1
|
Fu Y, Yang X, Li S, Ma C, An Y, Cheng T, Liang Y, Sun S, Cheng T, Zhao Y, Wang J, Wang X, Xu P, Yin Y, Liang H, Liu N, Zou W, Chen B. Dynamic properties of transcriptional condensates modulate CRISPRa-mediated gene activation. Nat Commun 2025; 16:1640. [PMID: 39952932 PMCID: PMC11828908 DOI: 10.1038/s41467-025-56735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
CRISPR activation (CRISPRa) is a powerful tool for endogenous gene activation, yet the mechanisms underlying its optimal transcriptional activation remain unclear. By monitoring real-time transcriptional bursts, we find that CRISPRa modulates both burst duration and amplitude. Our quantitative imaging reveals that CRISPR-SunTag activators, with three tandem VP64-p65-Rta (VPR), form liquid-like transcriptional condensates and exhibit high activation potency. Although visible CRISPRa condensates are associated with some RNA bursts, the overall levels of phase separation do not correlate with transcriptional bursting or activation strength in individual cells. When the number of SunTag scaffolds is increased to 10 or more, solid-like condensates form, sequestering co-activators such as p300 and MED1. These condensates display low dynamicity and liquidity, resulting in ineffective gene activation. Overall, our studies characterize various phase-separated CRISPRa systems for gene activation, highlighting the foundational principles for engineering CRISPR-based programmable synthetic condensates with appropriate properties to effectively modulate gene expression.
Collapse
Affiliation(s)
- Yujuan Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xiaoxuan Yang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Sihui Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Chenyang Ma
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao An
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Cheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Liang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Shengbai Sun
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Cheng
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yongyang Zhao
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jianghu Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Xiaoyue Wang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Pengfei Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yafei Yin
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqing Liang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Insititute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Baohui Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China.
| |
Collapse
|
2
|
Bailey TW, Speigel JH, Mayer J, Korzus E. The Neuronal Hypofunction of Subdivisions of the Prefrontal Cortex Shows Differential Effects on Contingency Judgment Learning to Gauge Fear Responses. Neurosci Insights 2024; 19:26331055241305378. [PMID: 39655247 PMCID: PMC11626657 DOI: 10.1177/26331055241305378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/18/2024] [Indexed: 12/12/2024] Open
Abstract
Previous studies have indicated that the infralimbic (IL) and prelimbic (PL) subdivisions of the medial prefrontal cortex (mPFC) serve as critical modulators of fear suppression and expression. Although significant research has been conducted on the extinction of conditioned fear, the mechanisms underlying contextual fear discrimination learning, a form of contingency judgment learning, remain inadequately understood. Our investigation aimed to explore the influence of epigenetic regulation associated with cyclic AMP-response element binding protein (CREB)-dependent long-term memory encoding within the IL and PL on contextual fear discrimination. Our prior and current findings illustrate that epigenetic hypofunction induced by a CREB-Binding Protein (CBP) mutant, which is deficient in histone acetyltransferase activity (CBPΔHAT), within the mPFC leads to compromised contextual fear discrimination while not affecting contextual fear conditioning in these mutants. Unexpectedly, the effect was not noticeable when the hypofunction was constrained to the infralimbic (IL) area; however, the hypofunction of the prelimbic (PL) network led to considerable impairment in fear discrimination. The findings indicate that learning fear discrimination involves differential encoding across the specialized networks of the mPFC. These data suggest that the IL network is not essential for encoding during the acquisition and discrimination of fear or that the PL network may compensate for the IL's inability to encode new information. Furthermore, these results emphasize the importance of histone acetylation in the mPFC as a crucial physiological mechanism for learning contingency judgment.
Collapse
Affiliation(s)
- Tyler W Bailey
- Neuroscience Program, University of California, Riverside, USA
| | - John H Speigel
- Neuroscience Program, University of California, Riverside, USA
| | | | - Edward Korzus
- Neuroscience Program, University of California, Riverside, USA
- Department of Psychology, University of California, USA
| |
Collapse
|
3
|
Pastore JD, Mayer J, Steinhauser J, Shuler K, Bailey TW, Speigel JH, Papalexakis EE, Korzus E. Prefrontal multistimulus integration within a dedicated disambiguation circuit guides interleaving contingency judgment learning. Cell Rep 2024; 43:114926. [PMID: 39475507 DOI: 10.1016/j.celrep.2024.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/09/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024] Open
Abstract
Understanding how cortical network dynamics support learning is a challenge. This study investigates the role of local neural mechanisms in the prefrontal cortex during contingency judgment learning (CJL). To better understand brain network mechanisms underlying CJL, we introduce ambiguity into associative learning after fear acquisition, inducing a generalized fear response to an ambiguous stimulus sharing nontrivial similarities with the conditioned stimulus. Real-time recordings at single-neuron resolution from the prelimbic (PL) cortex show distinct PL network dynamics across CJL phases. Fear acquisition triggers PL network reorganization, led by a disambiguation circuit managing spurious and predictive relationships during cue-danger, cue-safety, and cue-neutrality contingencies. Mice with PL-targeted memory deficiency show malfunctioning disambiguation circuit function, while naive mice lacking unconditioned stimulus exposure lack the disambiguation circuit. This study shows that fear conditioning induces prefrontal cortex cognitive map reorganization and that subsequent CJL relies on the disambiguation circuit's ability to learn predictive relationships.
Collapse
Affiliation(s)
- Justin D Pastore
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Johannes Mayer
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jordan Steinhauser
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Kylene Shuler
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Tyler W Bailey
- Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - John H Speigel
- Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Evangelos E Papalexakis
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Edward Korzus
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA; Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
4
|
Santoni G, Astori S, Leleu M, Glauser L, Zamora SA, Schioppa M, Tarulli I, Sandi C, Gräff J. Chromatin plasticity predetermines neuronal eligibility for memory trace formation. Science 2024; 385:eadg9982. [PMID: 39052786 DOI: 10.1126/science.adg9982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Memories are encoded by sparse populations of neurons but how such sparsity arises remains largely unknown. We found that a neuron's eligibility to be recruited into the memory trace depends on its epigenetic state prior to encoding. Principal neurons in the mouse lateral amygdala display intrinsic chromatin plasticity, which when experimentally elevated favors neuronal allocation into the encoding ensemble. Such chromatin plasticity occurred at genomic regions underlying synaptic plasticity and was accompanied by increased neuronal excitability in single neurons in real time. Lastly, optogenetic silencing of the epigenetically altered neurons prevented memory expression, revealing a cell-autonomous relationship between chromatin plasticity and memory trace formation. These results identify the epigenetic state of a neuron as a key factor enabling information encoding.
Collapse
Affiliation(s)
- Giulia Santoni
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Simone Astori
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marion Leleu
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Liliane Glauser
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Simon A Zamora
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Myriam Schioppa
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- The institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Isabella Tarulli
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Patil K, Sher G, Kuttikrishnan S, Moton S, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. The cross-talk between miRNAs and JAK/STAT pathway in cutaneous T cell lymphoma: Emphasis on therapeutic opportunities. Semin Cell Dev Biol 2024; 154:239-249. [PMID: 36216715 DOI: 10.1016/j.semcdb.2022.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 02/25/2023]
Abstract
Mycosis Fungoides (MF) and Sézary Syndrome (SS) belong to a wide spectrum of T cell lymphoproliferative disorders collectively termed cutaneous T cell lymphomas (CTCL). CTCLs represent an archetype of heterogeneous and dynamically variable lymphoproliferative neoplasms typified by distinct clinical, histological, immunophenotypic, and genetic features. Owing to its complex dynamics, the pathogenesis of CTCL remains elusive. However, in recent years, progress in CTCL classification combined with next-generation sequencing analyses has broadened the genetic and epigenetic spectrum of clearly defined CTCL entities such as MF and SS. Several large-scale genome studies have identified the polygenic nature of CTCL and unveiled an idiosyncratic mutational landscape involving genetic aberrations, epigenetic alterations, cell cycle dysregulation, apoptosis, and the constitutive activation of T cell/NF-κB/JAK-STAT signaling pathways. In this review, we summarize the evolving insights on how the intrinsic epigenetic events driven by dysregulated miRNAs, including the oncogenic and tumor-suppressive miRNAs, influence the pathogenesis of MF and SS. We also focus on the interplay between the JAK/STAT pathway and miRNAs in CTCL as well as the significance of the miRNA/STAT axis as a relevant pathogenetic mechanism underlying CTCL initiation and progression. Based on these biologic insights, the current status and recent progress on novel therapies with a strong biological rationale, including miRNA-targeted molecules and JAK/STAT-targeted therapy for CTCL management, are discussed.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Safwan Moton
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33200, USA
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine-New York 10065, New York, USA.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
6
|
Liang Y, Xu H, Cheng T, Fu Y, Huang H, Qian W, Wang J, Zhou Y, Qian P, Yin Y, Xu P, Zou W, Chen B. Gene activation guided by nascent RNA-bound transcription factors. Nat Commun 2022; 13:7329. [PMID: 36443367 PMCID: PMC9705438 DOI: 10.1038/s41467-022-35041-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Technologies for gene activation are valuable tools for the study of gene functions and have a wide range of potential applications in bioengineering and medicine. In contrast to existing methods based on recruiting transcriptional modulators via DNA-binding proteins, we developed a strategy termed Narta (nascent RNA-guided transcriptional activation) to achieve gene activation by recruiting artificial transcription factors (aTFs) to transcription sites through nascent RNAs of the target gene. Using Narta, we demonstrate robust activation of a broad range of exogenous and endogenous genes in various cell types, including zebrafish embryos, mouse and human cells. Importantly, the activation is reversible, tunable and specific. Moreover, Narta provides better activation potency of some expressed genes than CRISPRa and, when used in combination with CRISPRa, has an enhancing effect on gene activation. Quantitative imaging illustrated that nascent RNA-directed aTFs could induce the high-density assembly of coactivators at transcription sites, which may explain the larger transcriptional burst size induced by Narta. Overall, our work expands the gene activation toolbox for biomedical research.
