1
|
Zhao H, Zhang X, Zhang N, Zhu L, Lian H. The interplay between Salmonella and host: Mechanisms and strategies for bacterial survival. CELL INSIGHT 2025; 4:100237. [PMID: 40177681 PMCID: PMC11964643 DOI: 10.1016/j.cellin.2025.100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 04/05/2025]
Abstract
Salmonella, an intracellular pathogen, infects both humans and animals, causing diverse diseases such as gastroenteritis and enteric fever. The Salmonella type III secretion system (T3SS), encoded within its pathogenicity islands (SPIs), is critical for bacterial virulence by directly delivering multiple effectors into eukaryotic host cells. Salmonella utilizes these effectors to facilitate its survival and replication within the host through modulating cytoskeletal dynamics, inflammatory responses, the biogenesis of Salmonella-containing vacuole (SCV), and host cell survival. Moreover, these effectors also interfere with immune responses via inhibiting innate immunity or antigen presentation. In this review, we summarize the current progress in the survival strategies employed by Salmonella and the molecular mechanisms underlying its interactions with the host. Understanding the interplay between Salmonella and host can enhance our knowledge of the bacterium's pathogenic processes and provide new insights into how it manipulates host cellular physiological activities to ensure its survival.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| | - Xinyue Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| | - Ningning Zhang
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Cooperative Center of Excellence in Hematology, New Haven, CT, 12208, USA
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Huan Lian
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
2
|
Worley MJ. Salmonella Type III Secretion System Effectors. Int J Mol Sci 2025; 26:2611. [PMID: 40141253 PMCID: PMC11942329 DOI: 10.3390/ijms26062611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Salmonella is estimated to infect between 200 million and over 1 billion people per year. The exact number is not known, as many cases go unreported. Integral to the pathogenesis of Salmonella, as well as numerous other Gram-negative pathogens, is its type III effectors. Salmonella possesses two distinct type III secretion systems, encoded by Salmonella pathogenicity island-1 and Salmonella pathogenicity island-2. Together, they secrete at least 49 type III effectors into host cells that are collectively responsible for many of the virulence attributes of this pathogen. These virulence factors facilitate the invasion of host cells, induce and attenuate inflammation, and change the migratory properties of infected phagocytes, among other things. The effects of all type III effectors on Salmonella virulence are discussed.
Collapse
Affiliation(s)
- Micah J Worley
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
3
|
Girón-Pérez DA, Ley-Arteaga LV, Covantes-Rosales CE, Toledo-Ibarra GA, Díaz-Resendiz KJG, Bueno-Durán AY, Benitez-Trinidad AB, Navidad-Murrieta MS, Girón-Pérez MI. Differential infection dynamics in mononuclear and polymorphonuclear cells during Salmonella Typhimurium infection and in vitro exposure to diazoxon. Microb Pathog 2025; 200:107341. [PMID: 39884477 DOI: 10.1016/j.micpath.2025.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
S. Typhimurium bacteria cause one of the most recurrent gastrointestinal diseases worldwide. This bacterium can settle in the gastrointestinal tract and internalize into different cellular strains, causing the formation of cellular reservoirs that subsequently lead to systemic dissemination. Exogenous factors such as pesticide exposure can also cause immunological alterations, increasing susceptibility to bacterial infection. The present work evaluated the infection capacity of Salmonella Typhimurium, during a short period (1 h) on mononuclear and polymorphonuclear cells previously exposed to diazoxon (1 h, during 4 h). Mononuclear cells were infected more frequently and in greater magnitude than polymorphonuclear cells. However, when actin polymerization and the release of reactive oxygen species (ROS) were analyzed, polymorphonuclear cells showed increased activity. These processes were evidenced by conformational changes during infection. This suggests differential dynamics of S. Typhimurium infection in mononuclear and polymorphonuclear cells previously exposed to diazoxon.
Collapse
Affiliation(s)
- Daniel Alberto Girón-Pérez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, 63173, Nayarit, Mexico; Licenciatura en Biomedicine Ambiental Traslacional, Universidad Autónoma de Nayarit, Circuito C. Ney M. González, Ciudad del conocimiento, 63173, Tepic, Nay, Mexico.
| | - Leslie Verónica Ley-Arteaga
- Universidad Tecnológica de Nayarit, Carretera México 200, Km 9 63786, Col, 24 de febrero, Xalisco, 63786, Nayarit, Mexico
| | - Carlos Eduardo Covantes-Rosales
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, 63173, Nayarit, Mexico; Licenciatura en Biomedicine Ambiental Traslacional, Universidad Autónoma de Nayarit, Circuito C. Ney M. González, Ciudad del conocimiento, 63173, Tepic, Nay, Mexico
| | - Gladys Alejandra Toledo-Ibarra
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, 63173, Nayarit, Mexico; Licenciatura en Biomedicine Ambiental Traslacional, Universidad Autónoma de Nayarit, Circuito C. Ney M. González, Ciudad del conocimiento, 63173, Tepic, Nay, Mexico
| | - Karina Janice Guadalupe Díaz-Resendiz
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, 63173, Nayarit, Mexico; Licenciatura en Biomedicine Ambiental Traslacional, Universidad Autónoma de Nayarit, Circuito C. Ney M. González, Ciudad del conocimiento, 63173, Tepic, Nay, Mexico
| | - Adela Yolanda Bueno-Durán
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, 63173, Nayarit, Mexico; Licenciatura en Biomedicine Ambiental Traslacional, Universidad Autónoma de Nayarit, Circuito C. Ney M. González, Ciudad del conocimiento, 63173, Tepic, Nay, Mexico
| | - Alma Betsaida Benitez-Trinidad
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, 63173, Nayarit, Mexico; Licenciatura en Biomedicine Ambiental Traslacional, Universidad Autónoma de Nayarit, Circuito C. Ney M. González, Ciudad del conocimiento, 63173, Tepic, Nay, Mexico
| | - Migdalia Sarahy Navidad-Murrieta
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, 63173, Nayarit, Mexico; Licenciatura en Biomedicine Ambiental Traslacional, Universidad Autónoma de Nayarit, Circuito C. Ney M. González, Ciudad del conocimiento, 63173, Tepic, Nay, Mexico
| | - Manuel Iván Girón-Pérez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, 63173, Nayarit, Mexico; Licenciatura en Biomedicine Ambiental Traslacional, Universidad Autónoma de Nayarit, Circuito C. Ney M. González, Ciudad del conocimiento, 63173, Tepic, Nay, Mexico.
| |
Collapse
|
4
|
Patel A, Wolfram A, Desin TS. Advancements in Detection Methods for Salmonella in Food: A Comprehensive Review. Pathogens 2024; 13:1075. [PMID: 39770335 PMCID: PMC11728791 DOI: 10.3390/pathogens13121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Non-typhoidal Salmonella species are one of the leading causes of gastrointestinal disease in North America, leading to a significant burden on the healthcare system resulting in a huge economic impact. Consequently, early detection of Salmonella species in the food supply, in accordance with food safety regulations, is crucial for protecting public health, preventing outbreaks, and avoiding serious economic losses. A variety of techniques have been employed to detect the presence of this pathogen in the food supply, including culture-based, immunological, and molecular methods. The present review summarizes these methods and highlights recent updates on promising emerging technologies, including aptasensors, Surface Plasmon Resonance (SPR), and Surface Enhanced Raman Spectroscopy (SERS).
Collapse
Affiliation(s)
- Aayushi Patel
- Trinity School of Medicine, Trinity Medical Sciences University, Roswell, GA 30075, USA; (A.P.); (A.W.)
| | - Andrew Wolfram
- Trinity School of Medicine, Trinity Medical Sciences University, Roswell, GA 30075, USA; (A.P.); (A.W.)
| | - Taseen S. Desin
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
5
|
Thiers I, Lissens M, Langie H, Lories B, Steenackers H. Salmonella biofilm formation diminishes bacterial proliferation in the C. elegans intestine. Biofilm 2024; 8:100225. [PMID: 39469492 PMCID: PMC11513601 DOI: 10.1016/j.bioflm.2024.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Non-typhoidal Salmonella serovars are a significant global cause of foodborne infections, owing their transmission success to the formation of biofilms. While the role of these biofilms in Salmonella's persistence outside the host is well understood, their significance during infection remains elusive. In this study, we investigated the impact of Salmonella biofilm formation on host colonization and virulence using the nematode model Caenorhabditis elegans. This infection model enables us to isolate the effect of biofilm formation on gut colonization and proliferation, as no gut microbiome is present and Salmonella cannot invade the intestinal tissue of the nematode. We show that a biofilm-deficient ΔcsgD mutant enhances gut proliferation compared to the wild-type strain, while the pathogen's virulence, the host's immune signaling pathways, and host survival remain unaffected. Hence, our work suggests that biofilm formation does not significantly contribute to Salmonella infection in C. elegans. However, complementary assays in higher-order in vivo models are required to further characterize the role of biofilm formation during infection and to take into account the impact of biofilm formation on competition with gut microbiome and epithelial invasion.
