1
|
Ayan E. Computational insights into the allosteric behavior of mini proinsulin driven by C peptide mobility. Sci Rep 2025; 15:8065. [PMID: 40055446 PMCID: PMC11889264 DOI: 10.1038/s41598-025-92799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/03/2025] [Indexed: 05/13/2025] Open
Abstract
The production of recombinant insulin remains challenging, particularly in enhancing refolding efficiency and bioactivity. Mini-proinsulin analogs, which involve reducing the length of the C-peptide, offer potential improvements in insulin production. This study aims to evaluate mini-proinsulin analogs' design and receptor binding dynamics to optimize recombinant insulin production in E. coli. Mini-proinsulin analogs were engineered by replacing the 33-residue C-peptide with a pentapeptide sequence to improve refolding. The three-dimensional structure of mini-proinsulin was predicted using AlphaFold and performed docking analysis of mini-proinsulin analogs to the insulin receptor using AutoDock Tools, with comparisons made to previously available NMR-determined analog and the native insulin-insulin receptor complex. Normal Mode Analyses (GNM and ANM) were performed in detail to assess binding dynamics. In silico analyses revealed that mini-proinsulin analogs closely replicate the structural features of native insulin and display receptor binding dynamics similar to native insulin, though they follow distinct receptor interaction paths. All analysis suggests that C-peptide mobility may contribute to the allosteric behavior observed in mini-proinsulin analogs during receptor interaction.
Collapse
Affiliation(s)
- Esra Ayan
- Experimental Medicine Research and Application Center (DETUAM), University of Health Sciences, Istanbul, 34674, Türkiye, Turkey.
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34674, Türkiye, Turkey.
| |
Collapse
|
2
|
Dakroub A, Dbouk A, Asfour A, Nasser SA, El-Yazbi AF, Sahebkar A, Eid AA, Iratni R, Eid AH. C-peptide in diabetes: A player in a dual hormone disorder? J Cell Physiol 2024; 239:e31212. [PMID: 38308646 DOI: 10.1002/jcp.31212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.
Collapse
Affiliation(s)
- Ali Dakroub
- St. Francis Hospital and Heart Center, Roslyn, New York, USA
| | - Ali Dbouk
- Department of Medicine, Saint-Joseph University Medical School, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Aref Asfour
- Leeds Teaching Hospitals NHS Trust, West Yorkshire, United Kingdom
| | | | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Szukiewicz D. Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. Int J Mol Sci 2023; 24:9818. [PMID: 37372966 DOI: 10.3390/ijms24129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The comprehensive anabolic effects of insulin throughout the body, in addition to the control of glycemia, include ensuring lipid homeostasis and anti-inflammatory modulation, especially in adipose tissue (AT). The prevalence of obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, has been increasing worldwide on a pandemic scale with accompanying syndemic health problems, including glucose intolerance, insulin resistance (IR), and diabetes. Impaired tissue sensitivity to insulin or IR paradoxically leads to diseases with an inflammatory component despite hyperinsulinemia. Therefore, an excess of visceral AT in obesity initiates chronic low-grade inflammatory conditions that interfere with insulin signaling via insulin receptors (INSRs). Moreover, in response to IR, hyperglycemia itself stimulates a primarily defensive inflammatory response associated with the subsequent release of numerous inflammatory cytokines and a real threat of organ function deterioration. In this review, all components of this vicious cycle are characterized with particular emphasis on the interplay between insulin signaling and both the innate and adaptive immune responses related to obesity. Increased visceral AT accumulation in obesity should be considered the main environmental factor responsible for the disruption in the epigenetic regulatory mechanisms in the immune system, resulting in autoimmunity and inflammation.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
4
|
Shi S, Ni L, Tian Y, Zhang B, Xiao J, Xu W, Gao L, Wu X. Association of Obesity Indices with Diabetic Kidney Disease and Diabetic Retinopathy in Type 2 Diabetes: A Real-World Study. J Diabetes Res 2023; 2023:3819830. [PMID: 37096235 PMCID: PMC10122582 DOI: 10.1155/2023/3819830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 04/26/2023] Open
Abstract
Background Diabetic microvascular complications mainly include diabetic kidney disease (DKD) and diabetic retinopathy (DR). Obesity was recognized as a risk factor for DKD, while the reported relationship between obesity and DR was inconsistent. Moreover, whether the associations can be attributed to C-peptide levels is unknown. Methods Data from 1142 sequential inpatients with T2DM at Xiangyang Central Hospital between June 2019 and March 2022 were extracted retrospectively from the electronic medical record system. The associations between four obesity indices (body mass index (BMI), waist-hip circumference ratio (WHR), visceral fat tissue area (VFA), and subcutaneous fat tissue area (SFA)) and DKD and DR were evaluated. Whether the associations can be attributed to C-peptide levels was also explored. Results Obesity was a risk factor for DKD after adjusting for sex, HbA1c, TG, TC, HDL, LDL, smoking history, education, duration of diabetes, and insulin use (obesity indices: BMI (OR 1.050: 95% CI: 1.008-1.094; P = 0.020); WHR (OR 10.97; 95% CI: 1.250-92.267; P = 0.031); VFA (OR 1.005; 95% CI: 1.001-1.008; P = 0.008)), but it became insignificant after further adjusting for fasting C-peptide. The associations between BMI, WHR, VFA, and DKD might be U-shaped. Obesity and FCP tended to protect against DR; however, they became insignificant after adjusting for multiple potential confounders. C2/C0 (the ratio of the postprandial serum C-peptide to fasting C-peptide) was a protective factor for both DKD (OR 0.894, 95% CI: 0.833-0.959, P < 0.05) and DR (OR 0.851, 95% CI: 0.787-0.919; P < 0.05). Conclusions Obesity was a risk factor for DKD, and the effect may be attributable to C-peptide, which represents insulin resistance. The protective effect of obesity or C-peptide on DR was not independent and could be confounded by multiple factors. Higher C2/C0 was associated with both decreased DKD and DR.
Collapse
Affiliation(s)
- Shaomin Shi
- Department of Nephrology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Yuan Tian
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Baifang Zhang
- Department of Biochemistry, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China
| | - Jing Xiao
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Wan Xu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Ling Gao
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
- Department of General Practice, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
| |
Collapse
|
5
|
Wensvoort G. Human C-peptide is a ligand of the elastin-receptor-complex and therewith central to human vascular remodelling and disease in metabolic syndrome. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus. Biotechnol Lett 2022; 44:643-669. [DOI: 10.1007/s10529-022-03247-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
|
7
|
C-Peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines 2021; 9:biomedicines9030270. [PMID: 33800470 PMCID: PMC8000702 DOI: 10.3390/biomedicines9030270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.
Collapse
|
8
|
Development of radioimmunoassay for estimation of C-peptide in human serum. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-020-07536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Biological Activity of c-Peptide in Microvascular Complications of Type 1 Diabetes-Time for Translational Studies or Back to the Basics? Int J Mol Sci 2020; 21:ijms21249723. [PMID: 33419247 PMCID: PMC7766542 DOI: 10.3390/ijms21249723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
People with type 1 diabetes have an increased risk of developing microvascular complications, which have a negative impact on the quality of life and reduce life expectancy. Numerous studies in animals with experimental diabetes show that c-peptide supplementation exerts beneficial effects on diabetes-induced damage in peripheral nerves and kidneys. There is substantial evidence that c-peptide counteracts the detrimental changes caused by hyperglycemia at the cellular level, such as decreased activation of endothelial nitric oxide synthase and sodium potassium ATPase, and increase in formation of pro-inflammatory molecules mediated by nuclear factor kappa-light-chain-enhancer of activated B cells: cytokines, chemokines, cell adhesion molecules, vascular endothelial growth factor, and transforming growth factor beta. However, despite positive results from cell and animal studies, no successful c-peptide replacement therapies have been developed so far. Therefore, it is important to improve our understanding of the impact of c-peptide on the pathophysiology of microvascular complications to develop novel c-peptide-based treatments. This article aims to review current knowledge on the impact of c-peptide on diabetic neuro- and nephropathy and to evaluate its potential therapeutic role.
