1
|
Wang R, Li J, Li X, Guo Y, Chen P, Peng T. Exercise-induced modulation of miRNAs and gut microbiome: a holistic approach to neuroprotection in Alzheimer's disease. Rev Neurosci 2025:revneuro-2025-0013. [PMID: 40366727 DOI: 10.1515/revneuro-2025-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is marked by cognitive decline, neuroinflammation, and neuronal loss. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression, influencing key pathways involved in neuroinflammation and neurodegeneration in AD. This review delves into the multifaceted role of exercise in modulating miRNA expression and its interplay with the gut microbiome, proposing a comprehensive framework for neuroprotection in AD. By synthesizing current research, we elucidate how exercise-induced changes in miRNA profiles can mitigate inflammatory responses, promote neurogenesis, and reduce amyloid-beta and tau pathologies. Additionally, we explore the gut-brain axis, highlighting how exercise-driven alterations in gut microbiota composition can further influence miRNA expression, thereby enhancing cognitive function and reducing neuroinflammatory markers. This holistic approach underscores the potential of targeting exercise-regulated miRNAs and gut microbiome interactions as a novel, noninvasive therapeutic strategy to decelerate AD progression and improve quality of life for patients. This approach aims to decelerate disease progression and improve patient outcomes, offering a promising avenue for enhancing the effectiveness of AD management.
Collapse
Affiliation(s)
- Rui Wang
- College of Physical Education, Guizhou Normal University, GuiYang 550025, China
| | - Juan Li
- Hanyang University Erica, AnSan 15588, Korea
| | - Xiaochen Li
- School of Physical Education, Huaibei Normal University, HuaiBei 235000, China
| | - Yan Guo
- Sichuan University Jinjiang College, ChengDu 610000, China
| | - Pei Chen
- School of Physical Education, Huaibei Normal University, HuaiBei 235000, China
| | - Tian Peng
- Department of Physical Education, 12377 Zhejiang University of Science and Technology , HangZhou 310023, China
| |
Collapse
|
2
|
Boyd LF, Jiang J, Ahmad J, Natarajan K, Margulies DH. Experimental Structures of Antibody/MHC-I Complexes Reveal Details of Epitopes Overlooked by Computational Prediction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1366-1380. [PMID: 38456672 PMCID: PMC10982845 DOI: 10.4049/jimmunol.2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
mAbs to MHC class I (MHC-I) molecules have proved to be crucial reagents for tissue typing and fundamental studies of immune recognition. To augment our understanding of epitopic sites seen by a set of anti-MHC-I mAb, we determined X-ray crystal structures of four complexes of anti-MHC-I Fabs bound to peptide/MHC-I/β2-microglobulin (pMHC-I). An anti-H2-Dd mAb, two anti-MHC-I α3 domain mAbs, and an anti-β2-microglobulin mAb bind pMHC-I at sites consistent with earlier mutational and functional experiments, and the structures explain allelomorph specificity. Comparison of the experimentally determined structures with computationally derived models using AlphaFold Multimer showed that although predictions of the individual pMHC-I heterodimers were quite acceptable, the computational models failed to properly identify the docking sites of the mAb on pMHC-I. The experimental and predicted structures provide insight into strengths and weaknesses of purely computational approaches and suggest areas that merit additional attention.
Collapse
Affiliation(s)
- Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Boyd LF, Jiang J, Ahmad J, Natarajan K, Margulies DH. Experimental structures of antibody/MHC-I complexes reveal details of epitopes overlooked by computational prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569627. [PMID: 38106040 PMCID: PMC10723347 DOI: 10.1101/2023.12.01.569627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Monoclonal antibodies (mAb) to major histocompatibility complex class I (MHC-I) molecules have proved to be crucial reagents for tissue typing and fundamental studies of immune recognition. To augment our understanding of epitopic sites seen by a set of anti-MHC-I mAb, we determined X-ray crystal structures of four complexes of anti-MHC-I antigen-binding fragments (Fab) bound to peptide/MHC-I/β2m (pMHC-I). An anti-H2-Dd mAb, two anti-MHC-I α3 domain mAb, and an anti-β2-microglobulin (β2m) mAb bind pMHC-I at sites consistent with earlier mutational and functional experiments, and the structures explain allelomorph specificity. Comparison of the experimentally determined structures with computationally derived models using AlphaFold Multimer (AF-M) showed that although predictions of the individual pMHC-I heterodimers were quite acceptable, the computational models failed to properly identify the docking sites of the mAb on pMHC-I. The experimental and predicted structures provide insight into strengths and weaknesses of purely computational approaches and suggest areas that merit additional attention.