Collapse
Affiliation(s)
- Ines Thiers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Kasteelpark Arenberg 20, 3001, Belgium
| | - Maries Lissens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Kasteelpark Arenberg 20, 3001, Belgium
| | - Hanne Langie
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Kasteelpark Arenberg 20, 3001, Belgium
| | | | | |
Collapse
|
6
|
Guo E, Chou SZ, Lara-Tejero M, Galan JE. Cryo-EM structure of the bacterial effector protein SipA bound to F-actin reveals a unique mechanism for filament stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572903. [PMID: 38187563 PMCID: PMC10769390 DOI: 10.1101/2023.12.21.572903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The bacterial pathogen Salmonella spp. modulates cellular processes by delivering effector proteins through its type III secretion systems. Among these effectors, SipA facilitates bacterial invasion and promotes intestinal inflammation. The mechanisms by which this effector carries out these functions are incompletely understood although SipA's ability to modulate actin dynamics is central to some of these activities. Here we report the cryo-EM structure of SipA bound to filamentous actin. We show that this effector stabilizes actin filaments through unique interactions of its carboxy terminal domain with four actin subunits. Furthermore, our structure-function studies revealed that SipA's actin-binding activity is independent from its ability to stimulate intestinal inflammation. Overall, these studies illuminate critical aspects of Salmonella pathogenesis, and provide unique insight into the mechanisms by which a bacterial effector modulates actin dynamics.
Collapse
|
7
|
Liao YN, Gai YZ, Qian LH, Pan H, Zhang YF, Li P, Guo Y, Li SX, Nie HZ. Progesterone receptor potentiates macropinocytosis through CDC42 in pancreatic ductal adenocarcinoma. Oncogenesis 2024; 13:10. [PMID: 38424455 PMCID: PMC10904380 DOI: 10.1038/s41389-024-00512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Endocrine receptors play an essential role in tumor metabolic reprogramming and represent a promising therapeutic avenue in pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by a nutrient-deprived microenvironment. To meet their ascendant energy demands, cancer cells can internalize extracellular proteins via macropinocytosis. However, the roles of endocrine receptors in macropinocytosis are not clear. In this study, we found that progesterone receptor (PGR), a steroid-responsive nuclear receptor, is highly expressed in PDAC tissues obtained from both patients and transgenic LSL-KrasG12D/+; LSL-Trp53R172H/+; PDX1-cre (KPC) mice. Moreover, PGR knockdown restrained PDAC cell survival and tumor growth both in vitro and in vivo. Genetic and pharmacological PGR inhibition resulted in a marked attenuation of macropinocytosis in PDAC cells and subcutaneous tumor models, indicating the involvement of this receptor in macropinocytosis regulation. Mechanistically, PGR upregulated CDC42, a critical regulator in macropinocytosis, through PGR-mediated transcriptional activation. These data deepen the understanding of how the endocrine system influences tumor progression via a non-classical pathway and provide a novel therapeutic option for patients with PDAC.
Collapse
Affiliation(s)
- Ying-Na Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Yan-Zhi Gai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Li-Heng Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Hong Pan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Yi-Fan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Pin Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20030, P.R. China
| | - Ying Guo
- Radiology Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China.
| | - Shu-Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| | - Hui-Zhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| |
Collapse
|
8
|
Kant R, Mishra N, Kandhari K, Saba L, Michel C, Reisdorph R, Tewari-Singh N, Pantcheva MB, Petrash JM, Agarwal C, Agarwal R. Dexamethasone targets actin cytoskeleton signaling and inflammatory mediators to reverse sulfur mustard-induced toxicity in rabbit corneas. Toxicol Appl Pharmacol 2024; 483:116834. [PMID: 38266871 PMCID: PMC10923037 DOI: 10.1016/j.taap.2024.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE Sulfur mustard (SM), a bi-functional alkylating agent, was used during World War I and the Iran-Iraq war. SM toxicity is ten times higher in eyes than in other tissues. Cornea is exceptionally susceptible to SM-injuries due to its anterior positioning and mucous-aqueous interphase. Ocular SM exposure induces blepharitis, photosensitivity, dry eye, epithelial defects, limbal ischemia and stem cell deficiency, and mustard gas keratopathy leading to temporary or permanent vision impairments. We demonstrated that dexamethasone (Dex) is a potent therapeutic intervention against SM-induced corneal injuries; however, its mechanism of action is not well known. Investigations employing proteomic profiling (LC-MS/MS) to understand molecular mechanisms behind SM-induced corneal injury and Dex efficacy were performed in the rabbit cornea exposed to SM and then received Dex treatment. PEAKS studio was used to extract, search, and summarize peptide identity. Ingenuity Pathway Analysis was used for pathway identification. Validation was performed using immunofluorescence. One-Way ANOVA (FDR < 0.05; p < 0.005) and Student's t-test (p < 0.05) were utilized for analyzing proteomics and IF data, respectively. Proteomic analysis revealed that SM-exposure upregulated tissue repair pathways, particularly actin cytoskeleton signaling and inflammation. Prominently dysregulated proteins included lipocalin2, coronin1A, actin-related protein2, actin-related protein2/3 complex subunit2, actin-related protein2/3 complex subunit4, cell division cycle42, ezrin, bradykinin/kininogen1, moesin, and profilin. Upregulated actin cytoskeleton signaling increases F-actin formation, dysregulating cell shape and motility. Dex reversed SM-induced increases in the aforementioned proteins levels to near control expression profiles. Dex aids corneal wound healing and improves corneal integrity via actin cytoskeletal signaling and anti-inflammatory effects following SM-induced injuries.
Collapse
Affiliation(s)
- Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Mina B Pantcheva
- Department of Ophthalmology, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
9
|
Bandyopadhyay S, Zhang X, Ascura A, Edelblum KL, Bonder EM, Gao N. Salmonella engages CDC42 effector protein 1 for intracellular invasion. J Cell Physiol 2024; 239:36-50. [PMID: 37877586 PMCID: PMC11730249 DOI: 10.1002/jcp.31142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/25/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Human enterocytes are primary targets of infection by invasive bacterium Salmonella Typhimurium, and studies using nonintestinal epithelial cells established that S. Typhimurium activates Rho family GTPases, primarily CDC42, to modulate the actin cytoskeletal network for invasion. The host intracellular protein network that engages CDC42 and influences the pathogen's invasive capacity are relatively unclear. Here, proteomic analyses of canonical and variant CDC42 interactomes identified a poorly characterized CDC42 interacting protein, CDC42EP1, whose intracellular localization is rapidly redistributed and aggregated around the invading bacteria. CDC42EP1 associates with SEPTIN-7 and Villin, and its relocalization and bacterial engagement depend on host CDC42 and S. Typhimurium's capability of activating CDC42. Unlike CDC42, CDC42EP1 is not required for S. Typhimurium's initial cellular entry but is found to associate with Salmonella-containing vacuoles after long-term infections, indicating a contribution to the pathogen's intracellular growth and replication. These results uncover a new host regulator of enteric Salmonella infections, which may be targeted to restrict bacterial load at the primary site of infection to prevent systemic spread.
Collapse
Affiliation(s)
| | - Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Andrea Ascura
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Karen L. Edelblum
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
10
|
Pillay TD, Hettiarachchi SU, Gan J, Diaz-Del-Olmo I, Yu XJ, Muench JH, Thurston TL, Pearson JS. Speaking the host language: how Salmonella effector proteins manipulate the host. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001342. [PMID: 37279149 PMCID: PMC10333799 DOI: 10.1099/mic.0.001342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Salmonella injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 Salmonella effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector's enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. Salmonella and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the Salmonella type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.
Collapse
Affiliation(s)
- Timesh D. Pillay
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Sahampath U. Hettiarachchi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ines Diaz-Del-Olmo
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Xiu-Jun Yu
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Janina H. Muench
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa L.M. Thurston
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Davidson A, Hume PJ, Greene NP, Koronakis V. Salmonella invasion of a cell is self-limiting due to effector-driven activation of N-WASP. iScience 2023; 26:106643. [PMID: 37168569 PMCID: PMC10164908 DOI: 10.1016/j.isci.2023.106643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Salmonella Typhimurium drives uptake into non-phagocytic host cells by injecting effector proteins that reorganize the actin cytoskeleton. The host actin regulator N-WASP has been implicated in bacterial entry, but its precise role is not clear. We demonstrate that Cdc42-dependent N-WASP activation, instigated by the Cdc42-activating effector SopE2, strongly impedes Salmonella uptake into host cells. This inhibitory pathway is predominant later in invasion, with the ubiquitin ligase activity of the effector SopA specifically interfering with negative Cdc42-N-WASP signaling at early stages. The cell therefore transitions from being susceptible to invasion, into a state almost completely recalcitrant to bacterial uptake, providing a mechanism to limit the number of internalized Salmonella. Our work raises the possibility that Cdc42-N-WASP, known to be activated by numerous bacterial and viral species during infection and commonly assumed to promote pathogen uptake, is used to limit the entry of multiple pathogens.
Collapse
Affiliation(s)
| | - Peter J. Hume
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, UK
- Corresponding author
| |
Collapse
|
12
|
Tian X, Nanding K, Dai X, Wang Q, Wang J, Morigen, Fan L. Pattern recognition receptor mediated innate immune response requires a Rif-dependent pathway. J Autoimmun 2023; 134:102975. [PMID: 36527784 DOI: 10.1016/j.jaut.2022.102975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Small GTPases play critical roles in cell morphology, movement, and adhesion by dynamic regulation of actin cytoskeleton. The small Rho GTPase Rif/RhoF (Rho in filopodia) regulates the formation of filopodia and stress fibers in cells. Rif is highly expressed in a number of cell types in the immune system; however, it's role in immune system function is unclear. In this research, we found that Rif expression is necessary for NF-κB activation in primary immune cells, and mature dendritic cell (mature DCs) induced from Bone Marrow-Derived Dendritic Cells (BMDCs) isolated from Rif knock out (Rif KO) mice displayed impaired degradation of I-κBα, as well as reduced TNF-α secretion and p38 MAPK phosphorylation under LPS stimulation. Interestingly, we revealed that TLR agonists, such as LPS and poly (I:C), as well as bacterial virulence factor SopE could induce a transient increase in Rif activation in monocytes THP-1 cells. Furthermore, Rif was found to be an integral part of the TLR4, TLR3 and nodosome signaling complex. We further identified Src tyrosine kinases as upstream activator of Rif in both bacterial and viral induced immune responses. Moreover, activated Rif induces activation of transcription factors, such as NF-κB, AP-1 and IRF-3, and mediates inflammation through secretion of IL-6, IL-8 or TNFα. Rif activation by PRRs contributes in a variety of ways to protective host responses against invading microbes. Taken together, this study reveals that Rif is indispensable for both extracellular and intracellular pattern-recognition receptor-mediated innate immune responses. Rif possess broad anti-pathogenic effect and understanding of the molecular mechanisms by which this small Rho GTPase interferes with innate immune system will be beneficial to develop therapies against infectious agents.
