1
|
Hart R, Cardace D. Mineral Indicators of Geologically Recent Past Habitability on Mars. Life (Basel) 2023; 13:2349. [PMID: 38137950 PMCID: PMC10744562 DOI: 10.3390/life13122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We provide new support for habitable microenvironments in the near-subsurface of Mars, hosted in Fe- and Mg-rich rock units, and present a list of minerals that can serve as indicators of specific water-rock reactions in recent geologic paleohabitats for follow-on study. We modeled, using a thermodynamic basis without selective phase suppression, the reactions of published Martian meteorites and Jezero Crater igneous rock compositions and reasonable planetary waters (saline, alkaline waters) using Geochemist's Workbench Ver. 12.0. Solid-phase inputs were meteorite compositions for ALH 77005, Nakhla, and Chassigny, and two rock units from the Mars 2020 Perseverance rover sites, Máaz and Séítah. Six plausible Martian groundwater types [NaClO4, Mg(ClO4)2, Ca(ClO4)2, Mg-Na2(ClO4)2, Ca-Na2(ClO4)2, Mg-Ca(ClO4)2] and a unique Mars soil-water analog solution (dilute saline solution) named "Rosy Red", related to the Phoenix Lander mission, were the aqueous-phase inputs. Geophysical conditions were tuned to near-subsurface Mars (100 °C or 373.15 K, associated with residual heat from a magmatic system, impact event, or a concentration of radionuclides, and 101.3 kPa, similar to <10 m depth). Mineral products were dominated by phyllosilicates such as serpentine-group minerals in most reaction paths, but differed in some important indicator minerals. Modeled products varied in physicochemical properties (pH, Eh, conductivity), major ion activities, and related gas fugacities, with different ecological implications. The microbial habitability of pore spaces in subsurface groundwater percolation systems was interrogated at equilibrium in a thermodynamic framework, based on Gibbs Free Energy Minimization. Models run with the Chassigny meteorite produced the overall highest H2 fugacity. Models reliant on the Rosy Red soil-water analog produced the highest sustained CH4 fugacity (maximum values observed for reactant ALH 77005). In general, Chassigny meteorite protoliths produced the best yield regarding Gibbs Free Energy, from an astrobiological perspective. Occurrences of serpentine and saponite across models are key: these minerals have been observed using CRISM spectral data, and their formation via serpentinization would be consistent with geologically recent-past H2 and CH4 production and sustained energy sources for microbial life. We list index minerals to be used as diagnostic for paleo water-rock models that could have supported geologically recent-past microbial activity, and suggest their application as criteria for future astrobiology study-site selections.
Collapse
Affiliation(s)
- Roger Hart
- Department of Physics and Engineering, Community College of Rhode Island, Lincoln, RI 02865, USA
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA;
| | - Dawn Cardace
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
2
|
Cassaro A, Pacelli C, Baqué M, Maturilli A, Böttger U, Fujimori A, Moeller R, de Vera JPP, Onofri S. Spectroscopic investigations of fungal biomarkers after exposure to heavy ion irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123073. [PMID: 37453382 DOI: 10.1016/j.saa.2023.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
The main objective of the ongoing and future space exploration missions is the search for traces of extant or extinct life (biomarkers) on Mars. One of the main limiting factors on the survival of Earth-like life is the presence of harmful space radiation, that could damage or modify also biomolecules, therefore understanding the effects of radiation on terrestrial biomolecules stability and detectability is of utmost importance. Which terrestrial molecules could be preserved in a Martian radiation scenario? Here, we investigated the potential endurance of fungal biomolecules, by exposing de-hydrated colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus mixed with Antarctic sandstone and with two Martian regolith analogues to increasing doses (0, 250 and 1000 Gy) of accelerated ions, namely iron (Fe), argon (Ar) and helium (He) ions. We analyzed the feasibility to detect fungal compounds with Raman and Infrared spectroscopies after exposure to these space-relevant radiations.
Collapse
Affiliation(s)
- A Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - C Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy; Italian Space Agency, Via del Politecnico snc, Rome, Italy.
| | - M Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department Berlin, Germany
| | - A Maturilli
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department Berlin, Germany
| | - U Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems Berlin, Germany
| | - A Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Basic Medical Sciences for Radiation Damages, NIRS/QST, Chiba, Japan
| | - R Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, DLR, Linder Höhe, D-51147 Köln, Germany; University of Applied Sciences Bonn-Rhein-Sieg (BRSU), Natural Sciences, von-Liebig-Straße 20, D-53359 Rheinbach, Germany
| | - J-P P de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, MUSC, Linder Höhe, D-51147 Köln, Germany; University of Potsdam, Institute for Biochemistry and Biology, WG Biodiversity/ Systematic Botany, Maulbeerallee 1, 14469 Potsdam, Germany
| | - S Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Magnuson E, Altshuler I, Freyria NJ, Leveille RJ, Whyte LG. Sulfur-cycling chemolithoautotrophic microbial community dominates a cold, anoxic, hypersaline Arctic spring. MICROBIOME 2023; 11:203. [PMID: 37697305 PMCID: PMC10494364 DOI: 10.1186/s40168-023-01628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Gypsum Hill Spring, located in Nunavut in the Canadian High Arctic, is a rare example of a cold saline spring arising through thick permafrost. It perennially discharges cold (~ 7 °C), hypersaline (7-8% salinity), anoxic (~ 0.04 ppm O2), and highly reducing (~ - 430 mV) brines rich in sulfate (2.2 g.L-1) and sulfide (9.5 ppm), making Gypsum Hill an analog to putative sulfate-rich briny habitats on extraterrestrial bodies such as Mars. RESULTS Genome-resolved metagenomics and metatranscriptomics were utilized to describe an active microbial community containing novel metagenome-assembled genomes and dominated by sulfur-cycling Desulfobacterota and Gammaproteobacteria. Sulfate reduction was dominated by hydrogen-oxidizing chemolithoautotrophic Desulfovibrionaceae sp. and was identified in phyla not typically associated with sulfate reduction in novel lineages of Spirochaetota and Bacteroidota. Highly abundant and active sulfur-reducing Desulfuromusa sp. highly transcribed non-coding RNAs associated with transcriptional regulation, showing potential evidence of putative metabolic flexibility in response to substrate availability. Despite low oxygen availability, sulfide oxidation was primarily attributed to aerobic chemolithoautotrophic Halothiobacillaceae. Low abundance and transcription of photoautotrophs indicated sulfur-based chemolithoautotrophy drives primary productivity even during periods of constant illumination. CONCLUSIONS We identified a rare surficial chemolithoautotrophic, sulfur-cycling microbial community active in a unique anoxic, cold, hypersaline Arctic spring. We detected Mars-relevant metabolisms including hydrogenotrophic sulfate reduction, sulfur reduction, and sulfide oxidation, which indicate the potential for microbial life in analogous S-rich brines on past and present Mars. Video Abstract.
Collapse
Affiliation(s)
- Elisse Magnuson
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| | - Ianina Altshuler
- MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nastasia J. Freyria
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| | - Richard J. Leveille
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC Canada
- Geosciences Department, John Abbott College, Ste-Anne-de-Bellevue, QC Canada
| | - Lyle G. Whyte
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| |
Collapse
|
4
|
Dickson JL, Palumbo AM, Head JW, Kerber L, Fassett CI, Kreslavsky MA. Gullies on Mars could have formed by melting of water ice during periods of high obliquity. Science 2023; 380:1363-1367. [PMID: 37384686 DOI: 10.1126/science.abk2464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Gullies on Mars resemble water-carved channels on Earth, but they are mostly at elevations where liquid water is not expected under current climate conditions. It has been suggested that sublimation of carbon dioxide ice alone could have formed Martian gullies. We used a general circulation model to show that the highest-elevation Martian gullies coincide with the boundary of terrain that experienced pressures above the triple point of water when Mars' rotational axis tilt reached 35°. Those conditions have occurred repeatedly over the past several million years, most recently ~630,000 years ago. Surface water ice, if present at these locations, could have melted when temperatures rose >273 kelvin. We propose a dual gully formation scenario that is driven by melting of water ice followed by carbon dioxide ice sublimation.
Collapse
Affiliation(s)
- J L Dickson
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA, USA
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA
| | - A M Palumbo
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA
| | - J W Head
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA
| | - L Kerber
- Jet Propulsion Laboratory, Caltech, Pasadena, CA, USA
| | - C I Fassett
- NASA Marshall Space Flight Center, Huntsville, AL, USA
| | - M A Kreslavsky
- Earth and Planetary Sciences, University of California, Santa Cruz, CA, USA
| |
Collapse
|
5
|
Qin X, Ren X, Wang X, Liu J, Wu H, Zeng X, Sun Y, Chen Z, Zhang S, Zhang Y, Chen W, Liu B, Liu D, Guo L, Li K, Zeng X, Huang H, Zhang Q, Yu S, Li C, Guo Z. Modern water at low latitudes on Mars: Potential evidence from dune surfaces. SCIENCE ADVANCES 2023; 9:eadd8868. [PMID: 37115933 PMCID: PMC10146874 DOI: 10.1126/sciadv.add8868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Landforms on the Martian surface are critical to understanding the nature of surface processes in the recent past. However, modern hydroclimatic conditions on Mars remain enigmatic, as explanations for the formation of observed landforms are ambiguous. We report crusts, cracks, aggregates, and bright polygonal ridges on the surfaces of hydrated salt-rich dunes of southern Utopia Planitia (~25°N) from in situ exploration by the Zhurong rover. These surface features were inferred to form after 1.4 to 0.4 million years ago. Wind and CO2 frost processes can be ruled out as potential mechanisms. Instead, involvement of saline water from thawed frost/snow is the most likely cause. This discovery sheds light on more humid conditions of the modern Martian climate and provides critical clues to future exploration missions searching for signs of extant life, particularly at low latitudes with comparatively warmer, more amenable surface temperatures.