Collapse
|
10
|
Application of elastin-like biopolymer-conjugated C-peptide hydrogel for systemic long-term delivery against diabetic aortic dysfunction. Acta Biomater 2020; 118:32-43. [PMID: 33035695 DOI: 10.1016/j.actbio.2020.09.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 01/28/2023]
Abstract
Due to their short half-lives, repeated administration of anti-hyperglycemic drugs can cause pain, discomfort, tissue damage, and infection in diabetic patients. Therefore, there is a need to develop long-term drug delivery systems to treat diabetes and its complications. C-peptide can prevent diabetic complications, including diabetic vasculopathy, but its clinical application is limited by its short half-life. Here, we developed K9-C-peptide (human C-peptide conjugated to an elastin-like biopolymer) and investigated its long-term influence on hyperglycemia-induced vascular dysfunction using an aortic endothelium model in diabetic mice. Using pharmacokinetics and in vivo imaging, we found that subcutaneously injected K9-C-peptide formed a hydrogel depot that slowly released human C-peptide into the blood circulation for 19 days. Administration of K9-C-peptide, human C-peptide, or K8 polypeptide had no effect on body weight or blood glucose levels. The slow release of C-peptide from K9-C-peptide hydrogels provided prolonged prevention of oxidative stress, inflammatory responses, and endothelial apoptosis in a hyperglycemia-induced vascular dysfunction model using the diabetic mouse aorta. Subcutaneous administration of unbound human C-peptide and K8 polypeptide were used as negative controls and had no effects. These results suggest that K9-C-peptide is suitable for the long-term delivery of human C-peptide for treating vascular dysfunction in diabetic patients.
Collapse
|
11
|
Biological activity versus physiological function of proinsulin C-peptide. Cell Mol Life Sci 2020; 78:1131-1138. [PMID: 32959070 PMCID: PMC7897624 DOI: 10.1007/s00018-020-03636-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 09/03/2020] [Indexed: 11/06/2022]
Abstract
Proinsulin C-peptide (C-peptide) has drawn much research attention. Even if the peptide has turned out not to be important in the treatment of diabetes, every phase of C-peptide research has changed our view on insulin and peptide hormone biology. The first phase revealed that peptide hormones can be subject to processing, and that their pro-forms may involve regulatory stages. The second phase revealed the possibility that one prohormone could harbor more than one activity, and that the additional activities should be taken into account in the development of hormone-based therapies. In the third phase, a combined view of the evolutionary patterns in hormone biology allowed an assessment of C-peptide´s role in physiology, and of how biological activities and physiological functions are shaped by evolutionary processes. In addition to this distinction, C-peptide research has produced further advances. For example, C-peptide fragments are successfully administered in immunotherapy of type I diabetes, and plasma C-peptide levels remain a standard for measurement of beta cell activity in patients. Even if the concept of C-peptide as a hormone is presently not supported, some of its bioactivities continue to influence our understanding of evolutionary changes of also other peptides.
Collapse
|
12
|
Souto SB, Campos JR, Fangueiro JF, Silva AM, Cicero N, Lucarini M, Durazzo A, Santini A, Souto EB. Multiple Cell Signalling Pathways of Human Proinsulin C-Peptide in Vasculopathy Protection. Int J Mol Sci 2020; 21:E645. [PMID: 31963760 PMCID: PMC7013900 DOI: 10.3390/ijms21020645] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
A major hallmark of diabetes is a constant high blood glucose level (hyperglycaemia), resulting in endothelial dysfunction. Transient or prolonged hyperglycemia can cause diabetic vasculopathy, a secondary systemic damage. C-Peptide is a product of cleavage of proinsulin by a serine protease that occurs within the pancreatic β-cells, being secreted in similar amounts as insulin. The biological activity of human C-peptide is instrumental in the prevention of diabetic neuropathy, nephropathy and other vascular complications. The main feature of type 1 diabetes mellitus is the lack of insulin and of C-peptide, but the progressive β-cell loss is also observed in later stage of type 2 diabetes mellitus. C-peptide has multifaceted effects in animals and diabetic patients due to the activation of multiple cell signalling pathways, highlighting p38 mitogen-activated protein kinase and extracellular signal-regulated kinase ½, Akt, as well as endothelial nitric oxide production. Recent works highlight the role of C-peptide in the prevention and amelioration of diabetes and also in organ-specific complications. Benefits of C-peptide in microangiopathy and vasculopathy have been shown through conservation of vascular function, and also in the prevention of endothelial cell death, microvascular permeability, neointima formation, and in vascular inflammation. Improvement of microvascular blood flow by replacing a physiological amount of C-peptide, in several tissues of diabetic animals and humans, mainly in nerve tissue, myocardium, skeletal muscle, and kidney has been described. A review of the multiple cell signalling pathways of human proinsulin C-peptide in vasculopathy protection is proposed, where the approaches to move beyond the state of the art in the development of innovative and effective therapeutic options of diabetic neuropathy and nephropathy are discussed.
Collapse
Affiliation(s)
- Selma B. Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Joana R. Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.R.C.); (J.F.F.)
| | - Joana F. Fangueiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.R.C.); (J.F.F.)
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Nicola Cicero
- Dipartimento di Scienze biomediche, odontoiatriche e delle immagini morfologiche e funzionali, Università degli Studi di Messina, Polo Universitario Annunziata, 98168 Messina, Italy;
| | - Massimo Lucarini
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.R.C.); (J.F.F.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
13
|
Zuo A, Wang C, Li L, Qu J, Cao J, Chen L, Tesfaye S, Li W, Hou X. The Association of Fasting C-peptide with Corneal Neuropathy in Patients with Type 2 Diabetes. J Diabetes Res 2020; 2020:8883736. [PMID: 33344652 PMCID: PMC7725581 DOI: 10.1155/2020/8883736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Damage to corneal nerve fibers has been demonstrated in people with type 2 diabetes mellitus (T2DM) that further progresses with increasing severity of diabetic peripheral neuropathy. However, the role of C-peptide in corneal nerve damage has not been reported in T2DM. The present study investigated the relationship of fasting C-peptide levels with corneal neuropathy evaluated by corneal confocal microscopy (CCM) in patients with T2DM. METHODS 160 T2DM patients (72 females) aged 34-78 with duration ranging from 0 to 40 years underwent CCM to measure corneal nerve fiber length (CNFL), corneal nerve fiber density (CNFD), and corneal nerve branch density (CNBD). Pearson correlation analysis and multiple linear regression analysis were used to explore the association of fasting C-peptide levels with corneal nerve parameters. Partial correlation analysis (adjusted for age and gender) was also conducted to analyze the correlation of metabolic indexes with these three corneal nerve parameters. The relationship between fasting C-peptide levels and duration of diabetes was also explored by Pearson correlation analysis. RESULTS With an increase in fasting C-peptide levels, the values of CNFL, CNFD, and CNBD also showed a corresponding trend for an increase. Partial correlation analysis revealed that fasting C-peptide levels were positively associated with CNFL (r = 0.245, P = 0.002), CNFD (r = 0.180, P = 0.024), and CNBD (r = 0.214, P = 0.008) after adjusting for age and gender. Using multiple linear regression analysis, fasting C-peptide levels were also closely associated with CNFL (P = 0.047) and CNBD (P = 0.038) after multiple adjustments. However, this association disappeared after further adjusting for duration of diabetes. Further analysis indicated that fasting C-peptide levels declined with duration of diabetes (r = -0.267, P = 0.001). CONCLUSIONS C-peptide was closely associated with corneal neuropathy and disease duration in T2DM. C-peptide levels might be both an indicator of beta-cell function and a marker of disease severity (such as diabetic corneal neuropathy) and duration.
Collapse
Affiliation(s)
- Anju Zuo
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China 250012
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China 250012
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China 250012
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China 250012
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China 250012
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
| | - Lili Li
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China 250012
- Department of Ultrasound, Qilu Hospital of Shandong University, Qingdao, Shandong, China 266000
| | - Jingru Qu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China 250012
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China 250012
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
| | - Juan Cao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China 250012
- Department of Health Management Center, Qilu Hospital of Shandong University, Jinan, Shandong, China 250012
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China 250012
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China 250012
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
| | - Solomon Tesfaye
- Diabetes Research Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Wenjuan Li
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China 250012
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China 250012
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China 250012
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China 250012
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China 250012
| |
Collapse
|
14
|
Chung JO, Park SY, Cho DH, Chung DJ, Chung MY. Association Between Serum C-Peptide Level and Cardiovascular Autonomic Neuropathy According to Estimated Glomerular Filtration Rate in Individuals with Type 2 Diabetes. Exp Clin Endocrinol Diabetes 2019; 128:607-614. [PMID: 31610588 DOI: 10.1055/a-1017-3048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the association between serum C-peptide level and cardiovascular autonomic neuropathy (CAN) in individuals with type 2 diabetes mellitus (DM) according to estimated glomerular filtration rate (eGFR) METHODS: In a cross-sectional study, we examined 939 individuals with type 2 DM. We measured fasting C-peptide, 2-hour postprandial C-peptide, and ΔC-peptide (postprandial C-peptide minus fasting C-peptide) levels. The individuals were classified into 2 groups based on eGFR: individuals without impaired renal function (eGFR ≥60 ml∙min-1 1.73m-2) and those with impaired renal function (eGFR <60 ml∙min-1 1.73m-2). RESULTS Individuals with CAN had lower fasting C-peptide, postprandial C-peptide, and ΔC-peptide levels in patients both with and without impaired renal function. Multivariate logistic regression analyses adjusted for gender, age, and other confounders, including eGFR, showed that serum C-peptide level was significantly associated with CAN (odds ratio [OR] per standard deviation increase in the log-transformed value, 0.67; 95% confidence interval [CI], 0.52-0.87 for fasting C-peptide, P < 0.01; OR, 0.62; 95% CI, 0.47-0.83 for postprandial C-peptide, P < 0.01; OR, 0.71; 95% CI, 0.54-0.93 for ΔC-peptide, P < 0.05). CONCLUSIONS Serum C-peptide level was negatively associated with CAN in individuals with type 2 DM independent of eGFR.