Collapse
Affiliation(s)
- Xiaoxia Tian
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China; The Laboratory for Tumor Molecular Diagnosis, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Kathleen Nanding
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Xueyao Dai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Qian Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Junyu Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| |
Collapse
|
13
|
Dai Q, Song F, Li X, Huang F, Zhao H. Comprehensive analysis of the expression and prognosis for IQ motif-containing GTPase-activating proteins in hepatocellular carcinoma. BMC Cancer 2022; 22:1121. [PMID: 36320006 PMCID: PMC9628040 DOI: 10.1186/s12885-022-10204-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND IQ motif-containing GTPase-activating proteins (IQGAPs) are a group of scaffold proteins which have been identified to be involved in tumor initiation and progression in diverse types of cancer. Clinical studies and experimental evidence suggest that IQGAPs play an essential role in hepatocellular carcinoma (HCC) progression and alterations in their expression are closely related to patient prognosis. However, the different expression patterns and prognostic values of all three IQGAP isoforms in HCC have not yet been analyzed simultaneously. METHODS We analyzed the transcriptional and survival data of IQGAPs in HCC patients using Oncomine, UALCAN, Kaplan-Meier Plotter, cBioPortal, and GeneMANIA. We further examined tumor and adjacent normal tissues from 250 HCC patients using immunohistochemistry to assess the relationship between IQGAPs expression and clinicopathological features and validate the prognostic value of IQGAPs. In addition, we analyzed transcriptional changes of IQGAPs with regards to survival data in HCC patients from the TCGA-LIHC (liver hepatocellular carcinoma) cohort to validate our results. RESULTS We found that the expression levels of IQGAP1 and 3 were significantly elevated in HCC tissues than in normal liver tissues, whereas the expression level of IQGAP2 was decreased in the former than in the latter. The clinical data showed that positive IQGAP1 expression was associated with larger tumor size, advanced tumor-node-metastasis (TNM) stage, poor relapse-free survival (RFS), and overall survival (OS), and positive IQGAP3 expression was associated with poorer tumor differentiation, RFS, and OS. Conversely, positive IQGAP2 expression predicted less tumor numbers and microvascular invasion, as well as higher RFS and OS in these patients. CONCLUSIONS IQGAPs may serve as new prognostic biomarkers and potential targets for precision therapy in HCC.
Collapse
Affiliation(s)
- Qingqing Dai
- grid.412679.f0000 0004 1771 3402Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui 230032 Hefei, People’s Republic of China ,grid.275559.90000 0000 8517 6224Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747 Jena, Germany
| | - Fei Song
- grid.275559.90000 0000 8517 6224Department of Urology, Jena University Hospital, 07747 Jena, Germany
| | - Xincheng Li
- grid.412679.f0000 0004 1771 3402Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui 230032 Hefei, People’s Republic of China
| | - Fan Huang
- grid.412679.f0000 0004 1771 3402Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui 230032 Hefei, People’s Republic of China
| | - Hongchuan Zhao
- grid.412679.f0000 0004 1771 3402Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui 230032 Hefei, People’s Republic of China
| |
Collapse
|
14
|
Maekawa M, Natsume R, Arita M. Functional significance of ion channels during macropinosome resolution in immune cells. Front Physiol 2022; 13:1037758. [DOI: 10.3389/fphys.2022.1037758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Macropinocytosis is a unique type of endocytosis accompanied by membrane ruffle formation. Closure of membrane ruffles leads to the uptake of large volumes of fluid phase and, subsequently, the formation of large vacuoles termed macropinosomes. Immune cells, such as dendritic cells, T cells, and macrophages, endocytose the surrounding amino acids and pathogens via macropinocytosis either constitutively or in a stimulus-dependent fashion. This process is critical for cell migration, mammalian target of rapamycin complex 1 (mTORC1) activation, and antigen presentation. Large vacuoles are fragmented into tubules and smaller vesicles during the progression and maturation of macropinosomes in immune cells. This process is called “macropinosome resolution” and requires osmotically driven shrinkage of macropinosomes, which is controlled by ion channels present in them. The crenation of membranes on shrunken macropinosomes is recognized by curvature-sensing proteins and results in intracellular membrane trafficking. In this mini review, we highlight the recent progress in research on macropinosome resolution in macrophages, with a focus on ion channels (TPC1/2 for Na+ and TMEM206 for Cl−) that is required for macropinosome resolution. We also discuss the potential contribution of membrane lipids to this process.
Collapse
|
15
|
Hou W, Wang S, Wu H, Xue L, Wang B, Wang S, Wang H. Small GTPase-a Key Role in Host Cell for Coronavirus Infection and a Potential Target for Coronavirus Vaccine Adjuvant Discovery. Viruses 2022; 14:v14092044. [PMID: 36146850 PMCID: PMC9504349 DOI: 10.3390/v14092044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Small GTPases are signaling molecules in regulating key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants, especially in a great array of coronavirus infection processes. In this review, we discuss the role of small GTPases in the coronavirus life cycle, especially pre-entry, endocytosis, intracellular traffic, replication, and egress from the host cell. Furthermore, we also suggest the molecules that have potent adjuvant activity by targeting small GTPases. These studies provide deep insights and references to understand the pathogenesis of coronavirus as well as to propose the potential of small GTPases as targets for adjuvant development.
Collapse
Affiliation(s)
- Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Sibei Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Heqiong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Linli Xue
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | | | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence:
| |
Collapse
|
16
|
Kumar P, Soory A, Mustfa SA, Sarmah DT, Devvanshi H, Chatterjee S, Bossis G, Ratnaparkhi GS, Srikanth CV. Bidirectional regulation between AP-1 and SUMO genes modulates inflammatory signalling during Salmonella infection. J Cell Sci 2022; 135:276158. [PMID: 35904007 DOI: 10.1242/jcs.260096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Post-translational modifications (PTMs), such as SUMOylation, are known to modulate fundamental processes of a cell. Infectious agents such as Salmonella Typhimurium (STm) that causes gastroenteritis, utilizes PTM mechanism SUMOylation to highjack host cell. STm suppresses host SUMO-pathway genes Ubc9 and PIAS1 to perturb SUMOylation for an efficient infection. In the present study, the regulation of SUMO-pathway genes during STm infection was investigated. A direct binding of c-Fos, a component of AP-1 (Activator Protein-1), to promoters of both UBC9 and PIAS1 was observed. Experimental perturbation of c-Fos led to changes in expression of both Ubc9 and PIAS1. STm infection of fibroblasts with SUMOylation deficient c-Fos (c-FOS-KOSUMO-def-FOS) resulted in uncontrolled activation of target genes, resulting in massive immune activation. Infection of c-FOS-KOSUMO-def-FOS cells favored STm replication, indicating misdirected immune mechanisms. Finally, chromatin Immuno-precipitation assays confirmed a context dependent differential binding and release of AP-1 to/from target genes due to its Phosphorylation and SUMOylation respectively. Overall, our data point towards existence of a bidirectional cross-talk between c-Fos and the SUMO pathway and highlighting its importance in AP-1 function relevant to STm infection and beyond.
