trias I Pujol de Badalona, Barcelona, Spain.,Neurology Department, Alzheimer Disease and Other Cognitive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Virgina Casado
- Neurology Department, Hospital de Mataró, Barcelona, Spain
| | - Elena Barranco
- Department of Geriatrics, Hospital General de Granollers, Barcelona, Spain
| | - Anuncia Boltes
- Department of Neurology, Hospital General de Granollers, Barcelona, Spain
| | - Laura Molina-Porcel
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Neurology Department, Alzheimer Disease and Other Cognitive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Nuria Bargalló
- Radiology Department, Image Diagnosis Center, Hospital Clínic de Barcelona, Spain and Magnetic Resonance Image Core Facility of IDIBAPS, Barcelona, Spain
| | - Marcello Rossi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139, Bologna, Italy
| | - Angela Mammana
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139, Bologna, Italy
| | - Dorina Tiple
- Department of Neuroscience, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Luana Vaianella
- Department of Neuroscience, Istituto Superiore di Sanità, 00161, Rome, Italy
| | | | | | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna and Austrian Reference Center for Human Prion Diseases (ÖRPE), AKH Leitstelle 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna and Austrian Reference Center for Human Prion Diseases (ÖRPE), AKH Leitstelle 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Herbert Budka
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna and Austrian Reference Center for Human Prion Diseases (ÖRPE), AKH Leitstelle 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of BarcelonaBellvitge University Hospital-IDIBELLCIBERNED, Barcelona, Spain
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Raquel Sanchez-Valle
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Neurology Department, Alzheimer Disease and Other Cognitive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139, Bologna, Italy. .,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
37
|
α-Synuclein molecular behavior and nigral proteomic profiling distinguish subtypes of Lewy body disorders. Acta Neuropathol 2022; 144:167-185. [PMID: 35748929 DOI: 10.1007/s00401-022-02453-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/01/2022]
Abstract
Lewy body disorders (LBD), characterized by the deposition of misfolded α-synuclein (α-Syn), are clinically heterogeneous. Although the distribution of α-Syn correlates with the predominant clinical features, the burden of pathology does not fully explain the observed variability in clinical presentation and rate of disease progression. We hypothesized that this heterogeneity might reflect α-Syn molecular diversity, between both patients and different brain regions. Using an ultra-sensitive assay, we evaluated α-Syn seeding in 8 brain regions from 30 LBD patients with different clinical phenotypes and disease durations. Comparing seeding across the clinical phenotypes revealed that hippocampal α-Syn from patients with a cognitive-predominant phenotype had significantly higher seeding capacity than that derived from patients with a motor-predominant phenotype, whose nigral-derived α-Syn in turn had higher seeding capacity than that from cognitive-predominant patients. Interestingly, α-Syn from patients with rapid disease progression (< 3 years to development of advanced disease) had the highest nigral seeding capacity of all the patients included. To validate these findings and explore factors underlying seeding heterogeneity, we performed in vitro toxicity assays, and detailed neuropathological and biochemical examinations. Furthermore, and for the first time, we performed a proteomic-wide profiling of the substantia nigra from 5 high seeder and 5 low seeder patients. The proteomic data suggests a significant disruption in mitochondrial function and lipid metabolism in high seeder cases compared to the low seeders. These observations suggest that distinct molecular populations of α-Syn may contribute to heterogeneity in phenotypes and progression rates in LBD and imply that effective therapeutic strategies might need to be directed at an ensemble of differently misfolded α-Syn species, with the relative contribution of their differing impacts accounting for heterogeneity in the neurodegenerative process.