Collapse
Affiliation(s)
- Jin Ook Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Republic of Korea
| | - Seon-Young Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chonnam National University Medical School, Republic of Korea
| | - Dong Hyeok Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Republic of Korea
| | - Dong Jin Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Republic of Korea
| | - Min Young Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Republic of Korea
| |
Collapse
|
15
|
Jung SH, Lee JY, Lee SH, Kwon MH, Han ET, Park WS, Hong SH, Kim YM, Ha KS. Preventive Effects of Thermosensitive Biopolymer-Conjugated C-Peptide against High Glucose-Induced Endothelial Cell Dysfunction. Macromol Biosci 2019; 19:e1900129. [PMID: 31310433 DOI: 10.1002/mabi.201900129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/31/2019] [Indexed: 11/08/2022]
Abstract
C-peptide has emerged as a potential drug for treating diabetic complications. However, clinical application of C-peptide is limited by its short half-life during circulation and costly synthesis methods. To overcome these limitations, a biocompatible and thermosensitive biopolymer-C-peptide conjugate composed of human C-peptide genetically conjugated at the C-terminus of nine repeats of lysine-containing elastin-like polypeptide (K9-C-peptide) is generated. K9-C-peptide exhibits reversible thermal phase behavior with a transition temperature dependent on polypeptide concentration. Degradation of K9-C-peptide hydrogel depends on the concentration of four cleavage enzymes as well as the reaction time and frequency of treatments with elastase-2. The preventive effect of K9-C-peptide against high glucose-induced human aortic endothelial cell dysfunction is further investigated. K9-C-peptide inhibits high glucose-induced intracellular reactive oxygen species generation, transglutaminase 2 activation, and apoptosis, similar to the inhibitory effects of human C-peptide. Thus, K9-C-peptide is a potential drug depot for the sustained delivery of C-peptide to treat diabetic complications.
Collapse
Affiliation(s)
- Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Jee-Yeon Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Seong-Hyeon Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Mi-Hye Kwon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| |
Collapse
|
16
|
Hellström W, Hansen-Pupp I, Hellgren G, Engström E, Stigson L, Sävman K, Ley D, Löfqvist C. C-peptide suppression during insulin infusion in the extremely preterm infant is associated with insulin sensitivity. J Clin Endocrinol Metab 2019; 104:3902-3910. [PMID: 31058966 DOI: 10.1210/jc.2018-02681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/30/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Little is known about the individual response of glucose-regulating factors to administration of exogenous insulin infusion in extremely preterm infants. OBJECTIVE To evaluate longitudinal serum concentrations of insulin, C-peptide, and plasma glucose levels in a high frequency sampling regimen in extremely preterm infants treated with insulin due to hyperglycemia. DESIGN Prospective longitudinal cohort study. SETTING Two university hospitals in Sweden between December 2015 and September 2016. PATIENTS AND INTERVENTION Serum samples were obtained from nine extremely preterm infants, gestational age between 22(+3) and 26(+5) weeks(+days), with hyperglycemia (plasma-glucose >10 mmol/L) at the start of insulin infusion, at 12, 24, and every 24 hours thereafter during ongoing infusion, and 12, 24, and 72 hours after the end of insulin infusion. MAIN OUTCOME MEASURES Longitudinal serum concentrations of insulin and C-peptide and plasma glucose levels. RESULTS During insulin infusion, the serum C-peptide concentrations decreased compared to at start of infusion (p = 0.036), and then increased after ending the infusion. Individual insulin sensitivity based on the non-fasting plasma glucose/insulin ratio at the start of insulin infusion correlated with the initial decrease in serum ΔC-peptide[After 12h] (p = 0.007) and the degree of lasting decrease in serum ΔC-peptide[After end of infusion] (p = 0.015). CONCLUSION Exogenous insulin infusion suppressed the C-peptide concentration to individually different degrees. In addition, the effect of insulin infusion on β-cells may be linked to individual insulin sensitivity, where a low insulin sensitivity resulted in a more pronounced decrease in C-peptide during insulin infusion.
Collapse
Affiliation(s)
- William Hellström
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Hansen-Pupp
- Department of Pediatrics, Institute of Clinical Sciences Lund, Lund University and Skane University Hospital, Lund, Sweden
| | - Gunnel Hellgren
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Engström
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Stigson
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Ley
- Department of Pediatrics, Institute of Clinical Sciences Lund, Lund University and Skane University Hospital, Lund, Sweden
| | - Chatarina Löfqvist
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Martin JH, Aitken RJ, Bromfield EG, Cafe SL, Sutherland JM, Frost ER, Nixon B, Lord T. Investigation into the presence and functional significance of proinsulin C-peptide in the female germline†. Biol Reprod 2019; 100:1275-1289. [PMID: 30715203 DOI: 10.1093/biolre/ioz008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/10/2018] [Accepted: 01/28/2019] [Indexed: 08/02/2024] Open
Abstract
Diabetes is associated with poor oocyte quality and the dysregulation of ovarian function and is thus a leading contributor to the increasing prevalence of female reproductive pathologies. Accordingly, it is well-established that insulin fulfills a key role in the regulation of several facets of female reproduction. What remains less certain is whether proinsulin C-peptide, which has recently been implicated in cellular signaling cascades, holds a functional role in the female germline. In the present study, we examined the expression of insulin, C-peptide, and its purported receptor; GPR146, within the mouse ovary and oocyte. Our data establish the presence of abundant C-peptide within follicular fluid and raise the prospect that this bioactive peptide is internalized by oocytes in a G-protein coupled receptor-dependent manner. Further, our data reveal that internalized C-peptide undergoes pronounced subcellular relocalization from the ooplasm to the pronuclei postfertilization. The application of immunoprecipitation analysis and mass spectrometry identified breast cancer type 2 susceptibility protein (BRCA2), the meiotic resumption/DNA repair protein, as a primary binding partner for C-peptide within the oocyte. Collectively, these findings establish a novel accumulation profile for C-peptide in the female germline and provide the first evidence for an interaction between C-peptide and BRCA2. This interaction is particularly intriguing when considering the propensity for oocytes from diabetic women to experience aberrant meiotic resumption and perturbation of traditional DNA repair processes. This therefore provides a clear imperative for further investigation of the implications of dysregulated C-peptide production in these individuals.
Collapse
Affiliation(s)
- Jacinta H Martin
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Shenae L Cafe
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Emily R Frost
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
- School of Molecular Biosciences, Centre for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
18
|
Stevenson MJ, Uyeda KS, Harder NHO, Heffern MC. Metal-dependent hormone function: the emerging interdisciplinary field of metalloendocrinology. Metallomics 2019; 11:85-110. [PMID: 30270362 PMCID: PMC10249669 DOI: 10.1039/c8mt00221e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
For over 100 years, there has been an incredible amount of knowledge amassed concerning hormones in the endocrine system and their central role in human health. Hormones represent a diverse group of biomolecules that are released by glands, communicate signals to their target tissue, and are regulated by feedback loops to maintain organism health. Many disease states, such as diabetes and reproductive disorders, stem from misregulation or dysfunction of hormones. Increasing research is illuminating the intricate roles of metal ions in the endocrine system where they may act advantageously in concert with hormones or deleteriously catalyze hormone-associated disease states. As the critical role of metal ions in the endocrine system becomes more apparent, it is increasingly important to untangle the complex mechanisms underlying the connections between inorganic biochemistry and hormone function to understand and control endocrinological phenomena. This tutorial review harmonizes the interdisciplinary fields of endocrinology and inorganic chemistry in the newly-termed field of "metalloendocrinology". We describe examples linking metals to both normal and aberrant hormone function with a focus on highlighting insight to molecular mechanisms. Hormone activities related to both essential metal micronutrients, such as copper, iron, zinc, and calcium, and disruptive nonessential metals, such as lead and cadmium are discussed.