Collapse
Affiliation(s)
- Pharvendra Kumar
- Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India.,Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | | | | | - Dipanka Tanu Sarmah
- Translational Health Science and Technology Institute, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| | - Himadri Devvanshi
- Translational Health Science and Technology Institute, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| | - Samrat Chatterjee
- Translational Health Science and Technology Institute, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), Univ Montpellier, CNRS, Montpellier, France
| | | | - C V Srikanth
- Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| |
Collapse
|
17
|
Dai Q, Ain Q, Rooney M, Song F, Zipprich A. Role of IQ Motif-Containing GTPase-Activating Proteins in Hepatocellular Carcinoma. Front Oncol 2022; 12:920652. [PMID: 35785216 PMCID: PMC9243542 DOI: 10.3389/fonc.2022.920652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins (IQGAPs) are a class of scaffolding proteins, including IQGAP1, IQGAP2, and IQGAP3, which govern multiple cellular activities by facilitating cytoskeletal remodeling and cellular signal transduction. The role of IQGAPs in cancer initiation and progression has received increasing attention in recent years, especially in hepatocellular carcinoma (HCC), where the aberrant expression of IQGAPs is closely related to patient prognosis. IQGAP1 and 3 are upregulated and are considered oncogenes in HCC, while IQGAP2 is downregulated and functions as a tumor suppressor. This review details the three IQGAP isoforms and their respective structures. The expression and role of each protein in different liver diseases and mainly in HCC, as well as the underlying mechanisms, are also presented. This review also provides a reference for further studies on IQGAPs in HCC.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- Else Kröner Graduate School for Medical Students “Jena School for Ageing Medicine (JSAM)”, Jena University Hospital, Jena, Germany
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Fei Song
- Department of Urology, Jena University Hospital, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- *Correspondence: Alexander Zipprich,
| |
Collapse
|
18
|
Migrasomes: From Biogenesis, Release, Uptake, Rupture to Homeostasis and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4525778. [PMID: 35464764 PMCID: PMC9023195 DOI: 10.1155/2022/4525778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/27/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
Migrasomes are migration-dependent membrane-bound vesicular structures that contain cellular contents and small vesicles. Migrasomes grow on the tips or intersections of the retraction fibers after cells migrate away. The process of releasing migrasomes into the extracellular space is named as “migracytosis”. After releasing, they can be taken up by the surrounding cells, or rupture and further release their contents into the extracellular environment. Physiologically, migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation and discard the damaged mitochondria in response to mild mitochondrial stresses. Pathologically, migrasomes are released from podocyte during early podocyte stress and/or damage, from platelets after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from microglia/macrophages of the ischemic brain, and from tumor necrosis factor α (TNFα)-activated endothelial cells (ECs); thus, this newly discovered extracellular vesicle is involved in all these pathological processes. Moreover, migrasomes can modulate the proliferation of cancer cell via lateral transferring mRNA and protein. In this review, we will summarize the biogenesis, release, uptake, and rupture of migrasomes and discuss its biological roles in development, redox signalling, innate immunity and COVID-19, cardio-cerebrovascular diseases, renal diseases, and cancer biology, all of these highlight the importance of migrasomes in modulating body homeostasis and diseases.
Collapse
|
19
|
Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat Rev Microbiol 2021; 19:716-725. [PMID: 34012042 PMCID: PMC9350856 DOI: 10.1038/s41579-021-00561-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Microbial infections are controlled by host inflammatory responses that are initiated by innate immune receptors after recognition of conserved microbial products. As inflammation can also lead to disease, tissues that are exposed to microbial products such as the intestinal epithelium are subject to stringent regulatory mechanisms to prevent indiscriminate signalling through innate immune receptors. The enteric pathogen Salmonella enterica subsp. enterica serovar Typhimurium, which requires intestinal inflammation to sustain its replication in the intestinal tract, uses effector proteins of its type III secretion systems to trigger an inflammatory response without the engagement of innate immune receptors. Furthermore, S. Typhimurium uses a different set of effectors to restrict the inflammatory response to preserve host homeostasis. The S. Typhimurium-host interface is a remarkable example of the unique balance that emerges from the co-evolution of a pathogen and its host.
Collapse
|
20
|
ARHGEF26 enhances Salmonella invasion and inflammation in cells and mice. PLoS Pathog 2021; 17:e1009713. [PMID: 34242364 PMCID: PMC8294491 DOI: 10.1371/journal.ppat.1009713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/21/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Salmonella hijack host machinery in order to invade cells and establish infection. While considerable work has described the role of host proteins in invasion, much less is known regarding how natural variation in these invasion-associated host proteins affects Salmonella pathogenesis. Here we leveraged a candidate cellular GWAS screen to identify natural genetic variation in the ARHGEF26 (Rho Guanine Nucleotide Exchange Factor 26) gene that renders lymphoblastoid cells susceptible to Salmonella Typhi and Typhimurium invasion. Experimental follow-up redefined ARHGEF26’s role in Salmonella epithelial cell infection. Specifically, we identified complex serovar-by-host interactions whereby ARHGEF26 stimulation of S. Typhi and S. Typhimurium invasion into host cells varied in magnitude and effector-dependence based on host cell type. While ARHGEF26 regulated SopB- and SopE-mediated S. Typhi (but not S. Typhimurium) infection of HeLa cells, the largest effect of ARHGEF26 was observed with S. Typhimurium in polarized MDCK cells through a SopB- and SopE2-independent mechanism. In both cell types, knockdown of the ARHGEF26-associated protein DLG1 resulted in a similar phenotype and serovar specificity. Importantly, we show that ARHGEF26 plays a critical role in S. Typhimurium pathogenesis by contributing to bacterial burden in the enteric fever murine model, as well as inflammation in the colitis infection model. In the enteric fever model, SopB and SopE2 are required for the effects of Arhgef26 deletion on bacterial burden, and the impact of sopB and sopE2 deletion in turn required ARHGEF26. In contrast, SopB and SopE2 were not required for the impacts of Arhgef26 deletion on colitis. A role for ARHGEF26 on inflammation was also seen in cells, as knockdown reduced IL-8 production in HeLa cells. Together, these data reveal pleiotropic roles for ARHGEF26 during infection and highlight that many of the interactions that occur during infection that are thought to be well understood likely have underappreciated complexity. During infection, Salmonella manipulates host cells into engulfing the bacteria and establishing an intracellular niche. While many studies have identified genes involved in different stages of this Salmonella invasion process, few studies have examined how differences between human hosts contribute to infection susceptibility. Here we leveraged a candidate genetic screen to identify natural genetic variation in the human ARHGEF26 gene that correlates with Salmonella invasion. Springboarding from this result, we experimentally tested and redefined ARHGEF26’s role in Salmonella invasion, discovered a new role for ARHGEF26 in regulating inflammation during Salmonella disease, and demonstrated the relevance of these findings in mouse models. Building on how ARHGEF26 functions in other contexts, we implicated two ARHGEF26-interacting host proteins as contributors to Salmonella pathobiology. Collectively, these results identify a potential source of inter-person diversity in susceptibility to Salmonella disease and expand our molecular understanding of Salmonella infection to include a multifaceted role for ARHGEF26. They further identify important future directions in understanding how Salmonella recruit and manipulate ARHGEF26 as well as how ARHGEF26 is able to drive Salmonella-beneficial processes.
Collapse
|
21
|
The Salmonella effector protein SopD targets Rab8 to positively and negatively modulate the inflammatory response. Nat Microbiol 2021; 6:658-671. [PMID: 33603205 PMCID: PMC8085087 DOI: 10.1038/s41564-021-00866-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The food-borne bacterial pathogen Salmonella Typhimurium uses a type III protein secretion system to deliver multiple proteins into host cells. These secreted effectors modulate the functions of host cells and activate specific signalling cascades that result in the production of pro-inflammatory cytokines and intestinal inflammation. Some of the Salmonella-encoded effectors counteract this inflammatory response and help to preserve host homeostasis. Here, we demonstrate that the Salmonella effector protein SopD, which is required for pathogenesis, functions to both activate and inhibit the inflammatory response by targeting the Rab8 GTPase, which is a negative regulator of inflammation. We show that SopD has GTPase-activating protein activity for Rab8 and, therefore, inhibits this GTPase and stimulates inflammation. We also show that SopD activates Rab8 by displacing it from its cognate guanosine dissociation inhibitor, resulting in the stimulation of a signalling cascade that suppresses inflammation. We solved the crystal structure of SopD in association with Rab8 to a resolution of 2.3 Å, which reveals a unique contact interface that underlies these complex interactions. These findings show the remarkable evolution of a bacterial effector protein to exert both agonistic and antagonistic activities towards the same host cellular target to modulate the inflammatory response.
Collapse
|
22
|
Interactions between Salmonella and host macrophages - Dissecting NF-κB signaling pathway responses. Microb Pathog 2021; 154:104846. [PMID: 33711426 DOI: 10.1016/j.micpath.2021.104846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 01/07/2023]
Abstract
Salmonella not only invades host cells, but also replicates intracellularly to cause a range of diseases, including gastroenteritis and systemic infections such as typhoid fever. The body's first line of defense against pathogens is the innate immune response system that can protect against Salmonella invasion and replication. Nuclear factor κB (NF-κB) is an important transcriptional regulator that plays an important role in host inflammatory responses to pathogens. Both the canonical and non-canonical NF-κB signaling pathways are activated by Salmonella in many different ways through its virulence factors, leading to the release of inflammatory factors and the activation of inflammatory responses in mammalian hosts. Equally, Salmonella, as an enteropathogen, has accordingly evolved strategies to disturb NF-κB activation, such as secreting some effector proteins by type III secretion systems as well as inducing host cells to express NF-κB pathway inhibitors, allowing it to colonize and persistently infect the hosts. This review focuses on how Salmonella activates NF-κB signaling pathway and the strategies used by Salmonella to interfere with the NF-κB pathway activation.
Collapse
|
23
|
Kim SI, Kim S, Kim E, Hwang SY, Yoon H. Secretion of Salmonella Pathogenicity Island 1-Encoded Type III Secretion System Effectors by Outer Membrane Vesicles in Salmonella enterica Serovar Typhimurium. Front Microbiol 2018; 9:2810. [PMID: 30532744 PMCID: PMC6266720 DOI: 10.3389/fmicb.2018.02810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical membranous structures released by Gram-negative bacteria. Several bacterial pathogens utilize OMVs as vehicles for the delivery of virulence factors into host cells. Results of our previous study on proteomic analysis revealed that OMVs isolated from Salmonellaenterica serovar Typhimurium had virulence effectors that are known to be translocated by Salmonella pathogenicity island 1 (SPI-1)-encoded type III secretion system (T3SS1) into the host cell. In the present study, immunoblot analysis confirmed the secretion of the six T3SS1 effector proteins, namely SipB and SipC (translocators of T3SS1), and SipA, SopA, SopB, and SopE2 (effectors translocated by T3SS1), by OMVs. Results of proteinase K treatment revealed the localization of these T3SS1 effector proteins on the outer surface of OMVs. SipC and SopE2 were secreted by OMVs independent of the three secretion systems T3SS1, T3SS2, and flagella, signifying OMVs to be an alternative delivery system to T3SSs. T3SS1 effectors SipA, SipC, and SopE2 were internalized into the cytoplasm of the host cell by OMVs independent of cellular Salmonella–host cell contact. In epithelial cells, addition of OMVs harboring T3SS1 effectors stimulated the production of F-actin, thereby complementing the attenuated invasion of ΔsopE2 into host cells. These results suggest that S. Typhimurium might exploit OMVs as a long-distance vehicle to deliver T3SS1 effectors into the cytoplasm of the host cell independent of bacteria–host cell interaction.