Collapse
Affiliation(s)
- Xiaoguang Qin
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Corresponding author. (X.Q.); (X.R.); (X.W.); (J.L.)
| | - Xin Ren
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
- Corresponding author. (X.Q.); (X.R.); (X.W.); (J.L.)
| | - Xu Wang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Corresponding author. (X.Q.); (X.R.); (X.W.); (J.L.)
| | - Jianjun Liu
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
- Corresponding author. (X.Q.); (X.R.); (X.W.); (J.L.)
| | - Haibin Wu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xingguo Zeng
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Yong Sun
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhaopeng Chen
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Shihao Zhang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yizhong Zhang
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Wangli Chen
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Bin Liu
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Dawei Liu
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Lin Guo
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Kangkang Li
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiangzhao Zeng
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Hai Huang
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Songzheng Yu
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Chunlai Li
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Zhengtang Guo
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Abstract
Many discoveries of active surface processes on Mars have been made due to the availability of repeat high-resolution images from the High Resolution Imaging Science Experiment (HiRISE) onboard the Mars Reconnaissance Orbiter. HiRISE stereo images are used to make digital terrain models (DTMs) and orthorectified images (orthoimages). HiRISE DTMs and orthoimage time series have been crucial for advancing the study of active processes such as recurring slope lineae, dune migration, gully activity, and polar processes. We describe the process of making HiRISE DTMs, orthoimage time series, DTM mosaics, and the difference of DTMs, specifically using the ISIS/SOCET Set workflow. HiRISE DTMs are produced at a 1 and 2 m ground sample distance, with a corresponding estimated vertical precision of tens of cm and ∼1 m, respectively. To date, more than 6000 stereo pairs have been acquired by HiRISE and, of these, more than 800 DTMs and 2700 orthoimages have been produced and made available to the public via the Planetary Data System. The intended audiences of this paper are producers, as well as users, of HiRISE DTMs and orthoimages. We discuss the factors that determine the effective resolution, as well as the quality, precision, and accuracy of HiRISE DTMs, and provide examples of their use in time series analyses of active surface processes on Mars.
Collapse
|
7
|
The importance of lake breach floods for valley incision on early Mars. Nature 2021; 597:645-649. [PMID: 34588670 DOI: 10.1038/s41586-021-03860-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
The surface environment of early Mars had an active hydrologic cycle, including flowing liquid water that carved river valleys1-3 and filled lake basins4-6. Over 200 of these lake basins filled with sufficient water to breach the confining topography4,6, causing catastrophic flooding and incision of outlet canyons7-10. Much past work has recognized the local importance of lake breach floods on Mars for rapidly incising large valleys7-12; however, on a global scale, valley systems have often been interpreted as recording more persistent fluvial erosion linked to a distributed Martian hydrologic cycle1-3,13-16. Here, we demonstrate the global importance of lake breach flooding, and find that it was responsible for eroding at least 24% of the volume of incised valleys on early Mars, despite representing only approximately 3% of total valley length. We conclude that lake breach floods were a major geomorphic process responsible for valley incision on early Mars, which in turn influenced the topographic form of many Martian valley systems and the broader landscape evolution of the cratered highlands. Our results indicate that the importance of lake breach floods should be considered when reconstructing the formative conditions for Martian valley systems.
Collapse
|
8
|
Dundas CM, Becerra P, Byrne S, Chojnacki M, Daubar IJ, Diniega S, Hansen CJ, Herkenhoff KE, Landis ME, McEwen AS, Portyankina G, Valantinas A. Active Mars: A Dynamic World. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006876. [PMID: 35845553 PMCID: PMC9285055 DOI: 10.1029/2021je006876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/15/2023]
Abstract
Mars exhibits diverse surface changes at all latitudes and all seasons. Active processes include impact cratering, aeolian sand and dust transport, a variety of slope processes, changes in polar ices, and diverse effects of seasonal CO2 frost. The extent of surface change has been surprising and indicates that the present climate is capable of reshaping the surface. Activity has important implications for the Amazonian history of Mars: understanding processes is a necessary step before we can understand their implications and variations over time.
Collapse
Affiliation(s)
- Colin M. Dundas
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZUSA
| | | | - Shane Byrne
- Lunar and Planetary LaboratoryUniversity of ArizonaTucsonAZUSA
| | | | - Ingrid J. Daubar
- Department of Earth, Environmental, and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - Serina Diniega
- Jet Propulsion Laboratory/California Institute of TechnologyPasadenaCAUSA
| | | | | | - Margaret E. Landis
- Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderCOUSA
| | | | - Ganna Portyankina
- Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderCOUSA
| | | |
Collapse
|
9
|
Bagnato C, Nadal MS, Tobia D, Raineri M, Vasquez Mansilla M, Winkler EL, Zysler RD, Lima E. Reactive Oxygen Species in Emulated Martian Conditions and Their Effect on the Viability of the Unicellular Alga Scenedesmus dimorphus. ASTROBIOLOGY 2021; 21:692-705. [PMID: 33819428 DOI: 10.1089/ast.2020.2329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Formation of oxygen-based free radicals from photochemical decomposition of hydrogen peroxide (H2O2) on Mars may be a key factor in the potential survival of terrestrial-like organisms on the red planet. Martian conditions that generate reactive oxygen species involve the decomposition of H2O2 at temperatures of around 278 K under relatively high doses of C-band ultraviolet radiation (UVC). This process is further amplified by the presence of iron oxides and perchlorates. Photosynthetic organisms exhibit a number of evolutionary traits that allow them to withstand both oxidative stress and UVC radiation. Here, we examine the effect of free radicals produced by the decomposition of H2O2 under emulated martian conditions on the viability of Scenedesmus dimorphus, a unicellular alga that is resistant to UVC radiation and varying levels of perchlorate and H2O2, both of which are present on Mars. Identification and quantification of free radicals formed under these conditions were performed with Electron Paramagnetic Resonance spectroscopy. These results were correlated with the viability of S. dimorphus, and the formation of oxygen-based free radicals and survival of the alga were found to be strongly dependent on the amount of H2O2 available. For H2O2 amounts close to those present in the rarefied martian environment, the products of these catalytic reactions did not have a significant effect on the algal population growth curve.
Collapse
Affiliation(s)
- Carolina Bagnato
- Instituto de Energía y Desarrollo Sustentable (IEDS), CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Marcela S Nadal
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Departamento de Física Médica, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Dina Tobia
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Mariana Raineri
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Departamento de Física Médica, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Marcelo Vasquez Mansilla
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Elin L Winkler
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Instituto Balseiro, CNEA-Universidad Nacional de Cuyo, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Roberto D Zysler
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Departamento de Física Médica, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Instituto Balseiro, CNEA-Universidad Nacional de Cuyo, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Enio Lima
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| |
Collapse
|
10
|
Bishop JL, Yeşilbaş M, Hinman NW, Burton ZFM, Englert PAJ, Toner JD, McEwen AS, Gulick VC, Gibson EK, Koeberl C. Martian subsurface cryosalt expansion and collapse as trigger for landslides. SCIENCE ADVANCES 2021; 7:eabe4459. [PMID: 33536216 PMCID: PMC7857681 DOI: 10.1126/sciadv.abe4459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/15/2020] [Indexed: 05/16/2023]
Abstract
On Mars, seasonal martian flow features known as recurring slope lineae (RSL) are prevalent on sun-facing slopes and are associated with salts. On Earth, subsurface interactions of gypsum with chlorides and oxychlorine salts wreak havoc: instigating sinkholes, cave collapse, debris flows, and upheave. Here, we illustrate (i) the disruptive potential of sulfate-chloride reactions in laboratory soil crust experiments, (ii) the formation of thin films of mixed ice-liquid water "slush" at -40° to -20°C on salty Mars analog grains, (iii) how mixtures of sulfates and chlorine salts affect their solubilities in low-temperature environments, and (iv) how these salt brines could be contributing to RSL formation on Mars. Our results demonstrate that interactions of sulfates and chlorine salts in fine-grained soils on Mars could absorb water, expand, deliquesce, cause subsidence, form crusts, disrupt surfaces, and ultimately produce landslides after dust loading on these unstable surfaces.
Collapse
Affiliation(s)
- J L Bishop
- Carl Sagan Center, SETI Institute, Mountain View, CA 94043, USA.
- Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - M Yeşilbaş
- Carl Sagan Center, SETI Institute, Mountain View, CA 94043, USA
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - N W Hinman
- Department of Geosciences, University of Montana, Missoula, MT 59812, USA
| | - Z F M Burton
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| | - P A J Englert
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - J D Toner
- Department of Earth & Space Sciences, University of Washington, Seattle, WA 98195, USA
| | - A S McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
| | - V C Gulick
- Carl Sagan Center, SETI Institute, Mountain View, CA 94043, USA
- Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - E K Gibson
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - C Koeberl
- Department of Lithospheric Research, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Thorpe MT, Hurowitz JA, Siebach KL. Source-to-Sink Terrestrial Analogs for the Paleoenvironment of Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2020JE006530. [PMID: 33777606 PMCID: PMC7988529 DOI: 10.1029/2020je006530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In the Late Noachian to Early Hesperian period, rivers transported detritus from igneous source terrains to a downstream lake within Gale crater, creating a stratified stack of fluviolacustrine rocks that is currently exposed along the slopes of Mount Sharp. Controversy exists regarding the paleoclimate that supported overland flow of liquid water at Gale crater, in large part because little is known about how chemical and mineralogical paleoclimate indicators from mafic-rock dominated source-to-sink systems are translated into the rock record. Here, we compile data from basaltic terrains with varying climates on Earth in order to provide a reference frame for the conditions that may have prevailed during the formation of the sedimentary strata in Gale crater, particularly focusing on the Sheepbed and Pahrump Hills members. We calculate the chemical index of alteration for weathering profiles and fluvial sediments to better constrain the relationship between climate and chemical weathering in mafic terrains, a method that best estimates the cooler limit of climate conditions averaged over time. We also compare X-ray diffraction patterns and mineral abundances from fluvial sediments in varying terrestrial climates and martian mudstones to better understand the influence of climate on secondary mineral assemblages in basaltic terrains. We show that the geochemistry and mineralogy of most of the fine-grained sedimentary rocks in Gale crater display first-order similarities with sediments generated in climates that resemble those of present-day Iceland, while other parts of the stratigraphy indicate even colder baseline climate conditions. None of the lithologies examined at Gale crater resemble fluvial sediments or weathering profiles from warm (temperate to tropical) terrestrial climates.
Collapse
Affiliation(s)
- Michael T. Thorpe
- Department of Earth, Environmental and Planetary SciencesRice UniversityHoustonTXUSA
- NASA Johnson Space CenterNASA Postdoctoral ProgramHoustonTXUSA
| | - Joel A. Hurowitz
- Department of GeosciencesState University of New York at Stony BrookStony BrookNYUSA
| | | |
Collapse
|
12
|
DoMars16k: A Diverse Dataset for Weakly Supervised Geomorphologic Analysis on Mars. REMOTE SENSING 2020. [DOI: 10.3390/rs12233981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mapping planetary surfaces is an intricate task that forms the basis for many geologic, geomorphologic, and geographic studies of planetary bodies. In this work, we present a method to automate a specific type of planetary mapping, geomorphic mapping, taking machine learning as a basis. Additionally, we introduce a novel dataset, termed DoMars16k, which contains 16,150 samples of fifteen different landforms commonly found on the Martian surface. We use a convolutional neural network to establish a relation between Mars Reconnaissance Orbiter Context Camera images and the landforms of the dataset. Afterwards, we employ a sliding-window approach in conjunction with a Markov Random field smoothing to create maps in a weakly supervised fashion. Finally, we provide encouraging results and carry out automated geomorphological analyses of Jezero crater, the Mars2020 landing site, and Oxia Planum, the prospective ExoMars landing site.
Collapse
|
13
|
Orosei R, Ding C, Fa W, Giannopoulos A, Hérique A, Kofman W, Lauro SE, Li C, Pettinelli E, Su Y, Xing S, Xu Y. The Global Search for Liquid Water on Mars from Orbit: Current and Future Perspectives. Life (Basel) 2020; 10:life10080120. [PMID: 32722008 PMCID: PMC7460233 DOI: 10.3390/life10080120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/02/2022] Open
Abstract
Due to its significance in astrobiology, assessing the amount and state of liquid water present on Mars today has become one of the drivers of its exploration. Subglacial water was identified by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) aboard the European Space Agency spacecraft Mars Express through the analysis of echoes, coming from a depth of about 1.5 km, which were stronger than surface echoes. The cause of this anomalous characteristic is the high relative permittivity of water-bearing materials, resulting in a high reflection coefficient. A determining factor in the occurrence of such strong echoes is the low attenuation of the MARSIS radar pulse in cold water ice, the main constituent of the Martian polar caps. The present analysis clarifies that the conditions causing exceptionally strong subsurface echoes occur solely in the Martian polar caps, and that the detection of subsurface water under a predominantly rocky surface layer using radar sounding will require thorough electromagnetic modeling, complicated by the lack of knowledge of many subsurface physical parameters. Higher-frequency radar sounders such as SHARAD cannot penetrate deep enough to detect basal echoes over the thickest part of the polar caps. Alternative methods such as rover-borne Ground Penetrating Radar and time-domain electromagnetic sounding are not capable of providing global coverage. MARSIS observations over the Martian polar caps have been limited by the need to downlink data before on-board processing, but their number will increase in coming years. The Chinese mission to Mars that is to be launched in 2020, Tianwen-1, will carry a subsurface sounding radar operating at frequencies that are close to those of MARSIS, and the expected signal-to-noise ratio of subsurface detection will likely be sufficient for identifying anomalously bright subsurface reflectors. The search for subsurface water through radar sounding is thus far from being concluded.
Collapse
Affiliation(s)
- Roberto Orosei
- Istituto di Radioastronomia, Istituto Nazionale di Astrofisica, Via Piero Gobetti 101, 40129 Bologna, Italy
- Correspondence:
| | - Chunyu Ding
- School of Atmosphere Sciences, Sun Yat-sen University, 2 Daxue Road, Xiangzhou District, Zhuhai City 519000, China;
| | - Wenzhe Fa
- Institute of Remote Sensing and Geographical Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China;
| | - Antonios Giannopoulos
- School of Engineering, The University of Edinburgh, Alexander Graham Bell Building, Thomas Bayes Road, Edinburgh EH9 3FG, UK;
| | - Alain Hérique
- Université Grenoble Alpes, CNRS, CNES, IPAG, 38000 Grenoble, France; (A.H.); (W.K.)
| | - Wlodek Kofman
- Université Grenoble Alpes, CNRS, CNES, IPAG, 38000 Grenoble, France; (A.H.); (W.K.)
- Centrum Badan Kosmicznych Polskiej Akademii Nauk (CBK PAN), Bartycka 18A, 00-716 Warsaw, Poland
| | - Sebastian E. Lauro
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy; (S.E.L.); (E.P.)
| | - Chunlai Li
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100101, China; (C.L.); (Y.S.)
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Elena Pettinelli
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy; (S.E.L.); (E.P.)
| | - Yan Su
- Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100101, China; (C.L.); (Y.S.)
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shuguo Xing
- Piesat Information Technology Co., Ltd, Beijing 100195, China;
| | - Yi Xu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau;
| |
Collapse
|
14
|
Macey MC, Fox-Powell M, Ramkissoon NK, Stephens BP, Barton T, Schwenzer SP, Pearson VK, Cousins CR, Olsson-Francis K. The identification of sulfide oxidation as a potential metabolism driving primary production on late Noachian Mars. Sci Rep 2020; 10:10941. [PMID: 32616785 PMCID: PMC7331718 DOI: 10.1038/s41598-020-67815-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/15/2020] [Indexed: 01/11/2023] Open
Abstract
The transition of the martian climate from the wet Noachian era to the dry Hesperian (4.1-3.0 Gya) likely resulted in saline surface waters that were rich in sulfur species. Terrestrial analogue environments that possess a similar chemistry to these proposed waters can be used to develop an understanding of the diversity of microorganisms that could have persisted on Mars under such conditions. Here, we report on the chemistry and microbial community of the highly reducing sediment of Colour Peak springs, a sulfidic and saline spring system located within the Canadian High Arctic. DNA and cDNA 16S rRNA gene profiling demonstrated that the microbial community was dominated by sulfur oxidising bacteria, suggesting that primary production in the sediment was driven by chemolithoautotrophic sulfur oxidation. It is possible that the sulfur oxidising bacteria also supported the persistence of the additional taxa. Gibbs energy values calculated for the brines, based on the chemistry of Gale crater, suggested that the oxidation of reduced sulfur species was an energetically viable metabolism for life on early Mars.