Collapse
Affiliation(s)
- Michael J Stevenson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
19
|
Zashikhina N, Sharoyko V, Antipchik M, Tarasenko I, Anufrikov Y, Lavrentieva A, Tennikova T, Korzhikova-Vlakh E. Novel Formulations of C-Peptide with Long-Acting Therapeutic Potential for Treatment of Diabetic Complications. Pharmaceutics 2019; 11:E27. [PMID: 30641932 PMCID: PMC6359607 DOI: 10.3390/pharmaceutics11010027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/26/2022] Open
Abstract
The development and application of novel nanospheres based on cationic and anionic random amphiphilic polypeptides with prolonged stability were proposed. The random copolymers, e.g., poly(l-lysine-co-d-phenylalanine) (P(Lys-co-dPhe)) and poly(l-glutamic acid-co-d-phenylalanine) (P(Glu-co-dPhe)), with different amount of hydrophilic and hydrophobic monomers were synthesized. The polypeptides obtained were able to self-assemble into nanospheres. Such characteristics as size, PDI and ζ-potential of the nanospheres were determined, as well as their dependence on pH was also studied. Additionally, the investigation of their biodegradability and cytotoxicity was performed. The prolonged stability of nanospheres was achieved via introduction of d-amino acids into the polypeptide structure. The cytotoxicity of nanospheres obtained was tested using HEK-293 cells. It was proved that no cytotoxicity up to the concentration of 500 µg/mL was observed. C-peptide delivery systems were realized in two ways: (1) peptide immobilization on the surface of P(Glu-co-dPhe) nanospheres; and (2) peptide encapsulation into P(Lys-co-dPhe) systems. The immobilization capacity and the dependence of C-peptide encapsulation efficiency, as well as maximal loading capacity, on initial drug concentration was studied. The kinetic of drug release was studied at model physiological conditions. Novel formulations of a long-acting C-peptide exhibited their effect ex vivo by increasing activity of erythrocyte Na⁺/K⁺-adenosine triphosphatase.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg 199004, Russia.
| | - Vladimir Sharoyko
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198584, Russia.
| | - Mariia Antipchik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg 199004, Russia.
| | - Irina Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg 199004, Russia.
| | - Yurii Anufrikov
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198584, Russia.
| | | | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198584, Russia.
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg 199004, Russia.
| |
Collapse
|
20
|
Jeon HY, Lee YJ, Kim YS, Kim SY, Han ET, Park WS, Hong SH, Kim YM, Ha KS. Proinsulin C‐peptide prevents hyperglycemia‐induced vascular leakage and metastasis of melanoma cells in the lungs of diabetic mice. FASEB J 2019; 33:750-762. [DOI: 10.1096/fj.201800723r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Hye-Yoon Jeon
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - You-Sun Kim
- Department of BiochemistryAjou University School of Medicine Suwon Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology BranchNational Cancer Center Goyang Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical MedicineKangwon National University School of Medicine Chuncheon Korea
| | - Won Sun Park
- Department of PhysiologyKangwon National University School of Medicine Chuncheon Korea
| | - Seok-Ho Hong
- Department of Internal MedicineKangwon National University School of Medicine Chuncheon Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| |
Collapse
|
21
|
McQuilling JP, Sittadjody S, Pendergraft S, Farney AC, Opara EC. Applications of particulate oxygen-generating substances (POGS) in the bioartificial pancreas. Biomater Sci 2018; 5:2437-2447. [PMID: 29051963 DOI: 10.1039/c7bm00790f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Type-1 Diabetes (T1D) is a devastating autoimmune disorder which results in the destruction of beta cells within the pancreas. A promising treatment strategy for T1D is the replacement of the lost beta cell mass through implantation of immune-isolated microencapsulated islets referred to as the bioartificial pancreas. The goal of this approach is to restore blood glucose regulation and prevent the long-term comorbidities of T1D without the need for immunosuppressants. A major requirement in the quest to achieve this goal is to address the oxygen needs of islet cells. Islets are highly metabolically active and require a significant amount of oxygen for normal function. During the process of isolation, microencapsulation, and processing prior to transplantation, the islets' oxygen supply is disrupted, and a large amount of islet cells are therefore lost due to extended hypoxia, thus creating a major barrier to clinical success with this treatment. In this work, we have investigated the oxygen generating compounds, sodium percarbonate (SPO) and calcium peroxide (CPO) as potential supplemental oxygen sources for islets during isolation and encapsulation before and immediately after transplantation. First, SPO particles were used as an oxygen source for islets during isolation. Secondly, silicone films containing SPO were used to provide supplemental oxygen to islets for up to 4 days in culture. Finally, CPO was used as an oxygen source for encapsulated cells by co-encapsulating CPO particles with islets in permselective alginate microspheres. These studies provide an important proof of concept for the utilization of these oxygen generating materials to prevent beta cell death caused by hypoxia.
Collapse
Affiliation(s)
- John P McQuilling
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | |
Collapse
|
22
|
Li Y, Zhong Y, Gong W, Gao X, Qi H, Liu K, Qi J. C-peptide prevents SMAD3 binding to alpha promoters to inhibit collagen type IV synthesis. J Mol Endocrinol 2018; 61:47-56. [PMID: 29844093 DOI: 10.1530/jme-18-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022]
Abstract
Activation of transforming growth factor β1 (TGFB1)/SMAD3 signaling may lead to additional synthesis of collagen type IV (COL4), which is a major contributor to extracellular matrix (ECM) accumulation in diabetic nephropathy (DN). C-peptide can attenuate fibrosis to have unique beneficial effects in DN. However, whether and how C-peptide affects TGFB1/SMAD3-activated COL4 synthesis is unclear. In this study, pathological changes, expression of COL4 a1-a5 chains (Col4a1-a5), COL4 distribution and protein and TGFB1 and SMAD3 protein were first assessed in a rat model of diabetes. Then, rat mesangial cells were treated with high glucose (HG) and/or C-peptide to investigate the underlying mechanism. Col4a1-a5 expression, COL4 protein and secretion, TGFB1 protein, SMAD3 nuclear translocation and binding of SMAD3 to its cognate sites in the promoters of Col4a1a2, Col4a3a4 and Col4a5 were measured. It was found that C-peptide attenuated glomerular pathological changes and suppressed renal Col4a1-a5 mRNA expression, COL4 protein content and TGFB1 protein content. C-peptide had a dose-dependent effect to inhibit Col4a1-a5 mRNA expression, COL4 protein content and secretion, in HG-stimulated mesangial cells. In addition, the HG-induced increase in TGFB1 protein content was significantly reduced by C-peptide. Although not apparently affecting SMAD3 nuclear translocation, C-peptide prevented SMAD3 from binding to its sites in the Col4a1a2, Col4a3a4 and Col4a5 promoters in HG-stimulated mesangial cells. In conclusion, C-peptide could prevent SMAD3 from binding to its sites in the Col4a1a2, Col4a3a4 and Col4a5 promoters, to inhibit COL4 generation. These results may provide a mechanism for the alleviation of fibrosis in DN by C-peptide.
Collapse
Affiliation(s)
- Yanning Li
- Department of Molecular BiologyHebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhong
- Department of BiochemistryHebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Gong
- Department of Molecular BiologyHebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Xuehan Gao
- Department of Molecular BiologyHebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Huanli Qi
- Department of BiochemistryHebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of BiochemistryHebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Jinsheng Qi
- Department of BiochemistryHebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
23
|
Honey and Diabetes: The Importance of Natural Simple Sugars in Diet for Preventing and Treating Different Type of Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4757893. [PMID: 29507651 PMCID: PMC5817209 DOI: 10.1155/2018/4757893] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/21/2017] [Accepted: 12/24/2017] [Indexed: 01/19/2023]
Abstract
Diabetes is a metabolic disorder with multifactorial and heterogeneous etiologies. Two types of diabetes are common among humans: type 1 diabetes that occurs when the immune system attacks and destroys insulin and type 2 diabetes, the most common form, that may be caused by several factors, the most important being lifestyle, but also may be determined by different genes. Honey was used in folk medicine for a long time, but the health benefits were explained in the last decades, when the scientific world was concerned in testing and thus explaining the benefits of honey. Different studies demonstrate the hypoglycemic effect of honey, but the mechanism of this effect remains unclear. This review presents the experimental studies completed in the recent years, which support honey as a novel antidiabetic agent that might be of potential significance for the management of diabetes and its complications and also highlights the potential impacts and future perspectives on the use of honey as an antidiabetic agent.
Collapse
|
24
|
Li Y, Li X, He K, Li B, Liu K, Qi J, Wang H, Wang Y, Luo W. C-peptide prevents NF-κB from recruiting p300 and binding to the inos promoter in diabetic nephropathy. FASEB J 2018; 32:2269-2279. [PMID: 29229684 DOI: 10.1096/fj.201700891r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
C-peptide (CP) has demonstrated unique beneficial effects in diabetic nephropathy (DN), but whether and how CP regulates NF-κB and its coactivator, p300, to suppress inducible iNOS and antagonize DN are unknown. iNOS expression, NF-κB nuclear translocation, colocalization and binding of NF-κB to p300, binding of NF-κB to the inos promoter, and the bound NF-κB, p300, and histone 3 lysine 9 acetylation (H3K9ac) at binding sites were measured in high glucose-stimulated mesangial cells. We evaluated pathologic changes, iNOS expression, NF-κB, and p300 contents in diabetic rats. We found that CP inhibited iNOS expression and notably prevented colocalization and binding of NF-κB and p300. CP prevented NF-κB from binding to the inos promoter, especially at the distal site, and reduced bound NF-κB, p300, and H3K9ac. N-terminal plus middle fragment could mostly mimic the antagonizing effects of CP against the pathologic changes of DN and equally suppresses renal iNOS expression as CP. In conclusion, CP prevented NF-κB from recruiting p300 and binding to the inos promoter, and decreased H3K9ac at the binding sites to suppress iNOS expression and antagonize DN, with the effect region identified as N-terminal plus middle fragment.-Li, Y., Li, X., He, K., Li, B., Liu, K., Qi, J., Wang, H., Wang, Y., Luo, W. C-peptide prevents NF-κB from recruiting p300 and binding to the inos promoter in diabetic nephropathy.