Collapse
Affiliation(s)
- Seul I Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seongok Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seo Yeon Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
24
|
Sun H, Kamanova J, Lara-Tejero M, Galán JE. Salmonella stimulates pro-inflammatory signalling through p21-activated kinases bypassing innate immune receptors. Nat Microbiol 2018; 3:1122-1130. [PMID: 30224799 PMCID: PMC6158040 DOI: 10.1038/s41564-018-0246-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/13/2018] [Indexed: 01/11/2023]
Abstract
Microbial infections are most often countered by inflammatory responses that are initiated through the recognition of conserved microbial products by innate immune receptors and result in pathogen expulsion1-6. However, inflammation can also lead to pathology. Tissues such as the intestinal epithelium, which are exposed to microbial products, are therefore subject to stringent negative regulatory mechanisms to prevent signalling through innate immune receptors6-11. This presents a challenge to the enteric pathogen Salmonella Typhimurium, which requires intestinal inflammation to compete against the resident microbiota and to acquire the nutrients and electron acceptors that sustain its replication12,13. We show here that S. Typhimurium stimulates pro-inflammatory signalling by a unique mechanism initiated by effector proteins that are delivered by its type III protein secretion system. These effectors activate Cdc42 and the p21-activated kinase 1 (PAK1) leading to the recruitment of TNF receptor-associated factor 6 (TRAF6) and mitogen-activated protein kinase kinase kinase 7 (TAK1), and the stimulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inflammatory signalling. The removal of Cdc42, PAK1, TRAF6 or TAK1 prevented S. Typhimurium from stimulating NF-κB signalling in cultured cells. In addition, oral administration of a highly specific PAK inhibitor blocked Salmonella-induced intestinal inflammation and bacterial replication in the mouse intestine, although it resulted in a significant increase in the bacterial loads in systemic tissues. Thus, S. Typhimurium stimulates inflammatory signalling in the intestinal tract by engaging critical downstream signalling components of innate immune receptors. These findings illustrate the unique balance that emerges from host-pathogen co-evolution, in that pathogen-initiated responses that help pathogen replication are also important to prevent pathogen spread to deeper tissues.
Collapse
Affiliation(s)
- Hui Sun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jana Kamanova
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
25
|
Stradal TEB, Schelhaas M. Actin dynamics in host-pathogen interaction. FEBS Lett 2018; 592:3658-3669. [PMID: 29935019 PMCID: PMC6282728 DOI: 10.1002/1873-3468.13173] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton and Rho GTPase signaling to actin assembly are prime targets of bacterial and viral pathogens, simply because actin is involved in all motile and membrane remodeling processes, such as phagocytosis, macropinocytosis, endocytosis, exocytosis, vesicular trafficking and membrane fusion events, motility, and last but not least, autophagy. This article aims at providing an overview of the most prominent pathogen‐induced or ‐hijacked actin structures, and an outlook on how future research might uncover additional, equally sophisticated interactions.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Germany
| |
Collapse
|
26
|
Fei D, Meng X, Yu W, Yang S, Song N, Cao Y, Jin S, Dong L, Pan S, Zhao M. Fibronectin (FN) cooperated with TLR2/TLR4 receptor to promote innate immune responses of macrophages via binding to integrin β1. Virulence 2018; 9:1588-1600. [PMID: 30272511 PMCID: PMC7000207 DOI: 10.1080/21505594.2018.1528841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022] Open
Abstract
Macrophages could adhere to extracellular matrix molecules(ECM) to induce the expression of pro-inflammatory mediators and phagocytosis that contribute to the pathogenesis of pulmonary infection diseases. Fibronectin (FN) is a large glycoprotein capable of interacting with various ECM molecules produced by a variety of cell types and involved in cell attachment and chemotaxis. However, it is unknown whether FN regulates the expression of pro-inflammatory mediators and phagocytosis of macrophages in the injured lung tissue. Here, we investigated the interaction between FN and integrin β1 in macrophages, which promotes toll-like receptor 2/4 (TLR2/TLR4) signaling pathways to enhance expression of pro-inflammatory mediators and phagocytosis by macrophages. Our results show that lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN) significantly increase FN expression of macrophages; FN substantially enhances interleukin 6 (IL-6), tumor necrosis factor-α (TNFα), ras-related C3 botulinum toxin substrate 1/2 (Rac1/2), and cell division control protein 42 homolog (Cdc42) expression and phagocytosis of macrophages. However, FN could not enhance pro-inflammatory cytokines and phagocytosis of macrophages induced by LPS and PGN in integrin β1-/- macrophages. Furthermore, applied integrin β1 blocking peptide abrogated the effects that FN promotes innate immune responses of macrophages to LPS and PGN. Those data indicated that the enhanced pro-inflammatory mediators and phagocytosis of macrophages by FN-integrin β1 signal was through co-operating with TLR2/TLR4 signaling. This study suggests that FN play an essential role in the pathogenesis of pulmonary infection disease.
Collapse
Affiliation(s)
- Dongsheng Fei
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianglin Meng
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yu
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songlin Yang
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Song
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanhui Cao
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songgen Jin
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lina Dong
- Department of Ultrasound in Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- The Key Hepatosplenic Surgery Laboratory, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyan Zhao
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Young AM, Palmer AE. Methods to Illuminate the Role of Salmonella Effector Proteins during Infection: A Review. Front Cell Infect Microbiol 2017; 7:363. [PMID: 28848721 PMCID: PMC5554337 DOI: 10.3389/fcimb.2017.00363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
Intracellular bacterial pathogens like Salmonella enterica use secretion systems, such as the Type III Secretion System, to deliver virulence factors into host cells in order to invade and colonize these cells. Salmonella virulence factors include a suite of effector proteins that remodel the host cell to facilitate bacterial internalization, replication, and evasion of host immune surveillance. A number of diverse and innovative approaches have been used to identify and characterize the role of effector proteins during infection. Recent techniques for studying infection using single cell and animal models have illuminated the contribution of individual effector proteins in infection. This review will highlight the techniques applied to study Salmonella effector proteins during infection. It will describe how different approaches have revealed mechanistic details for effectors in manipulating host cellular processes including: the dynamics of effector translocation into host cells, cytoskeleton reorganization, membrane trafficking, gene regulation, and autophagy.
Collapse
Affiliation(s)
- Alexandra M Young
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado BoulderBoulder, CO, United States
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado BoulderBoulder, CO, United States
| |
Collapse
|
28
|
Hannemann S, Galán JE. Salmonella enterica serovar-specific transcriptional reprogramming of infected cells. PLoS Pathog 2017; 13:e1006532. [PMID: 28742135 PMCID: PMC5549772 DOI: 10.1371/journal.ppat.1006532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/08/2017] [Accepted: 07/13/2017] [Indexed: 01/18/2023] Open
Abstract
Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars. Salmonella Typhimurium and Salmonella Typhi are associated with very different clinical presentations. While S. Typhimurium causes self-limiting gastroenteritis (i. e. “food poisoning”), S. Typhi causes typhoid fever, a systemic, life-threatening disease. The bases for these major differences are not fully understood but are likely to involve many factors. We have compared the transcriptional responses of cultured cells infected with S. Typhimurium or S. Typhi. We found that these Salmonella serovars stimulated distinct transcriptional responses, which could be correlated with their ability to stimulate serovar-specific signal transduction pathways. Importantly, the ability to stimulate these cellular responses was correlated with the presence or absence of specific type III secretion effector proteins. These observations provide major insight into the molecular bases for the differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.
Collapse
Affiliation(s)
- Sebastian Hannemann
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
29
|
InvS Coordinates Expression of PrgH and FimZ and Is Required for Invasion of Epithelial Cells by Salmonella enterica serovar Typhimurium. J Bacteriol 2017; 199:JB.00824-16. [PMID: 28439039 DOI: 10.1128/jb.00824-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/20/2017] [Indexed: 11/20/2022] Open
Abstract
Deep sequencing has revolutionized our understanding of the bacterial RNA world and has facilitated the identification of 280 small RNAs (sRNAs) in Salmonella Despite the suspicions that sRNAs may play important roles in Salmonella pathogenesis, the functions of most sRNAs remain unknown. To advance our understanding of RNA biology in Salmonella virulence, we searched for sRNAs required for bacterial invasion into nonphagocytic cells. After screening 75 sRNAs, we discovered that the ablation of InvS caused a significant decrease of Salmonella invasion into epithelial cells. A proteomic analysis showed that InvS modulated the levels of several type III secreted Salmonella proteins. The level of PrgH, a type III secretion apparatus protein, was significantly lower in the absence of InvS, consistent with the known roles of PrgH in effector secretion and bacterial invasion. We discovered that InvS modulates fimZ expression and hence flagellar gene expression and motility. We propose that InvS coordinates the increase of PrgH and decrease in FimZ that promote efficient Salmonella invasion into nonphagocytic cells.IMPORTANCE Salmonellosis continues to be the most common foodborne infection reported by the CDC in the United States. Central to Salmonella pathogenesis is the ability to invade nonphagocytic cells and to replicate inside host cells. Invasion genes are known to be regulated by protein transcriptional networks, but little is known about the role played by small RNAs (sRNAs) in this process. We have identified a novel sRNA, InvS, that is involved in Salmonella invasion. Our result will likely provide an opportunity to better understand the fundamental question of how Salmonella regulates invasion gene expression and may inform strategies for therapeutic intervention.