Collapse
Affiliation(s)
- Ying Liang
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Haiyue Xu
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Tao Cheng
- grid.13402.340000 0004 1759 700XWomen’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujuan Fu
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanwei Huang
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenchang Qian
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Wang
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuenan Zhou
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengxu Qian
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yafei Yin
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengfei Xu
- grid.13402.340000 0004 1759 700XWomen’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zou
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China ,grid.13402.340000 0004 1759 700XInsititute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Baohui Chen
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China ,grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China
| |
Collapse
|
7
|
Ramana CV, Das B. Profiling transcription factor sub-networks in type I interferon signaling and in response to SARS-CoV-2 infection. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2021. [DOI: 10.1515/cmb-2020-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Type I interferons (IFN α/β) play a central role in innate immunity to respiratory viruses, including coronaviruses. In this study, transcription factor profiling in the transcriptome was used to gain novel insights into the role of inducible transcription factors in response to type I interferon signaling in immune cells and in lung epithelial cells after SARS-CoV-2 infection. Modeling the interferon-inducible transcription factor mRNA data in terms of distinct sub-networks based on biological functions such as antiviral response, immune modulation, and cell growth revealed enrichment of specific transcription factors in mouse and human immune cells. Interrogation of multiple microarray datasets revealed that SARS-CoV-2 induced high levels of IFN-beta and interferon-inducible transcription factor mRNA in human lung epithelial cells. Transcription factor mRNA of the three sub-networks were differentially regulated in human lung epithelial cell lines after SARS-CoV-2 infection and in COVID-19 patients. A subset of type I interferon-inducible transcription factors and inflammatory mediators were specifically enriched in the lungs and neutrophils of Covid-19 patients. The emerging complex picture of type I IFN transcriptional regulation consists of a rapid transcriptional switch mediated by the Jak-Stat cascade and a graded output of the inducible transcription factor activation that enables temporal regulation of gene expression.
Collapse
Affiliation(s)
- Chilakamarti V. Ramana
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon , NH 03766, USA ; Department of Stem Cell and Infectious Diseases , KaviKrishna Laboratory , Guwahati Biotech Park, Indian Institute of Technology , Guwahati , India ; Thoreau Laboratory for Global Health , University of Massachusetts , Lowell, MA 01854, USA
| | - Bikul Das
- Department of Stem Cell and Infectious Diseases , KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology , Guwahati , India ; Thoreau Laboratory for Global Health , University of Massachusetts , Lowell, MA 01854, USA
| |
Collapse
|
8
|
Wan C, Zhang F, Yao H, Li H, Tuan RS. Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications. Front Cell Dev Biol 2021; 9:626708. [PMID: 33937229 PMCID: PMC8085601 DOI: 10.3389/fcell.2021.626708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of histone modifications in cartilage development, pathology and regeneration is becoming increasingly evident. Understanding the molecular mechanisms and consequences of histone modification enzymes in cartilage development, homeostasis and pathology provides fundamental and precise perspectives to interpret the biological behavior of chondrocytes during skeletal development and the pathogenesis of various cartilage related diseases. Candidate molecules or drugs that target histone modifying proteins have shown promising therapeutic potential in the treatment of cartilage lesions associated with joint degeneration and other chondropathies. In this review, we summarized the advances in the understanding of histone modifications in the regulation of chondrocyte fate, cartilage development and pathology, particularly the molecular writers, erasers and readers involved. In addition, we have highlighted recent studies on the use of small molecules and drugs to manipulate histone signals to regulate chondrocyte functions or treat cartilage lesions, in particular osteoarthritis (OA), and discussed their potential therapeutic benefits and limitations in preventing articular cartilage degeneration or promoting its repair or regeneration.
Collapse
Affiliation(s)
- Chao Wan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fengjie Zhang
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hanyu Yao
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Rocky S Tuan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
9
|
Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics. Mol Cell 2021; 81:1682-1697.e7. [PMID: 33651988 DOI: 10.1016/j.molcel.2021.01.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
The coactivator p300/CREB-binding protein (CBP) regulates genes by facilitating the assembly of transcriptional machinery and by acetylating histones and other factors. However, it remains mostly unclear how both functions of p300 are dynamically coordinated during gene control. Here, we showed that p300 can orchestrate two functions through the formation of dynamic clusters with certain transcription factors (TFs), which is mediated by the interactions between a TF's transactivation domain (TAD) and the intrinsically disordered regions of p300. Co-condensation can enable spatially defined, all-or-none activation of p300's catalytic activity, priming the recruitment of coactivators, including Brd4. We showed that co-condensation can modulate transcriptional initiation rate and burst duration of target genes, underlying nonlinear gene regulatory functions. Such modulation is consistent with how p300 might shape gene bursting kinetics globally. Altogether, these results suggest an intriguing gene regulation mechanism, in which TF and p300 co-condensation contributes to transcriptional bursting regulation and cooperative gene control.
Collapse
|
10
|
Lee YR, Lee JW, Hong J, Chung BC. Simultaneous Determination of Polyamines and Steroids in Human Serum from Breast Cancer Patients Using Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2021; 26:molecules26041153. [PMID: 33670046 PMCID: PMC7926538 DOI: 10.3390/molecules26041153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
A simultaneous quantitative profiling method for polyamines and steroids using liquid chromatography-tandem mass spectrometry was developed and validated. We applied this method to human serum samples to simultaneously evaluate polyamine and steroid levels. Chemical derivatization was performed using isobutyl chloroformate to increase the sensitivity of polyamines. The method was validated, and the matrix effects were in the range of 78.7-126.3% and recoveries were in the range of 87.8-123.6%. Moreover, the intra-day accuracy and precision were in the ranges of 86.5-116.2% and 0.6-21.8%, respectively, whereas the inter-day accuracy and precision were in the ranges of 82.0-119.3% and 0.3-20.2%, respectively. The linearity was greater than 0.99. The validated method was used to investigate the differences in polyamine and steroid levels between treated breast cancer patients and normal controls. In our results, N-acetyl putrescine, N-acetyl spermidine, cadaverine, 1,3-diaminopropane, and epitestosterone were significantly higher in the breast cancer patient group. Through receiver operating characteristic curve analysis, all metabolites that were significantly increased in patient groups with areas under the curve >0.8 were shown. This mass spectrometry-based quantitative profiling method, used for the investigation of breast cancer, is also applicable to androgen-dependent diseases and polyamine-related diseases.
Collapse
Affiliation(s)
- Yu Ra Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea;
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Ji Won Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Jongki Hong
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (J.H.); (B.C.C.); Tel.: +82-2-961-9255 (J.H.); +82-2-958-5077 (B.C.C.)
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea;
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (J.H.); (B.C.C.); Tel.: +82-2-961-9255 (J.H.); +82-2-958-5077 (B.C.C.)
| |
Collapse
|
11
|
Koutelou E, Farria AT, Dent SYR. Complex functions of Gcn5 and Pcaf in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194609. [PMID: 32730897 DOI: 10.1016/j.bbagrm.2020.194609] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
A wealth of biochemical and cellular data, accumulated over several years by multiple groups, has provided a great degree of insight into the molecular mechanisms of actions of GCN5 and PCAF in gene activation. Studies of these lysine acetyltransferases (KATs) in vitro, in cultured cells, have revealed general mechanisms for their recruitment by sequence-specific binding factors and their molecular functions as transcriptional co-activators. Genetic studies indicate that GCN5 and PCAF are involved in multiple developmental processes in vertebrates, yet our understanding of their molecular functions in these contexts remains somewhat rudimentary. Understanding the functions of GCN5/PCAF in developmental processes provides clues to the roles of these KATs in disease states. Here we will review what is currently known about the developmental roles of GCN5 and PCAF, as well as emerging role of these KATs in oncogenesis.
Collapse
Affiliation(s)
- Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Aimee T Farria
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America.
| |
Collapse
|
12
|
Li Y, Gruber JJ, Litzenburger UM, Zhou Y, Miao YR, LaGory EL, Li AM, Hu Z, Yip M, Hart LS, Maris JM, Chang HY, Giaccia AJ, Ye J. Acetate supplementation restores chromatin accessibility and promotes tumor cell differentiation under hypoxia. Cell Death Dis 2020; 11:102. [PMID: 32029721 PMCID: PMC7005271 DOI: 10.1038/s41419-020-2303-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
Despite the fact that Otto H. Warburg discovered the Warburg effect almost one hundred years ago, why cancer cells waste most of the glucose carbon as lactate remains an enigma. Warburg proposed a connection between the Warburg effect and cell dedifferentiation. Hypoxia is a common tumor microenvironmental stress that induces the Warburg effect and blocks tumor cell differentiation. The underlying mechanism by which this occurs is poorly understood, and no effective therapeutic strategy has been developed to overcome this resistance to differentiation. Using a neuroblastoma differentiation model, we discovered that hypoxia repressed cell differentiation through reducing cellular acetyl-CoA levels, leading to reduction of global histone acetylation and chromatin accessibility. The metabolic switch triggering this global histone hypoacetylation was the induction of pyruvate dehydrogenase kinases (PDK1 and PDK3). Inhibition of PDKs using dichloroacetate (DCA) restored acetyl-CoA generation and histone acetylation under hypoxia. Knocking down PDK1 induced neuroblastoma cell differentiation, highlighting the critical role of PDK1 in cell fate control. Importantly, acetate or glycerol triacetate (GTA) supplementation restored differentiation markers expression and neuron differentiation under hypoxia. Moreover, ATAC-Seq analysis demonstrated that hypoxia treatment significantly reduced chromatin accessibility at RAR/RXR binding sites, which can be restored by acetate supplementation. In addition, hypoxia-induced histone hypermethylation by increasing 2-hydroxyglutarate (2HG) and reducing α-ketoglutarate (αKG). αKG supplementation reduced histone hypermethylation upon hypoxia, but did not restore histone acetylation or differentiation markers expression. Together, these findings suggest that diverting pyruvate flux away from acetyl-CoA generation to lactate production is the key mechanism that Warburg effect drives dedifferentiation and tumorigenesis. We propose that combining differentiation therapy with acetate/GTA supplementation might represent an effective therapy against neuroblastoma.
Collapse
Affiliation(s)
- Yang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joshua J Gruber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ulrike M Litzenburger
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yiren Zhou
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Edward L LaGory
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zhen Hu
- Olivia Consulting Service, Redwood City, CA, 94063, USA
| | - Michaela Yip
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lori S Hart
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Schoof M, Launspach M, Holdhof D, Nguyen L, Engel V, Filser S, Peters F, Immenschuh J, Hellwig M, Niesen J, Mall V, Ertl-Wagner B, Hagel C, Spohn M, Lutz B, Sedlacik J, Indenbirken D, Merk DJ, Schüller U. The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathol Commun 2019; 7:199. [PMID: 31806049 PMCID: PMC6896766 DOI: 10.1186/s40478-019-0849-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
CREB (cyclic AMP response element binding protein) binding protein (CBP, CREBBP) is a ubiquitously expressed transcription coactivator with intrinsic histone acetyltransferase (KAT) activity. Germline mutations within the CBP gene are known to cause Rubinstein-Taybi syndrome (RSTS), a developmental disorder characterized by intellectual disability, specific facial features and physical anomalies. Here, we investigate mechanisms of CBP function during brain development in order to elucidate morphological and functional mechanisms underlying the development of RSTS. Due to the embryonic lethality of conventional CBP knockout mice, we employed a tissue specific knockout mouse model (hGFAP-cre::CBPFl/Fl, mutant mouse) to achieve a homozygous deletion of CBP in neural precursor cells of the central nervous system. Our findings suggest that CBP plays a central role in brain size regulation, correct neural cell differentiation and neural precursor cell migration. We provide evidence that CBP is both important for stem cell viability within the ventricular germinal zone during embryonic development and for unhindered establishment of adult neurogenesis. Prominent histological findings in adult animals include a significantly smaller hippocampus with fewer neural stem cells. In the subventricular zone, we observe large cell aggregations at the beginning of the rostral migratory stream due to a migration deficit caused by impaired attraction from the CBP-deficient olfactory bulb. The cerebral cortex of mutant mice is characterized by a shorter dendrite length, a diminished spine number, and a relatively decreased number of mature spines as well as a reduced number of synapses. In conclusion, we provide evidence that CBP is important for neurogenesis, shaping neuronal morphology, neural connectivity and that it is involved in neuronal cell migration. These findings may help to understand the molecular basis of intellectual disability in RSTS patients and may be employed to establish treatment options to improve patients’ quality of life.