Collapse
Affiliation(s)
- M C Macey
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK.
| | - M Fox-Powell
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
- School of Earth and Environmental Sciences, University of St Andrews, Irvine Building, St Andrews, UK
| | - N K Ramkissoon
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - B P Stephens
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - T Barton
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - S P Schwenzer
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - V K Pearson
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - C R Cousins
- School of Earth and Environmental Sciences, University of St Andrews, Irvine Building, St Andrews, UK
| | - K Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| |
Collapse
|
15
|
Kereszturi Á. Unique and Potentially Mars-Relevant Flow Regime and Water Sources at a High Andes-Atacama Site. ASTROBIOLOGY 2020; 20:723-740. [PMID: 32525739 DOI: 10.1089/ast.2018.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A field expedition in the High Andes/Atacama Desert region revealed two types of flow-produced structures and a unique flow regime. Gullies somewhat smaller than those on Mars (width: 0.2-1 m, depth: 0.2-0.6 m, length: 4-60 m) were observed as mainly erosional structures. The other flow-related feature called infilled valleys showed activity only in specific, spatially discrete areas during the daytime. The active sections were composed of a source depression where liquid H2O was produced from subsurface buried sources, which flowed down and percolated into fine-grained infilling material of the valley. Several such active sections could be present along one valley, separated by inactive ones. Three types of H2O sources fed them: buried snow, surface snow, and ice left behind from the liquid water that had emerged the preceding day. This latter source has not yet been suggested for Mars. Some aspects related to the formation of the gullies and infilled valleys (H2O budget, albedo, erosional processes) may be similar with the formation processes hypothesized for the recurring slope lineae on Mars. The observed diurnal spatially discrete activity of the infilled valleys is related to the interaction of insolation and mass movement of exhumed subsurface snow, which is also believed to exist on Mars. The Ojos del Salado site is unique in that, despite it being located in the hyperarid High Andes/Atacama Desert region, material from rare snowfall events has been protected due to burial by grains transported by strong winds, supporting ephemeral melting in the long term.
Collapse
Affiliation(s)
- Ákos Kereszturi
- Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklos Astronomical Institute, Budapest, Hungary
- European Astrobiology Institute, Strasbourg, France
| |
Collapse
|
16
|
Abstract
To assess Mars’ potential for both harboring life and providing useable resources for future human exploration, it is of paramount importance to comprehend the water situation on the planet. Therefore, studies have been conducted to determine any evidence of past or present water existence on Mars. While the presence of abundant water on Mars very early in its history is widely accepted, on its modern form, only a fraction of this water can be found, as either ice or locked into the structure of Mars’ plentiful water-rich materials. Water on the planet is evaluated through various evidence such as rocks and minerals, Martian achondrites, low volume transient briny outflows (e.g., dune flows, reactivated gullies, slope streaks, etc.), diurnal shallow soil moisture (e.g., measurements by Curiosity and Phoenix Lander), geomorphic representation (possibly from lakes and river valleys), and groundwater, along with further evidence obtained by probe and rover discoveries. One of the most significant lines of evidence is for an ancient streambed in Gale Crater, implying ancient amounts of “vigorous” water on Mars. Long ago, hospitable conditions for microbial life existed on the surface of Mars, as it was likely periodically wet. However, its current dry surface makes it almost impossible as an appropriate environment for living organisms; therefore, scientists have recognized the planet’s subsurface environments as the best potential locations for exploring life on Mars. As a result, modern research has aimed towards discovering underground water, leading to the discovery of a large amount of underground ice in 2016 by NASA, and a subglacial lake in 2018 by Italian scientists. Nevertheless, the presence of life in Mars’ history is still an open question. In this unifying context, the current review summarizes results from a wide variety of studies and reports related to the history of water on Mars, as well as any related discussions on the possibility of living organism existence on the planet.
Collapse
|
17
|
Sasselov DD, Grotzinger JP, Sutherland JD. The origin of life as a planetary phenomenon. SCIENCE ADVANCES 2020; 6:eaax3419. [PMID: 32076638 PMCID: PMC7002131 DOI: 10.1126/sciadv.aax3419] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
We advocate an integrative approach between laboratory experiments in prebiotic chemistry and geologic, geochemical, and astrophysical observations to help assemble a robust chemical pathway to life that can be reproduced in the laboratory. The cyanosulfidic chemistry scenario described here was developed by such an integrative iterative process. We discuss how it maps onto evolving planetary surface environments on early Earth and Mars and the value of comparative planetary evolution. The results indicate that Mars can offer direct evidence for geochemical conditions similar to prebiotic Earth, whose early record has been erased. The Jezero crater is now the chosen landing site for NASA's Mars 2020 rover, making this an extraordinary opportunity for a breakthrough in understanding life's origins.
Collapse
Affiliation(s)
- Dimitar D. Sasselov
- Department of Astronomy, Harvard University, 60 Garden St., Cambridge, MA 02138, USA
- Corresponding author.
| | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John D. Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge CB2 0QH, UK
| |
Collapse
|
18
|
Shotwell RF, Hays LE, Beaty DW, Goreva Y, Kieft TL, Mellon MT, Moridis G, Peterson LD, Spycher N. Can an Off-Nominal Landing by an MMRTG-Powered Spacecraft Induce a Special Region on Mars When No Ice Is Present? ASTROBIOLOGY 2019; 19:1315-1338. [PMID: 31657948 DOI: 10.1089/ast.2017.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work aims at addressing whether a catastrophic failure of an entry, descent, and landing event of a Multimission Radioisotope Thermoelectric Generator-based lander could embed the heat sources into the martian subsurface and create a local environment that (1) would temporarily satisfy the conditions for a martian Special Region and (2) could establish a transport mechanism through which introduced terrestrial organisms could be mobilized to naturally occurring Special Regions elsewhere on Mars. Two models were run, a primary model by researchers at the Lawrence Berkeley National Laboratory and a secondary model by researchers at the Jet Propulsion Laboratory, both of which were based on selected starting conditions for various surface composition cases that establish the worst-case scenario, including geological data collected by the Mars Science Laboratory at Gale Crater. The summary outputs of both modeling efforts showed similar results: that the introduction of the modeled heat source could temporarily create the conditions established for a Special Region, but that there would be no transport mechanism by which an introduced terrestrial microbe, even if it was active during the temporarily induced Special Region conditions, could be transported to a naturally occurring Special Region of Mars.
Collapse
Affiliation(s)
- Robert F Shotwell
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Lindsay E Hays
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - David W Beaty
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Yulia Goreva
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Thomas L Kieft
- Biology Department, New Mexico Tech, Socorro, New Mexico
| | - Michael T Mellon
- The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | - George Moridis
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Lee D Peterson
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | | |
Collapse
|
19
|
Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet? GEOSCIENCES 2019. [DOI: 10.3390/geosciences9090361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mars is a planet of great interest in the search for signatures of past or present life beyond Earth. The years of research, and more advanced instrumentation, have yielded a lot of evidence which may be considered by the scientific community as proof of past or present habitability of Mars. Recent discoveries including seasonal methane releases and a subglacial lake are exciting, yet challenging findings. Concurrently, laboratory and environmental studies on the limits of microbial life in extreme environments on Earth broaden our knowledge of the possibility of Mars habitability. In this review, we aim to: (1) Discuss the characteristics of the Martian surface and subsurface that may be conducive to habitability either in the past or at present; (2) discuss laboratory-based studies on Earth that provide us with discoveries on the limits of life; and (3) summarize the current state of knowledge in terms of direction for future research.
Collapse
|
20
|
de Haas T, McArdell BW, Conway SJ, McElwaine JN, Kleinhans MG, Salese F, Grindrod PM. Initiation and Flow Conditions of Contemporary Flows in Martian Gullies. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2019; 124:2246-2271. [PMID: 31763111 PMCID: PMC6853261 DOI: 10.1029/2018je005899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Understanding the initial and flow conditions of contemporary flows in Martian gullies, generally believed to be triggered and fluidized by CO2 sublimation, is crucial for deciphering climate conditions needed to trigger and sustain them. We employ the RAMMS (RApid Mass Movement Simulation) debris flow and avalanche model to back calculate initial and flow conditions of recent flows in three gullies in Hale crater. We infer minimum release depths of 1.0-1.5 m and initial release volumes of 100-200 m3. Entrainment leads to final flow volumes that are ∼2.5-5.5 times larger than initially released, and entrainment is found necessary to match the observed flow deposits. Simulated mean cross-channel flow velocities decrease from 3-4 m/s to ∼1 m/s from release area to flow terminus, while flow depths generally decrease from 0.5-1 to 0.1-0.2 m. The mean cross-channel erosion depth and deposition thicknesses are ∼0.1-0.3 m. Back-calculated dry-Coulomb friction ranges from 0.1 to 0.25 and viscous-turbulent friction between 100 and 200 m/s2, which are values similar to those of granular debris flows on Earth. These results suggest that recent flows in gullies are fluidized to a similar degree as are granular debris flows on Earth. Using a novel model for mass flow fluidization by CO2 sublimation we are able to show that under Martian atmospheric conditions very small volumetric fractions of CO2 of ≪1% within mass flows may indeed yield sufficiently large gas fluxes to cause fluidization and enhance flow mobility.