Collapse
|
30
|
Identification of Transcriptional Modules and Key Genes in Chickens Infected with Salmonella enterica Serovar Pullorum Using Integrated Coexpression Analyses. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8347085. [PMID: 28529955 PMCID: PMC5424481 DOI: 10.1155/2017/8347085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/01/2017] [Accepted: 03/27/2017] [Indexed: 01/20/2023]
Abstract
Salmonella enterica Pullorum is one of the leading causes of mortality in poultry. Understanding the molecular response in chickens in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis (WGCNA) and differential coexpression analysis (DCEA) to identify coexpression modules by exploring microarray data derived from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-protein coupled receptor activity, Toll-like receptor signaling pathways, and immune system processes; among them, 14 differentially coexpressed modules (DCMs) and 2,856 differentially coexpressed genes (DCGs) were identified. The global expression of module genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression. Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for future studies of Salmonella infection.
Collapse
|
31
|
Howe K, Salehi S, Hartford Bailey R, Brooks JP, Wills R, Lawrence ML, Karsi A. Supplemental invasion of Salmonella from the perspective of Salmonella enterica serovars Kentucky and Typhimurium. BMC Microbiol 2017; 17:88. [PMID: 28381209 PMCID: PMC5382418 DOI: 10.1186/s12866-017-0989-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 03/23/2017] [Indexed: 11/12/2022] Open
Abstract
Background Critical to the development of Salmonellosis in humans is the interaction of the bacterium with the epithelial lining of the gastrointestinal tract. Traditional scientific reasoning held type III secretion system (T3SS) as the virulence factor responsible for bacterial invasion. In this study, field-isolated Salmonella enterica serovar Kentucky and a known human pathogen Salmonella enterica serovar Typhimurium were mutated and evaluated for the invasion of human colorectal adenocarcinoma epithelial cells. Results S. enterica serovar Kentucky was shown to actively invade a eukaryotic monolayer, though at a rate that was significantly lower than Typhimurium. Additionally, strains mutated for T3SS formation were less invasive than the wild-type strains, but the decrease in invasion was not significant in Kentucky. Conclusions Strains mutated for T3SS formation were able to initiate invasion of the eukaryotic monolayer to varying degrees based on strain, In the case of Kentucky, the mutated strain initiated invasion at a level that was not significantly different from the wild-type strain. A different result was observed for Typhimurium as the mutation significantly lowered the rate of invasion in comparison to the wild-type strain.
Collapse
Affiliation(s)
- Kevin Howe
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi State, MS, USA
| | - Sanaz Salehi
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi State, MS, USA
| | - R Hartford Bailey
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi State, MS, USA.
| | - John P Brooks
- USDA-ARS, Genetics and Precision Agriculture Unit, Mississippi State, MS, USA
| | - Robert Wills
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi State, MS, USA
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
32
|
Riba A, Emmenlauer M, Chen A, Sigoillot F, Cong F, Dehio C, Jenkins J, Zavolan M. Explicit Modeling of siRNA-Dependent On- and Off-Target Repression Improves the Interpretation of Screening Results. Cell Syst 2017; 4:182-193.e4. [PMID: 28215525 DOI: 10.1016/j.cels.2017.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/09/2016] [Accepted: 01/13/2017] [Indexed: 12/31/2022]
Abstract
RNAi is broadly used to map gene regulatory networks, but the identification of genes that are responsible for the observed phenotypes is challenging, as small interfering RNAs (siRNAs) simultaneously downregulate the intended on targets and many partially complementary off targets. Additionally, the scarcity of publicly available control datasets hinders the development and comparative evaluation of computational methods for analyzing the data. Here, we introduce PheLiM (https://github.com/andreariba/PheLiM), a method that uses predictions of siRNA on- and off-target downregulation to infer gene-specific contributions to phenotypes. To assess the performance of PheLiM, we carried out siRNA- and CRISPR/Cas9-based genome-wide screening of two well-characterized pathways, bone morphogenetic protein (BMP) and nuclear factor κB (NF-κB), and we reanalyzed publicly available siRNA screens. We demonstrate that PheLiM has the overall highest accuracy and most reproducible results compared to other available methods. PheLiM can accommodate various methods for predicting siRNA off targets and is broadly applicable to the identification of genes underlying complex phenotypes.
Collapse
Affiliation(s)
- Andrea Riba
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Mario Emmenlauer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Amy Chen
- Developmental & Molecular Pathways, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Frederic Sigoillot
- Developmental & Molecular Pathways, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Feng Cong
- Developmental & Molecular Pathways, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Christoph Dehio
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Jeremy Jenkins
- Developmental & Molecular Pathways, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mihaela Zavolan
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
33
|
Tan S, Yao J, Zhou T, Liu S, Yuan Z, Tian C, Li Q, Liu Z. Identification, annotation and expression analysis of 29 Rho GTPase genes from channel catfish (Ictalurus punctatus) after bacterial infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:445-451. [PMID: 27765605 DOI: 10.1016/j.dci.2016.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
The Rho family GTPases are a group of small monomeric G proteins, which are molecular switches in signaling pathways. They have been known to regulate a diverse range of cellular processes including actin cytoskeleton rearrangement and microtubule dynamics. In particular, their participations in immune responses are also significant. However, little information of the Rho GTPases is available in teleost including channel catfish, an economically important species and one of the best teleost models forimmunological research. In this study, Rho GTPase genes were identified from channel catfish and well annotated by phylogenetic and syntenic analyses. Their expression profiles were determined in channel catfish healthy tissues and infected tissues. Altogether seven Rho GTPase genes were significantly regulated after bacterial infection, with six genes in the gill after Flavobacterium columnare challenge and two genes in the intestine in response to Edwardsiella ictaluri. All the differentially expressed genes were up-regulated soon after bacterial infection. Different expression patterns between the two experiments were observed, which may be attributed to tissue-specific regulation or pathogen-specific regulation. These results suggested that Rho GTPases play important roles in immune responses to bacterial pathogens, setting a foundation for future investigation on Rho GTPases.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Qi Li
- The Shellfish Genetics and Breeding Laboratory, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
34
|
Basagiannis D, Zografou S, Murphy C, Fotsis T, Morbidelli L, Ziche M, Bleck C, Mercer J, Christoforidis S. VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation through macropinocytosis. J Cell Sci 2016; 129:4091-4104. [PMID: 27656109 DOI: 10.1242/jcs.188219] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/13/2016] [Indexed: 01/15/2023] Open
Abstract
Endocytosis plays a crucial role in receptor signalling. VEGFR2 (also known as KDR) and its ligand VEGFA are fundamental in neovascularisation. However, our understanding of the role of endocytosis in VEGFR2 signalling remains limited. Despite the existence of diverse internalisation routes, the only known endocytic pathway for VEGFR2 is the clathrin-mediated pathway. Here, we show that this pathway is the predominant internalisation route for VEGFR2 only in the absence of ligand. Intriguingly, VEGFA induces a new internalisation itinerary for VEGFR2, the pathway of macropinocytosis, which becomes the prevalent endocytic route for the receptor in the presence of ligand, whereas the contribution of the clathrin-mediated route becomes minor. Macropinocytic internalisation of VEGFR2, which mechanistically is mediated through the small GTPase CDC42, takes place through macropinosomes generated at ruffling areas of the membrane. Interestingly, macropinocytosis plays a crucial role in VEGFA-induced signalling, endothelial cell functions in vitro and angiogenesis in vivo, whereas clathrin-mediated endocytosis is not essential for VEGFA signalling. These findings expand our knowledge on the endocytic pathways of VEGFR2 and suggest that VEGFA-driven internalisation of VEGFR2 through macropinocytosis is essential for endothelial cell signalling and angiogenesis.
Collapse
Affiliation(s)
- Dimitris Basagiannis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, Ioannina 45110, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Sofia Zografou
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, Ioannina 45110, Greece
| | - Carol Murphy
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, Ioannina 45110, Greece.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Theodore Fotsis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, Ioannina 45110, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Marina Ziche
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | | | - Jason Mercer
- Institute of Biochemistry, ETH, Zurich 8093, Switzerland.,MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Savvas Christoforidis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, Ioannina 45110, Greece .,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
35
|
Ha KD, Bidlingmaier SM, Liu B. Macropinocytosis Exploitation by Cancers and Cancer Therapeutics. Front Physiol 2016; 7:381. [PMID: 27672367 PMCID: PMC5018483 DOI: 10.3389/fphys.2016.00381] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022] Open
Abstract
Macropinocytosis has long been known as a primary method for cellular intake of fluid-phase and membrane-bound bulk cargo. This review seeks to re-examine the latest studies to emphasize how cancers exploit macropinocytosis to further their tumorigenesis, including details in how macropinocytosis can be adapted to serve diverse functions. Furthermore, this review will also cover the latest endeavors in targeting macropinocytosis as an avenue for novel therapeutics.