Collapse
|
14
|
Han EH, Singh P, Lee IK, Urrutia R, Chi YI. ErbB3-binding protein 1 (EBP1) represses HNF4α-mediated transcription and insulin secretion in pancreatic β-cells. J Biol Chem 2019; 294:13983-13994. [PMID: 31362984 DOI: 10.1074/jbc.ra119.009558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
HNF4α (hepatocyte nuclear factor 4α) is one of the master regulators of pancreatic β-cell development and function, and mutations in the HNF4α gene are well-known monogenic causes of diabetes. As a member of the nuclear receptor family, HNF4α exerts its gene regulatory function through various molecular interactions; however, there is a paucity of knowledge of the different functional complexes in which HNF4α participates. Here, to find HNF4α-binding proteins in pancreatic β-cells, we used yeast two-hybrid screening, a mammalian two-hybrid assay, and glutathione S-transferase pulldown approaches, which identified EBP1 (ErbB3-binding protein 1) as a factor that binds HNF4α in a LXXLL motif-mediated manner. In the β-cells, EBP1 suppressed the expression of HNF4α target genes that are implicated in insulin secretion, which is impaired in HNF4α mutation-driven diabetes. The crystal structure of the HNF4α ligand-binding domain in complex with a peptide harboring the EBP1 LXXLL motif at 3.15Å resolution hinted at the molecular basis of the repression. The details of the structure suggested that EBP1's LXXLL motif competes with HNF4α coactivators for the same binding pocket and thereby prevents recruitment of additional transcriptional coactivators. These findings provide further evidence that EBP1 plays multiple cellular roles and is involved in nuclear receptor-mediated gene regulation. Selective disruption of the HNF4α-EBP1 interaction or tissue-specific EBP1 inactivation can enhance HNF4α activities and thereby improve insulin secretion in β-cells, potentially representing a new strategy for managing diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Eun Hee Han
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912.,Drug & Disease Target Group, Division of Life Science, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Puja Singh
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Young-In Chi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912 .,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
15
|
Coss D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol Cell Endocrinol 2018; 463:116-130. [PMID: 28342855 PMCID: PMC6457911 DOI: 10.1016/j.mce.2017.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
Abstract
Mammalian reproduction is controlled by the hypothalamic-pituitary-gonadal axis. GnRH from the hypothalamus regulates synthesis and secretion of gonadotropins, LH and FSH, which then control steroidogenesis and gametogenesis. In females, serum LH and FSH levels exhibit rhythmic changes throughout the menstrual or estrous cycle that are correlated with pulse frequency of GnRH. Lack of gonadotropins leads to infertility or amenorrhea. Dysfunctions in the tightly controlled ratio due to levels slightly outside the normal range occur in a larger number of women and are correlated with polycystic ovaries and premature ovarian failure. Since the etiology of these disorders is largely unknown, studies in cell and mouse models may provide novel candidates for investigations in human population. Hence, understanding the mechanisms whereby GnRH regulates gonadotropin hormone levels will provide insight into the physiology and pathophysiology of the reproductive system. This review discusses recent advances in our understanding of GnRH regulation of gonadotropin synthesis.
Collapse
Affiliation(s)
- Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
16
|
Lee Y, Yoon H, Hwang SM, Shin MK, Lee JH, Oh M, Im SH, Song J, Lim HS. Targeted Inhibition of the NCOA1/STAT6 Protein–Protein Interaction. J Am Chem Soc 2017; 139:16056-16059. [PMID: 29090910 DOI: 10.1021/jacs.7b08972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yeongju Lee
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Heeseok Yoon
- New
Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Sung-Min Hwang
- Division of Integrative Biosciences & Biotechnology, POSTECH, Pohang 37673, South Korea
| | - Min-Kyung Shin
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Ji Hoon Lee
- New
Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Misook Oh
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Sin-Hyeog Im
- Division of Integrative Biosciences & Biotechnology, POSTECH, Pohang 37673, South Korea
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, South Korea
| | - Jaeyoung Song
- New
Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Hyun-Suk Lim
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
17
|
Poole CJ, van Riggelen J. MYC-Master Regulator of the Cancer Epigenome and Transcriptome. Genes (Basel) 2017; 8:genes8050142. [PMID: 28505071 PMCID: PMC5448016 DOI: 10.3390/genes8050142] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Overexpression of MYC is a hallmark of many human cancers. The MYC oncogene has long been thought to execute its neoplastic functions by acting as a classic transcription factor, deregulating the expression of a large number of specific target genes. However, MYC’s influence on many of these target genes is rather modest and there is little overlap between MYC regulated genes in different cell types, leaving many mechanistic questions unanswered. Recent advances in the field challenge the dogma further, revealing a role for MYC that extends beyond the traditional concept of a sequence-specific transcription factor. In this article, we review MYC’s function as a regulator of the cancer epigenome and transcriptome. We outline our current understanding of how MYC regulates chromatin structure in both a site-specific and genome-wide fashion, and highlight the implications for therapeutic strategies for cancers with high MYC expression.
Collapse
Affiliation(s)
- Candace J Poole
- Augusta University, Department of Biochemistry and Molecular Biology, 1410 Laney-Walker Blvd., Augusta, GA 30912, USA.
| | - Jan van Riggelen
- Augusta University, Department of Biochemistry and Molecular Biology, 1410 Laney-Walker Blvd., Augusta, GA 30912, USA.
| |
Collapse
|
18
|
Sunami Y, Araki M, Kan S, Ito A, Hironaka Y, Imai M, Morishita S, Ohsaka A, Komatsu N. Histone Acetyltransferase p300/CREB-binding Protein-associated Factor (PCAF) Is Required for All- trans-retinoic Acid-induced Granulocytic Differentiation in Leukemia Cells. J Biol Chem 2017; 292:2815-2829. [PMID: 28053092 DOI: 10.1074/jbc.m116.745398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/30/2016] [Indexed: 01/01/2023] Open
Abstract
Differentiation therapy with all-trans-retinoic acid (ATRA) improves the treatment outcome of acute promyelocytic leukemia (APL); however, the molecular mechanism by which ATRA induces granulocytic differentiation remains unclear. We previously reported that the inhibition of the NAD-dependent histone deacetylase (HDAC) SIRT2 induces granulocytic differentiation in leukemia cells, suggesting the involvement of protein acetylation in ATRA-induced leukemia cell differentiation. Herein, we show that p300/CREB-binding protein-associated factor (PCAF), a histone acetyltransferase (HAT), is a prerequisite for ATRA-induced granulocytic differentiation in leukemia cells. We found that PCAF expression was markedly increased in leukemia cell lines (NB4 and HL-60) and primary APL cells during ATRA-induced granulocytic differentiation. Consistent with these results, the expression of PCAF was markedly up-regulated in the bone marrow cells of APL patients who received ATRA-containing chemotherapy. The knockdown of PCAF inhibited ATRA-induced granulocytic differentiation in leukemia cell lines and primary APL cells. Conversely, the overexpression of PCAF induced the expression of the granulocytic differentiation marker CD11b at the mRNA level. Acetylome analysis identified the acetylated proteins after ATRA treatment, and we found that histone H3, a known PCAF acetylation substrate, was preferentially acetylated by the ATRA treatment. Furthermore, we have demonstrated that PCAF is required for the acetylation of histone H3 on the promoter of ATRA target genes, such as CCL2 and FGR, and for the expression of these genes in ATRA-treated leukemia cells. These results strongly support our hypothesis that PCAF is induced and activated by ATRA, and the subsequent acetylation of PCAF substrates promotes granulocytic differentiation in leukemia cells. Targeting PCAF and its downstream acetylation targets could serve as a novel therapeutic strategy to overcome all subtypes of AML.
Collapse
Affiliation(s)
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, and
| | - Shin Kan
- From the Department of Hematology.,Leading Center for the Development and Research of Cancer Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan and
| | - Akihiro Ito
- the Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Misa Imai
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan and
| | - Soji Morishita
- Department of Transfusion Medicine and Stem Cell Regulation, and
| | - Akimichi Ohsaka
- Department of Transfusion Medicine and Stem Cell Regulation, and
| | | |
Collapse
|
19
|
Otero M, Peng H, El Hachem K, Culley KL, Wondimu EB, Quinn J, Asahara H, Tsuchimochi K, Hashimoto K, Goldring MB. ELF3 modulates type II collagen gene (COL2A1) transcription in chondrocytes by inhibiting SOX9-CBP/p300-driven histone acetyltransferase activity. Connect Tissue Res 2017; 58:15-26. [PMID: 27310669 PMCID: PMC5326708 DOI: 10.1080/03008207.2016.1200566] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM We showed previously that E74-like factor 3 (ELF3) protein levels are increased in osteoarthritic (OA) cartilage, that ELF3 accounts for inflammatory cytokine-driven MMP13 gene expression, and that, upon induction by interleukin-1β, ELF3 binds to the COL2A1 promoter and suppresses its activity in chondrocytes. Here, we aimed to further investigate the mechanism/s by which ELF3 represses COL2A1 transcription in chondrocytes. METHODS AND RESULTS We report that ELF3 inhibits Sox9-driven COL2A1 promoter activity by interfering with the activator functions of CBP/300 and Sox9. Co-transfection of the pGL2B-COL2A1 (-577/+3428 bp) reporter construct with Sox9 and with Sox5 and/or Sox6 increased COL2A1 promoter activity, and ELF3 overexpression significantly reduced the promoter transactivation. Co-transfection of ELF3 with the pLuc 4x48 enhancer construct, containing the 89-bp COL2A1 promoter and lacking the previously defined ELF3 binding sites, decreased both basal and Sox9-driven promoter activity. Co-transfection of ELF3 with a Gal4 reporter construct also inhibited Gal4-Sox9-driven transactivation, suggesting that ELF3 directly interacts with Sox9. Using truncated Sox9 fragments, we found that ELF3 interacts directly with the HMG domain of Sox9. Importantly, overexpression of ELF3 significantly decreased Sox9/CBP-dependent HAT activity. Finally, we show evidence that increased ELF3 mRNA expression in OA chondrocytes correlates with hypermethylation of the proximal promoter, suggesting that ELF3 transcription is subjected to epigenetic control in OA disease. CONCLUSION Our results highlight the contribution of ELF3 to transcriptional regulation of COL2A1 and its potential role in OA disease, and uncover epigenetic mechanisms at play in the regulation of ELF3 and its downstream targets in articular chondrocytes.