Collapse
Affiliation(s)
- Yanning Li
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Xiaoping Li
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Kunyu He
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Jinsheng Qi
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Weigang Luo
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
Pujia A, Gazzaruso C, Montalcini T. An update on the potential role of C-peptide in diabetes and osteoporosis. Endocrine 2017; 58:408-412. [PMID: 28374151 DOI: 10.1007/s12020-017-1286-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/20/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE C-peptide secretion is deficient or absent in type 1 diabetes mellitus. It is well accepted that insulin replacement therapy cannot prevent the development of long-term diabetes-related complications, which can often be disabling or even life-threatening. Several cross-sectional investigations have suggested that residual C-peptide production in patients with type 1 diabetes mellitus would help prevent a number of complications. In animal models of diabetes and in patients with type 1 diabetes mellitus, C-peptide replacement improves renal function, skin and skeletal muscle blood flow, nerve conduction, glucose utilization, and other diabetes-related complications. Recent investigations suggest a new beneficial effect of C-peptide, which to date has never been studied. It is known that osteoporosis is the most prevalent short-term complication in type 1 diabetes mellitus. This review will highlight new insights into the pathophysiology and future therapeutic modalities for osteoporosis in individuals with diabetes. METHODS This review provides a concise summary of old and new insights into the role of C-peptide in diabetes-related complications. RESULTS The data suggest that C-peptide is a bioactive peptide, acting independently of insulin, which binds to a G-protein-coupled membrane binding site in different cell types. By triggering Ca2+-dependent intracellular signaling pathways, both Na+, K+-ATPase and endothelial nitric oxide synthase are activated. C-peptide may act on osteoblast cells by ERK 1/2 pathway activation, modulate collagen biosynthesis and RANKL expression. Furthermore, C-peptide-deficient postmenopausal women, not affected by diabetes, have a lower bone mineral density than those with normal C-peptide levels. CONCLUSION Taken together these studies encourage further investigations to elucidate the role of C-peptide in preventing bone loss in type 1 diabetes mellitus and in those individuals with C-peptide deficiency and osteoporosis.
Collapse
Affiliation(s)
- Arturo Pujia
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, 88100, Italy
| | - Carmine Gazzaruso
- Internal and Emergency Medicine and Center for Applied Clinical Research (Ce.R.C.A.) Clinical Institute "Beato Matteo", Vigevano, 27029, Italy
| | - Tiziana Montalcini
- Clinical Nutrition Unit, Menopause Clinic, Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, 88100, Italy.
| |
Collapse
|
26
|
C-peptide attenuates acute lung inflammation in a murine model of hemorrhagic shock and resuscitation by reducing gut injury. J Trauma Acute Care Surg 2017; 83:256-262. [PMID: 28452895 DOI: 10.1097/ta.0000000000001539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The study aims to evaluate whether C-peptide can reduce gut injury during hemorrhagic shock (HS) and resuscitation (R) therefore attenuate shock-induced inflammation and subsequent acute lung injury. METHODS Twelve-week-old male mice (C57/BL6) were hemorrhaged (mean arterial blood pressure maintained at 35 mm Hg for 60 minutes) and then resuscitated with Ringer's lactate, followed by red blood cell transfusion with (HS/R) or without C-peptide (HS/R + C-peptide). Mouse gut permeability, bacterial translocation into the circulatory system and intestinal pathology, circulating HMGB1, and acute lung injury were assessed at different times after R. The mice in the control group underwent sham procedures without HS. RESULTS Compared to the sham group, the mice in the HS/R group showed increased gut permeability (6.07 ± 3.41 μg of FD4/mL) and bacterial translocation into the circulatory system (10.05 ± 4.92, lipopolysaccharide [LPS] of pg/mL), and increased gut damage; conversely, mice in the HS/R + C-peptide group showed significantly reduced gut permeability (1.59 ± 1.39 μg of FD4/mL; p < 0.05) and bacterial translocation (4.53 ± 1.08 pg of LPS/mL; p < 0.05) with reduced intestine damage. In addition, mice in the HS/R group had increased circulating HMGB1 (21.64 ± 14.17 ng/mL), lung myeloperoxidase) activity (34.4 ± 8.91 mU/g of tissue), and pulmonary protein leakage (2.33 ± 1.16 μg Evans blue/g tissue per minute). Mice in the HS/R + C-peptide group showed decreased HMGB1 (7.27 ± 1.93 ng/mL; p < 0.05), lung myeloperoxidase (23.73 ± 8.39 mU/g of tissue; p < 0.05), and pulmonary protein leakage (1.17 ± 0.42 Evans Blue/g tissue per minute; p < 0.05). CONCLUSION Our results indicate that C-peptide exerts beneficial effects to attenuate gut injury and dysfunction, therefore diminishing lung inflammation and subsequent injury in mice with HS and R.
Collapse
|
27
|
Shpakov AO. Mechanisms of action and therapeutic potential of proinsulin C-peptide. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017030024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Kolar GR, Grote SM, Yosten GLC. Targeting orphan G protein-coupled receptors for the treatment of diabetes and its complications: C-peptide and GPR146. J Intern Med 2017; 281:25-40. [PMID: 27306986 PMCID: PMC6092955 DOI: 10.1111/joim.12528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptors (GPCRs) are the most abundant receptor family encoded by the human genome and are the targets of a high percentage of drugs currently in use or in clinical trials for the treatment of diseases such as diabetes and its associated complications. Thus, orphan GPCRs, for which the ligand is unknown, represent an important untapped source of therapeutic potential for the treatment of many diseases. We have identified the previously orphan GPCR, GPR146, as the putative receptor of proinsulin C-peptide, which may prove to be an effective treatment for diabetes-associated complications. For example, we have found a potential role of C-peptide and GPR146 in regulating the function of the retinal pigment epithelium, a monolayer of cells in the retina that serves as part of the blood-retinal barrier and is disrupted in diabetic macular oedema. However, C-peptide signalling in this cell type appears to depend at least in part on extracellular glucose concentration and its interaction with insulin. In this review, we discuss the therapeutic potential of orphan GPCRs with a special focus on C-peptide and GPR146, including past and current strategies used to 'deorphanize' this diverse family of receptors, past successes and the inherent difficulties of this process.
Collapse
Affiliation(s)
- G R Kolar
- Department of Pathology, St Louis University School of Medicine, St Louis, MO, USA
| | - S M Grote
- Department of Pharmacology and Physiology, St Louis University School of Medicine, St Louis, MO, USA
| | - G L C Yosten
- Department of Pharmacology and Physiology, St Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
29
|
Nakamoto H. Visualisation studies and glomerular filtration in early diabetic rats. J Biomech 2017; 50:138-143. [DOI: 10.1016/j.jbiomech.2016.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
|
30
|
Abstract
In this review, we present findings that support autocrine cell protection by C-peptide in the context of clinical studies of type 1 diabetes (T1D), which universally measure C-peptide serum levels as a surrogate for β cell functional mass. Over the last decade, evidence has accumulated that supports models in which C-peptide, cosecreted with insulin by pancreatic β cells, acts on peripheral targets including the vascular endothelium to reduce oxidative stress and apoptosis subsequent to exposure to diabetic insults. In parallel, as assays have become more sensitive, C-peptide has been detected in the circulation of most subjects with T1D where higher C-peptide levels are associated with fewer and slower development of diabetic microvascular complications, consistent with antioxidant protection by C-peptide. Clinical trials investigating C-peptide-replacement therapy effects have demonstrated amelioration of T1D nephropathy and neuropathy. Recently, the antioxidant action of C-peptide was extended to the β cells secreting it, that is an autocrine mechanism. Autocrine protection has major implications for the treatment of diabetes because the more C-peptide secreted, the more protection provided to the same β cells resulting in a slower decay in β cell functional mass over the time course of disease. Why β cells evolved to cosecrete an antioxidant C-peptide hormone together with the glycaemia-lowering insulin hormone is explored in the context of proposed evolutionary advantages of physiologically transient oxidative stress and insulin resistance as an adaptation for survival through times of fuel scarcity. The importance of recognizing autocrine C-peptide protection of functional β cell mass in observational clinical studies, and its therapeutic implications in interventional C-peptide-replacement studies, will be discussed.
