1
|
Pavlov D, Christofi FL. Use of Human In Vitro Gut Specimens for Translational Neurogastroenterology and Motility in the 21st Century. Neurogastroenterol Motil 2025:e15022. [PMID: 40296281 DOI: 10.1111/nmo.15022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/12/2025] [Accepted: 01/26/2025] [Indexed: 04/30/2025]
Abstract
There is a huge gap in our understanding of the human ENS and translating data from mice to humans that is important when developing targeted therapeutics. The ENS or "human little brain in the gut" is easily accessible for study in GI surgical or biopsy samples. This mini review is focused on the use of human gut specimens in translating laboratory data on ENS and enteric neuropathies in neurogastroenterology and motility from mice to humans. Availability of viable human gut samples, in combination with technological advances in innovative recording techniques and new in vitro models provide powerful ways to study neural activity and secretomotor function or monitor motility in health and disease with exquisite sophistication and precision. Electrophysiological recordings, optical recordings with voltage-sensitive dyes, or Ca2+ imaging (in adult or fetal gut) is used to study neural activity in human ENS in health and disease. 'First in man patch clamp recordings' is possible in isolated networks of human myenteric ganglia, opening the door for patch-seq. The human ENS at single cell resolution (snRNA-seq) revealed cell-diversity, similarities and differences between human and mouse in vitro. Visceral afferent recordings are used for mechanosensation and pain signaling in humans. Stem cell therapies may hold future promise for patients with enteric neuropathies. A greater focus on the human ENS and enteric neuropathies (i.e. IBS, FD, postoperative ileus, CIPO, chronic constipation, Hirschsprung Disease, infection, gastroparesis, Parkinson's disease, IBD, visceral pain) is one important step for consideration in developing potential therapeutics before proceeding to more expensive and complex clinical trials in patients to treat GI Disorders and Diseases.
Collapse
Affiliation(s)
- Dmitrii Pavlov
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Fievos L Christofi
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Hellysaz A, Hagbom M. Rotavirus Sickness Symptoms: Manifestations of Defensive Responses from the Brain. Viruses 2024; 16:1086. [PMID: 39066248 PMCID: PMC11281384 DOI: 10.3390/v16071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Rotavirus is infamous for being extremely contagious and for causing diarrhea and vomiting in infants. However, the symptomology is far more complex than what could be expected from a pathogen restricted to the boundaries of the small intestines. Other rotavirus sickness symptoms like fever, fatigue, sleepiness, stress, and loss of appetite have been clinically established for decades but remain poorly studied. A growing body of evidence in recent years has strengthened the idea that the evolutionarily preserved defensive responses that cause rotavirus sickness symptoms are more than just passive consequences of illness and rather likely to be coordinated events from the central nervous system (CNS), with the aim of maximizing the survival of the individual as well as the collective group. In this review, we discuss both established and plausible mechanisms of different rotavirus sickness symptoms as a series of CNS responses coordinated from the brain. We also consider the protective and the harmful nature of these events and highlight the need for further and deeper studies on rotavirus etiology.
Collapse
Affiliation(s)
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden;
| |
Collapse
|
3
|
Moreno-Muñoz JA, Ojeda JD, López JJ. A Probiotic Bacterium with Activity against the Most Frequent Bacteria and Viruses Causing Pediatric Diarrhea: Bifidobacterium longum subsp. infantis CECT 7210 ( B. infantis IM1 ®). Microorganisms 2024; 12:1183. [PMID: 38930565 PMCID: PMC11206103 DOI: 10.3390/microorganisms12061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The second leading cause of death in children under five years old is diarrheal disease. Probiotics, specifically bifidobacteria, have been associated with a reduction in the number of diarrhea episodes and their severity in babies. In this paper, we summarize the preclinical and clinical evidence of the efficacy of B. longum subsp. infantis IM1® against various gastrointestinal pathogens using in vitro models, animal models, and clinical studies carried out in our laboratory. The preclinical data demonstrate that IM1® effectively inhibits rotavirus replication (by up to 36.05%) in MA-104 and HT-29 cells and from infection (up to 48.50%) through the production of an 11-amino-acid peptide. IM1® displays the capability to displace pathogens from enterocytes, particularly Cronobacter sakazakii and Salmonella enterica, and to reduce the adhesion to the HT29 cells of C. sakazakii and Shigella sonnei. In animal models, the IM1® strain exhibits in vivo protection against rotavirus and improves the clinical symptomatology of bacterial gastroenteritis. A clinical study involving infants under 3 months of age revealed that IM1® reduced episodes of diarrhea, proving to be safe, well tolerated, and associated with a lower prevalence of constipation. B. infantis IM1® emerges as an effective probiotic, diminishing episodes of diarrhea caused by gastrointestinal pathogens.
Collapse
Affiliation(s)
- José Antonio Moreno-Muñoz
- Laboratorios Ordesa S.L., Parc Científic de Barcelona, C/Baldiri Reixac 15-21, 08028 Barcelona, Spain; (J.D.O.); (J.J.L.)
| | | | | |
Collapse
|
4
|
Engevik KA, Scribano FJ, Gebert JT, Hyser JM. Purinergic Signaling Drives Multiple Aspects of Rotavirus Pathophysiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592953. [PMID: 38765995 PMCID: PMC11100750 DOI: 10.1101/2024.05.07.592953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Rotavirus causes life-threatening diarrhea in children, resulting in ∼200,000 deaths/year. The current treatment during infection is Oral Rehydration Solution which successfully replenishes fluids but does not alleviate diarrhea volume or severity. As a result, there is an urgent need to better understand rotavirus pathophysiology and develop more effective pediatric therapeutics. Rotavirus primarily infects the tips of small intestinal villi, yet has far-reaching effects on cell types distant from infected cells. We recently identified that rotavirus infected cells release the purinergic signaling molecule ADP, which activates P2Y1 receptors on nearby uninfected cells in vitro . To elucidate the role of purinergic signaling via P2Y1 receptors during rotavirus infection in vivo , we used the mouse-like rotavirus strain D6/2 which generates a severe infection in mice. C57BL/6J mouse pups were given an oral gavage of D6/2 rotavirus and assessed over the course of 5-7 days. Beginning at day 1 post infection, infected pups were treated daily by oral gavage with saline or 4 mg/kg MRS2500, a selective P2Y1 antagonist. Mice were monitored for diarrhea severity, diarrhea incidence, and viral shedding. Neonatal mice were euthanized at days 3 and 5 post-infection and small intestine was collected to observe infection. MRS2500 treatment decreased the severity, prevalence, and incidence of rotavirus diarrhea. Viral stool shedding, assessed by qPCR for rotavirus gene levels, revealed that MRS2500 treated pups had significantly lower viral shedding starting at day 4 post infection compared to saline treated pups, which suggests P2Y1 signaling may enhance rotavirus replication. Finally, we found that inhibition of P2Y1 with MRS2500 limited transmitted rotavirus diarrhea to uninfected pups within a litter. Together, these results suggest that P2Y1 signaling is involved in the pathogenesis of a homologous murine rotavirus strain, making P2Y1 receptors a promising anti-diarrheal, anti-viral therapeutic target to reduce rotavirus disease burden.
Collapse
|
5
|
Martínez-Ruiz S, Olivo-Martínez Y, Cordero C, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Badia J, Baldoma L. Microbiota-Derived Extracellular Vesicles as a Postbiotic Strategy to Alleviate Diarrhea and Enhance Immunity in Rotavirus-Infected Neonatal Rats. Int J Mol Sci 2024; 25:1184. [PMID: 38256253 PMCID: PMC10816611 DOI: 10.3390/ijms25021184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rotavirus (RV) infection is a major cause of acute gastroenteritis in children under 5 years old, resulting in elevated mortality rates in low-income countries. The efficacy of anti-RV vaccines is limited in underdeveloped countries, emphasizing the need for novel strategies to boost immunity and alleviate RV-induced diarrhea. This study explores the effectiveness of interventions involving extracellular vesicles (EVs) from probiotic and commensal E. coli in mitigating diarrhea and enhancing immunity in a preclinical model of RV infection in suckling rats. On days 8 and 16 of life, variables related to humoral and cellular immunity and intestinal function/architecture were assessed. Both interventions enhanced humoral (serum immunoglobulins) and cellular (splenic natural killer (NK), cytotoxic T (Tc) and positive T-cell receptor γδ (TCRγδ) cells) immunity against viral infections and downregulated the intestinal serotonin receptor-3 (HTR3). However, certain effects were strain-specific. EcoR12 EVs activated intestinal CD68, TLR2 and IL-12 expression, whereas EcN EVs improved intestinal maturation, barrier properties (goblet cell numbers/mucin 2 expression) and absorptive function (villus length). In conclusion, interventions involving probiotic/microbiota EVs may serve as a safe postbiotic strategy to improve clinical symptoms and immune responses during RV infection in the neonatal period. Furthermore, they could be used as adjuvants to enhance the immunogenicity and efficacy of anti-RV vaccines.