Collapse
|
38
|
Telling GC. The shape of things to come: structural insights into how prion proteins encipher heritable information. Nat Commun 2022; 13:4003. [PMID: 35831278 PMCID: PMC9279361 DOI: 10.1038/s41467-022-31460-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023] Open
Affiliation(s)
- Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
39
|
Tikhodeyev ON. Prions as Non-Canonical Hereditary Factors. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Pirisinu L, Di Bari MA, D’Agostino C, Vanni I, Riccardi G, Marcon S, Vaccari G, Chiappini B, Benestad SL, Agrimi U, Nonno R. A single amino acid residue in bank vole prion protein drives permissiveness to Nor98/atypical scrapie and the emergence of multiple strain variants. PLoS Pathog 2022; 18:e1010646. [PMID: 35731839 PMCID: PMC9255773 DOI: 10.1371/journal.ppat.1010646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/05/2022] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
Prions are infectious agents that replicate through the autocatalytic misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc) causing fatal neurodegenerative diseases in humans and animals. Prions exist as strains, which are encoded by conformational variants of PrPSc. The transmissibility of prions depends on the PrPC sequence of the recipient host and on the incoming prion strain, so that some animal prion strains are more contagious than others or are transmissible to new species, including humans. Nor98/atypical scrapie (AS) is a prion disease of sheep and goats reported in several countries worldwide. At variance with classical scrapie (CS), AS is considered poorly contagious and is supposed to be spontaneous in origin. The zoonotic potential of AS, its strain variability and the relationships with the more contagious CS strains remain largely unknown. We characterized AS isolates from sheep and goats by transmission in ovinised transgenic mice (tg338) and in two genetic lines of bank voles, carrying either methionine (BvM) or isoleucine (BvI) at PrP residue 109. All AS isolates induced the same pathological phenotype in tg338 mice, thus proving that they encoded the same strain, irrespective of their geographical origin or source species. In bank voles, we found that the M109I polymorphism dictates the susceptibility to AS. BvI were susceptible and faithfully reproduced the AS strain, while the transmission in BvM was highly inefficient and was characterized by a conformational change towards a CS-like prion strain. Sub-passaging experiments revealed that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible animals. These findings add new clues for a better comprehension of strain selection dynamics in prion infections and have wider implications for understanding the origin of contagious prion strains, such as CS. Prions are transmissible agents responsible for fatal neurodegenerative diseases in humans and animals. Prions exist as strains, exhibiting distinct disease phenotypes and transmission properties. Some prion diseases occur sporadically with a supposedly spontaneous origin, while others are contagious and give rise to epidemics, mainly in animals. We investigated the strain properties of Nor98/atypical scrapie (AS), a sporadic prion disease of small ruminants. We found that AS was faithfully reproduced not only in a homologous context, i.e. ovinised transgenic mice, but also in an unrelated animal species, the bank vole. A natural polymorphism of the bank vole prion protein, coding for methionine (BvM) or for isoleucine (BvI) at codon 109, dictated the susceptibility of voles to AS, with BvI being highly susceptible to AS and BvM rather resistant. Most importantly, the M109I polymorphism mediated the emergence of AS-derived mutant prion strains resembling classical scrapie (CS), a contagious prion disease. Finally, by sub-passages in bank voles, we found that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible vole lines. These findings allow a better understanding of strain selection dynamics and suggest a link between sporadic and contagious prion diseases.
Collapse
Affiliation(s)
- Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Chiappini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
41
|
Tarutani A, Adachi T, Akatsu H, Hashizume Y, Hasegawa K, Saito Y, Robinson AC, Mann DMA, Yoshida M, Murayama S, Hasegawa M. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol 2022; 143:613-640. [PMID: 35513543 PMCID: PMC9107452 DOI: 10.1007/s00401-022-02426-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/20/2022]
Abstract
Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, 683-8503, Japan
| | - Hiroyasu Akatsu
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, 480-1195, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, 565-0871, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
42
|
Poleggi A, Baiardi S, Ladogana A, Parchi P. The Use of Real-Time Quaking-Induced Conversion for the Diagnosis of Human Prion Diseases. Front Aging Neurosci 2022; 14:874734. [PMID: 35547619 PMCID: PMC9083464 DOI: 10.3389/fnagi.2022.874734] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Prion diseases are rapidly progressive, invariably fatal, transmissible neurodegenerative disorders associated with the accumulation of the amyloidogenic form of the prion protein in the central nervous system (CNS). In humans, prion diseases are highly heterogeneous both clinically and neuropathologically. Prion diseases are challenging to diagnose as many other neurologic disorders share the same symptoms, especially at clinical onset. Definitive diagnosis requires brain autopsy to identify the accumulation of the pathological prion protein, which is the only specific disease biomarker. Although brain post-mortem investigation remains the gold standard for diagnosis, antemortem clinical, instrumental, and laboratory tests showing variable sensitivities and specificity, being surrogate disease biomarkers, have been progressively introduced in clinical practice to reach a diagnosis. More recently, the ultrasensitive Real-Time Quaking-Induced Conversion (RT-QuIC) assay, exploiting, for the first time, the detection of misfolded prion protein through an amplification strategy, has highly improved the “in-vitam” diagnostic process, reaching in cerebrospinal fluid (CSF) and olfactory mucosa (OM) around 96% sensitivity and close to 100% specificity. RT-QuIC also improved the detection of the pathologic prion protein in several peripheral tissues, possibly even before the clinical onset of the disease. The latter aspect is of great interest for the early and even preclinical diagnosis in subjects at genetic risk of developing the disease, who will likely be the main target population in future clinical trials. This review presents an overview of the current knowledge and future perspectives on using RT-QuIC to diagnose human prion diseases.