Collapse
Affiliation(s)
| | | | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| |
Collapse
|
4
|
Liu G, Zhu G, Wu X, Tang Z, Shao W, Wang M, Xia H, Sun Q, Yan M. Thy-1 knockdown promotes the osteogenic differentiation of GMSCs via the Wnt/β-catenin pathway. J Cell Mol Med 2023; 27:3805-3815. [PMID: 37786319 PMCID: PMC10718136 DOI: 10.1111/jcmm.17955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Gingival mesenchymal stem cells (GMSCs) are newly developed seed cells for tissue engineering owing to their easy isolation, abundance and high growth rates. Thy-1 is an important regulatory molecule in the differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the function of Thy-1 in the osteogenic differentiation of GMSCs by reducing the expression of Thy-1 using a lentivirus. The results demonstrated that Thy-1 knockdown promoted the osteogenic differentiation of GMSCs in vitro. Validation by RNA-seq revealed an obvious decrease in Vcam1 and Sox9 gene expression with Thy-1 knockdown. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the differentially expressed genes were enriched in the Wnt signalling pathway. We further demonstrated that Thy-1 knockdown promoted osteogenic differentiation of GMSCs by activating the Wnt/β-catenin signalling pathway. Therefore, Thy-1 has a key regulatory role in the differentiation of GMSCs and maybe a core molecule connecting transcription factors related to the differentiation of MSCs. Our study also highlighted the potential of Thy-1 to modify MSCs, which may help improve their use in tissue engineering.
Collapse
Affiliation(s)
- Gufeng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Guixin Zhu
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiaoyi Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Ziqiao Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Wenjun Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
- Department of Oral Implantology, Hospital and School of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
- Department of Oral Implantology, Hospital and School of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Quan Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
- Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School and Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Mingdong Yan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of StomatologyFujian Medical UniversityFuzhouPeople's Republic of China
| |
Collapse
|
5
|
Koung Ngeun S, Shimizu M, Kaneda M. Characterization of Rabbit Mesenchymal Stem/Stromal Cells after Cryopreservation. BIOLOGY 2023; 12:1312. [PMID: 37887022 PMCID: PMC10603895 DOI: 10.3390/biology12101312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Adipose tissues (ADPs) are an alternative source for mesenchymal stem/stromal cells (MSCs), given that conventional bone marrow (BM) collection is painful and yields limited cell numbers. As the need for easily accessible MSCs grows, cryopreservation's role in regenerative medicine is becoming increasingly vital. However, limited research exists on the characteristics and functional properties of rabbit-derived MSCs from various anatomical sources before and after cryopreservation. We examined the effects of cryopreservation using Bambanker. We found that cryopreservation did not adversely affect the morphology, viability, and adipogenic or chondrogenic differentiation abilities of ADP MSCs or BM MSCs. However, there was a notable drop in the proliferation rate and osteogenic differentiation capability of BM MSCs post-cryopreservation. Additionally, after cryopreservation, the surface marker gene expression of CD90 was not evident in ADP MSCs. As for markers, ADIPOQ can serve as an adipogenic marker for ADP MSCs. ACAN and CNMD can act as chondrogenic markers, but these two markers are not as effective post-cryopreservation on ADP MSCs, and osteogenic markers could not be validated. The study highlights that compared to BM MSCs, ADP MSCs retained a higher viability, proliferation rate, and differentiation potential after cryopreservation. As such, in clinical MSC use, we must consider changes in post-cryopreservation cell functions.