Collapse
Affiliation(s)
- T. de Haas
- Department of Physical GeographyUniversiteit UtrechtUtrechtThe Netherlands
- Department of GeographyDurham UniversityDurhamUK
| | - B. W. McArdell
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - S. J. Conway
- Laboratoire de Planétologie et Géodynamique, CNRS UMR 6112, Université de NantesNantesFrance
| | - J. N. McElwaine
- Department of Earth SciencesDurham UniversityDurhamUK
- Planetary Science InstituteTucsonAZUSA
| | - M. G. Kleinhans
- Department of Physical GeographyUniversiteit UtrechtUtrechtThe Netherlands
| | - F. Salese
- Department of Physical GeographyUniversiteit UtrechtUtrechtThe Netherlands
- International Research School of Planetary SciencesUniversità Gabriele D'AnnunzioPescaraItaly
| | - P. M. Grindrod
- Department of Earth SciencesNatural History MuseumLondonUK
| |
Collapse
|
21
|
Kite ES, Mayer DP, Wilson SA, Davis JM, Lucas AS, Stucky de Quay G. Persistence of intense, climate-driven runoff late in Mars history. SCIENCE ADVANCES 2019; 5:eaav7710. [PMID: 30944863 PMCID: PMC6436933 DOI: 10.1126/sciadv.aav7710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/08/2019] [Indexed: 05/28/2023]
Abstract
Mars is dry today, but numerous precipitation-fed paleo-rivers are found across the planet's surface. These rivers' existence is a challenge to models of planetary climate evolution. We report results indicating that, for a given catchment area, rivers on Mars were wider than rivers on Earth today. We use the scale (width and wavelength) of Mars paleo-rivers as a proxy for past runoff production. Using multiple methods, we infer that intense runoff production of >(3-20) kg/m2 per day persisted until <3 billion years (Ga) ago and probably <1 Ga ago, and was globally distributed. Therefore, the intense runoff production inferred from the results of the Mars Science Laboratory rover was not a short-lived or local anomaly. Rather, precipitation-fed runoff production was globally distributed, was intense, and persisted intermittently over >1 Ga. Our improved history of Mars' river runoff places new constraints on the unknown mechanism that caused wet climates on Mars.
Collapse
Affiliation(s)
| | | | - Sharon A. Wilson
- Center for Earth and Planetary Studies, Smithsonian Institution, Washington, DC, USA
| | | | - Antoine S. Lucas
- Institut de Physique du Globe de Paris, Centre National de la Recherche Scientifique, Paris, France
| | | |
Collapse
|
22
|
Huang T, Wang R, Xiao L, Wang H, Martínez JM, Escudero C, Amils R, Cheng Z, Xu Y. Dalangtan Playa (Qaidam Basin, NW China): Its microbial life and physicochemical characteristics and their astrobiological implications. PLoS One 2018; 13:e0200949. [PMID: 30067805 PMCID: PMC6070256 DOI: 10.1371/journal.pone.0200949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/04/2018] [Indexed: 01/29/2023] Open
Abstract
Dalangtan Playa is the second largest salt playa in the Qaidam Basin, north-western China. The hyper saline deposition, extremely arid climate and high UV radiation make Dalangtan a Mars analogue both for geomorphology and life preservation. To better understand microbial life at Dalangtan, both culture-dependent and culture-independent methods were examined and simultaneously, environment conditions and the evaporitic mineral assemblages were investigated. Ten and thirteen subsurface samples were collected along a 595-cm deep profile (P1) and a 685-cm deep profile (P2) respectively, and seven samples were gathered from surface sediments. These samples are composed of salt minerals, minor silicate mineral fragments and clays. The total bacterial cell numbers are (1.54±0.49) ×10(5) g-1 for P1 and (3.22±0.95) ×10(5) g-1 for P2 as indicated by the CAtalyzed Reporter Deposition- Fluorescent in situ Hybridization (CARD-FISH). 76.6% and 75.7% of the bacteria belong to Firmicutes phylum respectively from P1 and P2. In total, 47 bacteria and 6 fungi were isolated from 22 subsurface samples. In contrast, only 3 bacteria and 1 fungus were isolated from 3 surface samples. The isolated bacteria show high homology (≥97%) with members of the Firmicutes phylum (47 strains, 8 genera) and the Actinobacteria phylum (3 strains, 2 genera), which agrees with the result of CARD-FISH. Isolated fungi showed ≥98% ITS1 homology with members of the phylum Ascomycota. Moisture content and TOC values may control the sediments colonization. Given the deliquescence of salts, evaporites may provide refuge for microbial life, which merits further investigation. Halotolerant and spore-forming microorganisms are the dominant microbial groups capable of surviving under extreme conditions. Our results offer brand-new information on microbial biomass in Dalangtan Playa and shed light on understanding the potential microbial life in the dried playa or paleo-lakes on Mars.
Collapse
Affiliation(s)
- Ting Huang
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
| | - Long Xiao
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
- Space Science Institute, Macau University of Science and Technology, Macau, China
- * E-mail: (LX); (HW)
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
- * E-mail: (LX); (HW)
| | - José M. Martínez
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Cristina Escudero
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Ziye Cheng
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Yi Xu
- Space Science Institute, Macau University of Science and Technology, Macau, China
| |
Collapse
|
23
|
Abstract
It has remained an unresolved question whether microorganisms recovered from the most arid environments on Earth are thriving under such extreme conditions or are just dead or dying vestiges of viable cells fortuitously deposited by atmospheric processes. Based on multiple lines of evidence, we show that indigenous microbial communities are present and temporally active even in the hyperarid soils of the Atacama Desert (Chile). Following extremely rare precipitation events in the driest parts of this desert, where rainfall often occurs only once per decade, we were able to detect episodic incidences of biological activity. Our findings expand the range of hyperarid environments temporarily habitable for terrestrial life, which by extension also applies to other planetary bodies like Mars. Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today’s extreme hyperaridity.
Collapse
|
24
|
Dundas CM, Bramson AM, Ojha L, Wray JJ, Mellon MT, Byrne S, McEwen AS, Putzig NE, Viola D, Sutton S, Clark E, Holt JW. Exposed subsurface ice sheets in the Martian mid-latitudes. Science 2018; 359:199-201. [DOI: 10.1126/science.aao1619] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/04/2017] [Indexed: 11/02/2022]
Abstract
Thick deposits cover broad regions of the Martian mid-latitudes with a smooth mantle; erosion in these regions creates scarps that expose the internal structure of the mantle. We investigated eight of these locations and found that they expose deposits of water ice that can be >100 meters thick, extending downward from depths as shallow as 1 to 2 meters below the surface. The scarps are actively retreating because of sublimation of the exposed water ice. The ice deposits likely originated as snowfall during Mars’ high-obliquity periods and have now compacted into massive, fractured, and layered ice. We expect the vertical structure of Martian ice-rich deposits to preserve a record of ice deposition and past climate.
Collapse
|
25
|
Sapers HM, Ronholm J, Raymond-Bouchard I, Comrey R, Osinski GR, Whyte LG. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog. Front Microbiol 2017; 8:2527. [PMID: 29312221 PMCID: PMC5744183 DOI: 10.3389/fmicb.2017.02527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create ephemerally habitable niches with distinct microbial communities in the Canadian high arctic. The finding that these surficial complex microbial communities exist in close proximity to perennial springs demonstrates the existence of a transiently habitable niche in an important Mars analog site.
Collapse
Affiliation(s)
- Haley M. Sapers
- Centre for Planetary Science and Exploration, Faculty of Science, Western Science Centre, Western University, London, ON, Canada
- Department of Earth Sciences, University of Western Ontario, London, ON, Canada
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | | | - Raven Comrey
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Gordon R. Osinski
- Centre for Planetary Science and Exploration, Faculty of Science, Western Science Centre, Western University, London, ON, Canada
- Department of Earth Sciences, University of Western Ontario, London, ON, Canada
- Department of Physics and Astronomy, University of Western Ontario, London, ON, Canada
| | - Lyle G. Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Mickol RL, Kral TA. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars. ORIGINS LIFE EVOL B 2017; 47:511-532. [PMID: 27663448 DOI: 10.1007/s11084-016-9519-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/05/2016] [Indexed: 11/26/2022]
Abstract
The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.
Collapse
Affiliation(s)
- R L Mickol
- Arkansas Center for Space and Planetary Sciences, University of Arkansas, Stone House North, 332 N. Arkansas Ave, Fayetteville, AR, 72701, USA.
| | - T A Kral
- Arkansas Center for Space and Planetary Sciences, University of Arkansas, Stone House North, 332 N. Arkansas Ave, Fayetteville, AR, 72701, USA
- Department of Biological Sciences, Science and Engineering 601, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
27
|
Raack J, Conway SJ, Herny C, Balme MR, Carpy S, Patel MR. Water induced sediment levitation enhances downslope transport on Mars. Nat Commun 2017; 8:1151. [PMID: 29075001 PMCID: PMC5658360 DOI: 10.1038/s41467-017-01213-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/30/2017] [Indexed: 11/12/2022] Open
Abstract
On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought. Downslope sediment transport on Mars is reported, but the transport capacity of unstable water under low pressures is not well understood. Here, the authors present a newly discovered, highly reactive transportation mechanism that is only possible under low pressure environments.