Collapse
Affiliation(s)
- Sergio Martínez-Ruiz
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Yenifer Olivo-Martínez
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Cecilia Cordero
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - María J. Rodríguez-Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Josefa Badia
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldoma
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| |
Collapse
|
6
|
Gao L, Shen H, Zhao S, Chen S, Zhu P, Lin W, Chen F. Isolation and Pathogenicity Analysis of a G5P[23] Porcine Rotavirus Strain. Viruses 2023; 16:21. [PMID: 38257722 PMCID: PMC10819142 DOI: 10.3390/v16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Group A rotaviruses (RVAs) are the primary cause of severe intestinal diseases in piglets. Porcine rotaviruses (PoRVs) are widely prevalent in Chinese farms, resulting in significant economic losses to the livestock industry. However, isolation of PoRVs is challenging, and their pathogenicity in piglets is not well understood. (2) Methods: We conducted clinical testing on a farm in Jiangsu Province, China, and isolated PoRV by continuously passaging on MA104 cells. Subsequently, the pathogenicity of the isolated strain in piglets was investigated. The piglets of the PoRV-infection group were orally inoculated with 1 mL of 1.0 × 106 TCID50 PoRV, whereas those of the mock-infection group were fed with an equivalent amount of DMEM. (3) Results: A G5P[23] genotype PoRV strain was successfully isolated from one of the positive samples and named RVA/Pig/China/JS/2023/G5P[23](JS). The genomic constellation of this strain was G5-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Sequence analysis revealed that the genes VP3, VP7, NSP2, and NSP4 of the JS strain were closely related to human RVAs, whereas the remaining gene segments were closely related to porcine RVAs, indicating a reassortment between porcine and human strains. Furthermore, infection of 15-day-old piglets with the JS strain resulted in a diarrheal rate of 100% (8 of 8) and a mortality rate of 37.5% (3 of 8). (4) Conclusions: The isolated G5P[23] genotype rotavirus strain, which exhibited strong pathogenicity in piglets, may have resulted from recombination between porcine and human strains. It may serve as a potential candidate strain for developing vaccines, and its immunogenicity can be tested in future studies.
Collapse
Affiliation(s)
- Liguo Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Hanqin Shen
- Wen’s Food Group, Yunfu 527300, China;
- Guangdong Jingjie Inspection and Testing Co., Ltd., Yunfu 527300, China
| | - Sucan Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Sheng Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Puduo Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| |
Collapse
|
7
|
Hellysaz A, Nordgren J, Neijd M, Martí M, Svensson L, Hagbom M. Microbiota do not restrict rotavirus infection of colon. J Virol 2023; 97:e0152623. [PMID: 37905839 PMCID: PMC10688362 DOI: 10.1128/jvi.01526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Alterations of the gut microbiome can have significant effects on gastrointestinal homeostasis leading to various diseases and symptoms. Increased understanding of rotavirus infection in relation to the microbiota can provide better understanding on how microbiota can be used for clinical prevention as well as treatment strategies. Our volumetric 3D imaging data show that antibiotic treatment and its consequent reduction of the microbial load does not alter the extent of rotavirus infection of enterocytes in the small intestine and that restriction factors other than bacteria limit the infection of colonocytes.
Collapse
Affiliation(s)
- Arash Hellysaz
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Magdalena Neijd
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Magalí Martí
- Division of Children’s and Women’s Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Tang L, Jin S, Winesett S, Harrell J, Fraebel J, Cheng SX. Ca2+ fortified oral rehydration solution is effective in reducing diarrhea morbidity in cholera toxin-pretreated mice. RESEARCH SQUARE 2023:rs.3.rs-3482753. [PMID: 37961244 PMCID: PMC10635371 DOI: 10.21203/rs.3.rs-3482753/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Diarrhea like cholera remains a leading cause of mortality and morbidity globally. Oral rehydration solution (ORS) that developed in 1970s significantly decreases diarrhea mortality; yet, it does not reduce diarrhea morbidity and its usage has reduced persistently. Patients with diarrhea lose not only monovalent ions Na+, K+, Cl- and HCO3, which are replaced via ORS, but also divalent ions Zn2+ and Ca2+, which are not routinely replaced, particularly for Ca2+. Using several in vitro technologies performed in isolated tissues, we have previously shown that Ca2+, a primary ligand that activates the Ca2+-sensing receptor, can act on intestinal epithelium and enteric nervous system and reverse cholera toxin-induced fluid secretion. In the present study, using the cholera toxin-pretreated C57BL/6 mice as a model, we show that the anti-diarrheal effect of Ca2+ can also occur in vivo. Our results raise a question of whether this divalent ion also needs to be replaced in diarrhea management. Perhaps, an ideal rehydration therapy would be solutions that contain both monovalent ions, which reduce diarrhea mortality, and divalent minerals, which reduce diarrhea morbidity.
Collapse
|
9
|
Valdetaro L, Thomasi B, Ricciardi MC, Santos KDM, Coelho-Aguiar JDM, Tavares-Gomes AL. Enteric nervous system as a target and source of SARS-CoV-2 and other viral infections. Am J Physiol Gastrointest Liver Physiol 2023; 325:G93-G108. [PMID: 37253656 PMCID: PMC10390051 DOI: 10.1152/ajpgi.00229.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/02/2023] [Accepted: 05/29/2023] [Indexed: 06/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been demonstrated to affect several systems of the human body, including the gastrointestinal and nervous systems. The enteric nervous system (ENS) is a division of the autonomic nervous system that extends throughout the gut, regulates gastrointestinal function, and is therefore involved in most gut dysfunctions, including those resulting from many viral infections. Growing evidence highlights enteric neural cells and microbiota as important players in gut inflammation and dysfunction. Furthermore, the ENS and gastrointestinal immune system work together establishing relevant neuroimmune interactions during both health and disease. In recent years, gut-driven processes have also been implicated as players in systemic inflammation and in the initiation and propagation of several central nervous system pathologies, which seem to be hallmarks of COVID-19. In this review, we aim to describe evidence of the gastrointestinal and ENS infection with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss here viral-induced mechanisms, neuroplasticity, and neuroinflammation to call attention to the enteric neuroglial network as a nervous system with a sensitive and crucial position to be not only a target of the new coronavirus but also a way in and trigger of COVID-19-related symptoms.
Collapse
Affiliation(s)
- Luisa Valdetaro
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, United States
| | - Beatriz Thomasi
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Maria Carolina Ricciardi
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Karoline de Melo Santos
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Lúcia Tavares-Gomes
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Nickerson AJ, Rajendran VM. Dietary Na + depletion up-regulates NKCC1 expression and enhances electrogenic Cl - secretion in rat proximal colon. Cell Mol Life Sci 2023; 80:209. [PMID: 37458846 PMCID: PMC11073443 DOI: 10.1007/s00018-023-04857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
The corticosteroid hormone, aldosterone, markedly enhances K+ secretion throughout the colon, a mechanism critical to its role in maintaining overall K+ balance. Previous studies demonstrated that basolateral NKCC1 was up-regulated by aldosterone in the distal colon specifically to support K+ secretion-which is distinct from the more well-established role of NKCC1 in supporting luminal Cl- secretion. However, considerable segmental variability exists between proximal and distal colonic ion transport processes, especially concerning their regulation by aldosterone. Furthermore, delineating such region-specific effects has important implications for the management of various gastrointestinal pathologies. Experiments were therefore designed to determine whether aldosterone similarly up-regulates NKCC1 in the proximal colon to support K+ secretion. Using dietary Na+ depletion as a model of secondary hyperaldosteronism in rats, we found that proximal colon NKCC1 expression was indeed enhanced in Na+-depleted (i.e., hyperaldosteronemic) rats. Surprisingly, electrogenic K+ secretion was not detectable by short-circuit current (ISC) measurements in response to either basolateral bumetanide (NKCC1 inhibitor) or luminal Ba2+ (non-selective K+ channel blocker), despite enhanced K+ secretion in Na+-depleted rats, as measured by 86Rb+ fluxes. Expression of BK and IK channels was also found to be unaltered by dietary Na+ depletion. However, bumetanide-sensitive basal and agonist-stimulated Cl- secretion (ISC) were significantly enhanced by Na+ depletion, as was CFTR Cl- channel expression. These data suggest that NKCC1-dependent secretory pathways are differentially regulated by aldosterone in proximal and distal colon. Development of therapeutic strategies in treating pathologies related to aberrant colonic K+/Cl- transport-such as pseudo-obstruction or ulcerative colitis-may benefit from these findings.
Collapse
Affiliation(s)
- Andrew J Nickerson
- Departments of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Departments of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- University of Pittsburgh, S929 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, USA
| | - Vazhaikkurichi M Rajendran
- Departments of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA.
- Department of Medicine, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
11
|
Traserra S, Casabella-Ramón S, Vergara P, Jimenez M. E. coli infection disrupts the epithelial barrier and activates intrinsic neurosecretory reflexes in the pig colon. Front Physiol 2023; 14:1170822. [PMID: 37334046 PMCID: PMC10272729 DOI: 10.3389/fphys.2023.1170822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
This study aims to assess the barrier integrity and possible activation of enteric neural pathways associated with secretion and motility in the pig colon induced by an enterotoxigenic Escherichia coli (ETEC) challenge. 50 Danbred male piglets were used for this study. 16 were challenged with an oral dose of the ETEC strain F4+ 1.5 × 109 colony-forming unit. Colonic samples were studied 4- and 9-days post-challenge using both a muscle bath and Ussing chamber. Colonic mast cells were stained with methylene blue. In control animals, electrical field stimulation induced neurosecretory responses that were abolished by tetrodotoxin (10-6M) and reduced by the combination of atropine (10-4M) and α-chymotrypsin (10U/mL). Exogenous addition of carbachol, vasoactive intestinal peptide, forskolin, 5-HT, nicotine, and histamine produced epithelial Cl- secretion. At day 4 post-challenge, ETEC increased the colonic permeability. The basal electrogenic ion transport remained increased until day 9 post-challenge and was decreased by tetrodotoxin (10-6M), atropine (10-4M), hexamethonium (10-5M), and ondansetron (10-5M). In the muscle, electrical field stimulation produced frequency-dependent contractile responses that were abolished with tetrodotoxin (10-6M) and atropine (10-6M). Electrical field stimulation and carbachol responses were not altered in ETEC animals in comparison with control animals at day 9 post-challenge. An increase in mast cells, stained with methylene blue, was observed in the mucosa and submucosa but not in the muscle layer of ETEC-infected animals on day 9 post-challenge. ETEC increased the response of intrinsic secretory reflexes and produced an impairment of the colonic barrier that was restored on day 9 post-challenge but did not modify neuromuscular function.