Collapse
Affiliation(s)
- Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Haibing Peng
- Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, MA, USA
| | - Karim El Hachem
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Kirsty L. Culley
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Elisabeth B. Wondimu
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA,Weill Cornell Graduate Program of Medical Sciences, New York, NY, USA
| | - Justin Quinn
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Hiroshi Asahara
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Kaneyuki Tsuchimochi
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Ko Hashimoto
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA,Department of Orthopaedics, Tohoku University Hospital, Sendai, Japan
| | - Mary B. Goldring
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA,Weill Cornell Graduate Program of Medical Sciences, New York, NY, USA,To whom correspondence should be addressed: Mary B. Goldring, Ph.D., Hospital for Special Surgery, HSS Research Institute, Room 601, 515 East 71st Street, New York, NY 10021, USA; Tel. 212-774-7564; Fax. 617-249-2373;
| |
Collapse
|
20
|
Korzus E. Rubinstein-Taybi Syndrome and Epigenetic Alterations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:39-62. [PMID: 28523540 PMCID: PMC6863608 DOI: 10.1007/978-3-319-53889-1_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare genetic disorder in humans characterized by growth and psychomotor delay, abnormal gross anatomy, and mild to severe mental retardation (Rubinstein and Taybi, Am J Dis Child 105:588-608, 1963, Hennekam et al., Am J Med Genet Suppl 6:56-64, 1990). RSTS is caused by de novo mutations in epigenetics-associated genes, including the cAMP response element-binding protein (CREBBP), the gene-encoding protein referred to as CBP, and the EP300 gene, which encodes the p300 protein, a CBP homologue. Recent studies of the epigenetic mechanisms underlying cognitive functions in mice provide direct evidence for the involvement of nuclear factors (e.g., CBP) in the control of higher cognitive functions. In fact, a role for CBP in higher cognitive function is suggested by the finding that RSTS is caused by heterozygous mutations at the CBP locus (Petrij et al., Nature 376:348-351, 1995). CBP was demonstrated to possess an intrinsic histone acetyltransferase activity (Ogryzko et al., Cell 87:953-959, 1996) that is required for CREB-mediated gene expression (Korzus et al., Science 279:703-707, 1998). The intrinsic protein acetyltransferase activity in CBP might directly destabilize promoter-bound nucleosomes, facilitating the activation of transcription. Due to the complexity of developmental abnormalities and the possible genetic compensation associated with this congenital disorder, however, it is difficult to establish a direct role for CBP in cognitive function in the adult brain. Although aspects of the clinical presentation in RSTS cases have been extensively studied, a spectrum of symptoms found in RSTS patients can be accessed only after birth, and, thus, prenatal genetic tests for this extremely rare genetic disorder are seldom considered. Even though there has been intensive research on the genetic and epigenetic function of the CREBBP gene in rodents, the etiology of this devastating congenital human disorder is largely unknown.
Collapse
Affiliation(s)
- Edward Korzus
- Department of Psychology and Neuroscience Program, University Of California Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
21
|
Goldberg AA, Nkengfac B, Sanchez AMJ, Moroz N, Qureshi ST, Koromilas AE, Wang S, Burelle Y, Hussain SN, Kristof AS. Regulation of ULK1 Expression and Autophagy by STAT1. J Biol Chem 2016; 292:1899-1909. [PMID: 28011640 DOI: 10.1074/jbc.m116.771584] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 02/02/2023] Open
Abstract
Autophagy involves the lysosomal degradation of cytoplasmic contents for regeneration of anabolic substrates during nutritional or inflammatory stress. Its initiation occurs rapidly after inactivation of the protein kinase mammalian target of rapamycin (mTOR) (or mechanistic target of rapamycin), leading to dephosphorylation of Unc-51-like kinase 1 (ULK1) and autophagosome formation. Recent studies indicate that mTOR can, in parallel, regulate the activity of stress transcription factors, including signal transducer and activator of transcription-1 (STAT1). The current study addresses the role of STAT1 as a transcriptional suppressor of autophagy genes and autophagic activity. We show that STAT1-deficient human fibrosarcoma cells exhibited enhanced autophagic flux as well as its induction by pharmacological inhibition of mTOR. Consistent with enhanced autophagy initiation, ULK1 mRNA and protein levels were increased in STAT1-deficient cells. By chromatin immunoprecipitation, STAT1 bound a putative regulatory sequence in the ULK1 5'-flanking region, the mutation of which increased ULK1 promoter activity, and rendered it unresponsive to mTOR inhibition. Consistent with an anti-apoptotic effect of autophagy, rapamycin-induced apoptosis and cytotoxicity were blocked in STAT1-deficient cells but restored in cells simultaneously exposed to the autophagy inhibitor ammonium chloride. In vivo, skeletal muscle ULK1 mRNA and protein levels as well as autophagic flux were significantly enhanced in STAT1-deficient mice. These results demonstrate a novel mechanism by which STAT1 negatively regulates ULK1 expression and autophagy.
Collapse
Affiliation(s)
- Alexander A Goldberg
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Bernard Nkengfac
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Anthony M J Sanchez
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Nikolay Moroz
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Salman T Qureshi
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Antonis E Koromilas
- the Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Shuo Wang
- the Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Yan Burelle
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sabah N Hussain
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Arnold S Kristof
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
22
|
EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm. Sci Rep 2016; 6:38433. [PMID: 27929098 PMCID: PMC5144062 DOI: 10.1038/srep38433] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.
Collapse
|
23
|
Chen Q, Yang X, Zhang H, Kong X, Yao L, Cui X, Zou Y, Fang F, Yang J, Chang Y. Metformin impairs systemic bile acid homeostasis through regulating SIRT1 protein levels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:101-112. [PMID: 27816442 DOI: 10.1016/j.bbamcr.2016.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 01/04/2023]
Abstract
Metformin is widely used to treat hyperglycemia. However, metformin treatment may induce intrahepatic cholestasis and liver injury in a few patients with type II diabetes through an unknown mechanism. Here we show that metformin decreases SIRT1 protein levels in primary hepatocytes and liver. Both metformin-treated wild-type C57 mice and hepatic SIRT1-mutant mice had increased hepatic and serum bile acid levels. However, metformin failed to change systemic bile acid levels in hepatic SIRT1-mutant mice. Molecular mechanism study indicates that SIRT1 directly interacts with and deacetylates Foxa2 to inhibit its transcriptional activity on expression of genes involved in bile acids synthesis and transport. Hepatic SIRT1 mutation elevates Foxa2 acetylation levels, which promotes Foxa2 binding to and activating genes involved in bile acids metabolism, impairing hepatic and systemic bile acid homeostasis. Our data clearly suggest that hepatic SIRT1 mediates metformin effects on systemic bile acid metabolism and modulation of SIRT1 activity in liver may be an attractive approach for treatment of bile acid-related diseases such as cholestasis.
Collapse
Affiliation(s)
- Qi Chen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China; Hangzhou Center for Disease Control and Prevention, Zhejiang, People's Republic of China
| | - Xiaoying Yang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Huabing Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xingxing Kong
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lu Yao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaona Cui
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yongkang Zou
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fude Fang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Yongsheng Chang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
24
|
Kim SG, Theera-Ampornpunt N, Fang CH, Harwani M, Grama A, Chaterji S. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions. BMC SYSTEMS BIOLOGY 2016; 10 Suppl 2:54. [PMID: 27490187 PMCID: PMC4977478 DOI: 10.1186/s12918-016-0302-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Gene expression is mediated by specialized cis-regulatory modules (CRMs), the most prominent of which are called enhancers. Early experiments indicated that enhancers located far from the gene promoters are often responsible for mediating gene transcription. Knowing their properties, regulatory activity, and genomic targets is crucial to the functional understanding of cellular events, ranging from cellular homeostasis to differentiation. Recent genome-wide investigation of epigenomic marks has indicated that enhancer elements could be enriched for certain epigenomic marks, such as, combinatorial patterns of histone modifications. Methods Our efforts in this paper are motivated by these recent advances in epigenomic profiling methods, which have uncovered enhancer-associated chromatin features in different cell types and organisms. Specifically, in this paper, we use recent state-of-the-art Deep Learning methods and develop a deep neural network (DNN)-based architecture, called EP-DNN, to predict the presence and types of enhancers in the human genome. It uses as features, the expression levels of the histone modifications at the peaks of the functional sites as well as in its adjacent regions. We apply EP-DNN to four different cell types: H1, IMR90, HepG2, and HeLa S3. We train EP-DNN using p300 binding sites as enhancers, and TSS and random non-DHS sites as non-enhancers. We perform EP-DNN predictions to quantify the validation rate for different levels of confidence in the predictions and also perform comparisons against two state-of-the-art computational models for enhancer predictions, DEEP-ENCODE and RFECS. Results We find that EP-DNN has superior accuracy and takes less time to make predictions. Next, we develop methods to make EP-DNN interpretable by computing the importance of each input feature in the classification task. This analysis indicates that the important histone modifications were distinct for different cell types, with some overlaps, e.g., H3K27ac was important in cell type H1 but less so in HeLa S3, while H3K4me1 was relatively important in all four cell types. We finally use the feature importance analysis to reduce the number of input features needed to train the DNN, thus reducing training time, which is often the computational bottleneck in the use of a DNN. Conclusions In this paper, we developed EP-DNN, which has high accuracy of prediction, with validation rates above 90 % for the operational region of enhancer prediction for all four cell lines that we studied, outperforming DEEP-ENCODE and RFECS. Then, we developed a method to analyze a trained DNN and determine which histone modifications are important, and within that, which features proximal or distal to the enhancer site, are important.
Collapse
Affiliation(s)
- Seong Gon Kim
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | | | - Chih-Hao Fang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Mrudul Harwani
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Ananth Grama
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Somali Chaterji
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
25
|
Villarino AV, Kanno Y, Ferdinand JR, O'Shea JJ. Mechanisms of Jak/STAT signaling in immunity and disease. THE JOURNAL OF IMMUNOLOGY 2016; 194:21-7. [PMID: 25527793 DOI: 10.4049/jimmunol.1401867] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
More than two decades ago, experiments on the antiviral mechanisms of IFNs led to the discovery of JAKs and their downstream effectors, the STAT proteins. This pathway has since become a paradigm for membrane-to-nucleus signaling and explains how a broad range of soluble factors, including cytokines and hormones, mediate their diverse functions. Jak/STAT research has not only impacted basic science, particularly in the context of intercellular communication and cell-extrinsic control of gene expression, it also has become a prototype for transition from bench to bedside, culminating in the development and clinical implementation of pathway-specific therapeutics. This brief review synthesizes our current understanding of Jak/STAT biology while taking stock of the lessons learned and the challenges that lie ahead.