Collapse
Affiliation(s)
- Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Miki Shimizu
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| |
Collapse
|
6
|
Capuz A, Osien S, Karnoub MA, Aboulouard S, Laurent E, Coyaud E, Raffo-Romero A, Duhamel M, Bonnefond A, Derhourhi M, Trerotola M, El Yazidi-Belkoura I, Devos D, Zilkova M, Kobeissy F, Vanden Abeele F, Fournier I, Cizkova D, Rodet F, Salzet M. Astrocytes express aberrant immunoglobulins as putative gatekeeper of astrocytes to neuronal progenitor conversion. Cell Death Dis 2023; 14:237. [PMID: 37015912 PMCID: PMC10073301 DOI: 10.1038/s41419-023-05737-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Using multi-omics analyses including RNAseq, RT-PCR, RACE-PCR, and shotgun proteomic with enrichment strategies, we demonstrated that newborn rat astrocytes produce neural immunoglobulin constant and variable heavy chains as well as light chains. However, their edification is different from the ones found in B cells and they resemble aberrant immunoglobulins observed in several cancers. Moreover, the complete enzymatic V(D)J recombination complex has also been identified in astrocytes. In addition, the constant heavy chain is also present in adult rat astrocytes, whereas in primary astrocytes from human fetus we identified constant and variable kappa chains as well as the substitution lambda chains known to be involved in pre-B cells. To gather insights into the function of these neural IgGs, CRISPR-Cas9 of IgG2B constant heavy chain encoding gene (Igh6), IgG2B overexpression, proximal labeling of rat astrocytes IgG2B and targets identification through 2D gels were performed. In Igh6 KO astrocytes, overrepresentation of factors involved in hematopoietic cells, neural stem cells, and the regulation of neuritogenesis have been identified. Moreover, overexpression of IgG2B in astrocytes induces the CRTC1-CREB-BDNF signaling pathway known to be involved in gliogenesis, whereas Igh6 KO triggers the BMP/YAP1/TEAD3 pathway activated in astrocytes dedifferentiation into neural progenitors. Proximal labeling experiments revealed that IgG2B is N-glycosylated by the OST complex, addressed to vesicle membranes containing the ATPase complex, and behaves partially like CD98hc through its association with LAT1. These experiments also suggest that proximal IgG2B-LAT1 interaction occurs concomitantly with MACO-1 and C2CD2L, at the heart of a potentially novel cell signaling platform. Finally, we demonstrated that these chains are synthesized individually and associated to recognize specific targets. Indeed, intermediate filaments Eif4a2 and Pdia6 involved in astrocyte fate constitute targets for these neural IgGs. Taken together, we hypothese that neural aberrant IgG chains may act as gatekeepers of astrocytes' fate.
Collapse
Affiliation(s)
- Alice Capuz
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Sylvain Osien
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Mélodie Anne Karnoub
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Soulaimane Aboulouard
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Estelle Laurent
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Etienne Coyaud
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Antonella Raffo-Romero
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Marie Duhamel
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Mehdi Derhourhi
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University 'G. D'Annunzio', Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Ikram El Yazidi-Belkoura
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France
| | - David Devos
- Université de Lille, INSERM, U1172, CHU-Lille, Lille Neuroscience Cognition Research Centre, 1 place de Verdun, 59000, Lille, France
| | - Monika Zilkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510, Bratislava, Slovakia
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fabien Vanden Abeele
- Université de Lille, INSERM U1003, Laboratory of Cell Physiology, 59655, Villeneuve d'Ascq, France
| | - Isabelle Fournier
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
- Institut Universitaire de France, 75005, Paris, France
| | - Dasa Cizkova
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Franck Rodet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France.
| | - Michel Salzet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France.
- Institut Universitaire de France, 75005, Paris, France.