Collapse
Affiliation(s)
- Sara Traserra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Casabella-Ramón
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patri Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcel Jimenez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
13
|
Kopper JJ. Equine Rotaviral Diarrhea. Vet Clin North Am Equine Pract 2023; 39:47-54. [PMID: 36737285 DOI: 10.1016/j.cveq.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Equine rotavirus is one of the most common causes of infectious diarrhea in foals. Although the infection itself is self-limiting, the resulting diarrhea is due to multiple mechanisms and can be severe, requiring supportive care including fluid and electrolyte support. Prompt diagnosis is important for treatment and biosecurity decisions and can be achieved by several means. Prevention, while imperfect, currently relies on vaccination of pregnant mares before parturition, ingestion of adequate colostrum from vaccinated mares and biosecurity measures.
Collapse
Affiliation(s)
- Jamie J Kopper
- Iowa State University, College of Veterinary Medicine, 1809 Christensen Drive, Ames Iowa 50010, USA.
| |
Collapse
|
14
|
Jiang L, Tang A, Song L, Tong Y, Fan H. Advances in the development of antivirals for rotavirus infection. Front Immunol 2023; 14:1041149. [PMID: 37006293 PMCID: PMC10063883 DOI: 10.3389/fimmu.2023.1041149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Rotavirus (RV) causes 200,000 deaths per year and imposes a serious burden to public health and livestock farming worldwide. Currently, rehydration (oral and intravenous) remains the main strategy for the treatment of rotavirus gastroenteritis (RVGE), and no specific drugs are available. This review discusses the viral replication cycle in detail and outlines possible therapeutic approaches including immunotherapy, probiotic-assisted therapy, anti-enteric secretory drugs, Chinese medicine, and natural compounds. We present the latest advances in the field of rotavirus antivirals and highlights the potential use of Chinese medicine and natural compounds as therapeutic agents. This review provides an important reference for rotavirus prevention and treatment.
Collapse
Affiliation(s)
| | | | - Lihua Song
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Yigang Tong
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Huahao Fan
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| |
Collapse
|
15
|
Rotavirus Downregulates Tyrosine Hydroxylase in the Noradrenergic Sympathetic Nervous System in Ileum, Early in Infection and Simultaneously with Increased Intestinal Transit and Altered Brain Activities. mBio 2022; 13:e0138722. [PMID: 36094089 PMCID: PMC9600178 DOI: 10.1128/mbio.01387-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
While rotavirus diarrhea has been considered to occur only due to intrinsic intestinal effects within the enteric nervous system, we provide evidence for central nervous system control underlying the clinical symptomology. Our data visualize infection by large-scale three-dimensional (3D) volumetric tissue imaging of a mouse model and demonstrate that rotavirus infection disrupts the homeostasis of the autonomous system by downregulating tyrosine hydroxylase in the noradrenergic sympathetic nervous system in ileum, concomitant with increased intestinal transit. Interestingly, the nervous response was found to occur before the onset of clinical symptoms. In adult infected animals, we found increased pS6 immunoreactivity in the area postrema of the brain stem and decreased phosphorylated STAT5-immunoreactive neurons in the bed nucleus of the stria terminalis, which has been associated with autonomic control, including stress response. Our observations contribute to knowledge of how rotavirus infection induces gut-nerve-brain interaction early in the disease.
Collapse
|
16
|
Omatola CA, Olaniran AO. Rotaviruses: From Pathogenesis to Disease Control-A Critical Review. Viruses 2022; 14:875. [PMID: 35632617 PMCID: PMC9143449 DOI: 10.3390/v14050875] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Since their first recognition in human cases about four decades ago, rotaviruses have remained the leading cause of acute severe dehydrating diarrhea among infants and young children worldwide. The WHO prequalification of oral rotavirus vaccines (ORV) a decade ago and its introduction in many countries have yielded a significant decline in the global burden of the disease, although not without challenges to achieving global effectiveness. Poised by the unending malady of rotavirus diarrhea and the attributable death cases in developing countries, we provide detailed insights into rotavirus biology, exposure pathways, cellular receptors and pathogenesis, host immune response, epidemiology, and vaccination. Additionally, recent developments on the various host, viral and environmental associated factors impacting ORV performance in low-and middle-income countries (LMIC) are reviewed and their significance assessed. In addition, we review the advances in nonvaccine strategies (probiotics, candidate anti-rotaviral drugs, breastfeeding) to disease prevention and management.
Collapse
Affiliation(s)
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
17
|
Battaglia DM, Sanchez-Pino MD, Nichols CD, Foster TP. Herpes Simplex Virus-1 Induced Serotonin-Associated Metabolic Pathways Correlate With Severity of Virus- and Inflammation-Associated Ocular Disease. Front Microbiol 2022; 13:859866. [PMID: 35391733 PMCID: PMC8982329 DOI: 10.3389/fmicb.2022.859866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus-associated diseases are a complex interaction between cytolytic viral replication and inflammation. Within the normally avascular and immunoprivileged cornea, HSV ocular infection can result in vision-threatening immune-mediated herpetic keratitis, the leading infectious cause of corneal blindness in the industrialized world. Viral replicative processes are entirely dependent upon numerous cellular biosynthetic and metabolic pathways. Consistent with this premise, HSV infection was shown to profoundly alter gene expression associated with cellular amino acid biosynthetic pathways, including key tryptophan metabolism genes. The essential amino acid tryptophan is crucial for pathogen replication, the generation of host immune responses, and the synthesis of neurotransmitters, such as serotonin. Intriguingly, Tryptophan hydroxylase 2 (TPH2), the neuronal specific rate-limiting enzyme for serotonin synthesis, was the most significantly upregulated gene by HSV in an amino acid metabolism PCR array. Despite the well-defined effects of serotonin in the nervous system, the association of peripheral serotonin in disease-promoting inflammation has only recently begun to be elucidated. Likewise, the impact of serotonin on viral replication and ocular disease is also largely unknown. We therefore examined the effect of HSV-induced serotonin-associated synthesis and transport pathways on HSV-1 replication, as well as the correlation between HSV-induced ocular serotonin levels and disease severity. HSV infection induced expression of the critical serotonin synthesis enzymes TPH-1, TPH-2, and DOPA decarboxylase (DDC), as well as the serotonin transporter, SERT. Concordantly, HSV-infected cells upregulated serotonin synthesis and its intracellular uptake. Increased serotonin synthesis and uptake was shown to influence HSV replication. Exogenous addition of serotonin increased HSV-1 yield, while both TPH-1/2 and SERT pharmacological inhibition reduced viral yield. Congruent with these in vitro findings, rabbits intraocularly infected with HSV-1 exhibited significantly higher aqueous humor serotonin concentrations that positively and strongly correlated with viral load and ocular disease severity. Collectively, our findings indicate that HSV-1 promotes serotonin synthesis and cellular uptake to facilitate viral replication and consequently, serotonin's proinflammatory effects may enhance the development of ocular disease.
Collapse
Affiliation(s)
- Diana Marie Battaglia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Maria D. Sanchez-Pino
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Charles D. Nichols
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Timothy P. Foster
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Louisiana Vaccine Center, New Orleans, LA, United States
| |
Collapse
|
18
|
Abstract
Group A rotavirus (RVA), one of the leading pathogens causing severe acute gastroenteritis in children and a wide variety of young animals worldwide, induces apoptosis upon infecting cells. Though RVA-induced apoptosis mediated via the dual modulation of its NSP4 and NSP1 proteins is relatively well studied, the nature and signaling pathway(s) involved in RVA-induced necroptosis are yet to be fully elucidated. Here, we demonstrate the nature of RVA-induced necroptosis, the signaling cascade involved, and correlation with RVA-induced apoptosis. Infection with the bovine NCDV and human DS-1 RV strains was shown to activate receptor-interacting protein kinase 1 (RIPK1)/RIPK3/mixed lineage kinase domain-like protein (MLKL), the key necroptosis molecules in virus-infected cells. Using immunoprecipitation assay, RIPK1 was found to bind phosphorylated RIPK3 (pRIPK3) and pMLKL. pMLKL, the major executioner molecule in the necroptotic pathway, was translocated to the plasma membrane of RVA-infected cells to puncture the cell membrane. Interestingly, transfection of RVA NSP4 also induced necroptosis through the RIPK1/RIPK3/MLKL necroptosis pathway. Blockage of each key necroptosis molecule in the RVA-infected or NSP4-transfected cells resulted in decreased necroptosis but increased cell viability and apoptosis, thereby resulting in decreased viral yields in the RVA-infected cells. In contrast, suppression of RVA-induced apoptosis increased necroptosis and virus yields. Our findings suggest that RVA NSP4 also induces necroptosis via the RIPK1/RIPK3/MLKL necroptosis pathway. Moreover, necroptosis and apoptosis-which have proviral and antiviral effects, respectively-exhibited a crosstalk in RVA-infected cells. These findings significantly increase our understanding of the nature of RVA-induced necroptosis and the crosstalk between RVA-induced necroptosis and apoptosis. IMPORTANCE Viral infection usually culminates in cell death through apoptosis, necroptosis, and rarely, pyroptosis. Necroptosis is a form of programmed necrosis that is mediated by signaling complexes of the receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). Although apoptosis induction by rotavirus and its NSP4 protein is well known, rotavirus-induced necroptosis is not fully understood. Here, we demonstrate that rotavirus and also its NSP4 protein can induce necroptosis in cultured cells through the activation of the RIPK1/RIPK3/MLKL necroptosis pathway. Moreover, rotavirus-induced necroptosis and apoptosis have opposite effects on viral yield, i.e., they function as proviral and antiviral processes, respectively, and counterbalance each other in rotavirus-infected cells. Our findings provide important insights for understanding the nature of rotavirus-induced necroptosis and the development of novel therapeutic strategies against infection with rotavirus and other RNA viruses.