Collapse
Affiliation(s)
- Jan Raack
- School of Physical Sciences, Faculty of Science, Technology, Engineering & Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - Susan J Conway
- Laboratoire de Planétologie et Géodynamique-UMR CNRS 6112, Université de Nantes, 2 rue de la Houssinière-BP 92208, 44322, Nantes Cedex 3, France
| | - Clémence Herny
- Physikalisches Institut, Universität Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Matthew R Balme
- School of Physical Sciences, Faculty of Science, Technology, Engineering & Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Sabrina Carpy
- Laboratoire de Planétologie et Géodynamique-UMR CNRS 6112, Université de Nantes, 2 rue de la Houssinière-BP 92208, 44322, Nantes Cedex 3, France
| | - Manish R Patel
- School of Physical Sciences, Faculty of Science, Technology, Engineering & Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.,Space Science and Technology Department, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| |
Collapse
|
28
|
Mickol RL, Page JL, Schuerger AC. Magnesium Sulfate Salt Solutions and Ices Fail to Protect Serratia liquefaciens from the Biocidal Effects of UV Irradiation under Martian Conditions. ASTROBIOLOGY 2017; 17:401-412. [PMID: 28459604 DOI: 10.1089/ast.2015.1448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The growth of Serratia liquefaciens has been demonstrated under martian conditions of 0.7 kPa (7 mbar), 0°C, and CO2-enriched anoxic atmospheres (Schuerger et al., 2013, Astrobiology 13:115-131), but studies into the survivability of cells under hypersaline conditions that are likely to be encountered on Mars are lacking. Serratia liquefaciens cells were suspended in aqueous MgSO4 solutions, or frozen brines, and exposed to terrestrial (i.e., 101.3 kPa, 24°C, O2/N2-normal atmosphere) or martian (i.e., 0.7 kPa, -25°C, CO2-anoxic atmosphere) conditions to assess the roles of MgSO4 and UV irradiation on the survival of S. liquefaciens. Four solutions were tested for their capability to attenuate martian UV irradiation in both liquid and frozen forms: sterile deionized water (SDIW), 10 mM PO4 buffer, 5% MgSO4, and 10% MgSO4. None of the solutions in either liquid or frozen forms provided enhanced protection against martian UV irradiation. Sixty minutes of UV irradiation reduced cell densities from 2.0 × 106 cells/mL to less than 10 cells/mL for both liquid and frozen solutions. In contrast, 3-4 mm of a Mars analog soil were sufficient to attenuate 100% of UV irradiation. Results suggest that terrestrial microorganisms may not survive on Sun-exposed surfaces on Mars, even if the cells are embedded in frozen martian brines composed of MgSO4. However, if dispersed microorganisms can be covered by only a few millimeters of dust or regolith, long-term survival is probable. Key Words: Hypobaria-Mars-Planetary protection-Brines. Astrobiology 17, 401-412.
Collapse
Affiliation(s)
- Rebecca L Mickol
- 1 Center for Space and Planetary Sciences, University of Arkansas , Fayetteville, Arkansas
| | - Jessica L Page
- 2 Department of Physics and Space Science, Florida Institute of Technology , Melbourne, Florida
| | - Andrew C Schuerger
- 3 Department of Plant Pathology, University of Florida , Gainesville, Florida
| |
Collapse
|
29
|
Smith SA, Benardini JN, Anderl D, Ford M, Wear E, Schrader M, Schubert W, DeVeaux L, Paszczynski A, Childers SE. Identification and Characterization of Early Mission Phase Microorganisms Residing on the Mars Science Laboratory and Assessment of Their Potential to Survive Mars-like Conditions. ASTROBIOLOGY 2017; 17:253-265. [PMID: 28282220 PMCID: PMC5373329 DOI: 10.1089/ast.2015.1417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/04/2016] [Indexed: 05/23/2023]
Abstract
Planetary protection is governed by the Outer Space Treaty and includes the practice of protecting planetary bodies from contamination by Earth life. Although studies are constantly expanding our knowledge about life in extreme environments, it is still unclear what the probability is for terrestrial organisms to survive and grow on Mars. Having this knowledge is paramount to addressing whether microorganisms transported from Earth could negatively impact future space exploration. The objectives of this study were to identify cultivable microorganisms collected from the surface of the Mars Science Laboratory, to distinguish which of the cultivable microorganisms can utilize energy sources potentially available on Mars, and to determine the survival of the cultivable microorganisms upon exposure to physiological stresses present on the martian surface. Approximately 66% (237) of the 358 microorganisms identified are related to members of the Bacillus genus, although surprisingly, 22% of all isolates belong to non-spore-forming genera. A small number could grow by reduction of potential growth substrates found on Mars, such as perchlorate and sulfate, and many were resistant to desiccation and ultraviolet radiation (UVC). While most isolates either grew in media containing ≥10% NaCl or at 4°C, many grew when multiple physiological stresses were applied. The study yields details about the microorganisms that inhabit the surfaces of spacecraft after microbial reduction measures, information that will help gauge whether microorganisms from Earth pose a forward contamination risk that could impact future planetary protection policy. Key Words: Planetary protection-Spore-Bioburden-MSL-Curiosity-Contamination-Mars. Astrobiology 17, 253-265.
Collapse
Affiliation(s)
| | - James N Benardini
- 2 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - David Anderl
- 1 School of Food Science, University of Idaho , Moscow, Idaho
| | - Matt Ford
- 3 Department of Biological Sciences, Idaho State University , Pocatello, Idaho
| | - Emmaleen Wear
- 1 School of Food Science, University of Idaho , Moscow, Idaho
| | | | - Wayne Schubert
- 2 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Linda DeVeaux
- 4 Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology , Rapid City, South Dakota
| | | | | |
Collapse
|
30
|
Rettberg P, Anesio AM, Baker VR, Baross JA, Cady SL, Detsis E, Foreman CM, Hauber E, Ori GG, Pearce DA, Renno NO, Ruvkun G, Sattler B, Saunders MP, Smith DH, Wagner D, Westall F. Planetary Protection and Mars Special Regions--A Suggestion for Updating the Definition. ASTROBIOLOGY 2016; 16:119-25. [PMID: 26848950 DOI: 10.1089/ast.2016.1472] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We highlight the role of COSPAR and the scientific community in defining and updating the framework of planetary protection. Specifically, we focus on Mars "Special Regions," areas where strict planetary protection measures have to be applied before a spacecraft can explore them, given the existence of environmental conditions that may be conducive to terrestrial microbial growth. We outline the history of the concept of Special Regions and inform on recent developments regarding the COSPAR policy, namely, the MEPAG SR-SAG2 review and the Academies and ESF joint committee report on Mars Special Regions. We present some new issues that necessitate the update of the current policy and provide suggestions for new definitions of Special Regions. We conclude with the current major scientific questions that remain unanswered regarding Mars Special Regions.
Collapse
Affiliation(s)
| | | | - Victor R Baker
- 3 Department of Hydrology and Water Resources, University of Arizona , Tucson, Arizona, USA
| | - John A Baross
- 4 School of Oceanography, University of Washington , Seattle, Washington, USA
| | - Sherry L Cady
- 5 Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington, USA
| | - Emmanouil Detsis
- 6 Space Sciences Group, European Science Foundation , Strasbourg, France
| | - Christine M Foreman
- 7 Chemical and Biological Engineering Department, Montana State University , Bozeman, Montana, USA
| | - Ernst Hauber
- 8 Department of Planetary Geology, German Aerospace Centre , Berlin, Germany
| | - Gian Gabriele Ori
- 9 International Research School of Planetary Sciences, Universita d'Annunzio , Pescara, Italy
| | - David A Pearce
- 10 Department of Applied Sciences, Northumbria University , Newcastle-upon-Tyne, UK
| | - Nilton O Renno
- 11 College of Engineering, University of Michigan , Ann Arbor, Michigan, USA
| | - Gary Ruvkun
- 12 Richard B. Simches Research Center, Harvard Medical School , Boston, Massachusetts, USA
| | - Birgit Sattler
- 13 Austrian Polar Research Institute, University of Innsbruck , Innsbruck, Austria
| | - Mark P Saunders
- 14 Langley Research Center , NASA, Hampton, Virginia, USA (Retired)
| | - David H Smith
- 15 Space Studies Board, National Academies of Science , Engineering, and Medicine, Washington, DC, USA
| | - Dirk Wagner
- 16 German Research Centre for Geosciences Helmholtz Centre Potsdam , Potsdam, Germany
| | - Frances Westall
- 17 Centre de biophysique moléculaire, Centre National de la Recherche Scientifique , Orléans, France
| |
Collapse
|
31
|
Read PL, Lewis SR, Mulholland DP. The physics of Martian weather and climate: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:125901. [PMID: 26534887 DOI: 10.1088/0034-4885/78/12/125901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The planet Mars hosts an atmosphere that is perhaps the closest in terms of its meteorology and climate to that of the Earth. But Mars differs from Earth in its greater distance from the Sun, its smaller size, its lack of liquid oceans and its thinner atmosphere, composed mainly of CO(2). These factors give Mars a rather different climate to that of the Earth. In this article we review various aspects of the martian climate system from a physicist's viewpoint, focusing on the processes that control the martian environment and comparing these with corresponding processes on Earth. These include the radiative and thermodynamical processes that determine the surface temperature and vertical structure of the atmosphere, the fluid dynamics of its atmospheric motions, and the key cycles of mineral dust and volatile transport. In many ways, the climate of Mars is as complicated and diverse as that of the Earth, with complex nonlinear feedbacks that affect its response to variations in external forcing. Recent work has shown that the martian climate is anything but static, but is almost certainly in a continual state of transient response to slowly varying insolation associated with cyclic variations in its orbit and rotation. We conclude with a discussion of the physical processes underlying these long- term climate variations on Mars, and an overview of some of the most intriguing outstanding problems that should be a focus for future observational and theoretical studies.