Collapse
Affiliation(s)
- P Luppi
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P Drain
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Rizk N, Dunbar JC. Insulin-Mediated Increase in Sympathetic Nerve Activity is Attenuated by C-Peptide in Diabetic Rats. Exp Biol Med (Maywood) 2016; 229:80-4. [PMID: 14709780 DOI: 10.1177/153537020422900110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Connecting peptide (C-peptide) is secreted along with insulin in equimolar amounts into portal circulation in response to beta cell stimulation. The biological function of C-peptide had been mostly limited to establishing the secondary and tertiary structure of proinsulin. Recent studies have suggested that C-peptide can impact several functions, such as autonomic and sensory nerve function, insulin secretion, and microvascular blood flow. In this study we examined the effects of C-peptide in the presence or absence of insulin on cardiovascular and sympathetic nerve activity in both normal and streptozotocin (STZ)-induced diabetic Wistar rats. Animals were made diabetic by a single intravenous injection of STZ (50 mg/kg) and maintained for 6 weeks. The diabetic animals had higher plasma glucose, lower plasma insulin, and C-peptide, compared with the normal animals. To characterize cardiovascular and autonomic nervous responses, the animals were anesthetized with urethane/α-chloralose and instrumented for the recording of mean arterial pressure (MAP), heart rate (HR), and lumbar sympathetic nerve activity (LSNA). A bolus administration of C-peptide alone did not alter MAP, HR, or LSNA in normal or diabetic animals. The bolus administration of insulin alone increased HR and LSNA in normal and diabetic animals. However, the administration of insulin plus C-peptide attenuated the increase in HR in normals and the increase in LSNA in diabetic rats. We concluded that the C-peptides play a role in modulating the insulin-stimulated sympathetic nerve response.
Collapse
Affiliation(s)
- Natalie Rizk
- Department of Physiology, Wayne State University School of Medicine Detroit, Michigan 48201, USA
| | | |
Collapse
|
32
|
Bhatt MP, Lee YJ, Jung SH, Kim YH, Hwang JY, Han ET, Park WS, Hong SH, Kim YM, Ha KS. C-peptide protects against hyperglycemic memory and vascular endothelial cell apoptosis. J Endocrinol 2016; 231:97-108. [PMID: 27554111 DOI: 10.1530/joe-16-0349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022]
Abstract
C-peptide exerts protective effects against diabetic complications; however, its role in inhibiting hyperglycemic memory (HGM) has not been elucidated. We investigated the beneficial effect of C-peptide on HGM-induced vascular damage in vitro and in vivo using human umbilical vein endothelial cells and diabetic mice. HGM induced apoptosis by persistent generation of intracellular ROS and sustained formation of ONOO(-) and nitrotyrosine. These HGM-induced intracellular events were normalized by treatment with C-peptide, but not insulin, in endothelial cells. C-peptide also inhibited persistent upregulation of p53 and activation of mitochondrial adaptor p66(shc) after glucose normalization. Further, C-peptide replacement therapy prevented persistent generation of ROS and ONOO(-) in the aorta of diabetic mice whose glucose levels were normalized by the administration of insulin. C-peptide, but not insulin, also prevented HGM-induced endothelial apoptosis in the murine diabetic aorta. This study highlights a promising role for C-peptide in preventing HGM-induced intracellular events and diabetic vascular damage.
Collapse
Affiliation(s)
- Mahendra Prasad Bhatt
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Se-Hui Jung
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology and Department of ChemistrySungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jong Yun Hwang
- Department of Obstetrics and GynecologyKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical MedicineKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Won Sun Park
- Department of PhysiologyKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Seok-Ho Hong
- Department of Internal MedicineKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| |
Collapse
|
33
|
Aluwong T, Ayo JO, Kpukple A, Oladipo OO. Amelioration of Hyperglycaemia, Oxidative Stress and Dyslipidaemia in Alloxan-Induced Diabetic Wistar Rats Treated with Probiotic and Vitamin C. Nutrients 2016; 8:E151. [PMID: 27164129 PMCID: PMC4882655 DOI: 10.3390/nu8050151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 12/30/2022] Open
Abstract
Clinical and experimental evidence suggests that hyperglycaemia is responsible for the oxidative stress in diabetes mellitus. The study was designed to investigate the comparative effects of probiotic and vitamin C (Vit-C) treatments on hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic rats. Type 1 diabetes (T1DM) was induced in male Wistar rats by a single intraperitoneal (i.p.) injection of alloxan (150 mg/kg). Six groups of the animals received the following treatment regimens for four weeks: (1) Normal saline, per os; (2) alloxan (150 mg/kg, i.p.); (3) alloxan (150 mg/kg) + insulin (4 U/kg, subcutaneously); (4) alloxan (150 mg/kg) + probiotic (4.125 × 10⁶ CFU/100 mL per os); (5) alloxan (150 mg/kg) + Vit-C (100 mg/kg, i.m.); (6) alloxan (150 mg/kg) + probiotic (4.125 × 10⁶ CFU/100 mL per os) + Vit-C (100 mg/kg, intramuscularly). Probiotic + Vit-C decreased (p < 0.05) blood glucose concentration in diabetic treated group, when compared with the untreated diabetic group. Probiotic + Vit-C reduced malondialdehyde concentration, in the serum, brain and kidneys, respectively, but increased the activity of antioxidant enzymes. Probiotic and Vit-C may be more effective than Vit-C alone, in ameliorating hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic rats.
Collapse
Affiliation(s)
- Tagang Aluwong
- Department of Veterinary Physiology, Ahmadu Bello University, c/o P.O. Box 216 Samaru, 810006 Zaria, Nigeria.
| | - Joseph O Ayo
- Department of Veterinary Physiology, Ahmadu Bello University, c/o P.O. Box 216 Samaru, 810006 Zaria, Nigeria.
| | - Alkali Kpukple
- Department of Veterinary Physiology, Ahmadu Bello University, c/o P.O. Box 216 Samaru, 810006 Zaria, Nigeria.
| | | |
Collapse
|
34
|
Ido Y. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3. J Diabetes Investig 2016; 7:448-58. [PMID: 27181414 PMCID: PMC4931191 DOI: 10.1111/jdi.12485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022] Open
Abstract
Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate‐activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C‐peptide. My research and others' suggest that the SIRT1–liver kinase B1–AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. ‘Diabetic memory’ is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1–AMPK positive feedback through activating FOXO3.
Collapse
Affiliation(s)
- Yasuo Ido
- Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Yosten GLC, Kolar GR. The Physiology of Proinsulin C-Peptide: Unanswered Questions and a Proposed Model. Physiology (Bethesda) 2015; 30:327-32. [DOI: 10.1152/physiol.00008.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
C-peptide is produced, processed, and secreted with insulin, and appears to exert separate but intimately related effects. In this review, we address the existence of the C-peptide receptor, the interaction between C-peptide and insulin, and the potential physiological significance of proinsulin C-peptide.
Collapse
Affiliation(s)
- Gina L. C. Yosten
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri; and
| | - Grant R. Kolar
- Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
36
|
Application of novel magnetizable cellulose particles in the development of immunoradiometric assay for C-peptide. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-3925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Chung JO, Cho DH, Chung DJ, Chung MY. Relationship between serum C-peptide level and diabetic retinopathy according to estimated glomerular filtration rate in patients with type 2 diabetes. J Diabetes Complications 2015; 29:350-5. [PMID: 25623633 DOI: 10.1016/j.jdiacomp.2014.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To test the hypothesis that serum C-peptide level would relate to the risk of diabetic retinopathy (DR) in type 2 diabetic patients independently of estimated glomerular filtration rate (eGFR). DESIGN A total of 2,062 patients with type 2 diabetes were investigated in this cross-sectional study. Fasting C-peptide, 2-hour postprandial C-peptide, and ΔC-peptide (postprandial C-peptide minus fasting C-peptide) levels were measured. The patients were divided into two groups according to eGFR (ml∙min(-1)1.73m(-2)): patients without renal impairment (eGFR ≥60) and those with renal impairment (eGFR <60). RESULTS In subjects both with and without renal impairment, patients with DR showed lower levels of fasting C-peptide, postprandial C-peptide and ΔC-peptide. In multivariate analysis, serum C-peptide levels were significantly associated with DR (odds ratio [OR] of each standard deviation increase in the logarithmic value, 0.85; 95% confidence interval [CI], 0.78-0.92 for fasting C-peptide, P<0.001; OR, 0.87; 95% CI, 0.82-0.92 for postprandial C-peptide, P<0.001; OR, 0.88; 95% CI, 0.82-0.94 for ΔC-peptide, P<0.001) after adjustment for age, gender, and other confounding factors including eGFR. CONCLUSIONS Serum C-peptide levels are inversely associated with the prevalence of DR in type 2 diabetic patients independently of eGFR.