Collapse
Affiliation(s)
- Alejandro V Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John R Ferdinand
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
26
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
27
|
Vieira PA, Korzus E. CBP-Dependent memory consolidation in the prefrontal cortex supports object-location learning. Hippocampus 2015; 25:1532-40. [PMID: 25941038 DOI: 10.1002/hipo.22473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 01/12/2023]
Abstract
Recognition of an object's location in space is supported by hippocampus-dependent recollection. Converging evidence strongly suggests that the interplay between the prefrontal cortex and hippocampus is critical for spatial memory. Lesion, pharmacological, and genetic studies have been successful in dissecting the role of plasticity in the hippocampal circuit in a variety of neural processes relevant to spatial memory, including memory for the location of objects. However, prefrontal mechanisms underlying spatial memory are less well understood. Here, we show that an acute hypofunction of the cyclic-AMP regulatory element binding protein (CREB) Binding Protein (CBP) histone acetyltransferase (HAT) in the medial prefrontal cortex (mPFC) results in delay-dependent disruption of object-location memory. These data suggest that mechanisms involving CBP HAT-mediated lysine acetylation of nuclear proteins support selectively long-term encoding in the mPFC circuits. Evidence from the object-location task suggests that long-term memory encoding within the mPFC complements hippocampus-dependent spatial memory mechanisms and may be critical for broader network integration of information necessary for an assessment of subtle spatial differences to guide appropriate behavioral response during retrieval of spatial memories.
Collapse
Affiliation(s)
- Philip A Vieira
- Department of Psychology & Neuroscience Program, University of California Riverside, California
| | - Edward Korzus
- Department of Psychology & Neuroscience Program, University of California Riverside, California
| |
Collapse
|
28
|
Xia J, Fang M, Wu X, Yang Y, Yu L, Xu H, Kong H, Tan Q, Wang H, Xie W, Xu Y. A2b adenosine signaling represses CIITA transcription via an epigenetic mechanism in vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:665-76. [PMID: 25765819 DOI: 10.1016/j.bbagrm.2015.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/05/2015] [Accepted: 03/03/2015] [Indexed: 01/08/2023]
Abstract
Chronic inflammation plays a major role in the pathogenesis of atherosclerosis. Vascular smooth muscle cells (VSMC), by expressing and presenting major histocompatibility complex II (MHC II) molecules, help recruit T lymphocyte and initiate the inflammatory response within the vasculature. We have previously shown that VSMCs isolated from mice with deficient adenosine A2b receptor (A2b-null) exhibit higher expression of class II transactivator (CIITA), the master regulator of MHC II transcription, compared to wild type littermates. Here we report that activation of A2b adenosine signaling suppresses CIITA expression in human aortic smooth muscle cells. Down-regulation of CIITA expression was largely attributable to transcriptional repression of type III and IV promoters. Chromatin immunoprecipitation (ChIP) analyses revealed that A2b signaling repressed CIITA transcription by attenuating specific histone modifications on the CIITA promoters in a STAT1-dependent manner. STAT1 interacted with PCAF/GCN5, histone H3K9 acetyltransferases, and WDR5, a key component of the mammalian H3K4 methyltransferase complex, to activate CIITA transcription. A2b signaling prevented recruitment of PCAF/GCN5 and WDR5 to the CIITA promoters in a STAT1-dependent manner. In conclusion, our data suggest that adenosine A2b signaling represses CIITA transcription in VSMCs by manipulating the interaction between STAT1 and the epigenetic machinery.
Collapse
Affiliation(s)
- Jun Xia
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, China; Department of Respiratory Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, China
| | - Mingming Fang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China; Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China
| | - Yuyu Yang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China
| | - Hui Kong
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, China
| | - Qi Tan
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, China
| | - Hong Wang
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, China.
| | - Weiping Xie
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, China.
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China.
| |
Collapse
|
29
|
Zhao Y, Nomiyama T, Findeisen HM, Qing H, Aono J, Jones KL, Heywood EB, Bruemmer D. Epigenetic regulation of the NR4A orphan nuclear receptor NOR1 by histone acetylation. FEBS Lett 2014; 588:4825-30. [PMID: 25451221 DOI: 10.1016/j.febslet.2014.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 12/23/2022]
Abstract
The nuclear receptor NOR1 is an immediate-early response gene implicated in the transcriptional control of proliferation. Since the expression level of NOR1 is rapidly induced through cAMP response element binding (CREB) protein-dependent promoter activation, we investigated the contribution of histone acetylation to this transient induction. We demonstrate that NOR1 transcription is induced by histone deacetylase (HDAC) inhibition and by depletion of HDAC1 and HDAC3. HDAC inhibition activated the NOR1 promoter, increased histone acetylation and augmented the recruitment of phosphorylated CREB to the promoter. Furthermore, HDAC inhibition increased Ser133 phosphorylation of CREB and augmented NOR1 protein stability. These data outline previously unrecognized mechanisms of NOR1 regulation and illustrate a key role for histone acetylation in the rapid induction of NOR1.
Collapse
Affiliation(s)
- Yue Zhao
- Saha Cardiovascular Research Center, University of Kentucky, Lexington 40536, USA; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington 40536, USA
| | - Takashi Nomiyama
- Saha Cardiovascular Research Center, University of Kentucky, Lexington 40536, USA
| | - Hannes M Findeisen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington 40536, USA
| | - Hua Qing
- Saha Cardiovascular Research Center, University of Kentucky, Lexington 40536, USA; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington 40536, USA
| | - Jun Aono
- Saha Cardiovascular Research Center, University of Kentucky, Lexington 40536, USA
| | - Karrie L Jones
- Saha Cardiovascular Research Center, University of Kentucky, Lexington 40536, USA
| | - Elizabeth B Heywood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington 40536, USA
| | - Dennis Bruemmer
- Saha Cardiovascular Research Center, University of Kentucky, Lexington 40536, USA; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington 40536, USA.
| |
Collapse
|
30
|
Li R, Zhang R, Li Y, Zhu B, Chen W, Zhang Y, Chen G. A RARE of hepatic Gck promoter interacts with RARα, HNF4α and COUP-TFII that affect retinoic acid- and insulin-induced Gck expression. J Nutr Biochem 2014; 25:964-976. [PMID: 24973045 DOI: 10.1016/j.jnutbio.2014.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/13/2014] [Accepted: 04/22/2014] [Indexed: 02/07/2023]
Abstract
The expression of hepatic glucokinase gene (Gck) is regulated by hormonal and nutritional signals. How these signals integrate to regulate the hepatic Gck expression is unclear. We have shown that the hepatic Gck expression is affected by Vitamin A status and synergistically induced by insulin and retinoids in primary rat hepatocytes. We hypothesized that this is mediated by a retinoic acid responsive element (RARE) in the hepatic Gck promoter. Here, we identified the RARE in the hepatic Gck promoter using standard molecular biology techniques. The single nucleotide mutations affecting the promoter activation by retinoic acid (RA) were also determined for detail analysis of protein and DNA interactions. We have optimized experimental conditions for performing electrophoresis mobility shift assay and demonstrated the interactions of the retinoic acid receptor α (RARα), retinoid X receptor α (RXRα), hepatocyte nuclear factor 4α (HNF4α) and chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) in the rat nuclear extract with this RARE, suggesting their roles in the regulation of Gck expression. Chromatin immunoprecipitation assays demonstrated that recombinant adenovirus-mediated overexpression of RARα, HNF4α and COUP-TFII, but not RXRα, significantly increased their occupancy in the hepatic Gck promoter in primary rat hepatocytes. Overexpression of RARα, HNF4α and COUP-TFII, but not RXRα, also affected the RA- and insulin-mediated Gck expression in primary rat hepatocytes. In summary, this hepatic Gck promoter RARE interacts with RARα, HNF4α and COUP-TFII to integrate Vitamin A and insulin signals.
Collapse
Affiliation(s)
- Rui Li
- School of Public Health, Wuhan University, Wuhan, Hubei, 430071, P. R. China; Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Rui Zhang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Yang Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Bing Zhu
- Central Laboratory, Guangzhou Children's Hospital, Guangzhou, Guangdong, P. R. China
| | - Wei Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Yan Zhang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
31
|
Jin XL, O'Neill C. The regulation of the expression and activation of the essential ATF1 transcription factor in the mouse preimplantation embryo. Reproduction 2014; 148:147-57. [DOI: 10.1530/rep-13-0535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The co-expression of the CREB and ATF1 transcription factors is required for the development of preimplantation embryos. Embryotropin-mediated, calcium/calmodulin-dependent signalling activates CREB-induced transcription in the two-cell embryo, but the regulation of ATF1 in the embryo is not known. This study demonstrates that ATF1 begins to accumulate within both pronuclei of the mouse zygote by 20 h post-human chorionic gonadotrophin. This did not require new transcription (not blocked by α-amanitin), but was dependent upon protein synthesis (blocked by puromycin) and the activity of P38 MAP kinase. ATF1 becomes an active transcription factor upon being phosphorylated. A marked accumulation of phosphorylated ATF1 was evident in two-cell embryos and this persisted in subsequent stages of development. This phosphorylation was enhanced by the actions of autocrine embryotropic mediators (including Paf) and required the mutual actions of P38 MAP kinase and calmodulin-dependent pathways for maximum levels of phosphorylation. The combined inhibition of these two pathways blocked embryonic genome activation (EGA) and caused embryos to enter a developmental block at the two-cell stage. The members of the CREB family of transcription factors can generate one of the most diverse transcriptomes of any transcription factor. The demonstration of the presence of activated CREB and ATF1 within the embryonic nucleus at the time of EGA places these transcription factors as priority targets as key regulators of EGA.