Collapse
|
19
|
Des Roches A, Graham F, Begin P, Paradis L, Gold M. Evaluation of Adverse Reactions to Vaccines. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3584-3597. [PMID: 34627533 DOI: 10.1016/j.jaip.2021.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 02/05/2023]
Abstract
The development and widespread use of vaccination over the past centuries has been the single most impactful intervention in public health, by effectively preventing morbidity and mortality from infectious diseases. Vaccination is generally well tolerated in the vast majority of the population, and the benefits of vaccination largely outweigh the risk of severe adverse events in the majority of patients. Vaccine hesitancy can be a significant concern and lead to infectious disease outbreaks. All health care providers play an important role in maintaining public confidence in vaccines because their attitude and knowledge is often critical in facilitating acceptance of a vaccine. The purpose of this review is to first, provide an understanding of the basic concepts that are relevant to vaccine pharmacovigilance, and secondly, to provide an overview and discuss management of both immune and nonimmune adverse events after vaccination.
Collapse
Affiliation(s)
- Anne Des Roches
- Department of Pediatrics, Service of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada.
| | - François Graham
- Department of Pediatrics, Service of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada; Department of Medicine, Service of Allergy and Clinical Immunology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Philippe Begin
- Department of Pediatrics, Service of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada; Department of Medicine, Service of Allergy and Clinical Immunology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Louis Paradis
- Department of Pediatrics, Service of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada; Department of Medicine, Service of Allergy and Clinical Immunology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Michael Gold
- Discipline of Pediatrics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
20
|
Nickerson AJ, Rajendran VM. Flupirtine enhances NHE-3-mediated Na + absorption in rat colon via an ENS-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2021; 321:G185-G199. [PMID: 34132108 PMCID: PMC8410105 DOI: 10.1152/ajpgi.00158.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 01/31/2023]
Abstract
Recent studies in our lab have shown that the KV7 channel activator, flupirtine, inhibits colonic epithelial Cl- secretion through effects on submucosal neurons of the enteric nervous system (ENS). We hypothesized that flupirtine would also stimulate Na+ absorption as a result of reduced secretory ENS input to the epithelium. To test this hypothesis, unidirectional 22Na+ fluxes were measured under voltage-clamped conditions. Pharmacological approaches using an Ussing-style recording chamber combined with immunofluorescence microscopy techniques were used to determine the effect of flupirtine on active Na+ transport in the rat colon. Flupirtine stimulated electroneutral Na+ absorption in partially seromuscular-stripped colonic tissues, while simultaneously inhibiting short-circuit current (ISC; i.e., Cl- secretion). Both of these effects were attenuated by pretreatment with the ENS inhibitor, tetrodotoxin. The Na+/H+ exchanger isoform 3 (NHE-3)-selective inhibitor, S3226, significantly inhibited flupirtine-stimulated Na+ absorption, whereas the NHE-2-selective inhibitor HOE-694 did not. NHE-3 localization near the apical membranes of surface epithelial cells was also more apparent in flupirtine-treated colon versus control. Flupirtine did not alter epithelial Na+ channel (ENaC)-mediated Na+ absorption in distal colonic tissues obtained from hyperaldosteronaemic rats and had no effect in the normal ileum but did stimulate Na+ absorption in the proximal colon. Finally, the parallel effects of flupirtine on ISC (Cl- secretion) and Na+ absorption were significantly correlated with each other. Together, these data indicate that flupirtine stimulates NHE-3-dependent Na+ absorption, likely as a result of reduced stimulatory input to the colonic epithelium by submucosal ENS neurons.NEW & NOTEWORTHY We present a novel mechanism regarding regulation of epithelial ion transport by enteric neurons. Activation of neuronal KV7 K+ channels markedly stimulates Na+ absorption and inhibits Cl- secretion across the colonic epithelium. This may be useful in developing new treatments for diarrheal disorders, such as irritable bowel syndrome with diarrhea (IBS-D).
Collapse
Affiliation(s)
- Andrew J Nickerson
- Departments of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
21
|
Abstract
Rotavirus infection is highly prevalent in children, and the most severe effects are diarrhea and vomiting. It is well accepted that the enteric nervous system (ENS) is activated and plays an important role, but knowledge of how rotavirus activates nerves within ENS and to the vomiting center is lacking. Serotonin is released during rotavirus infection, and antagonists to the serotonin receptor subtype 3 (5-HT3 receptor) can attenuate rotavirus-induced diarrhea. In this study, we used a 5-HT3 receptor knockout (KO) mouse model to investigate the role of this receptor in rotavirus-induced diarrhea, motility, electrolyte secretion, inflammatory response, and vomiting reflex. The number of diarrhea days (P = 0.03) and the number of mice with diarrhea were lower in infected 5-HT3 receptor KO than wild-type pups. In vivo investigation of fluorescein isothiocyanate (FITC)-dextran transit time showed that intestinal motility was lower in the infected 5-HT3 receptor KO compared to wild-type mice (P = 0.0023). Ex vivo Ussing chamber measurements of potential difference across the intestinal epithelia showed no significant difference in electrolyte secretion between the two groups. Immediate early gene cFos expression level showed no difference in activation of the vomiting center in the brain. Cytokine analysis of the intestine indicated a low effect of inflammatory response in rotavirus-infected mice lacking the 5-HT3 receptor. Our findings indicate that the 5-HT3 receptor is involved in rotavirus-induced diarrhea via its effect on intestinal motility and that the vagus nerve signaling to the vomiting center occurs also in the absence of the 5-HT3 receptor. IMPORTANCE The mechanisms underlying rotavirus-induced diarrhea and vomiting are not yet fully understood. To better understand rotavirus pathophysiology, characterization of nerve signaling within the ENS and through vagal efferent nerves to the brain, which have been shown to be of great importance to the disease, is necessary. Serotonin (5-HT), a mediator of both diarrhea and vomiting, has been shown to be released from enterochromaffin cells in response to rotavirus infection and the rotavirus enterotoxin NSP4. Here, we investigated the role of the serotonin receptor 5-HT3, which is known to be involved in the nerve signals that regulate gut motility, intestinal secretion, and signal transduction through the vagus nerve to the brain. We show that the 5-HT3 receptor is involved in rotavirus-induced diarrhea by promoting intestinal motility. The findings shed light on new treatment possibilities for rotavirus diarrhea.
Collapse
|
22
|
Nickerson AJ, Rottgen TS, Rajendran VM. Activation of KCNQ (K V7) K + channels in enteric neurons inhibits epithelial Cl - secretion in mouse distal colon. Am J Physiol Cell Physiol 2021; 320:C1074-C1087. [PMID: 33852365 PMCID: PMC8285638 DOI: 10.1152/ajpcell.00536.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Voltage-gated Kv7 (KCNQ family) K+ channels are expressed in many neuronal populations and play an important role in regulating membrane potential by generating a hyperpolarizing K+ current and decreasing cell excitability. However, the role of KV7 channels in the neural regulation of intestinal epithelial Cl- secretion is not known. Cl- secretion in mouse distal colon was measured as a function of short-circuit current (ISC), and pharmacological approaches were used to test the hypothesis that activation of KV7 channels in enteric neurons would inhibit epithelial Cl- secretion. Flupirtine, a nonselective KV7 activator, inhibited basal Cl- secretion in mouse distal colon and abolished or attenuated the effects of drugs that target various components of enteric neurotransmission, including tetrodotoxin (NaV channel blocker), veratridine (NaV channel activator), nicotine (nicotinic acetylcholine receptor agonist), and hexamethonium (nicotinic antagonist). In contrast, flupritine did not block the response to epithelium-targeted agents VIP (endogenous VPAC receptor ligand) or carbachol (nonselective cholinergic agonist). Flupirtine inhibited Cl- secretion in both full-thickness and seromuscular-stripped distal colon (containing the submucosal, but not myenteric plexus) but generated no response in epithelial T84 cell monolayers. KV7.2 and KV7.3 channel proteins were detected by immunofluorescence in whole mount preparations of the submucosa from mouse distal colon. ICA 110381 (KV7.2/7.3 specific activator) inhibited Cl- secretion comparably to flupirtine. We conclude that KV7 channel activators inhibit neurally driven Cl- secretion in the colonic epithelium and may therefore have therapeutic benefit in treating pathologies associated with hyperexcitable enteric nervous system, such as irritable bowel syndrome with diarrhea (IBS-D).
Collapse
Affiliation(s)
- Andrew J Nickerson
- Departments of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Trey S Rottgen
- Departments of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
23
|
Julio-Pieper M, López-Aguilera A, Eyzaguirre-Velásquez J, Olavarría-Ramírez L, Ibacache-Quiroga C, Bravo JA, Cruz G. Gut Susceptibility to Viral Invasion: Contributing Roles of Diet, Microbiota and Enteric Nervous System to Mucosal Barrier Preservation. Int J Mol Sci 2021; 22:ijms22094734. [PMID: 33946994 PMCID: PMC8125429 DOI: 10.3390/ijms22094734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal lumen is a rich source of eukaryotic and prokaryotic viruses which, together with bacteria, fungi and other microorganisms comprise the gut microbiota. Pathogenic viruses inhabiting this niche have the potential to induce local as well as systemic complications; among them, the viral ability to disrupt the mucosal barrier is one mechanism associated with the promotion of diarrhea and tissue invasion. This review gathers recent evidence showing the contributing effects of diet, gut microbiota and the enteric nervous system to either support or impair the mucosal barrier in the context of viral attack.