Collapse
Affiliation(s)
- Jin Ook Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju, 501-757, Republic of Korea
| | - Dong Hyeok Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju, 501-757, Republic of Korea
| | - Dong Jin Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju, 501-757, Republic of Korea
| | - Min Young Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
38
|
Wahren J, Larsson C. C-peptide: new findings and therapeutic possibilities. Diabetes Res Clin Pract 2015; 107:309-19. [PMID: 25648391 DOI: 10.1016/j.diabres.2015.01.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/15/2015] [Indexed: 12/18/2022]
Abstract
Much new information on C-peptide physiology has appeared during the past 20 years. It has been shown that C-peptide binds specifically to cell membranes, elicits intracellular signaling via G-protein and Ca2+ -dependent pathways, resulting in activation and increased expression of endothelial nitric oxide synthase, Na+, K+ -ATPase and several transcription factors of importance for anti-inflammatory, anti-oxidant and cell protective mechanisms. Studies in animal models of diabetes and early clinical trials in patients with type 1 diabetes demonstrate that C-peptide in replacement doses elicits beneficial effects on early stages of diabetes-induced functional and structural abnormalities of the peripheral nerves, the kidneys and the retina. Much remains to be learned about C-peptide's mechanism of action and long-term clinical trials in type 1 diabetes subjects will be required to determine C-peptide's clinical utility. Nevertheless, even a cautious evaluation of the available evidence presents the picture of a bioactive endogenous peptide with therapeutic potential.
Collapse
Affiliation(s)
- John Wahren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Cebix AB, Stockholm, Sweden.
| | | |
Collapse
|
39
|
Nakamoto H, Nakayama K, Emoto N, Kajiya F. The Short-Term Effects of C-Peptide on the Early Diabetes-Related Ultrastructural Changes to the Podocyte Slit Diaphragm of Glomeruli in Rats. Microcirculation 2015; 22:122-32. [DOI: 10.1111/micc.12185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/17/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Hiroshi Nakamoto
- Department of Medical Engineering and Systems Cardiology; Kawasaki Medical School; Kurashiki Okayama Japan
- Department of Clinical Engineering; Kawasaki University of Medical Welfare; Kurashiki, Okayama Japan
| | - Kazuhiko Nakayama
- Division of Cardiovascular Medicine; Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe, Hyogo Japan
| | - Noriaki Emoto
- Division of Cardiovascular Medicine; Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe, Hyogo Japan
- Clinical Pharmacy; Kobe Pharmaceutical University; Hyogo Japan
| | - Fumihiko Kajiya
- Department of Medical Engineering and Systems Cardiology; Kawasaki Medical School; Kurashiki Okayama Japan
| |
Collapse
|
40
|
Landreh M, Jörnvall H. C-peptide evolution: generation from few structural restrictions of bioactivities not necessarily functional. FEBS Lett 2015; 589:415-8. [PMID: 25595456 DOI: 10.1016/j.febslet.2015.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 11/28/2022]
Abstract
The proinsulin C-peptide has molecular, cellular and organismal activities but lacks disease-associated mutations or short-term loss-of-function effects. This dilemma between activity and function may be explained from its evolutionary setting with insulin as an ancestral partner. The charge, approximate length and flexibility of C-peptide are all that is required for the insulin interactions, while remaining aspects are free to evolve, where new bioactivities can emerge. They can initially be transient, weak, and non-functional, but may gradually be consolidated. In this manner, C-peptide may have acquired multiple bioactivities, explaining why some yet have limited functions but could represent early-stage hormonal-like activities.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
41
|
Yosten GLC, Maric-Bilkan C, Luppi P, Wahren J. Physiological effects and therapeutic potential of proinsulin C-peptide. Am J Physiol Endocrinol Metab 2014; 307:E955-68. [PMID: 25249503 PMCID: PMC4254984 DOI: 10.1152/ajpendo.00130.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Connecting Peptide, or C-peptide, is a product of the insulin prohormone, and is released with and in amounts equimolar to those of insulin. While it was once thought that C-peptide was biologically inert and had little biological significance beyond its role in the proper folding of insulin, it is now known that C-peptide binds specifically to the cell membranes of a variety of tissues and initiates specific intracellular signaling cascades that are pertussis toxin sensitive. Although it is now clear that C-peptide is a biologically active molecule, controversy still remains as to the physiological significance of the peptide. Interestingly, C-peptide appears to reverse the deleterious effects of high glucose in some tissues, including the kidney, the peripheral nerves, and the vasculature. C-peptide is thus a potential therapeutic agent for the treatment of diabetes-associated long-term complications. This review addresses the possible physiologically relevant roles of C-peptide in both normal and disease states and discusses the effects of the peptide on sensory nerve, renal, and vascular function. Furthermore, we highlight the intracellular effects of the peptide and present novel strategies for the determination of the C-peptide receptor(s). Finally, a hypothesis is offered concerning the relationship between C-peptide and the development of microvascular complications of diabetes.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri;
| | - Christine Maric-Bilkan
- Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Patrizia Luppi
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - John Wahren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and Cebix Inc., Karolinska Institutet Science Park, Solna, Sweden
| |
Collapse
|
42
|
McKillop AM, Ng MT, Abdel-Wahab YHA, Flatt PR. Evidence for inhibitory autocrine effects of proinsulin C-peptide on pancreatic β-cell function and insulin secretion. Diabetes Obes Metab 2014; 16:937-46. [PMID: 24702738 DOI: 10.1111/dom.12300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/28/2014] [Accepted: 03/31/2014] [Indexed: 12/21/2022]
Abstract
AIMS Autocrine and paracrine regulatory mechanisms ensure integrated secretion of islet hormones that respond efficiently to changes in metabolic need. As proinsulin C-peptide exerts various biological effects and binds to cell membranes including insulin-secreting β cells, its physiological role in insulin release was examined. METHODS Insulin releasing activity of human and rat C-peptides were studied in the clonal pancreatic cell line, BRIN-BD11, with findings substantiated using isolated islets and in vivo studies employing SWISS TO mice. RESULTS Acute exposure of clonal β cells to human C-peptide resulted in concentration-dependent inhibitory effects on insulin secretion at 5.6 mM (p < 0.05-p < 0.001) and 16.7 mM (p < 0.01-p < 0.001) glucose. At physiologically relevant intra-islet concentrations (10(-9) -10(-6) M), C-peptide suppressed the insulin-secretory responses to a range of secretagogues acting at different points in the β cell stimulus-secretion coupling pathway including alanine (p < 0.05), Ca(2+) (p < 0.001), arginine (p < 0.05), tolbutamide (p < 0.001), glucagon-like peptide 1 (GLP-1) (p < 0.001), isobutylmethylxanthine (IBMX) (p < 0.01) and KCl (p < 0.05). Similar results were obtained using isolated mouse pancreatic islets. Human C-peptide (3 × 10(-7) M, p < 0.001), somatostatin-14 (3 × 10(-7) M, p < 0.01) and diazoxide (300 µM, p < 0.001) reduced both alanine and glucose-stimulated insulin release by 43, 25 and 48%, respectively. The effects of human C-peptide were reproduced using rat C-peptide I and II. C-peptide also inhibited in vivo glucose-stimulated insulin release and impaired glucose tolerance in mice. CONCLUSIONS C-peptide is a biologically active endogenous peptide hormone that exerts inhibitory autocrine effects on pancreatic β-cell function. Mechanisms involving the activation of K(+) channels and a distal effect downstream of increased cytoplasmic Ca(2+) appear to be implicated in the inhibition of insulin secretion.
Collapse
Affiliation(s)
- A M McKillop
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | | | | | | |
Collapse
|
43
|
Bhatt MP, Lim YC, Ha KS. C-peptide replacement therapy as an emerging strategy for preventing diabetic vasculopathy. Cardiovasc Res 2014; 104:234-44. [PMID: 25239825 DOI: 10.1093/cvr/cvu211] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lack of C-peptide, along with insulin, is the main feature of Type 1 diabetes mellitus (DM) and is also observed in progressive β-cell loss in later stage of Type 2 DM. Therapeutic approaches to hyperglycaemic control have been ineffective in preventing diabetic vasculopathy, and alternative therapeutic strategies are necessary to target both hyperglycaemia and diabetic complications. End-stage organ failure in DM seems to develop primarily due to vascular dysfunction and damage, leading to two types of organ-specific diseases, such as micro- and macrovascular complications. Numerous studies in diabetic patients and animals demonstrate that C-peptide treatment alone or in combination with insulin has physiological functions and might be beneficial in preventing diabetic complications. Current evidence suggests that C-peptide replacement therapy might prevent and ameliorate diabetic vasculopathy and organ-specific complications through conservation of vascular function, as well as prevention of endothelial cell death, microvascular permeability, vascular inflammation, and neointima formation. In this review, we describe recent advances on the beneficial role of C-peptide replacement therapy for preventing diabetic complications, such as retinopathy, nephropathy, neuropathy, impaired wound healing, and inflammation, and further discuss potential beneficial effects of combined C-peptide and insulin supplement therapy to control hyperglycaemia and to prevent organ-specific complications.