Collapse
Affiliation(s)
- Kevin D Ha
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Scott M Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Bin Liu
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
36
|
The regulation roles of miR-125b, miR-221 and miR-27b in porcine Salmonella infection signalling pathway. Biosci Rep 2016; 36:BSR20160243. [PMID: 27474500 PMCID: PMC5006312 DOI: 10.1042/bsr20160243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/28/2016] [Indexed: 11/17/2022] Open
Abstract
miRNAs are non-coding RNA molecules typically 18-22 nucleotides long that can suppress the expression of their target genes. Several laboratories have attempted to identify miRNAs from the pig that are involved in Salmonella infection. These bioinformatics strategies using the newly available genomic sequence are generally successful. Here, we report an in silico identification of miRNAs in pig focusing on the Salmonella infection pathway, and further investigated the differential expression of those miRNAs by quantitative real-time PCR during pre- and post-natal stage of Salmonella inoculation from the peripheral blood of commercially breed pigs. We identified 29 miRNAs that have predicted targets in the Salmonella infection pathway and nine of them were not yet described in pig. In addition, the expression of nine selected miRNAs was validated in the peripheral blood by northern blotting. Through expression analyses, differences were found between pre- and post-natal stages of Salmonella inoculation for miR-221, miR-125b and miR-27b-all of them were suppressed 2 days after Salmonella inoculation. The predicted targets of those three miRNAs were validated by luciferase reporter assays. We show that FOS is a direct target of miR-221, miR-125b can suppress MAPK14, and miR-27b can target IFNG. These findings will be helpful in understanding the function and processing of these miRNAs in Salmonella infection. The miRNA differentially expressed in the peripheral blood of commercial breed pigs suggest that it can be used as genetic markers for salmonella infection resistance in pigs.
Collapse
|
37
|
Sun H, Liu P, Nolan LK, Lamont SJ. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection. Poult Sci 2016; 95:2803-2814. [PMID: 27466434 PMCID: PMC5144662 DOI: 10.3382/ps/pew202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/03/2016] [Accepted: 05/05/2016] [Indexed: 01/05/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus.
Collapse
Affiliation(s)
- H Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China, 225009.,Department of Animal Science, Iowa State University, Ames 50011
| | - P Liu
- Department of Statistics, Iowa State University, Ames 50011
| | - L K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames 50011
| | - S J Lamont
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
38
|
Zavala L, Golowczyc MA, van Hoorde K, Medrano M, Huys G, Vandamme P, Abraham AG. Selected Lactobacillus strains isolated from sugary and milk kefir reduce Salmonella infection of epithelial cells in vitro. Benef Microbes 2016; 7:585-95. [PMID: 27291404 DOI: 10.3920/bm2015.0196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The isolation of potentially probiotic strains and the subsequent study of their properties are very important steps to gain insight in the health benefits ascribed to sugary and milk kefir. The aim of the present study was to characterise fifteen Lactobacillus strains isolated from these beverages by determining some surface properties and their ability to antagonise enterocyte cell damage after Salmonella infection in vitro. Lactobacillus surface properties were determined by hydrophobicity, autoaggregation, and coaggregation assays with Salmonella. In addition, lactobacilli adhesion to Caco-2/TC-7 cells and the effect on Salmonella invasion were evaluated. Finally, the disassembly of F-actin cytoskeleton on intestinal epithelial cells was assayed in vitro when Salmonella infection was performed in the presence of selected Lactobacillus strains. Ten out of the 15 strains showed a high adhesion capacity to Caco-2/TC-7 cells. Most of the strains were hydrophilic and non-autoaggregating. Strains isolated from sugary kefir were non-coaggregating with Salmonella, while strains Lactobacillus paracasei CIDCA 83120, 83121, 83123, 83124, 8339, 83102 isolated from milk kefir were able to coaggregate after 1 h. L. paracasei CIDCA 8339 and Lactobacillus kefiri CIDCA 83102 were able to diminish Salmonella invasion to the enterocytes. An antagonistic effect on cytoskeleton disruption elicited by the pathogen was also demonstrated. Our results suggest that both strains isolated from milk kefir could be considered as appropriate probiotic candidates.
Collapse
Affiliation(s)
- L Zavala
- 1 Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET, UNLP), 47 and 116, 1900 La Plata, Argentina
| | - M A Golowczyc
- 1 Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET, UNLP), 47 and 116, 1900 La Plata, Argentina
| | - K van Hoorde
- 2 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.,3 Laboratory of Biochemistry and Brewing, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - M Medrano
- 1 Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET, UNLP), 47 and 116, 1900 La Plata, Argentina
| | - G Huys
- 2 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.,4 BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - P Vandamme
- 2 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - A G Abraham
- 1 Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET, UNLP), 47 and 116, 1900 La Plata, Argentina.,5 Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, 47 and 116, 1900 La Plata, Argentina
| |
Collapse
|
39
|
Kamanova J, Sun H, Lara-Tejero M, Galán JE. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members. PLoS Pathog 2016; 12:e1005552. [PMID: 27058235 PMCID: PMC4825927 DOI: 10.1371/journal.ppat.1005552] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms. Salmonella Typhimurium, one of the main causes of food-borne illnesses, stimulates inflammatory responses in the intestinal epithelium. These responses are very important for the pathogen’s ability to secure nutrients within the intestinal tract. The ability of this pathogen to stimulate intestinal inflammation depends on a protein-delivery machine known as the type III secretion system. This system “injects” bacterial effector protein into host cells to modulate a variety of cellular functions for the pathogen’s benefit. We show here that one of these effector proteins, SopA, stimulates signaling pathways that can lead to inflammation. We report that SopA exerts its function by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65, which have the ability to enhance interferon-β expression through the innate immune receptors RIG-I and MDA5. These findings describe a Salmonella mechanism to stimulate inflammation by directly targeting innate immune signaling mechanisms.
Collapse
Affiliation(s)
- Jana Kamanova
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hui Sun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
40
|
Sun H, Kamanova J, Lara-Tejero M, Galán JE. A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis. PLoS Pathog 2016; 12:e1005484. [PMID: 26933955 PMCID: PMC4775039 DOI: 10.1371/journal.ppat.1005484] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/10/2016] [Indexed: 12/11/2022] Open
Abstract
Microbial infections usually lead to host innate immune responses and inflammation. These responses most often limit pathogen replication although they can also result in host-tissue damage. The enteropathogenic bacteria Salmonella Typhimurium utilizes a type III secretion system to induce intestinal inflammation by delivering specific effector proteins that stimulate signal transduction pathways resulting in the production of pro-inflammatory cytokines. We show here that a family of related Salmonella Typhimurium effector proteins PipA, GogA and GtgA redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium strain lacking these effectors showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis and that those determinants can reduce the pathogen’s virulence. The inflammatory response to microbial pathogens usually limits their replication but it can also cause tissue damage. The enteropathogenic bacteria Salmonella Typhimurium stimulate host signal transduction pathways that result in inflammation. We show here that a family of related Salmonella Typhimurium effector proteins, PipA, GogA and GtgA, which are delivered by its type III secretion systems, specifically and redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to host inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors, which are central components of the NF-κB signaling pathway, but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium mutant strain lacking these effector proteins showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis.
Collapse
Affiliation(s)
- Hui Sun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jana Kamanova
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
Cell biology is the study of the structure and function of the unit or units of living organisms. Enabled by current and evolving technologies, cell biologists today are embracing new scientific challenges that span many disciplines. The eclectic nature of cell biology is core to its future and remains its enduring legacy.
Collapse
Affiliation(s)
- Wendy S Garrett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115 Harvard Medical School, Boston, MA 02115 Dana-Farber Cancer Institute, Boston, MA 02115
| |
Collapse
|
42
|
Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival. Mol Cell Biol 2015; 35:2932-46. [PMID: 26100020 DOI: 10.1128/mcb.00397-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022] Open
Abstract
Posttranslational modifications (PTMs) can alter many fundamental properties of a protein. One or combinations of them have been known to regulate the dynamics of many cellular pathways and consequently regulate all vital processes. Understandably, pathogens have evolved sophisticated strategies to subvert these mechanisms to achieve instantaneous control over host functions. Here, we present the first report of modulation by intestinal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) of host SUMOylation, a PTM pathway central to all fundamental cellular processes. Both in cell culture and in a mouse model, we observed that S. Typhimurium infection led to a dynamic SUMO-conjugated proteome alteration. The intracellular survival of S. Typhimurium was dependent on SUMO status as revealed by reduced infection and Salmonella-induced filaments (SIFs) in SUMO-upregulated cells. S. Typhimurium-dependent SUMO modulation was seen as a result of depletion of crucial SUMO pathway enzymes Ubc-9 and PIAS1, at both the protein and the transcript levels. Mechanistically, depletion of Ubc-9 relied on upregulation of small noncoding RNAs miR30c and miR30e during S. Typhimurium infection. This was necessary and sufficient for both down-modulation of Ubc-9 and a successful infection. Thus, we demonstrate a novel strategy of pathogen-mediated perturbation of host SUMOylation, an integral mechanism underlying S. Typhimurium infection and intracellular survival.