Collapse
Affiliation(s)
- P L Read
- Atmospheric, Oceanic & Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
| | | | | |
Collapse
|
32
|
Nelson M. Mars water discoveries--implications for finding ancient and current life. LIFE SCIENCES IN SPACE RESEARCH 2015; 7:A1-A5. [PMID: 26553643 DOI: 10.1016/j.lssr.2015.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Mark Nelson
- Institute of Ecotechnics, Santa Fe, NM/London, UK; Biospheric Design Division, Global Ecotechnics Corp., Santa Fe, NM, United States.
| |
Collapse
|
33
|
Baker VR, Hamilton CW, Burr DM, Gulick VC, Komatsu G, Luo W, Rice JW, Rodriguez J. Fluvial geomorphology on Earth-like planetary surfaces: A review. GEOMORPHOLOGY (AMSTERDAM, NETHERLANDS) 2015; 245:149-182. [PMID: 29176917 PMCID: PMC5701759 DOI: 10.1016/j.geomorph.2015.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.
Collapse
Affiliation(s)
- Victor R. Baker
- Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Christopher W. Hamilton
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Devon M. Burr
- Earth and Planetary Sciences Department, University of Tennessee-Knoxville, Knoxville, TN 37996-1410, USA
| | - Virginia C. Gulick
- SETI Institute, Mountain View, CA 94043, USA
- NASA Ames Research Center, MS 239-20, Moffett Field, CA 94035, USA
| | - Goro Komatsu
- International Research School of Planetary Sciences, Università d’Annunzio, Viale Pindaro 42, 65127 Pescara, Italy
| | - Wei Luo
- Department of Geography, Northern Illinois University, DeKalb, IL 60115, USA
| | | | - J.A.P. Rodriguez
- NASA Ames Research Center, MS 239-20, Moffett Field, CA 94035, USA
- Planetary Science Institute, Tucson, AZ 85719, USA
| |
Collapse
|
34
|
Willis PA, Creamer JS, Mora MF. Implementation of microchip electrophoresis instrumentation for future spaceflight missions. Anal Bioanal Chem 2015; 407:6939-63. [PMID: 26253225 DOI: 10.1007/s00216-015-8903-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 11/27/2022]
Abstract
We present a comprehensive discussion of the role that microchip electrophoresis (ME) instrumentation could play in future NASA missions of exploration, as well as the current barriers that must be overcome to make this type of chemical investigation possible. We describe how ME would be able to fill fundamental gaps in our knowledge of the potential for past, present, or future life beyond Earth. Despite the great promise of ME for ultrasensitive portable chemical analysis, to date, it has never been used on a robotic mission of exploration to another world. We provide a current snapshot of the technology readiness level (TRL) of ME instrumentation, where the TRL is the NASA systems engineering metric used to evaluate the maturity of technology, and its fitness for implementation on missions. We explain how the NASA flight implementation process would apply specifically to ME instrumentation, and outline the scientific and technology development issues that must be addressed for ME analyses to be performed successfully on another world. We also outline research demonstrations that could be accomplished by independent researchers to help advance the TRL of ME instrumentation for future exploration missions. The overall approach described here for system development could be readily applied to a wide range of other instrumentation development efforts having broad societal and commercial impact.
Collapse
Affiliation(s)
- Peter A Willis
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA,
| | | | | |
Collapse
|
35
|
Earth-like aqueous debris-flow activity on Mars at high orbital obliquity in the last million years. Nat Commun 2015; 6:7543. [PMID: 26102485 PMCID: PMC4557294 DOI: 10.1038/ncomms8543] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/19/2015] [Indexed: 12/03/2022] Open
Abstract
Liquid water is currently extremely rare on Mars, but was more abundant during periods of high obliquity in the last few millions of years. This is testified by the widespread occurrence of mid-latitude gullies: small catchment-fan systems. However, there are no direct estimates of the amount and frequency of liquid water generation during these periods. Here we determine debris-flow size, frequency and associated water volumes in Istok crater, and show that debris flows occurred at Earth-like frequencies during high-obliquity periods in the last million years on Mars. Results further imply that local accumulations of snow/ice within gullies were much more voluminous than currently predicted; melting must have yielded centimetres of liquid water in catchments; and recent aqueous activity in some mid-latitude craters was much more frequent than previously anticipated. It is thought that water flowed on the surface of Mars in the geological past during periods of high orbital obliquity. Here, the authors assess how much liquid water was present and suggest that debris flows occurred at Earth-like frequencies during high-obliquity periods in the past million years.
Collapse
|
36
|
Oren A. Halophilic archaea on Earth and in space: growth and survival under extreme conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:rsta.2014.0194. [PMID: 25368347 DOI: 10.1098/rsta.2014.0194] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Salts are abundant on Mars, and any liquid water that is present or may have been present on the planet is expected to be hypersaline. Halophilic archaea (family Halobacteriaceae) are the microorganisms best adapted to life at extremes of salinity on Earth. This paper reviews the properties of the Halobacteriaceae that may make the group good candidates for life also on Mars. Many species resist high UV and gamma radiation levels; one species has survived exposure to vacuum and radiation during a space flight; and there is at least one psychrotolerant species. Halophilic archaea may survive for millions of years within brine inclusions in salt crystals. Many species have different modes of anaerobic metabolism, and some can use light as an energy source using the light-driven proton pump bacteriorhodopsin. They are also highly tolerant to perchlorate, recently shown to be present in Martian soils, and some species can even use perchlorate as an electron acceptor to support anaerobic growth. The presence of characteristic carotenoid pigments (α-bacterioruberin and derivatives) makes the Halobacteriaceae easy to identify by Raman spectroscopy. Thus, if present on Mars, such organisms may be detected by Raman instrumentation planned to explore Mars during the upcoming ExoMars mission.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silverman Institute of Life Sciences, The Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
37
|
Rummel JD, Beaty DW, Jones MA, Bakermans C, Barlow NG, Boston PJ, Chevrier VF, Clark BC, de Vera JPP, Gough RV, Hallsworth JE, Head JW, Hipkin VJ, Kieft TL, McEwen AS, Mellon MT, Mikucki JA, Nicholson WL, Omelon CR, Peterson R, Roden EE, Sherwood Lollar B, Tanaka KL, Viola D, Wray JJ. A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). ASTROBIOLOGY 2014; 14:887-968. [PMID: 25401393 DOI: 10.1089/ast.2014.1227] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.
Collapse
Affiliation(s)
- John D Rummel
- 1 Department of Biology, East Carolina University , Greenville, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Aerts JW, Röling WFM, Elsaesser A, Ehrenfreund P. Biota and biomolecules in extreme environments on Earth: implications for life detection on Mars. Life (Basel) 2014; 4:535-65. [PMID: 25370528 PMCID: PMC4284457 DOI: 10.3390/life4040535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 11/24/2022] Open
Abstract
The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids) occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the characterization of extant or extinct life. Due to their indispensability for life on Earth, these biomarkers are also prime targets in the search for life on Mars. Biomarkers degrade over time; in situ environmental conditions influence the preservation of those molecules. Nonetheless, upon shielding (e.g., by mineral surfaces), particular biomarkers can persist for billions of years, making them of vital importance in answering questions about the origins and limits of life on early Earth and Mars. The search for organic material and biosignatures on Mars is particularly challenging due to the hostile environment and its effect on organic compounds near the surface. In support of life detection on Mars, it is crucial to investigate analogue environments on Earth that resemble best past and present Mars conditions. Terrestrial extreme environments offer a rich source of information allowing us to determine how extreme conditions affect life and molecules associated with it. Extremophilic organisms have adapted to the most stunning conditions on Earth in environments with often unique geological and chemical features. One challenge in detecting biomarkers is to optimize extraction, since organic molecules can be low in abundance and can strongly adsorb to mineral surfaces. Methods and analytical tools in the field of life science are continuously improving. Amplification methods are very useful for the detection of low concentrations of genomic material but most other organic molecules are not prone to amplification methods. Therefore, a great deal depends on the extraction efficiency. The questions “what to look for”, “where to look”, and “how to look for it” require more of our attention to ensure the success of future life detection missions on Mars.