Collapse
|
32
|
Vieira PA, Lovelace JW, Corches A, Rashid AJ, Josselyn SA, Korzus E. Prefrontal consolidation supports the attainment of fear memory accuracy. ACTA ACUST UNITED AC 2014; 21:394-405. [PMID: 25031365 PMCID: PMC4105719 DOI: 10.1101/lm.036087.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neural mechanisms underlying the attainment of fear memory accuracy for appropriate discriminative responses to aversive and nonaversive stimuli are unclear. Considerable evidence indicates that coactivator of transcription and histone acetyltransferase cAMP response element binding protein (CREB) binding protein (CBP) is critically required for normal neural function. CBP hypofunction leads to severe psychopathological symptoms in human and cognitive abnormalities in genetic mutant mice with severity dependent on the neural locus and developmental time of the gene inactivation. Here, we showed that an acute hypofunction of CBP in the medial prefrontal cortex (mPFC) results in a disruption of fear memory accuracy in mice. In addition, interruption of CREB function in the mPFC also leads to a deficit in auditory discrimination of fearful stimuli. While mice with deficient CBP/CREB signaling in the mPFC maintain normal responses to aversive stimuli, they exhibit abnormal responses to similar but nonrelevant stimuli when compared to control animals. These data indicate that improvement of fear memory accuracy involves mPFC-dependent suppression of fear responses to nonrelevant stimuli. Evidence from a context discriminatory task and a newly developed task that depends on the ability to distinguish discrete auditory cues indicated that CBP-dependent neural signaling within the mPFC circuitry is an important component of the mechanism for disambiguating the meaning of fear signals with two opposing values: aversive and nonaversive.
Collapse
Affiliation(s)
- Philip A Vieira
- Department of Psychology and Neuroscience Program, University of California Riverside, California 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology and Neuroscience Program, University of California Riverside, California 92521, USA
| | - Alex Corches
- Biomedical Sciences Program, University of California Riverside, California 92521, USA
| | - Asim J Rashid
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Edward Korzus
- Department of Psychology and Neuroscience Program, University of California Riverside, California 92521, USA Biomedical Sciences Program, University of California Riverside, California 92521, USA
| |
Collapse
|
33
|
Xiao Y, Nagai Y, Deng G, Ohtani T, Zhu Z, Zhou Z, Zhang H, Ji MQ, Lough JW, Samanta A, Hancock WW, Greene MI. Dynamic interactions between TIP60 and p300 regulate FOXP3 function through a structural switch defined by a single lysine on TIP60. Cell Rep 2014; 7:1471-1480. [PMID: 24835996 PMCID: PMC4064594 DOI: 10.1016/j.celrep.2014.04.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022] Open
Abstract
The human FOXP3 molecule is an oligomeric transcriptional factor able to mediate activities that characterize T regulatory cells, a class of lymphocytes central to the regulation of immune responses. The activity of FOXP3 is regulated at the posttranslational level, in part by two histone acetyltransferases (HATs): TIP60 and p300. TIP60 and p300 work cooperatively to regulate FOXP3 activity. Initially, p300 and TIP60 interactions lead to the activation of TIP60 and facilitate acetylation of K327 of TIP60, which functions as a molecular switch to allow TIP60 to change binding partners. Subsequently, p300 is released from this complex, and TIP60 interacts with and acetylates FOXP3. Maximal induction of FOXP3 activities is observed when both p300 and TIP60 are able to undergo cooperative interactions. Conditional knockout of TIP60 in Treg cells significantly decreases the Treg population in the peripheral immune organs, leading to a scurfy-like fatal autoimmune disease.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guoping Deng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takuya Ohtani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiqiang Zhu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mei Q Ji
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W Lough
- Department of Cell Biology, Neurology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA
| | - Arabinda Samanta
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Children's Hospital, Philadelphia, Philadelphia, PA 19104, USA
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
TBLR1 fuses to retinoid acid receptor α in a variant t(3;17)(q26;q21) translocation of acute promyelocytic leukemia. Blood 2014; 124:936-45. [PMID: 24782508 DOI: 10.1182/blood-2013-10-528596] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The majority of acute promyelocytic leukemia (APL) cases are characterized by the PML-RARα fusion gene. Although the PML-RARα fusion gene can be detected in >98% of APL cases, RARα is also found to be fused with other partner genes, which are also related to all-trans retinoic acid (ATRA)-dependent transcriptional activity and cell differentiation. In this study, we identified a novel RARα fusion gene, TBLR1-RARα (GenBank KF589333), in a rare case of APL with a t(3;17)(q26;q21),t(7;17)(q11.2;q21) complex chromosomal rearrangement. To our knowledge, TBLR1-RARα is the 10th RARα chimeric gene that has been reported up to now. TBLR1-RARα contained the B-F domains of RARα and exhibited a distinct subcellular localization. It could form homodimers and also heterodimers with retinoid X receptor α. As a result, TBLR1-RARα exhibited diminished transcriptional activity by recruitment of more transcriptional corepressors compared with RARα. In the presence of pharmacologic doses of ATRA, TBLR1-RARα could be degraded, and its homodimerization was abrogated. Moreover, when treated with ATRA, TBLR1-RARα could mediate the dissociation and degradation of transcriptional corepressors, consequent transactivation of RARα target genes, and cell differentiation induction in a dose- and time-dependent manner.
Collapse
|
35
|
Abstract
The ability of adaptive immune system to protect higher vertebrates from pathogens resides in the ability of B and T cells to express different antigen specific receptors and to respond to different threats by activating distinct differentiation and/or activation pathways. In the past 10 years, the major role of epigenetics in controlling molecular mechanisms responsible for these peculiar features and, more in general, for lymphocyte development has become evident. KRAB-ZFPs is the widest family of mammalian transcriptional repressors, which function through the recruitment of the co-factor KRAB-Associated Protein 1 (KAP1) that in turn engages histone modifiers inducing heterochromatin formation. Although most of the studies on KRAB proteins have been performed in embryonic cells, more recent reports highlighted a relevant role for these proteins also in adult tissues. This article will review the role of KRAB-ZFP and KAP1 in the epigenetic control of mouse and human adaptive immune cells.
Collapse
|
36
|
Ernst M, Thiem S, Nguyen PM, Eissmann M, Putoczki TL. Epithelial gp130/Stat3 functions: an intestinal signaling node in health and disease. Semin Immunol 2014; 26:29-37. [PMID: 24434062 DOI: 10.1016/j.smim.2013.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/23/2013] [Indexed: 12/16/2022]
Abstract
A contiguous intestinal epithelial barrier safeguards against aberrant activation of the immune system and therefore requires molecular mechanisms that ensure effective wound-healing responses. During this processes cytokine-producing myeloid cells serve as rheostats that link the degree of wounding and local inflammation to the epithelial repair response. Likewise, intestinal inflammation is an important factor by which the microenvironment promotes tumorigenesis and the progression of established cancers by facilitating neoplastic cell survival and proliferation. Among the cytokines and chemokines orchestrating this process, those comprising the interleukin (IL) IL6, IL10/IL22 and IL17/IL23 families play a prominent role by virtue of converging on the latent Signal Transducer and Activator of Transcription (Stat)-3. Accordingly, aberrant and persistent Stat3 activation is a frequent observation in cancers of the gastrointestinal tract where it promotes "cancer hallmark capabilities" in the malignant epithelium and suppresses the anti-tumor response of innate and adaptive immune cells. Here, we discuss recent insights arising from situations where persistent activation of the gp130/Stat3 signaling cascades result from excessive abundance of IL6 family cytokines. In particular, we highlight novel and unique roles for IL11 in promoting intestinal wound-healing and, in its corrupted form, enabling and facilitating growth of inflammation-associated and sporadic gastrointestinal tumors.
Collapse
Affiliation(s)
- Matthias Ernst
- The Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Australia.
| | - Stefan Thiem
- The Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Australia
| | - Paul M Nguyen
- The Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Australia
| | - Moritz Eissmann
- The Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Australia
| |
Collapse
|
37
|
Nakajima T, Aratani S, Nakazawa M, Hirose T, Fujita H, Nishioka K. Implications of transcriptional coactivator CREB binding protein complexes in rheumatoid arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-003-0258-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Hossain DMS, Panda AK, Manna A, Mohanty S, Bhattacharjee P, Bhattacharyya S, Saha T, Chakraborty S, Kar RK, Das T, Chatterjee S, Sa G. FoxP3 acts as a cotranscription factor with STAT3 in tumor-induced regulatory T cells. Immunity 2013; 39:1057-69. [PMID: 24315995 DOI: 10.1016/j.immuni.2013.11.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/12/2013] [Indexed: 01/10/2023]
Abstract
FoxP3, a lineage-specification factor, executes its multiple activities mostly through transcriptional regulation of target genes. We identified an interleukin-10 (IL-10)-producing FoxP3(+) T regulatory cell population that contributes to IL-10-dependent type 2 cytokine bias in breast-cancer patients. Although genetic ablation of FOXP3 inhibited IL10 transcription, genome-wide analysis ruled out its role as a transcription factor for IL10. In-depth analysis revealed that histone acetyl transterase-1, in association with FoxP3, modified the IL10 promoter epigenetically, making a space for docking STAT3-FoxP3 complexes. A predictive docking module with target-receptor specificity, along with exon-deletion and site-directed mutagenesis studies, showed that STAT3 binds through its N-terminal floppy domain to the exon 2 β sheet region of FoxP3 to form STAT3-FoxP3 complexes. Such cotranscriptional activity of FoxP3 extended to other STAT3-target genes that lack FoxP3-binding sites. These results suggest a function of FoxP3, where, failing to achieve direct promoter occupancy, FoxP3 promotes transcription in association with the locus-specific transcription factor STAT3.