Collapse
Affiliation(s)
- Mahendra Prasad Bhatt
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| | - Young-Cheol Lim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| |
Collapse
|
44
|
A subdivided molecular architecture with separate features and stepwise emergence among proinsulin C-peptides. Biochem Biophys Res Commun 2014; 450:1433-8. [DOI: 10.1016/j.bbrc.2014.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022]
|
45
|
Lim YC, Bhatt MP, Kwon MH, Park D, Na S, Kim YM, Ha KS. Proinsulin C-peptide prevents impaired wound healing by activating angiogenesis in diabetes. J Invest Dermatol 2014; 135:269-278. [PMID: 25007043 DOI: 10.1038/jid.2014.285] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 06/05/2014] [Accepted: 06/13/2014] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus disrupts wound repair and leads to the development of chronic wounds, likely due to impaired angiogenesis. We previously demonstrated that human proinsulin C-peptide can protect against vasculopathy in diabetes; however, its role in impaired wound healing in diabetes has not been studied. We investigated the potential roles of C-peptide in protecting against impaired wound healing by inducing angiogenesis using streptozotocin-induced diabetic mice and human umbilical vein endothelial cells. Diabetes delayed wound healing in mouse skin, and C-peptide supplement using osmotic pumps significantly increased the rate of skin wound closure in diabetic mice. Furthermore, C-peptide induced endothelial cell migration and tube formation in dose-dependent manners, with maximal effect at 0.5 nM. These effects were mediated through activation of extracellular signal-regulated kinase 1/2 and Akt, as well as nitric oxide formation. C-peptide-enhanced angiogenesis in vivo was demonstrated by immunohistochemistry and Matrigel plug assays. Our findings highlight an angiogenic role of C-peptide and its ability to protect against impaired wound healing, which may have significant implications in reparative and therapeutic angiogenesis in diabetes. Thus, C-peptide replacement is a promising therapy for impaired angiogenesis and delayed wound healing in diabetes.
Collapse
Affiliation(s)
- Young-Cheol Lim
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Mahendra Prasad Bhatt
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Mi-Hye Kwon
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Donghyun Park
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - SungHun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea.
| |
Collapse
|
46
|
Hu L, Li DH. Relationship between modified homeostasis model assessment/correlative serum factors and diabetic retinopathy among type 2 diabetics with insulin therapy in Guangzhou, China. Int J Ophthalmol 2014; 7:463-8. [PMID: 24967192 DOI: 10.3980/j.issn.2222-3959.2014.03.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 12/12/2013] [Indexed: 11/02/2022] Open
Abstract
AIM To explore the related risk factors for diabetic retinopathy (DR) in type 2 diabetes with insulin therapy. METHODS We studied the relationships among blood glucose, serum C-peptide, plasma insulin, beta-cell function and the development of DR. Beta-cell function was assessed by a modified homeostasis model assessment (modified HOMA) which was gained by using C-peptide to replace insulin in the homeostasis model assessment (HOMA) of beta-cell function. We also studied the relationships between modified HOMA index and serum C-peptide response to 100g tasteless steamed bread to determine the accuracy of modified HOMA. RESULTS Our study group consisted of 170 type 2 diabetic inpatients with DR (age: 58.35±13.87y, mean±SD) and 205 type 2 diabetic inpatients with no DR (NDR) (age: 65.52±11.59y). DR patients had higher age, longer diabetic duration, higher hypertension grade, higher postprandial plasma glucose, higher fluctuation level of plasma glucose, lower body mass index (BMI), lower postprandial serum insulin and C-peptide, lower fluctuation level of serum insulin and C-peptide (P<0.05). In our logistic regression model, duration of diabetes, hypertension grade, fasting plasma insulin and glycosylated hemoglobin (HbA1C) were significantly associated with the presence of DR after adjustment for confounding factors (P<0.05). CONCLUSION Our results suggested although modified HOMA showed significant correlation to the occurrence of DR on Spearman's rank-correlation analysis, logistic regression showed no significant association between these two variables after adjustment for relevant confounding factors (such as age, sex, duration of diabetes, BMI, hypertension grade, HbA1C, plasma insulin). Duration of diabetes, hypertension grade, fasting plasma insulin and HbA1C were independently associated with the development of DR in Chinese type 2 diabetics.
Collapse
Affiliation(s)
- Li Hu
- Department of Ophthalmology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
| | - Dong-Hao Li
- Department of Ophthalmology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
| |
Collapse
|
47
|
McQuilling J, Pareta R, Sivanandane S, Khanna O, Jiang B, Brey E, Orlando G, Farney A, Opara E. Islet function within a multilayer microcapsule and efficacy of angiogenic protein delivery in an omentum pouch graft. BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING 2014. [DOI: 10.12989/bme.2014.1.1.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Ziegler D, Papanas N, Vinik AI, Shaw JE. Epidemiology of polyneuropathy in diabetes and prediabetes. ACTA ACUST UNITED AC 2014; 126:3-22. [DOI: 10.1016/b978-0-444-53480-4.00001-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Bhatt MP, Lim YC, Kim YM, Ha KS. C-peptide activates AMPKα and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes. Diabetes 2013; 62:3851-62. [PMID: 23884890 PMCID: PMC3806599 DOI: 10.2337/db13-0039] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vasculopathy is a major complication of diabetes; however, molecular mechanisms mediating the development of vasculopathy and potential strategies for prevention have not been identified. We have previously reported that C-peptide prevents diabetic vasculopathy by inhibiting reactive oxygen species (ROS)-mediated endothelial apoptosis. To gain further insight into ROS-dependent mechanism of diabetic vasculopathy and its prevention, we studied high glucose-induced cytosolic and mitochondrial ROS production and its effect on altered mitochondrial dynamics and apoptosis. For the therapeutic strategy, we investigated the vasoprotective mechanism of C-peptide against hyperglycemia-induced endothelial damage through the AMP-activated protein kinase α (AMPKα) pathway using human umbilical vein endothelial cells and aorta of diabetic mice. High glucose (33 mmol/L) increased intracellular ROS through a mechanism involving interregulation between cytosolic and mitochondrial ROS generation. C-peptide (1 nmol/L) activation of AMPKα inhibited high glucose-induced ROS generation, mitochondrial fission, mitochondrial membrane potential collapse, and endothelial cell apoptosis. Additionally, the AMPK activator 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside and the antihyperglycemic drug metformin mimicked protective effects of C-peptide. C-peptide replacement therapy normalized hyperglycemia-induced AMPKα dephosphorylation, ROS generation, and mitochondrial disorganization in aorta of diabetic mice. These findings highlight a novel mechanism by which C-peptide activates AMPKα and protects against hyperglycemia-induced vasculopathy.
Collapse
|
50
|
Lim YC, Bhatt MP, Kwon MH, Park D, Lee S, Choe J, Hwang J, Kim YM, Ha KS. Prevention of VEGF-mediated microvascular permeability by C-peptide in diabetic mice. Cardiovasc Res 2013; 101:155-64. [PMID: 24142430 DOI: 10.1093/cvr/cvt238] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Human C-peptide has a beneficial effect on the prevention of diabetic neuropathy, nephropathy, and vascular complications; however, its role in protection against increased vascular permeability in diabetes remains unclear. Our purpose was to explore the potential protective role of C-peptide against microvascular permeability mediated by vascular endothelial growth factor (VEGF)-induced reactive oxygen species (ROS) generation in diabetes. METHODS AND RESULTS Generation of intracellular ROS, real-time changes in intracellular Ca(2+), ROS-dependent stress fibre formation, and the disassembly of the adherens junctions were studied by a confocal microscopy in human umbilical vein endothelial cells (HUVECs). VEGF-induced vascular leakage was investigated in the skin of diabetic mice using a Miles vascular permeability assay. Microvascular leakage in the retina of streptozotocin diabetic mice was investigated using a confocal microscopy after left ventricle injection of fluorescein isothiocyanate (FITC)-dextran. C-peptide inhibited the VEGF-induced ROS generation, stress fibre formation, disassembly of vascular endothelial cadherin, and endothelial permeability in HUVECs. Intradermal injection of C-peptide prevented VEGF-induced vascular leakage. Consistent with this, intravitreal injection of C-peptide prevented the extravasation of FITC-dextran in the retinas of diabetic mice, which was also prevented by anti-VEGF antibody and ROS scavengers in diabetic mice. Conclusions/interpretation C-peptide prevents VEGF-induced microvascular permeability by inhibiting ROS-mediated intracellular events in diabetic mice, suggesting that C-peptide replacement is a promising therapeutic strategy to prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Young-Cheol Lim
- Department of Molecular and Cellular Biochemistry, Institute of Medical Scicence, Kangwon National University School of Medicine, Kangwon-do 200-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|