Collapse
Affiliation(s)
- Anna Poleggi
- Unit of Clinic, Diagnostics and Therapy of the Central Nervous System Diseases, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Baiardi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Programma Neuropatologia delle Malattie Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Anna Ladogana
- Unit of Clinic, Diagnostics and Therapy of the Central Nervous System Diseases, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Programma Neuropatologia delle Malattie Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- *Correspondence: Piero Parchi,
| |
Collapse
|
43
|
Standke HG, Kraus A. Seed amplification and RT-QuIC assays to investigate protein seed structures and strains. Cell Tissue Res 2022; 392:323-335. [PMID: 35258712 DOI: 10.1007/s00441-022-03595-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
Abstract
The accumulation of misfolded proteins as amyloid fibrils in the brain is characteristic of most neurodegenerative disorders. These misfolded proteins are capable of self-amplifying through protein seeding mechanisms, leading to accumulation in the host. First shown for PrP prions and prion diseases, it is now recognized that self-propagating misfolded proteins occur broadly in neurodegenerative diseases and include amyloid-β (Aβ) and tau in Alzheimer's disease (AD), tau in chronic traumatic encephalopathy (CTE), Pick's disease (PiD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP), and α-synuclein (α-syn) in Parkinson's disease (PD) and Lewy body dementias (LBD). Techniques able to directly measure these bioactive protein seeds include the real-time quaking-induced conversion (RT-QuIC) assays. Initially developed for the detection of PrP prions and subsequently for the detection of other misfolded protein seeds, these assays take advantage of the mechanism of protein-based self-propagation to result in exponential amplification of the initial protein seeds from biospecimens. Disease-specific "protein seeds" recruit and template the misfolding of native recombinant protein substrates to elongate amyloid fibrils. The amplification power of these assays allows for detection of minute amounts of disease-specific protein seeds to better support early and accurate diagnosis. In addition to the diagnostic capabilities, assay readouts have been shown to reveal biochemical, structural, and kinetic information of protein seed self-propagation. This review examines the various protein seed amplification assays currently available for distinct neurodegenerative diseases, with a focus on RT-QuIC assays, along with the insights their readouts provide into protein seed structures and strain differences.
Collapse
Affiliation(s)
- Heidi G Standke
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
44
|
Holec SAM, Liu SL, Woerman AL. Consequences of variability in α-synuclein fibril structure on strain biology. Acta Neuropathol 2022; 143:311-330. [PMID: 35122113 DOI: 10.1007/s00401-022-02403-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Synucleinopathies are a group of clinically and neuropathologically distinct protein misfolding diseases caused by unique α-synuclein conformations, or strains. While multiple atomic resolution cryo-electron microscopy structures of α-synuclein fibrils are now deposited in Protein Data Bank, significant gaps in the biological consequences arising from each conformation have yet to be unraveled. Mutations in the α-synuclein gene (SNCA), cofactors, and the solvation environment contribute to the formation and maintenance of each disease-causing strain. This review highlights the impact of each of these factors on α-synuclein misfolding and discusses the implications of the resulting structural variability on therapeutic development.