Collapse
Affiliation(s)
- Dewan Md Sakib Hossain
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Abir K Panda
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Argha Manna
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Suchismita Mohanty
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Pushpak Bhattacharjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sankar Bhattacharyya
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Taniya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sreeparna Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Rajiv K Kar
- Department of Biophysics, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
39
|
Hottenrott MC, Wedel J, Gaertner S, Stamellou E, Kraaij T, Mandel L, Loesel R, Sticht C, Hoeger S, Ait-Hsiko L, Schedel A, Hafner M, Yard B, Tsagogiorgas C. N-octanoyl dopamine inhibits the expression of a subset of κB regulated genes: potential role of p65 Ser276 phosphorylation. PLoS One 2013; 8:e73122. [PMID: 24023820 PMCID: PMC3759419 DOI: 10.1371/journal.pone.0073122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/18/2013] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose Catechol containing compounds have anti-inflammatory properties, yet for catecholamines these properties are modest. Since we have previously demonstrated that the synthetic dopamine derivative N-octanoyl dopamine (NOD) has superior anti-inflammatory properties compared to dopamine, we tested NOD in more detail and sought to elucidate the molecular entities and underlying mechanism by which NOD down-regulates inflammation. Experimental Approach Genome wide gene expression profiling of human umbilical vein endothelial cells (HUVECs) was performed after stimulation with TNF-α or in the combination with NOD. Confirmation of these differences, NFκB activation and the molecular entities that were required for the anti-inflammatory properties were assessed in subsequent experiments. Key Results Down regulation of inflammatory genes by NOD occurred predominantly for κB regulated genes, however not all κB regulated genes were affected. These findings were explained by inhibition of RelA phosphorylation at Ser276. Leukocyte adherence to TNF-α stimulated HUVECs was inhibited by NOD and was reflected by a diminished expression of adhesion molecules on HUVECs. NOD induced HO-1 expression, but this was not required for inhibition of NFκB. The anti-inflammatory effect of NOD seems to involve the redox active catechol structure, although the redox active para-dihydroxy benzene containing compounds also displayed anti-inflammatory effects, provided that they were sufficiently hydrophobic. Conclusions and Implications The present study highlighted important mechanisms and molecular entities by which dihydroxy benzene compounds exert their potential anti-inflammatory action. Since NOD does not have hemodynamic properties, NOD seems to be a promising candidate drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Maximilia C. Hottenrott
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Johannes Wedel
- Vth. Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Sophie Gaertner
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Eleni Stamellou
- Vth. Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Tineke Kraaij
- Vth. Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Linda Mandel
- Vth. Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Ralf Loesel
- Department of Applied Chemistry, George-Simon-Ohm Hochschule, Nuernberg, Germany
| | - Carsten Sticht
- Centre for Medical Research (ZMF), Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Simone Hoeger
- Vth. Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Lamia Ait-Hsiko
- Vth. Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Angelika Schedel
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Mathias Hafner
- Institute for Molecular and Cellular Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Benito Yard
- Vth. Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
- * E-mail:
| | - Charalambos Tsagogiorgas
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| |
Collapse
|
40
|
Li JV, Chien CD, Garee JP, Xu J, Wellstein A, Riegel AT. Transcriptional repression of AIB1 by FoxG1 leads to apoptosis in breast cancer cells. Mol Endocrinol 2013; 27:1113-27. [PMID: 23660594 DOI: 10.1210/me.2012-1353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The oncogene nuclear receptor coactivator amplified in breast cancer 1 (AIB1) is a transcriptional coactivator that is overexpressed in various types of human cancers. However, the molecular mechanisms controlling AIB1 expression in the majority of cancers remain unclear. In this study, we identified a novel interacting protein of AIB1, forkhead-box protein G1 (FoxG1), which is an evolutionarily conserved forkhead-box transcriptional corepressor. We show that FoxG1 expression is low in breast cancer cell lines and that low levels of FoxG1 are correlated with a worse prognosis in breast cancer. We also demonstrate that transient overexpression of FoxG1 can suppress endogenous levels of AIB1 mRNA and protein in MCF-7 breast cancer cells. Exogenously expressed FoxG1 in MCF-7 cells also leads to apoptosis that can be rescued in part by AIB1 overexpression. Using chromatin immunoprecipitation, we determined that FoxG1 is recruited to a region of the AIB1 gene promoter previously characterized to be responsible for AIB1-induced, positive autoregulation of transcription through the recruitment of an activating, multiprotein complex, involving AIB1, E2F transcription factor 1, and specificity protein 1. Increased FoxG1 expression significantly reduces the recruitment of AIB1, E2F transcription factor 1 and E1A-binding protein p300 to this region of the endogenous AIB1 gene promoter. Our data imply that FoxG1 can function as a pro-apoptotic factor in part through suppression of AIB1 coactivator transcription complex formation, thereby reducing the expression of the AIB1 oncogene.
Collapse
Affiliation(s)
- Jordan V Li
- Department of Pharmacology, Lombardi Cancer Center, Georgetown University, Research Building E307, 3970 Reservoir Road Northwest, Washington, DC 20007-2197, USA
| | | | | | | | | | | |
Collapse
|
41
|
Shen M, Zhou T, Xie W, Ling T, Zhu Q, Zong L, Lyu G, Gao Q, Zhang F, Tao W. The chromatin remodeling factor CSB recruits histone acetyltransferase PCAF to rRNA gene promoters in active state for transcription initiation. PLoS One 2013; 8:e62668. [PMID: 23667505 PMCID: PMC3646882 DOI: 10.1371/journal.pone.0062668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 03/23/2013] [Indexed: 02/07/2023] Open
Abstract
The promoters of poised rRNA genes (rDNA) are marked by both euchromatic and heterochromatic histone modifications and are associated with two transcription factors, UBF and SL1 that nucleate transcription complex formation. Active rRNA genes contain only euchromatic histone modifications and are loaded with all components of transcriptional initiation complex including RNA polymerase I. Coupled with histone acetylation and RNA polymerase I targeting, poised promoters can be converted to active ones by ATP-dependent chromatin remodeling factor CSB for initiation of rDNA transcription. However, it is not clear how dynamic histone modifications induce the assembly of polymerase I transcription initiation complex to active promoters during such conversion. Here we show that a complex consisting of CSB, RNA polymerase I and histone acetyltransferase PCAF is present at the rDNA promoters in active state. CSB is required for the association of PCAF with rDNA, which induces acetylation of histone H4 and histone H3K9. Overexpression of CSB promotes the association of PCAF with rDNA. Knockdown of PCAF leads to decreased levels of H4ac and H3K9ac at rDNA promoters, prevents the association of RNA polymerase I and inhibits pre-rRNA synthesis. The results demonstrate that CSB recruits PCAF to rDNA, which allows histone acetylation that is required for the assembly of polymerase I transcription initiation complex during the transition from poised to active state of rRNA genes, suggesting that CSB and PCAF play cooperative roles to establish the active state of rRNA genes by histone acetylation.
Collapse
Affiliation(s)
- Meili Shen
- Key Laboratory of Cell Proliferation and Differentiation, National Key Laboratory of Protein Engineering and Plant Gene Engineering, College of Life Science, Peking University, Beijing, China
| | - Tingting Zhou
- Key Laboratory of Cell Proliferation and Differentiation, National Key Laboratory of Protein Engineering and Plant Gene Engineering, College of Life Science, Peking University, Beijing, China
| | - Wenbing Xie
- Key Laboratory of Cell Proliferation and Differentiation, National Key Laboratory of Protein Engineering and Plant Gene Engineering, College of Life Science, Peking University, Beijing, China
| | - Te Ling
- Key Laboratory of Cell Proliferation and Differentiation, National Key Laboratory of Protein Engineering and Plant Gene Engineering, College of Life Science, Peking University, Beijing, China
- College of Life Science, Capital Normal University, Beijing, China
| | - Qiaoyun Zhu
- Key Laboratory of Cell Proliferation and Differentiation, National Key Laboratory of Protein Engineering and Plant Gene Engineering, College of Life Science, Peking University, Beijing, China
| | - Le Zong
- Key Laboratory of Cell Proliferation and Differentiation, National Key Laboratory of Protein Engineering and Plant Gene Engineering, College of Life Science, Peking University, Beijing, China
| | - Guoliang Lyu
- Key Laboratory of Cell Proliferation and Differentiation, National Key Laboratory of Protein Engineering and Plant Gene Engineering, College of Life Science, Peking University, Beijing, China
| | - Qianqian Gao
- Key Laboratory of Cell Proliferation and Differentiation, National Key Laboratory of Protein Engineering and Plant Gene Engineering, College of Life Science, Peking University, Beijing, China
| | - Feixiong Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Wei Tao
- Key Laboratory of Cell Proliferation and Differentiation, National Key Laboratory of Protein Engineering and Plant Gene Engineering, College of Life Science, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
42
|
Rajagopal N, Xie W, Li Y, Wagner U, Wang W, Stamatoyannopoulos J, Ernst J, Kellis M, Ren B. RFECS: a random-forest based algorithm for enhancer identification from chromatin state. PLoS Comput Biol 2013; 9:e1002968. [PMID: 23526891 PMCID: PMC3597546 DOI: 10.1371/journal.pcbi.1002968] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/20/2013] [Indexed: 01/08/2023] Open
Abstract
Transcriptional enhancers play critical roles in regulation of gene expression, but their identification in the eukaryotic genome has been challenging. Recently, it was shown that enhancers in the mammalian genome are associated with characteristic histone modification patterns, which have been increasingly exploited for enhancer identification. However, only a limited number of cell types or chromatin marks have previously been investigated for this purpose, leaving the question unanswered whether there exists an optimal set of histone modifications for enhancer prediction in different cell types. Here, we address this issue by exploring genome-wide profiles of 24 histone modifications in two distinct human cell types, embryonic stem cells and lung fibroblasts. We developed a Random-Forest based algorithm, RFECS (Random Forest based Enhancer identification from Chromatin States) to integrate histone modification profiles for identification of enhancers, and used it to identify enhancers in a number of cell-types. We show that RFECS not only leads to more accurate and precise prediction of enhancers than previous methods, but also helps identify the most informative and robust set of three chromatin marks for enhancer prediction. Enhancers are regions in the genome that can activate the expression of a gene irrespective of their location with respect to the gene. Identifying these elements is critical in understanding regulatory differences between different cell-types. Since enhancers lack characteristic sequence features and can be far away from the gene they regulate, their identification is not trivial. Experimentally determining the genome-wide binding sites of transcriptional co-activator p300 is one way of finding enhancers but it can only identify a subset of enhancers. A few years ago, it was observed that the binding sites of p300 are marked by distinctive, post-translational histone modifications. Several groups have exploited this discovery to predict genome-wide enhancers based on their similarity to the histone modification profiles of p300 binding sites. We here report a novel algorithm for this purpose and show that it has much greater accuracy than existing methods. Another unique feature of our algorithm is the ability to automatically deduce the most informative set of histone modifications required for enhancer prediction. We expect that this method will become increasingly useful with the expanding number of known histone modifications and rapid accumulation of epigenomic datasets for various cell types and species.
Collapse
Affiliation(s)
- Nisha Rajagopal
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology program, University of California at San Diego, La Jolla, California, United States of America
| | - Wei Xie
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, United States of America
| | - Yan Li
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, United States of America
| | - Uli Wagner
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - John Stamatoyannopoulos
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Jason Ernst
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bing Ren
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology program, University of California at San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, and Moores Cancer Center, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Cao R, Butcher GQ, Karelina K, Arthur JS, Obrietan K. Mitogen- and stress-activated protein kinase 1 modulates photic entrainment of the suprachiasmatic circadian clock. Eur J Neurosci 2012; 37:130-40. [PMID: 23127194 DOI: 10.1111/ejn.12028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 09/10/2012] [Accepted: 09/20/2012] [Indexed: 11/30/2022]
Abstract
The master circadian clock in mammals, the suprachiasmatic nucleus (SCN), is under the entraining influence of the external light cycle. At a mechanistic level, intracellular signaling via the p42/44 mitogen-activated protein kinase pathway appears to play a central role in light-evoked clock entrainment; however, the precise downstream mechanisms by which this pathway influences clock timing are not known. Within this context, we have previously reported that light stimulates activation of the mitogen-activated protein kinase effector mitogen-stress-activated kinase 1 (MSK1) in the SCN. In this study, we utilised MSK1(-/-) mice to further investigate the potential role of MSK1 in circadian clock timing and entrainment. Locomotor activity analysis revealed that MSK1 null mice entrained to a 12 h light/dark cycle and exhibited circadian free-running rhythms in constant darkness. Interestingly, the free-running period in MSK1 null mice was significantly longer than in wild-type control animals, and MSK1 null mice exhibited a significantly greater variance in activity onset. Further, MSK1 null mice exhibited a significant reduction in the phase-delaying response to an early night light pulse (100 lux, 15 min), and, using an 8 h phase-advancing 'jet-lag' experimental paradigm, MSK1 knockout animals exhibited a significantly delayed rate of re-entrainment. At the molecular level, early night light-evoked cAMP response element-binding protein (CREB) phosphorylation, histone phosphorylation and Period1 gene expression were markedly attenuated in MSK1(-/-) animals relative to wild-type mice. Together, these data provide key new insights into the molecular mechanisms by which MSK1 affects the SCN clock.