Collapse
Affiliation(s)
- Marcela Julio-Pieper
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (A.L.-A.); (J.E.-V.); (J.A.B.)
- Correspondence:
| | - Alejandra López-Aguilera
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (A.L.-A.); (J.E.-V.); (J.A.B.)
| | - Johana Eyzaguirre-Velásquez
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (A.L.-A.); (J.E.-V.); (J.A.B.)
| | | | - Claudia Ibacache-Quiroga
- Centro de Micro-Bioinnovación (CMBi), Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Javier A. Bravo
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (A.L.-A.); (J.E.-V.); (J.A.B.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| |
Collapse
|
24
|
Hellysaz A, Hagbom M. Understanding the Central Nervous System Symptoms of Rotavirus: A Qualitative Review. Viruses 2021; 13:v13040658. [PMID: 33920421 PMCID: PMC8069368 DOI: 10.3390/v13040658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023] Open
Abstract
This qualitative review on rotavirus infection and its complications in the central nervous system (CNS) aims to understand the gut–brain mechanisms that give rise to CNS driven symptoms such as vomiting, fever, feelings of sickness, convulsions, encephalitis, and encephalopathy. There is substantial evidence to indicate the involvement of the gut–brain axis in symptoms such as vomiting and diarrhea. The underlying mechanisms are, however, not rotavirus specific, they represent evolutionarily conserved survival mechanisms for protection against pathogen entry and invasion. The reviewed studies show that rotavirus can exert effects on the CNS trough nervous gut–brain communication, via the release of mediators, such as the rotavirus enterotoxin NSP4, which stimulates neighboring enterochromaffin cells in the intestine to release serotonin and activate both enteric neurons and vagal afferents to the brain. Another route to CNS effects is presented through systemic spread via lymphatic pathways, and there are indications that rotavirus RNA can, in some cases where the blood brain barrier is weakened, enter the brain and have direct CNS effects. CNS effects can also be induced indirectly as a consequence of systemic elevation of toxins, cytokines, and/or other messenger molecules. Nevertheless, there is still no definitive or consistent evidence for the underlying mechanisms of rotavirus-induced CNS complications and more in-depth studies are required in the future.
Collapse
|
25
|
Lv H, Li Y, Xue C, Dong N, Bi C, Shan A. Aquaporin: targets for dietary nutrients to regulate intestinal health. J Anim Physiol Anim Nutr (Berl) 2021; 106:167-180. [PMID: 33811387 DOI: 10.1111/jpn.13539] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/07/2020] [Accepted: 02/07/2021] [Indexed: 12/22/2022]
Abstract
Aquaporins (AQP) are a class of water channel membrane proteins that are widely expressed in the gut. The biological functions of aquaporins, which regulate the absorption and secretion of water molecules and small solutes, maintain the stable state of the intestine, regulate cell proliferation and migration, participate in the process of intestinal inflammation, and mediate tumorigenesis, demonstrate the physiological significance of these channels in intestinal health. The pathology of many intestinal diseases is associated with changes in the location and expression of aquaporins, such as intestinal infection, which can change the expression and distribution of AQPs in intestinal tissues/cells by affecting cytokines and chemokines. This can lead to various intestinal diseases such as diarrhoea, which also suggests the importance of aquaporins in the prevention and treatment of intestinal diseases. This review summarizes the relationship between aquaporins and intestinal physiology and diseases and focuses on drugs (such as plant extracts) or diets that can regulate intestinal health by regulating aquaporins. It provides a basis for establishing aquaporins as biomarkers and therapeutic targets for intestinal health.
Collapse
Affiliation(s)
- Hao Lv
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Ying Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chenyu Xue
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chongpeng Bi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
26
|
Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol 2021; 18:269-283. [PMID: 33589829 PMCID: PMC7883337 DOI: 10.1038/s41575-021-00416-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to more than 200 countries and regions globally. SARS-CoV-2 is thought to spread mainly through respiratory droplets and close contact. However, reports have shown that a notable proportion of patients with coronavirus disease 2019 (COVID-19) develop gastrointestinal symptoms and nearly half of patients confirmed to have COVID-19 have shown detectable SARS-CoV-2 RNA in their faecal samples. Moreover, SARS-CoV-2 infection reportedly alters intestinal microbiota, which correlated with the expression of inflammatory factors. Furthermore, multiple in vitro and in vivo animal studies have provided direct evidence of intestinal infection by SARS-CoV-2. These lines of evidence highlight the nature of SARS-CoV-2 gastrointestinal infection and its potential faecal-oral transmission. Here, we summarize the current findings on the gastrointestinal manifestations of COVID-19 and its possible mechanisms. We also discuss how SARS-CoV-2 gastrointestinal infection might occur and the current evidence and future studies needed to establish the occurrence of faecal-oral transmission.
Collapse
Affiliation(s)
- Meng Guo
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wanyin Tao
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Data Science, University of Science and Technology of China, Hefei, China.
- CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
27
|
Chang-Graham AL, Perry JL, Engevik MA, Engevik KA, Scribano FJ, Gebert JT, Danhof HA, Nelson JC, Kellen JS, Strtak AC, Sastri NP, Estes MK, Britton RA, Versalovic J, Hyser JM. Rotavirus induces intercellular calcium waves through ADP signaling. Science 2020; 370:370/6519/eabc3621. [PMID: 33214249 PMCID: PMC7957961 DOI: 10.1126/science.abc3621] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/16/2020] [Indexed: 01/14/2023]
Abstract
Rotavirus causes severe diarrheal disease in children by broadly dysregulating intestinal homeostasis. However, the underlying mechanism(s) of rotavirus-induced dysregulation remains unclear. We found that rotavirus-infected cells produce paracrine signals that manifested as intercellular calcium waves (ICWs), observed in cell lines and human intestinal enteroids. Rotavirus ICWs were caused by the release of extracellular adenosine 5'-diphosphate (ADP) that activated P2Y1 purinergic receptors on neighboring cells. ICWs were blocked by P2Y1 antagonists or CRISPR-Cas9 knockout of the P2Y1 receptor. Blocking the ADP signal reduced rotavirus replication, inhibited rotavirus-induced serotonin release and fluid secretion, and reduced diarrhea severity in neonatal mice. Thus, rotavirus exploited paracrine purinergic signaling to generate ICWs that amplified the dysregulation of host cells and altered gastrointestinal physiology to cause diarrhea.
Collapse
Affiliation(s)
- Alexandra L. Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Jacob L. Perry
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Melinda A. Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, USA,Department of Pathology, Texas Children’s Hospital, USA
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Francesca J. Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - J. Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Joel C. Nelson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA
| | - Joseph S. Kellen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Alicia C. Strtak
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Narayan P. Sastri
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA,Department of Medicine, Gastroenterology and Hepatology, Baylor College of Medicine, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, USA,Department of Pathology, Texas Children’s Hospital, USA
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA,Corresponding author. Correspondence and requests for materials should be addressed to J.H.
| |
Collapse
|
28
|
Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020; 77:4505-4522. [PMID: 32424438 PMCID: PMC7599184 DOI: 10.1007/s00018-020-03543-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The enteric nervous system (ENS) is an extensive network comprising millions of neurons and glial cells contained within the wall of the gastrointestinal tract. The major functions of the ENS that have been most studied include the regulation of local gut motility, secretion, and blood flow. Other areas that have been gaining increased attention include its interaction with the immune system, with the gut microbiota and its involvement in the gut-brain axis, and neuro-epithelial interactions. Thus, the enteric circuitry plays a central role in intestinal homeostasis, and this becomes particularly evident when there are faults in its wiring such as in neurodevelopmental or neurodegenerative disorders. In this review, we first focus on the current knowledge on the cellular composition of enteric circuits. We then further discuss how enteric circuits detect and process external information, how these signals may be modulated by physiological and pathophysiological factors, and finally, how outputs are generated for integrated gut function.
Collapse
Affiliation(s)
- Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
29
|
Roth AN, Helm EW, Mirabelli C, Kirsche E, Smith JC, Eurell LB, Ghosh S, Altan-Bonnet N, Wobus CE, Karst SM. Norovirus infection causes acute self-resolving diarrhea in wild-type neonatal mice. Nat Commun 2020; 11:2968. [PMID: 32528015 PMCID: PMC7289885 DOI: 10.1038/s41467-020-16798-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
Human noroviruses are the leading cause of severe childhood diarrhea worldwide, yet we know little about their pathogenic mechanisms. Murine noroviruses cause diarrhea in interferon-deficient adult mice but these hosts also develop systemic pathology and lethality, reducing confidence in the translatability of findings to human norovirus disease. Herein we report that a murine norovirus causes self-resolving diarrhea in the absence of systemic disease in wild-type neonatal mice, thus mirroring the key features of human norovirus disease and representing a norovirus small animal disease model in wild-type mice. Intriguingly, lymphocytes are critical for controlling acute norovirus replication while simultaneously contributing to disease severity, likely reflecting their dual role as targets of viral infection and key components of the host response.