Collapse
Affiliation(s)
- Sara A M Holec
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Samantha L Liu
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA
| | - Amanda L Woerman
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
45
|
Hassan MN, Nabi F, Khan AN, Hussain M, Siddiqui WA, Uversky VN, Khan RH. The amyloid state of proteins: A boon or bane? Int J Biol Macromol 2022; 200:593-617. [PMID: 35074333 DOI: 10.1016/j.ijbiomac.2022.01.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
Proteins and their aggregation is significant field of research due to their association with various conformational maladies including well-known neurodegenerative diseases like Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases. Amyloids despite being given negative role for decades are also believed to play a functional role in bacteria to humans. In this review, we discuss both facets of amyloid. We have shed light on AD, which is one of the most common age-related neurodegenerative disease caused by accumulation of Aβ fibrils as extracellular senile plagues. We also discuss PD caused by the aggregation and deposition of α-synuclein in form of Lewy bodies and neurites. Other amyloid-associated diseases such as HD and amyotrophic lateral sclerosis (ALS) are also discussed. We have also reviewed functional amyloids that have various biological roles in both prokaryotes and eukaryotes that includes formation of biofilm and cell attachment in bacteria to hormone storage in humans, We discuss in detail the role of Curli fibrils' in biofilm formation, chaplins in cell attachment to peptide hormones, and Pre-Melansomal Protein (PMEL) roles. The disease-related and functional amyloids are compared with regard to their structural integrity, variation in regulation, and speed of forming aggregates and elucidate how amyloids have turned from foe to friend.
Collapse
Affiliation(s)
- Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Murtaza Hussain
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Waseem A Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 10 Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy 11 of Sciences", Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College 13 of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
46
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
47
|
Holz CL, Darish JR, Straka K, Grosjean N, Bolin S, Kiupel M, Sreevatsan S. Evaluation of Real-Time Quaking-Induced Conversion, ELISA, and Immunohistochemistry for Chronic Wasting Disease Diagnosis. Front Vet Sci 2022; 8:824815. [PMID: 35118153 PMCID: PMC8803730 DOI: 10.3389/fvets.2021.824815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic wasting disease (CWD) is a transmissible prion disorder, primarily affecting free-ranging and captive cervids in North America (United States and Canada), South Korea, and Europe (Finland, Norway, and Sweden). Current diagnostic methods used in the United States for detection of CWD in hunter harvested deer involve demonstration of the causal misfolded prion protein (PrPCWD) in the obex or retropharyngeal lymph nodes (RLNs) using an antigen detection ELISA as a screening tool, followed by a confirmation by the gold standard method, immunohistochemistry (IHC). Real-time quaking-induced conversion (RT-QuIC) assay is a newer approach that amplifies misfolded CWD prions in vitro and has facilitated CWD prion detection in a variety of tissues, body fluids, and excreta. The current study was undertaken to compare ELISA, IHC, and RT-QuIC on RLNs (n = 1,300 animals) from white-tailed deer (WTD) in Michigan. In addition, prescapular, prefemoral and popliteal lymph nodes collected from a small subset (n = 7) of animals were tested. Lastly, the location of the positive samples within Michigan was documented and the percentage of CWD positive RLNs was calculated by sex and age. ELISA and RT-QuIC detected PrPCWD in 184 and 178 out of 1,300 RLNs, respectively. Of the 184 ELISA positive samples, 176 were also IHC positive for CWD. There were seven discordant results when comparing IHC and ELISA. RT-QuIC revealed that six of the seven samples matched the IHC outcomes. One RLN was negative by IHC, but positive by ELISA and RT-QuIC. RT-QuIC, IHC, and ELISA also detected PrPCWD in prescapular, prefemoral and popliteal lymph nodes. CWD infection heterogeneities were observed in different age and sex groups, with young males having higher CWD prevalence. All, except one, CWD positive RLNs analyzed were from ten Counties geographically located in the West Michigan region of the Lower Peninsula. Taken together, we show evidence that the RT-QuIC assay is comparable to ELISA and IHC and could be helpful for routine CWD detection in surveillance programs. RT-QuIC also demonstrated that CWD prions are distributed across lymph nodes in a variety of anatomic locations. A multi-laboratory validation on blinded sample panels is underway and is likely to help to provide insight into the variability (lab-to-lab), analytical sensitivity, and specificity of gold standard diagnostics vs. RT-QuIC assay.