Collapse
Affiliation(s)
- Ruifeng Cao
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
44
|
Liu Y, Wang DL, Chen S, Zhao L, Sun FL. Oncogene Ras/phosphatidylinositol 3-kinase signaling targets histone H3 acetylation at lysine 56. J Biol Chem 2012; 287:41469-80. [PMID: 22982396 PMCID: PMC3510844 DOI: 10.1074/jbc.m112.367847] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is well established that the small GTPase Ras promotes tumor initiation by activating at least three different mediators: Raf, PI3K, and Ras-like (Ral) guanine nucleotide exchange factors. However, the exact mechanisms that underlie these different Ras signaling pathways, which are involved in tumor progression, remain to be elucidated. In this study, we report that the Ras-PI3K pathway, but not Raf or the Ral guanine nucleotide exchange factors, specifically targets the acetylation of H3 at lysine 56 (H3K56ac), thereby regulating tumor cell activity. We demonstrate that the Ras-PI3K-induced reduction in H3K56ac is associated with the proliferation and migration of tumor cells by targeting the transcription of tumor-associated genes. The depletion of the histone deacetyltransferases Sirt1 and Sirt2 rescues the Ras-PI3K-induced decrease in H3K56ac, gene transcription, tumor cell proliferation, and tumor cell migration. Furthermore, we demonstrate that the Ras-PI3K-AKT pathway regulates H3K56ac via the MDM2-dependent degradation of CREB-binding protein/p300. Taken together, the results of this study demonstrate that the Ras-PI3K signaling pathway targets specific epigenetic modifications in tumor cells.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Epigenetics and Cancer Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
45
|
Icardi L, De Bosscher K, Tavernier J. The HAT/HDAC interplay: multilevel control of STAT signaling. Cytokine Growth Factor Rev 2012; 23:283-91. [PMID: 22989617 DOI: 10.1016/j.cytogfr.2012.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
Besides the transcription-promoting role of histone acetyltransferases (HATs) and the transcription-delimiting function of histone deacetylases (HDACs) through histone acetylation and deacetylation respectively, HATs and HDACs also regulate the activity of several non-histone proteins. This includes signal transducers and activators of transcription (STATs), key proteins in cytokine signaling. Unlike Tyr phosphorylation/dephosphorylation, which mainly acts as an on/off switch of STAT activity, the control exerted by HATs and HDACs appears multifaceted and far more complex than initially imagined. Our review focuses on the latest trends and novel hypotheses to explain differential context-dependent STAT regulation by complex posttranslational modification patterns. We chart the knowledge on how STATs interact with HATs and HDACs, and additionally bring a transcriptional regulatory and gene-set specific role for HDACs in the picture. Indeed, a growing amount of evidence demonstrates, paradoxically, that not only HAT but also HDAC activity can be required for STAT-dependent transcription, in a STAT subtype- and cell type-dependent manner. Referring to recent reports, we review and discuss the various molecular mechanisms that have recently been proposed to account for this peculiar regulation, in an attempt to shed more light on the difficult yet important question on how STAT specificity is being generated.
Collapse
Affiliation(s)
- Laura Icardi
- Department of Medical Protein Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|
46
|
Natoli G, Andrau JC. Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 2012; 46:1-19. [PMID: 22905871 DOI: 10.1146/annurev-genet-110711-155459] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian genomes are extensively transcribed outside the borders of protein-coding genes. Genome-wide studies recently demonstrated that cis-regulatory genomic elements implicated in transcriptional control, such as enhancers and locus-control regions, represent major sites of extragenic noncoding transcription. Enhancer-templated transcripts provide a quantitatively small contribution to the total amount of cellular nonribosomal RNA; nevertheless, the possibility that enhancer transcription and the resulting enhancer RNAs may, in some cases, have functional roles, rather than represent mere transcriptional noise at accessible genomic regions, is supported by an increasing amount of experimental data. In this article we review the current knowledge on enhancer transcription and its functional implications.
Collapse
Affiliation(s)
- Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), I-20139 Milan, Italy.
| | | |
Collapse
|
47
|
Akil A, Ezzikouri S, El Feydi AE, Benazzouz M, Afifi R, Diagne AG, Benjouad A, Dejean A, Pineau P, Benjelloun S. Associations of genetic variants in the transcriptional coactivators EP300 and PCAF with hepatocellular carcinoma. Cancer Epidemiol 2012; 36:e300-5. [PMID: 22709982 DOI: 10.1016/j.canep.2012.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/14/2012] [Accepted: 05/22/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a common cause of death by cancer worldwide. In Morocco, HCC is characterized by few mutations and a mild chromosome instability suggesting that epigenetic changes may represent the driving force of tumorigenesis in the region. Recently, three studies looked for an association between EP300 or PCAF polymorphisms and cancer but there is a conspicuous lack of data regarding these histone acetyltransferase (HAT) variants and HCC development. The aim of the current study was to assess the impact of the Ile997Val in EP300 and Asn386Ser in PCAF polymorphisms on the risk of HCC. MATERIALS AND METHODS We performed a case-control study comparing 94 cases with HCC and 220 matching controls. Sequencing methods were used to determine the genotype at the Ile997Val and Asn386Ser on EP300 and PCAF. RESULTS We found an overall association between genotypes Val/Val in EP300 and HCC risk (OR, 3.03; 95% CI, 1.08-8.47; P=0.028). Population stratifications revealed a trend or significantly higher risks of HCC development for women and HCV-negative patients carrying the EP300 Val/Val genotype (OR, 4.06; 95% CI, 0.71-23.36; P=0.09 and OR, 4.48; 95% CI, 1.04-19.14; P=0.02, respectively). The PCAF Ser/Ser genotype at codon 386 was more frequent in HCC cases than in control group (P=0.03). We observed trends for higher risk of HCC among men and/or HCV-negative patients carrying Ser/Ser genotype when compared with controls (OR, 10.62; 95% CI, 0.50-225.13 and OR, 11.78; 95% CI, 0.47-295.56, respectively). CONCLUSION It appears that variants of the transcriptional coactivator genes (EP300 and PCAF) may influence HCC risk in populations with low mutations or chromosomal instability rates. Additional surveys are warranted to confirm this first report.
Collapse
Affiliation(s)
- Abdellah Akil
- Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Klinke DJ, Cheng N, Chambers E. Quantifying crosstalk among interferon-γ, interleukin-12, and tumor necrosis factor signaling pathways within a TH1 cell model. Sci Signal 2012; 5:ra32. [PMID: 22510470 DOI: 10.1126/scisignal.2002657] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T helper (T(H)) cells integrate biochemical cues present in the tissue microenvironment and produce cytokines that orchestrate immune responses. Previous discoveries have revealed a qualitative understanding of how T(H) cells process this biochemical information; however, the lack of methods to quantify how well these depictions apply to a particular cell type limits our ability to translate our knowledge of the immune response from one biological system to another. We used model-based inference methods and quantitative flow cytometric analysis in mouse T(H)1 cells to determine the relative contributions of different putative branches in the signaling network that responds to the cytokine interleukin-12 (IL-12), which links innate and adaptive immunity. The response of T(H)1 cells to IL-12 exhibited hysteresis because it depended on both current and past exposure and engaged a positive feedback mechanism through the direct activation of signal transducer and activator of transcription 1. The hysteresis in the dose-response curve to IL-12 created a transient "memory" by sustaining cytokine secretion after the withdrawal of the stimulus. In summary, this combined experimental and computational approach illustrates how model-based inference can be used to better understand how cells process and act upon biochemical cues present in the tissue microenvironment.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering, West Virginia University, Post Office Box 6102, Morgantown, WV 26506, USA.
| | | | | |
Collapse
|
49
|
Abstract
Since its discovery two decades ago, the activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway by numerous cytokines and growth factors has resulted in it becoming one of the most well-studied intracellular signalling networks. The field has progressed from the identification of the individual components to high-resolution crystal structures of both JAK and STAT, and an understanding of the complexities of the molecular activation and deactivation cycle which results in a diverse, yet highly specific and regulated pattern of transcriptional responses. While there is still more to learn, we now appreciate how disruption and deregulation of this pathway can result in clinical disease and look forward to adoption of the next generation of JAK inhibitors in routine clinical treatment.
Collapse
Affiliation(s)
- Hiu Kiu
- Walter & Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia
| | | |
Collapse
|
50
|
Wurm T, Wright DG, Polakowski N, Mesnard JM, Lemasson I. The HTLV-1-encoded protein HBZ directly inhibits the acetyl transferase activity of p300/CBP. Nucleic Acids Res 2012; 40:5910-25. [PMID: 22434882 PMCID: PMC3401433 DOI: 10.1093/nar/gks244] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The homologous cellular coactivators p300 and CBP contain intrinsic lysine acetyl transferase (termed HAT) activity. This activity is responsible for acetylation of several sites on the histones as well as modification of transcription factors. In a previous study, we found that HBZ, encoded by the Human T-cell Leukemia Virus type 1 (HTLV-1), binds to multiple domains of p300/CBP, including the HAT domain. In this study, we found that HBZ inhibits the HAT activity of p300/CBP through the bZIP domain of the viral protein. This effect correlated with a reduction of H3K18 acetylation, a specific target of p300/CBP, in cells expressing HBZ. Interestingly, lower levels of H3K18 acetylation were detected in HTLV-1 infected cells compared to non-infected cells. The inhibitory effect of HBZ was not limited to histones, as HBZ also inhibited acetylation of the NF-κB subunit, p65, and the tumor suppressor, p53. Recent studies reported that mutations in the HAT domain of p300/CBP that cause a defect in acetylation are found in certain types of leukemia. These observations suggest that inhibition of the HAT activity by HBZ is important for the development of adult T-cell leukemia associated with HTLV-1 infection.
Collapse
Affiliation(s)
- Torsten Wurm
- East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA
| | | | | | | | | |
Collapse
|