Collapse
Affiliation(s)
- Alexa N Roth
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Emily W Helm
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Erin Kirsche
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jonathan C Smith
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Laura B Eurell
- Office of Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sourish Ghosh
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie M Karst
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Abstract
Human and mouse studies have shown that rotavirus infection is associated with low inflammation and unaffected intestinal barrier at the time of diarrhea, properties different from most bacterial and inflammatory diseases of the gut. We showed by in vitro, ex vivo, and in vivo experiments that neurotrophic factors and 5-HT have barrier protective properties during rotavirus insult. These observations advance our understanding of how the gut barrier is protected against rotavirus and suggest that rotavirus affects the gut barrier differently from bacteria. This is the first report to show that neurotrophic factors contribute to maintain the gut epithelial barrier during viral insult. Increased intestinal permeability has been proposed as a mechanism of rotavirus-induced diarrhea. Studies with humans and mice have, however, shown that rotavirus leaves intestinal permeability unaffected or even reduced during diarrhea, in contrast to most bacterial infections. Gastrointestinal permeability is regulated by the vagus nerve and the enteric nervous system, which is composed of neurons and enteric glial cells (EGCs). We investigated whether the vagus nerve, serotonin (5-HT), EGCs, and neurotropic factors contribute to maintaining gut barrier homeostasis during rotavirus infection. Using subdiaphragmatic vagotomized and 5-HT3 receptor knockout mice, we found that the unaffected epithelial barrier during rotavirus infection is independent of the vagus nerve but dependent on 5-HT signaling through enteric intrinsic 5-HT3 receptors. Immunofluorescence analysis showed that rotavirus-infected enterocytes were in close contact with EGCs and enteric neurons and that the glial cell-derived neurotrophic factor (GDNF) was strongly upregulated in enterocytes of infected mice. Moreover, rotavirus and 5-HT activated EGCs (P < 0.001). Using Ussing chambers, we found that GDNF and S-nitrosoglutathione (GSNO) led to denser epithelial barriers in small intestinal resections from noninfected mice (P < 0.01) and humans (P < 0.001) and that permeability was unaffected in rotavirus-infected mice. GSNO made the epithelial barrier denser in Caco-2 cells by increasing the expression of the tight junction protein zona occludens 1 (P < 0.001), resulting in reduced passage of fluorescein isothiocyanate dextran (P < 0.05) in rotavirus-infected monolayers. This is the first report to show that neurotropic factors contribute to maintaining the gut epithelial barrier during viral insult.
Collapse
|
31
|
Huang H, Pu Y, Liao D, Zhu Z, Wang J, Cui Y. The expression of calcium-sensing receptor during rotavirus induced diarrhea in neonatal mice. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2019. [DOI: 10.23736/s0393-3660.18.03910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Duan T, Cil O, Thiagarajah JR, Verkman AS. Intestinal epithelial potassium channels and CFTR chloride channels activated in ErbB tyrosine kinase inhibitor diarrhea. JCI Insight 2019; 4:126444. [PMID: 30668547 PMCID: PMC6478423 DOI: 10.1172/jci.insight.126444] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Diarrhea is a major side effect of ErbB receptor tyrosine kinase inhibitors (TKIs) in cancer chemotherapy. Here, we show that the primary mechanism of ErbB TKI diarrhea is activation of basolateral membrane potassium (K+) channels and apical membrane chloride (Cl-) channels in intestinal epithelia and demonstrate the efficacy of channel blockers in a rat model of TKI diarrhea. Short-circuit current in colonic epithelial cells showed that the TKIs gefitinib, lapatinib, and afatinib do not affect basal secretion but amplify carbachol-stimulated secretion by 2- to 3-fold. Mechanistic studies with the second-generation TKI afatinib showed that the amplifying effect on Cl- secretion was Ca2+ and cAMP independent, was blocked by CF transmembrane conductance regulator (CFTR) and K+ channel inhibitors, and involved EGFR binding and ERK signaling. Afatinib-amplified activation of basolateral K+ and apical Cl- channels was demonstrated by selective membrane permeabilization, ion substitution, and channel inhibitors. Rats that were administered afatinib orally at 60 mg/kg/day developed diarrhea with increased stool water from approximately 60% to greater than 80%, which was reduced by up to 75% by the K+ channel inhibitors clotrimazole or senicapoc or the CFTR inhibitor (R)-BPO-27. These results indicate a mechanism for TKI diarrhea involving K+ and Cl- channel activation and support the therapeutic efficacy of channel inhibitors.
Collapse
Affiliation(s)
- Tianying Duan
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Onur Cil
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
| |
Collapse
|
33
|
Vergnolle N, Cirillo C. Neurons and Glia in the Enteric Nervous System and Epithelial Barrier Function. Physiology (Bethesda) 2019; 33:269-280. [PMID: 29897300 DOI: 10.1152/physiol.00009.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelial barrier is the largest exchange surface between the body and the external environment. Its functions are regulated by luminal, and also internal, components including the enteric nervous system. This review summarizes current knowledge about the role of the digestive "neuronal-glial-epithelial unit" on epithelial barrier function.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Carla Cirillo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Laboratory for Enteric Neuroscience, TARGID, University of Leuven , Leuven , Belgium
| |
Collapse
|
34
|
Calcium-sensing receptor in nutrient sensing: an insight into the modulation of intestinal homoeostasis. Br J Nutr 2018; 120:881-890. [DOI: 10.1017/s0007114518002088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe animal gut effectively prevents the entry of hazardous substances and microbes while permitting the transfer of nutrients, such as water, electrolytes, vitamins, proteins, lipids, carbohydrates, minerals and microbial metabolites, which are intimately associated with intestinal homoeostasis. The gut maintains biological functions through its nutrient-sensing receptors, including the Ca-sensing receptor (CaSR), which activates a variety of signalling pathways, depending on cellular context. CaSR coordinates food digestion and nutrient absorption, promotes cell proliferation and differentiation, regulates energy metabolism and immune response, stimulates hormone secretion, mitigates secretory diarrhoea and enhances intestinal barrier function. Thus, CaSR is crucial to the maintenance of gut homoeostasis and protection of intestinal health. In this review, we focused on the emerging roles of CaSR in the modulation of intestinal homoeostasis including related underlying mechanisms. By elucidating the relationship between CaSR and animal gut homoeostasis, effective and inexpensive methods for treating intestinal health imbalance through nutritional manipulation can be developed. This article is expected to provide experimental data of the effects of CaSR on animal or human health.
Collapse
|
35
|
Kashyap G, Singh R, Malik Y, Agrawal R, Singh K, Kumar P, Sahoo M, Gupta D, Singh R. Experimental bovine rotavirus-A (RV-A)infection causes intestinal and extra-intestinal pathology in suckling mice. Microb Pathog 2018; 121:22-26. [DOI: 10.1016/j.micpath.2018.04.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/17/2018] [Accepted: 04/22/2018] [Indexed: 11/25/2022]
|
36
|
Tang L, Jiang L, McIntyre ME, Petrova E, Cheng SX. Calcimimetic acts on enteric neuronal CaSR to reverse cholera toxin-induced intestinal electrolyte secretion. Sci Rep 2018; 8:7851. [PMID: 29777154 PMCID: PMC5959902 DOI: 10.1038/s41598-018-26171-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/08/2018] [Indexed: 01/19/2023] Open
Abstract
Treatment of acute secretory diarrheal illnesses remains a global challenge. Enterotoxins produce secretion through direct epithelial action and indirectly by activating enteric nervous system (ENS). Using a microperfused colonic crypt technique, we have previously shown that R568, a calcimimetic that activates the calcium-sensing receptor (CaSR), can act on intestinal epithelium and reverse cholera toxin-induced fluid secretion. In the present study, using the Ussing chamber technique in conjunction with a tissue-specific knockout approach, we show that the effects of cholera toxin and CaSR agonists on electrolyte secretion by the intestine can also be attributed to opposing actions of the toxin and CaSR on the activity of the ENS. Our results suggest that targeting intestinal CaSR might represent a previously undescribed new approach for treating secretory diarrheal diseases and other conditions with ENS over-activation.