Collapse
Affiliation(s)
- Joost W Aerts
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Wilfred F M Röling
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Andreas Elsaesser
- Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands.
| | - Pascale Ehrenfreund
- Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands.
| |
Collapse
|
39
|
Cockell CS. Trajectories of martian habitability. ASTROBIOLOGY 2014; 14:182-203. [PMID: 24506485 PMCID: PMC3929387 DOI: 10.1089/ast.2013.1106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/29/2013] [Indexed: 05/21/2023]
Abstract
Beginning from two plausible starting points-an uninhabited or inhabited Mars-this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| |
Collapse
|
40
|
Schulze-Makuch D, Fairén AG, Davila A. Locally targeted ecosynthesis: a proactive in situ search for extant life on other worlds. ASTROBIOLOGY 2013; 13:674-678. [PMID: 23848472 DOI: 10.1089/ast.2013.0995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Viking landers conducted the only life-detection mission outside Earth nearly 40 years ago. We believe it is time to resume this proactive search for life and propose a new approach based on Locally Targeted Ecosynthesis (LoTE) missions: the engineering of local habitable hotspots on planetary surfaces to reveal any subdued biosphere and enhance the expression of its biological activity. LoTE missions are based on a minimum set of assumptions about life, namely, the need for liquid solvents, energy sources, and nutrients, and the limits imposed by UV and ionizing radiation. The most promising destinations for LoTE missions are Mars and Saturn's moon Titan. We describe two LoTE mission concepts that would enhance the unique environmental conditions on Mars and Titan to reveal a subdued biosphere easily detectable with conventional instruments by supplying biologically essential yet critically limited compounds and by engineering local habitable conditions.
Collapse
|
41
|
Abbey W, Salas E, Bhartia R, Beegle LW. The Mojave vadose zone: a subsurface biosphere analogue for Mars. ASTROBIOLOGY 2013; 13:637-646. [PMID: 23848498 DOI: 10.1089/ast.2012.0948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
If life ever evolved on the surface of Mars, it is unlikely that it would still survive there today, but as Mars evolved from a wet planet to an arid one, the subsurface environment may have presented a refuge from increasingly hostile surface conditions. Since the last glacial maximum, the Mojave Desert has experienced a similar shift from a wet to a dry environment, giving us the opportunity to study here on Earth how subsurface ecosystems in an arid environment adapt to increasingly barren surface conditions. In this paper, we advocate studying the vadose zone ecosystem of the Mojave Desert as an analogue for possible subsurface biospheres on Mars. We also describe several examples of Mars-like terrain found in the Mojave region and discuss ecological insights that might be gained by a thorough examination of the vadose zone in these specific terrains. Examples described include distributary fans (deltas, alluvial fans, etc.), paleosols overlain by basaltic lava flows, and evaporite deposits.
Collapse
Affiliation(s)
- William Abbey
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | | | | |
Collapse
|
42
|
McKay CP, Stoker CR, Glass BJ, Davé AI, Davila AF, Heldmann JL, Marinova MM, Fairen AG, Quinn RC, Zacny KA, Paulsen G, Smith PH, Parro V, Andersen DT, Hecht MH, Lacelle D, Pollard WH. The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life. ASTROBIOLOGY 2013; 13:334-53. [PMID: 23560417 DOI: 10.1089/ast.2012.0878] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ≈ 5 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: (1) Search for specific biomolecules that would be conclusive evidence of life. (2) Perform a general search for organic molecules in the ground ice. (3) Determine the processes of ground ice formation and the role of liquid water. (4) Understand the mechanical properties of the martian polar ice-cemented soil. (5) Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. (6) Compare the elemental composition of the northern plains with midlatitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at midlatitudes. Duplicate samples could be cached as a target for possible return by a Mars Sample Return mission. If the samples were shown to contain organic biomarkers, interest in returning them to Earth would be high.
Collapse
|
43
|
Abstract
The geometric complexity of stream networks has been a source of fascination for centuries. However, a comprehensive understanding of ramification--the mechanism of branching by which such networks grow--remains elusive. Here we show that streams incised by groundwater seepage branch at a characteristic angle of 2π/5 = 72°. Our theory represents streams as a collection of paths growing and bifurcating in a diffusing field. Our observations of nearly 5,000 bifurcated streams growing in a 100 km(2) groundwater field on the Florida Panhandle yield a mean bifurcation angle of 71.9° ± 0.8°. This good accord between theory and observation suggests that the network geometry is determined by the external flow field but not, as classical theories imply, by the flow within the streams themselves.
Collapse
|
44
|
Launius RD. Venus-Earth-Mars: comparative climatology and the search for life in the solar system. Life (Basel) 2012; 2:255-73. [PMID: 25371106 PMCID: PMC4187128 DOI: 10.3390/life2030255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/31/2012] [Accepted: 09/07/2012] [Indexed: 11/16/2022] Open
Abstract
Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans-all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a "runaway greenhouse theory," and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth.
Collapse
Affiliation(s)
- Roger D Launius
- Division of Space History, National Air and Space Museum, Smithsonian Institution, P.O. Box 37012, NASM Room 3550, MRC 311, Washington, DC 20013-7012, USA.
| |
Collapse
|
45
|
Mora MF, Stockton AM, Willis PA. Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life. Electrophoresis 2012; 33:2624-38. [DOI: 10.1002/elps.201200102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Kereszturi A. Review of wet environment types on Mars with focus on duration and volumetric issues. ASTROBIOLOGY 2012; 12:586-600. [PMID: 22794300 DOI: 10.1089/ast.2011.0686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The astrobiological significance of certain environment types on Mars strongly depends on the temperature, duration, and chemistry of liquid water that was present there in the past. Recent works have focused on the identification of signs of ancient water on Mars, as it is more difficult to estimate the above-mentioned parameters. In this paper, two important factors are reviewed, the duration and the volume of water at different environment types on past and present Mars. Using currently available information, we can only roughly estimate these values, but as environment types show characteristic differences in this respect, it is worth comparing them and the result may have importance for research in astrobiology. Impact-induced and geothermal hydrothermal systems, lakes, and valley networks were in existence on Mars over the course of from 10(2) to 10(6) years, although they would have experienced substantially different temperature regimes. Ancient oceans, as well as water in outflow channels and gullies, and at the microscopic scale as interfacial water layers, would have had inherently different times of duration and overall volume: oceans may have endured from 10(4) to 10(6) years, while interfacial water would have had the smallest volume and residence time of liquid phase on Mars. Martian wet environments with longer residence times of liquid water are believed to have existed for that amount of time necessary for life to develop on Earth between the Late Heavy Bombardment and the age of the earliest fossil record. The results of this review show the necessity for more detailed analysis of conditions within geothermal heat-induced systems to reconstruct the conditions during weathering and mineral alteration, as well as to search for signs of reoccurring wet periods in ancient crater lakes.
Collapse
Affiliation(s)
- Akos Kereszturi
- Konkoly Thege Miklos Astronomical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
47
|
Robbins SJ, Hynek BM. A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003966] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Carr MH. The fluvial history of Mars. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:2193-2215. [PMID: 22474681 DOI: 10.1098/rsta.2011.0500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
River channels and valleys have been observed on several planetary bodies in addition to the Earth. Long sinuous valleys on Venus, our Moon and Jupiter's moon Io are clearly formed by lava, and branching valleys on Saturn's moon Titan may be forming today by rivers of methane. But by far the most dissected body in our Solar System apart from the Earth is Mars. Branching valleys that in plan resemble terrestrial river valleys are common throughout the most ancient landscapes preserved on the planet. Accompanying the valleys are the remains of other indicators of erosion and deposition, such as deltas, alluvial fans and lake beds. There is little reason to doubt that water was the erosive agent and that early in Mars' history, climatic conditions were very different from the present cold conditions and such that, at least episodically, water could flow across the surface. In addition to the branching valley networks, there are large flood features, termed outflow channels. These are similar to, but dwarf, the largest terrestrial flood channels. The consensus is that these channels were also cut by water although there are other possibilities. The outflow channels mostly postdate the valley networks, although most are still very ancient. They appear to have formed at a time when surface conditions were similar to those that prevail today. There is evidence that glacial activity has modified some of the water-worn valleys, particularly in the 30-50° latitude belts, and ice may also be implicated in the formation of geologically recent, seemingly water-worn gullies on steep slopes. Mars also has had a long volcanic history, and long, sinuous lava channels similar to those on the Moon and Venus are common on and around the large volcanoes. These will not, however, be discussed further; the emphasis here is on the effects of running water on the evolution of the surface.
Collapse
Affiliation(s)
- Michael H Carr
- US Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA.
| |
Collapse
|
49
|
Mangold N, Adeli S, Conway S, Ansan V, Langlais B. A chronology of early Mars climatic evolution from impact crater degradation. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je004005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Grasby SE, Beauchamp B, Bense V. Sulfuric acid Speleogenesis associated with a glacially driven groundwater system-paleo-spring "pipes" at Borup Fiord Pass, Nunavut. ASTROBIOLOGY 2012; 12:19-28. [PMID: 22204399 DOI: 10.1089/ast.2011.0700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gypsum filled "pipe" features were discovered in the proglacial area of the Borup Fiord Pass supraglacial sulfur spring. Stable isotope data suggest that gypsum is formed through oxidation of sulfides and are consistent with models of sulfuric acid speleogenesis. These results suggest that gypsum pipes are paleo-spring discharge channels analogous to those that feed the modern sulfur spring at Borup Fiord. A conceptual model is proposed whereby retreat of the glacial front and associated growth of permafrost in ground exposed now to low arctic temperatures leads to "freezing-in" of the spring system and abandonment of old channels in favor of more open flow systems in the subglacial region. Results provide a model for glacially driven groundwater systems that may form in association with Mars' polar icecaps and potential geological signatures for paleo-groundwater discharge.
Collapse
|