Collapse
Affiliation(s)
- Carine L Holz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Joseph R Darish
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Kelly Straka
- Michigan Department of Natural Resources, Lansing, MI, United States
| | - Nicole Grosjean
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Steven Bolin
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
48
|
The role of intra and inter-molecular disulfide bonds in modulating amyloidogenesis: A review. Arch Biochem Biophys 2021; 716:109113. [PMID: 34958750 DOI: 10.1016/j.abb.2021.109113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022]
Abstract
All proteins have the inherent ability to undergo transformation from their native structure to a β sheet rich fibrillar structure, called amyloid when subjected to specific conditions. Proteins with a high propensity to form amyloid fibrils have been implicated in a variety of disorders like Alzheimer's disease, Parkinson's disease, Type II diabetes, Amyotrophic Lateral Sclerosis (ALS) and prion diseases. Among the various critical factors that modulate the process of amyloid formation, disulfide bonds have been identified as one of the key determinants of amyloid propensity in proteins. Studies have shown that intra-molecular disulfide bonds impart stability to the native structure of a protein and decrease the tendency for amyloid aggregation, whereas intermolecular disulfide bonds aid in the process of aggregation. In this review, we will analyze the varying effects of both intra as well as inter-molecular disulfide bonds on the amyloid aggregation propensities of a few proteins associated with amyloid disorders.
Collapse
|
49
|
Pritzkow S, Gorski D, Ramirez F, Soto C. Prion Dissemination through the Environment and Medical Practices: Facts and Risks for Human Health. Clin Microbiol Rev 2021; 34:e0005919. [PMID: 34319151 PMCID: PMC8404694 DOI: 10.1128/cmr.00059-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are a group of fatal, infectious neurodegenerative disorders affecting various species of mammals, including humans. The infectious agent in these diseases, termed prion, is composed exclusively of a misfolded protein that can spread and multiply in the absence of genetic materials. In this article, we provide an overview of the mechanisms of prion replication, interindividual transmission, and dissemination in communities. In particular, we review the potential role of the natural environment in prion transmission, including the mechanisms and pathways for prion entry and accumulation in the environment as well as its roles in prion mutation, adaptation, evolution, and transmission. We also discuss the transmission of prion diseases through medical practices, scientific research, and use of biological products. Detailed knowledge of these aspects is crucial to limit the spreading of existing prion diseases as well as to prevent the emergence of new diseases with possible catastrophic consequences for public health.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Damian Gorski
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Frank Ramirez
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
50
|
High-resolution structure and strain comparison of infectious mammalian prions. Mol Cell 2021; 81:4540-4551.e6. [PMID: 34433091 DOI: 10.1016/j.molcel.2021.08.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
Within the extensive range of self-propagating pathologic protein aggregates of mammals, prions are the most clearly infectious (e.g., ∼109 lethal doses per milligram). The structures of such lethal assemblies of PrP molecules have been poorly understood. Here we report a near-atomic core structure of a brain-derived, fully infectious prion (263K strain). Cryo-electron microscopy showed amyloid fibrils assembled with parallel in-register intermolecular β sheets. Each monomer provides one rung of the ordered fibril core, with N-linked glycans and glycolipid anchors projecting outward. Thus, single monomers form the templating surface for incoming monomers at fibril ends, where prion growth occurs. Comparison to another prion strain (aRML) revealed major differences in fibril morphology but, like 263K, an asymmetric fibril cross-section without paired protofilaments. These findings provide structural insights into prion propagation, strains, species barriers, and membrane pathogenesis. This structure also helps frame considerations of factors influencing the relative transmissibility of other pathologic amyloids.
Collapse
|