Collapse
Affiliation(s)
- Lieqi Tang
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Lingli Jiang
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Megan E McIntyre
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Ekaterina Petrova
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Sam X Cheng
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA. .,Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
37
|
HIV-1 Tat-induced diarrhea is improved by the PPARalpha agonist, palmitoylethanolamide, by suppressing the activation of enteric glia. J Neuroinflammation 2018; 15:94. [PMID: 29573741 PMCID: PMC5866515 DOI: 10.1186/s12974-018-1126-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/09/2018] [Indexed: 11/17/2022] Open
Abstract
Background Diarrhea is a severe complication in HIV-1-infected patients with Trans-activator of transcription (HIV-1 Tat) protein being recognized as a major underlying cause. Beside its direct enterotoxic effects, Tat protein has been recently shown to affect enteric glial cell (EGC) activity. EGCs regulate intestinal inflammatory responses by secreting pro-inflammatory molecules; nonetheless, they might also release immune-regulatory factors, as palmytoilethanolamide (PEA), which exerts anti-inflammatory effects by activating PPARα receptors. We aimed at clarifying whether EGCs are involved in HIV-1 Tat-induced diarrhea and if PEA exerts antidiarrheal activity. Methods Diarrhea was induced by intracolonic administration of HIV-1 Tat protein in rats at day 1. PEA alone or in the presence of peroxisome proliferator-activated receptor (PPAR) antagonists was given intraperitoneally from day 2 to day 7. S100B, iNOS, NF-kappaB, TLR4 and GFAP expression were evaluated in submucosal plexi, while S100B and NO levels were measured in EGC submucosal plexi lysates, respectively. To verify whether PEA effects were PPARα-mediated, PPARα−/− mice were also used. After 7 days from diarrhea induction, endogenous PEA levels were measured in submucosal plexi homogenates deriving from rats and PPARα−/− mice. Results HIV-1 Tat protein induced rapid onset diarrhea alongside with a significant activation of EGCs. Tat administration significantly increased all hallmarks of neuroinflammation by triggering TLR4 and NF-kappaB activation and S100B and iNOS expression. Endogenous PEA levels were increased following HIV-1 Tat exposure in both wildtype and knockout animals. In PPARα−/− mice, PEA displayed no effects. In wildtype rats, PEA, via PPARα-dependent mechanism, resulted in a significant antidiarrheal activity in parallel with marked reduction of EGC-sustained neuroinflammation. Conclusions EGCs mediate HIV-1 Tat-induced diarrhea by sustaining the intestinal neuroinflammatory response. These effects are regulated by PEA through a selective PPARα-dependent mechanism. PEA might be considered as an adjuvant therapy in HIV-1-induced diarrhea. Electronic supplementary material The online version of this article (10.1186/s12974-018-1126-4) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Interaction of Human Enterochromaffin Cells with Human Enteric Adenovirus 41 Leads to Serotonin Release and Subsequent Activation of Enteric Glia Cells. J Virol 2018; 92:JVI.00026-18. [PMID: 29367250 DOI: 10.1128/jvi.00026-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 01/17/2023] Open
Abstract
Human adenovirus 41 (HAdV-41) causes acute gastroenteritis in young children. The main characteristics of HAdV-41 infection are diarrhea and vomiting. Nevertheless, the precise mechanism of HAdV-41-induced diarrhea is unknown, as a suitable small-animal model has not been described. In this study, we used the human midgut carcinoid cell line GOT1 to investigate the effect of HAdV-41 infection and the individual HAdV-41 capsid proteins on serotonin release by enterochromaffin cells and on enteric glia cell (EGC) activation. We first determined that HAdV-41 could infect the enterochromaffin cells. Immunofluorescence staining revealed that the cells expressed HAdV-41-specific coxsackievirus and adenovirus receptor (CAR); flow cytometry analysis supported these findings. HAdV-41 infection of the enterochromaffin cells induced serotonin secretion dose dependently. In contrast, control infection with HAdV-5 did not induce serotonin secretion in the cells. Confocal microscopy studies of enterochromaffin cells infected with HAdV-41 revealed decreased serotonin immunofluorescence compared to that in uninfected cells. Incubation of the enterochromaffin cells with purified HAdV-41 short fiber knob and hexon proteins increased the serotonin levels in the harvested cell supernatant significantly. HAdV-41 infection could also activate EGCs, as shown in the significantly altered expression of glia fibrillary acidic protein (GFAP) in EGCs incubated with HAdV-41. The EGCs were also activated by serotonin alone, as shown in the significantly increased GFAP staining intensity. Likewise, EGCs were activated by the cell supernatant of HAdV-41-infected enterochromaffin cells.IMPORTANCE The nonenveloped human adenovirus 41 causes diarrhea, vomiting, dehydration, and low-grade fever mainly in children under 2 years of age. Even though acute gastroenteritis is well described, how human adenovirus 41 causes diarrhea is unknown. In our study, we analyzed the effect of human adenovirus 41 infection on human enterochromaffin cells and found it stimulates serotonin secretion in the cells, which is involved in regulation of intestinal secretion and gut motility and can also activate enteric glia cells, which are found in close proximity to enterochromaffin cells in vivo This disruption of gut barrier homeostasis as maintained by these cells following human adenovirus 41 infection might be a mechanism in enteric adenovirus pathogenesis in humans and could indicate a possible serotonin-dependent cross talk between human adenovirus 41, enterochromaffin cells, and enteric glia cells.
Collapse
|
39
|
Inability to reduce morbidity of diarrhea by ORS: can we design a better therapy? Pediatr Res 2018; 83:559-563. [PMID: 29168980 PMCID: PMC5902428 DOI: 10.1038/pr.2017.295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/14/2017] [Indexed: 01/05/2023]
Abstract
Diarrheal disease is a worldwide problem that still causes significant morbidity and mortality among children. Currently, oral rehydration solution (ORS) is the standard of care for acute diarrhea in pediatric patients. Although effective in reducing mortality, ORS does not alleviate diarrheal symptoms, thus reducing caregiver compliance and therapeutic efficacy. This article will briefly review the current problem of pediatric diarrhea and the shortcomings of current therapies; however, the focus of this review is to examine the intestinal calcium-sensing receptor (CaSR). The author summarizes the evidence suggesting that targeting the CaSR will enable clinicians to address all four major pathophysiological mechanisms of diarrheal disease, and substantiates the need for future research regarding this therapy.
Collapse
|
40
|
Baldascino E, Di Cristina G, Tedesco P, Hobbs C, Shaw TJ, Ponte G, Andrews PLR. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression. Front Physiol 2017; 8:1001. [PMID: 29326594 PMCID: PMC5736919 DOI: 10.3389/fphys.2017.01001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin-related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake regulation and digestive tract motility control and (ii) the difference in relative gene expression in the gastric ganglion in octopus with relatively high and low parasitic loads and the similarities to changes in the enteric innervation of mammals with digestive tract parasites. Our results provide additional data to the described neurochemical complexity of O. vulgaris gastric ganglion.
Collapse
Affiliation(s)
- Elena Baldascino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giulia Di Cristina
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Perla Tedesco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Tanya J. Shaw
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| | - Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| |
Collapse
|
41
|
Differences of Rotavirus Vaccine Effectiveness by Country: Likely Causes and Contributing Factors. Pathogens 2017; 6:pathogens6040065. [PMID: 29231855 PMCID: PMC5750589 DOI: 10.3390/pathogens6040065] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022] Open
Abstract
Rotaviruses are a major cause of acute gastroenteritis in infants and young children worldwide and in many other mammalian and avian host species. Since 2006, two live-attenuated rotavirus vaccines, Rotarix® and RotaTeq®, have been licensed in >100 countries and are applied as part of extended program of vaccination (EPI) schemes of childhood vaccinations. Whereas the vaccines have been highly effective in high-income countries, they were shown to be considerably less potent in low- and middle-income countries. Rotavirus-associated disease was still the cause of death in >200,000 children of <5 years of age worldwide in 2013, and the mortality is concentrated in countries of sub-Saharan Africa and S.E. Asia. Various factors that have been identified or suggested as being involved in the differences of rotavirus vaccine effectiveness are reviewed here. Recognition of these factors will help to achieve gradual worldwide improvement of rotavirus vaccine effectiveness.
Collapse
|
42
|
Hagbom M, Novak D, Ekström M, Khalid Y, Andersson M, Lindh M, Nordgren J, Svensson L. Ondansetron treatment reduces rotavirus symptoms-A randomized double-blinded placebo-controlled trial. PLoS One 2017; 12:e0186824. [PMID: 29077725 PMCID: PMC5659648 DOI: 10.1371/journal.pone.0186824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
Background Rotavirus and norovirus cause acute gastroenteritis with severe diarrhoea and vomiting, symptoms that may lead to severe dehydration and death. The objective of this randomized double-blinded placebo-controlled study was to investigate whether ondansetron, a serotonin receptor antagonist could attenuate rotavirus- and norovirus-induced vomiting and diarrhoea, which would facilitate oral rehydration and possibly accelerate recovery and reduce need for hospitalization. Methods Children with acute gastroenteritis, aged 6 months to 16 years where enrolled (n = 104) and randomized to one single oral dose (0.15mg/kg) of ondansetron (n = 52) or placebo (n = 52). The number of diarrhoea and vomiting episodes during the 24 hours following treatment was reported as well as the number of days with symptoms. Pathogens in faeces were diagnosed by real-time PCR. Outcome parameters were analyzed for rotavirus- and norovirus-positive children. Results One dose of oral ondansetron reduced duration of rotavirus clinical symptoms (p = 0.014), with a median of two days. Furthermore, ondansetron reduced diarrhea episodes, most pronounced in children that had been sick for more than 3 days before treatment (p = 0.028). Conclusion Ondansetron may be a beneficial treatment for children with rotavirus gastroenteritis. Trial registration European Clinical Trial Database EudraCT 2011-005700-15.
Collapse
Affiliation(s)
- Marie Hagbom
- Department of Clinical and Experimental Medicine, Division of Molecular Virology, Medical Faculty, Linköping University, Linköping, Sweden
| | - Daniel Novak
- Sahlgrenska University Hospital, The Queen Silvia Children’s Hospital, The Emergency Department, Gothenburg, Sweden
| | - Malin Ekström
- Sahlgrenska University Hospital, The Queen Silvia Children’s Hospital, The Emergency Department, Gothenburg, Sweden
| | - Younis Khalid
- Sahlgrenska University Hospital, The Queen Silvia Children’s Hospital, The Emergency Department, Gothenburg, Sweden
| | - Maria Andersson
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Nordgren
- Department of Clinical and Experimental Medicine, Division of Molecular Virology, Medical Faculty, Linköping University, Linköping, Sweden
| | - Lennart Svensson
- Department of Clinical and Experimental Medicine, Division of Molecular Virology, Medical Faculty, Linköping University, Linköping, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
43
|
HIV-1 Tat-induced diarrhea evokes an enteric glia-dependent neuroinflammatory response in the central nervous system. Sci Rep 2017; 7:7735. [PMID: 28798420 PMCID: PMC5552820 DOI: 10.1038/s41598-017-05245-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Despite the effectiveness of combined anti-retroviral therapy, human immunodeficiency virus (HIV) infected-patients frequently report diarrhea and neuropsychological deficits. It is claimed that the viral HIV-1 Trans activating factor (HIV-1 Tat) protein is responsible for both diarrhea and neurotoxic effects, but the underlying mechanisms are not known. We hypothesize that colonic application of HIV-1 Tat activates glial cells of the enteric nervous system (EGCs), leading to a neuroinflammatory response able to propagate to the central nervous system. We demonstrated that HIV-1 Tat-induced diarrhea was associated with a significant activation of glial cells within the colonic wall, the spinal cord and the frontal cortex, and caused a consistent impairment of the cognitive performances. The inhibition of glial cells activity by lidocaine, completely abolished the above-described effects. These observations point out the role of glial cells as putative effectors in HIV-1 Tat-associated gastrointestinal and neurological manifestations and key regulators of gut-brain signaling.