Collapse
|
43
|
Salmonella enterica Serovar Typhi conceals the invasion-associated type three secretion system from the innate immune system by gene regulation. PLoS Pathog 2014; 10:e1004207. [PMID: 24992093 PMCID: PMC4081808 DOI: 10.1371/journal.ppat.1004207] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/10/2014] [Indexed: 01/13/2023] Open
Abstract
Delivery of microbial products into the mammalian cell cytosol by bacterial secretion systems is a strong stimulus for triggering pro-inflammatory host responses. Here we show that Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, tightly regulates expression of the invasion-associated type III secretion system (T3SS-1) and thus fails to activate these innate immune signaling pathways. The S. Typhi regulatory protein TviA rapidly repressed T3SS-1 expression, thereby preventing RAC1-dependent, RIP2-dependent activation of NF-κB in epithelial cells. Heterologous expression of TviA in S. enterica serovar Typhimurium (S. Typhimurium) suppressed T3SS-1-dependent inflammatory responses generated early after infection in animal models of gastroenteritis. These results suggest that S. Typhi reduces intestinal inflammation by limiting the induction of pathogen-induced processes through regulation of virulence gene expression. Bacterial pathogens translocate effector proteins into the cytoplasm of host cells to manipulate the mammalian host. These processes, e.g. the stimulation of small regulatory GTPases, activate the innate immune system and induce pro-inflammatory responses aimed at clearing invading microbes from the infected tissue. Here we show that strict regulation of virulence gene expression can be used as a strategy to limit the induction of inflammatory responses while retaining the ability to manipulate the host. Upon entry into host tissue, Salmonella enterica serovar Typhi, the causative agent of typhoid fever, rapidly represses expression of a virulence factor required for entering tissue to avoid detection by the host innate immune surveillance. This tight control of virulence gene expression enables the pathogen to deploy a virulence factor for epithelial invasion, while preventing the subsequent generation of pro-inflammatory responses in host cells. We conclude that regulation of virulence gene expression contributes to innate immune evasion during typhoid fever by concealing a pattern of pathogenesis.
Collapse
|
44
|
Mehrbod P, Hair-Bejo M, Tengku Ibrahim TA, Omar AR, El Zowalaty M, Ajdari Z, Ideris A. Simvastatin modulates cellular components in influenza A virus-infected cells. Int J Mol Med 2014; 34:61-73. [PMID: 24788303 PMCID: PMC4072341 DOI: 10.3892/ijmm.2014.1761] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/24/2014] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Hair-Bejo
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohamed El Zowalaty
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Zahra Ajdari
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Aini Ideris
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
45
|
Abstract
Endocytosis is an essential process of eukaryotic cells that facilitates numerous cellular and organismal functions. The formation of vesicles from the plasma membrane serves the internalization of ligands and receptors and leads to their degradation or recycling. A number of distinct mechanisms have been described over the years, several of which are only partially characterized in terms of mechanism and function. These are often referred to as novel endocytic pathways. The pathways differ in their mode of uptake and in their intracellular destination. Here, an overview of the set of cellular proteins that facilitate the different pathways is provided. Further, the approaches to distinguish between the pathways by different modes of perturbation are critically discussed, emphasizing the use of genetic tools such as dominant negative mutant proteins.
Collapse
Affiliation(s)
- Lena Kühling
- Emmy Noether Group: Virus Endocytosis, Institutes of Molecular Virology and Medical Biochemistry, ZMBE, Westphalian Wilhelms University of Münster, Von-Esmarch-Str. 56, Münster, 48149, Germany
| | | |
Collapse
|
46
|
Kubori T, Hubber AM, Nagai H. Hijacking the host proteasome for the temporal degradation of bacterial effectors. Methods Mol Biol 2014; 1197:141-52. [PMID: 25172279 DOI: 10.1007/978-1-4939-1261-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To establish infection, intracellular pathogens need to modulate host cellular processes. Modulation of host processes is achieved by the action of various "effector proteins" which are delivered from the bacteria to the host cell cytosol. In order to orchestrate host cell reprogramming, the function of effectors inside host cells is regulated both temporally and spatially. In eukaryotes one of the most prominent processes used to degrade proteins is the ubiquitin-proteasome system. Recently it has emerged that the intracellular pathogen Legionella pneumophila is able to achieve temporal regulation of an effector using the ubiquitin-proteasome system. After establishing its replicative niche, the L. pneumophila effector SidH is degraded by the host proteasome. Most remarkably another effector protein LubX is able to mimic the function of an eukaryotic E3 ubiquitin ligase and polyubiquitinates SidH, targeting it for degradation. In this paper we describe a method to detect the polyubiquitin-modified forms of SidH in vitro and in vivo. Analyzing the temporal profile of polyubiquitination and degradation of bacterial effectors aids towards our understanding of how bacteria hijack host systems.
Collapse
Affiliation(s)
- Tomoko Kubori
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|
47
|
Keestra AM, Bäumler AJ. Detection of enteric pathogens by the nodosome. Trends Immunol 2013; 35:123-30. [PMID: 24268520 DOI: 10.1016/j.it.2013.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/31/2023]
Abstract
Nucleotide-binding oligomerization domain protein (NOD)1 and NOD2 participate in signaling pathways that detect pathogen-induced processes, such as the presence of peptidoglycan fragments in the host cell cytosol, as danger signals. Recent work suggests that peptidoglycan fragments activate NOD1 indirectly, through activation of the small Rho GTPase Ras-related C3 botulinum toxin substrate 1 (RAC1). Excessive activation of small Rho GTPases by virulence factors of enteric pathogens also triggers the NOD1 signaling pathway. Many enteric pathogens use virulence factors that alter the activation state of small Rho GTPases, thereby manipulating the host cell cytoskeleton of intestinal epithelial cells to promote bacterial attachment or entry. These data suggest that the NOD1 signaling pathway in intestinal epithelial cells provides an important sentinel function for detecting 'breaking and entering' by enteric pathogens.
Collapse
Affiliation(s)
- A Marijke Keestra
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis CA 95616, USA.
| |
Collapse
|
48
|
Biswas D, Niwa H, Itoh K. Infection withCampylobacter jejuniInduces Tyrosine-Phosphorylated Proteins into INT-407 Cells. Microbiol Immunol 2013; 48:221-8. [PMID: 15107531 DOI: 10.1111/j.1348-0421.2004.tb03509.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanisms used by Campylobacter jejuni to induce internalization into host intestinal epithelial cells have not been defined. In this study, we obtained evidence that exposure of INT-407 cells to protein kinase inhibitors results in decreased invasion of these cells by C. jejuni in a dose dependent manner. Preincubation of INT-407 cells in the presence of staurosporine, tyrphostin 46 and genistein decreased invasion of these cells by C. jejuni significantly. Moreover, C. jejuni infection of INT-407 cells induced tyrosine phosphorylation of several Triton X-100 soluble proteins with approximate molecular weights of 170, 145, 90, 60 and 55 kDa that were absent or reduced in the presence of genistein in cells after 1 hr of pretreatment. These data suggest that tyrosine protein kinase-linked pathways strongly regulate the internalization of C. jejuni into intestinal epithelial cells.
Collapse
Affiliation(s)
- Debabrata Biswas
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
49
|
Yersinia enterocolitica inhibits Salmonella enterica serovar Typhimurium and Listeria monocytogenes cellular uptake. Infect Immun 2013; 82:174-83. [PMID: 24126528 DOI: 10.1128/iai.00984-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Yersinia enterocolitica biovar 1B employs two type three secretion systems (T3SS), Ysa and Ysc, which inject effector proteins into macrophages to prevent phagocytosis. Conversely, Salmonella enterica serovar Typhimurium uses a T3SS encoded by Salmonella pathogenicity island 1 (SPI1) to actively invade cells that are normally nonphagocytic and a second T3SS encoded by SPI2 to survive within macrophages. Given the distinctly different outcomes that occur with regard to host cell uptake of S. Typhimurium and Y. enterocolitica, we investigated how each pathogen influences the internalization outcome of the other. Y. enterocolitica reduces S. Typhimurium invasion of HeLa and Caco-2 cells to a level similar to that observed using an S. Typhimurium SPI1 mutant alone. However, Y. enterocolitica had no effect on S. Typhimurium uptake by J774.1 or RAW264.7 macrophage-like cells. Y. enterocolitica was also able to inhibit the invasion of epithelial and macrophage-like cells by Listeria monocytogenes. Y. enterocolitica mutants lacking either the Ysa or Ysc T3SS were partially defective, while double mutants were completely defective, in blocking S. Typhimurium uptake by epithelial cells. S. Typhimurium encodes a LuxR homolog, SdiA, which detects N-acylhomoserine lactones (AHLs) produced by Y. enterocolitica and upregulates the expression of an invasin (Rck) and a putative T3SS effector (SrgE). Two different methods of constitutively activating the S. Typhimurium SdiA regulon failed to reverse the uptake blockade imposed by Y. enterocolitica.
Collapse
|
50
|
Hannemann S, Gao B, Galán JE. Salmonella modulation of host cell gene expression promotes its intracellular growth. PLoS Pathog 2013; 9:e1003668. [PMID: 24098123 PMCID: PMC3789771 DOI: 10.1371/journal.ppat.1003668] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 08/14/2013] [Indexed: 01/05/2023] Open
Abstract
Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways. Essential for the ability of Salmonella Typhimurium to cause disease is the function of a type III secretion system (T3SS) encoded within its pathogenicity island 1 (SPI-1), which through the delivery of bacterial effector proteins modulates a variety of cellular functions. This study reports that the infection of mammalian cells with Salmonella Typhimurium results in a profound reprogramming of gene expression that changes over time. The stimulation of this response requires the activity of a specific subset of bacterial T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for its intracellular replication. Targeting the mechanisms described in this study may lead to the development of novel anti-infective strategies.
Collapse
Affiliation(s)
- Sebastian Hannemann
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Beile Gao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|