Collapse
|
44
|
Abstract
Annual mortality rates due to infectious diarrhea are about 2.2 million; children are the most vulnerable age group to severe gastroenteritis, representing group A rotaviruses as the main cause of disease. One of the main factors of rotavirus pathogenesis is the NSP4 protein, which has been characterized as a viral toxin involved in triggering several cellular responses leading to diarrhea. Furthermore, the rotavirus protein NSP1 has been associated with interferon production inhibition by inducing the degradation of interferon regulatory factors IRF3, IRF5, and IRF7. On the other hand, probiotics such as Bifidobacterium and Lactobacillus species in combination with prebiotics such as inulin, HMO, scGOS, lcFOS have been associated with improved generalized antiviral response and anti-rotavirus effect by the reduction of rotavirus infectivity and viral shedding, decreased expression of NSP4 and increased levels of specific anti-rotavirus IgAs. Moreover, these probiotics and prebiotics have been related to shorter duration and severity of rotavirus diarrhea, to the prevention of infection and reduced incidence of reinfections. In this review we will discuss in detail about the rotavirus pathogenesis and immunity, and how probiotics such as Lactobacillus and Bifidobacterium species in combination with prebiotics have been associated with the prevention or modulation of rotavirus severe gastroenteritis.
Collapse
|
45
|
Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors. PLoS One 2017; 12:e0173979. [PMID: 28346473 PMCID: PMC5367788 DOI: 10.1371/journal.pone.0173979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/01/2017] [Indexed: 12/17/2022] Open
Abstract
Human rotavirus (RV) infection is a leading cause of dehydrating diarrhea in infants and young children worldwide. Since therapeutic approaches to RV gastroenteritis are limited to alleviation of dehydration with oral rehydration solutions, more direct approaches to palliate symptoms of RV gastroenteritis are required. Treatments with probiotics have been increasingly recognized as alternative safe and low cost treatments for moderate infectious diarrhea. In this study, Bifidobacterium bifidum G9-1 (BBG9-1), which has been used as an intestinal drug for several decades, was shown to have a remarkable protective effect against RV gastroenteritis in a suckling mice model. As well as prophylactic oral administration of BBG9-1 from 2 days before RV infection, therapeutic oral administration of BBG9-1 from 1 day after RV infection significantly alleviated RV-induced diarrhea. Therapeutic administration of BBG9-1 reduced various types of damage in the small intestine, such as epithelial vacuolization and villous shortening, and significantly diminished the infectious RV titer in mixtures of cecal contents and feces. It was also shown that therapeutic administration of BBG9-1 significantly increased the number of acidic mucin-positive goblet cells and the gene expression of mucosal protective factors including MUC2, MUC3, MUC4, TGFβ1 and TFF3 in the small intestine. This led to alleviation of low gut permeability shown as decreased gene expression levels of occludin, claudin-1 and villin-1 after RV infection. Furthermore, in the small intestine, therapeutic administration of BBG9-1 significantly palliated the decreased gene expression of SGLT-1, which plays an important role in water absorption. In the large intestine, administered BBG9-1 was shown to replicate to assimilate undigested nutrients, resulting in normalization of the abnormally high osmotic pressure. These results suggested that water malabsorption caused by RV infection was alleviated in mice administered BBG9-1. Thus, the present study showed that oral administration of BBG9-1 palliated diarrhea partly through protection against RV-induced lesions by inducing mucosal protective factors. Oral administration of BBG9-1 is thought to be an efficient method for management of an RV epidemic for both prophylactic and therapeutic purposes.
Collapse
|
46
|
Yu H, Hasan NM, In JG, Estes MK, Kovbasnjuk O, Zachos NC, Donowitz M. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology. Annu Rev Physiol 2017; 79:291-312. [PMID: 28192061 PMCID: PMC5549102 DOI: 10.1146/annurev-physiol-021115-105211] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.
Collapse
Affiliation(s)
- Huimin Yu
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Nesrin M Hasan
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Julie G In
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
47
|
Abstract
The lining of the gastrointestinal tract needs to be easily accessible to nutrients and, at the same time, defend against pathogens and chemical challenges. This lining is the largest and most vulnerable surface that faces the outside world. To manage the dual problems of effective nutrient conversion and defence, the gut lining has a sophisticated system for detection of individual chemical entities, pathogenic organisms and their products, and physico-chemical properties of its contents. Detection is through specific receptors that signal to the gut endocrine system, the nervous system, the immune system and local tissue defence systems. These effectors, in turn, modify digestive functions and contribute to tissue defence. Receptors for nutrients include taste receptors for sweet, bitter and savoury, free fatty acid receptors, peptide and phytochemical receptors, that are primarily located on enteroendocrine cells. Hormones released by enteroendocrine cells act locally, through the circulation and via the nervous system, to optimise digestion and mucosal health. Pathogen detection is both through antigen presentation to T-cells and through pattern-recognition receptors (PRRs). Activation of PRRs triggers local tissue defence, for example, by causing release of antimicrobials from Paneth cells. Toxic chemicals, including plant toxins, are sensed and then avoided, expelled or metabolised. It continues to be a major challenge to develop a comprehensive understanding of the integrated responses of the gastrointestinal tract to its luminal contents.
Collapse
|
48
|
McQuade RM, Stojanovska V, Abalo R, Bornstein JC, Nurgali K. Chemotherapy-Induced Constipation and Diarrhea: Pathophysiology, Current and Emerging Treatments. Front Pharmacol 2016; 7:414. [PMID: 27857691 PMCID: PMC5093116 DOI: 10.3389/fphar.2016.00414] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) side-effects of chemotherapy are a debilitating and often overlooked clinical hurdle in cancer management. Chemotherapy-induced constipation (CIC) and Diarrhea (CID) present a constant challenge in the efficient and tolerable treatment of cancer and are amongst the primary contributors to dose reductions, delays and cessation of treatment. Although prevalence of CIC is hard to estimate, it is believed to affect approximately 16% of cancer patients, whilst incidence of CID has been estimated to be as high as 80%. Despite this, the underlying mechanisms of both CID and CIC remain unclear, but are believed to result from a combination of intersecting mechanisms including inflammation, secretory dysfunctions, GI dysmotility and alterations in GI innervation. Current treatments for CIC and CID aim to reduce the severity of symptoms rather than combating the pathophysiological mechanisms of dysfunction, and often result in worsening of already chronic GI symptoms or trigger the onset of a plethora of other side-effects including respiratory depression, uneven heartbeat, seizures, and neurotoxicity. Emerging treatments including those targeting the enteric nervous system present promising avenues to alleviate CID and CIC. Identification of potential targets for novel therapies to alleviate chemotherapy-induced toxicity is essential to improve clinical outcomes and quality of life amongst cancer sufferers.
Collapse
Affiliation(s)
- Rachel M McQuade
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Vanesa Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Universidad Rey Juan CarlosMadrid, Spain; Grupo de Excelencia Investigadora URJC, Banco de Santander Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Universidad Rey Juan CarlosMadrid, Spain; Unidad Asociada al Instituto de Química Médica del Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada al Instituto de Investigación en Ciencias de la Alimentación del Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Melbourne VIC, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| |
Collapse
|
49
|
Cox HM. Neuroendocrine peptide mechanisms controlling intestinal epithelial function. Curr Opin Pharmacol 2016; 31:50-56. [PMID: 27597736 DOI: 10.1016/j.coph.2016.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/20/2016] [Accepted: 08/12/2016] [Indexed: 01/01/2023]
Abstract
Enteroendocrine cells (EECs) contain different combinations of hormones, which are released following stimulation of nutrient receptors that are selectively expressed by these cells. This chemosensation varies according to the intestinal area and species of interest, and responses to meals are rapidly modified following bariatric surgery. Such surgically-induced gastrointestinal (GI) changes highlight considerable enteroplasticity, however our understanding of even the acute physiological control and consequences of neuroendocrine peptide release is still under-developed. This review focuses on recent advances in nutrient G protein-coupled receptor (GPCR)-chemosensation in L cells, the patterns of peptide release and consequent changes in GI function. A clearer resolution of these mucosal mechanisms will shed light on potential receptor-target combinations that could provide less-invasive anti-diabesity strategies in future.
Collapse
Affiliation(s)
- Helen M Cox
- Wolfson Centre for Age-Related Diseases, IoPPN, King's College London, London SE1 1UL, UK.
| |
Collapse
|
50
|
Abstract
Rotavirus, a member of the family Reoviridae, was identified as the leading etiological agent of severe gastroenteritis in infants and young children in 1973. The rotavirus genome is composed of 11 gene segments of double-stranded (ds)RNA. During the last 40 years, a large amount of basic research on rotavirus structure, genome, antigen, replication, pathogenesis, epidemiology, immune responses, and evolution has been accumulated. This article reviews the fundamental aspects of rotavirology including recent important achievements in research.
Collapse
|