| |
Collapse
|
7
|
Dos Santos A, Lyu N, Balayan A, Knight R, Zhuo KS, Sun Y, Xu J, Funderburgh ML, Funderburgh JL, Deng SX. Generation of Functional Immortalized Human Corneal Stromal Stem Cells. Int J Mol Sci 2022; 23:13399. [PMID: 36362184 PMCID: PMC9657819 DOI: 10.3390/ijms232113399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/04/2024] Open
Abstract
In addition to their therapeutic potential in regenerative medicine, human corneal stromal stem cells (CSSCs) could serve as a powerful tool for drug discovery and development. Variations from different donors, their isolation method, and their limited life span in culture hinder the utility of primary human CSSCs. To address these limitations, this study aims to establish and characterize immortalized CSSC lines (imCSSC) generated from primary human CSSCs. Primary CSSCs (pCSSC), isolated from human adult corneoscleral tissue, were transduced with ectopic expression of hTERT, c-MYC, or the large T antigen of the Simian virus 40 (SV40T) to generate imCSSC. Cellular morphology, proliferation capacity, and expression of CSSCs specific surface markers were investigated in all cell lines, including TNFAIP6 gene expression levels in vitro, a known biomarker of in vivo anti-inflammatory efficacy. SV40T-overexpressing imCSSC successfully extended the lifespan of pCSSC while retaining a similar morphology, proliferative capacity, multilineage differentiation potential, and anti-inflammatory properties. The current study serves as a proof-of-concept that immortalization of CSSCs could enable a large-scale source of CSSC for use in regenerative medicine.
Collapse
Affiliation(s)
- Aurelie Dos Santos
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ning Lyu
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College of Fudan University, Shanghai 200031, China
| | - Alis Balayan
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rob Knight
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Katherine Sun Zhuo
- Human Biology Society, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yuzhao Sun
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jianjiang Xu
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College of Fudan University, Shanghai 200031, China
| | | | | | - Sophie X. Deng
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Hu P, Leyton L, Hagood JS, Barker TH. Thy-1-Integrin Interactions in cis and Trans Mediate Distinctive Signaling. Front Cell Dev Biol 2022; 10:928510. [PMID: 35733855 PMCID: PMC9208718 DOI: 10.3389/fcell.2022.928510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Thy-1 is a cell surface glycosylphosphatidylinositol (GPI)-anchored glycoprotein that bears a broad mosaic of biological roles across various cell types. Thy-1 displays strong physiological and pathological implications in development, cancer, immunity, and tissue fibrosis. Quite uniquely, Thy-1 is capable of mediating integrin-related signaling through direct trans- and cis-interaction with integrins. Both interaction types have shown distinctive roles, even when interacting with the same type of integrin, where binding in trans or in cis often yields divergent signaling events. In this review, we will revisit recent progress and discoveries of Thy-1–integrin interactions in trans and in cis, highlight their pathophysiological consequences and explore other potential binding partners of Thy-1 within the integrin regulation/signaling paradigm.
Collapse
Affiliation(s)
- Ping Hu
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile and Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - James S. Hagood
- Department of Pediatrics, Division of Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Program for Rare and Interstitial Lung Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Thomas H. Barker,
| |
Collapse
|
9
|
Jiang Z, Shi Y, Zhao W, Zhou L, Zhang B, Xie Y, Zhang Y, Tan G, Wang Z. Association between chronic periodontitis and the risk of Alzheimer's disease: combination of text mining and GEO dataset. BMC Oral Health 2021; 21:466. [PMID: 34556089 PMCID: PMC8461934 DOI: 10.1186/s12903-021-01827-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Although chronic periodontitis has previously been reported to be linked with Alzheimer's disease (AD), the pathogenesis between the two is unclear. The purpose of this study is to analyze and screen the relevant and promising molecular markers between chronic periodontitis and Alzheimer's disease (AD). METHODS In this paper, we analyzed three AD expression datasets and extracted differentially expressed genes (DEGs), then intersected them with chronic periodontitis genes obtained from text mining, and finally obtained integrated DEGs. We followed that by enriching the matching the matching cell signal cascade through DAVID analysis. Moreover, the MCODE of Cytoscape software was employed to uncover the protein-protein interaction (PPI) network and the matching hub gene. Finally, we verified our data using a different independent AD cohort. RESULTS The chronic periodontitis gene set acquired from text abstracting was intersected with the previously obtained three AD groups, and 12 common genes were obtained. Functional enrichment assessment uncovered 12 cross-genes, which were mainly linked to cell morphogenesis involved in neuron differentiation, leading edge membrane, and receptor ligand activity. After PPI network creation, the ten hub genes linked to AD were retrieved, consisting of SPP1, THY1, CD44, ITGB1, HSPB3, CREB1, SST, UCHL1, CCL5 and BMP7. Finally, the function terms in the new independent dataset were used to verify the previous dataset, and we found 22 GO terms and one pathway, "ECM-receptor interaction pathways", in the overlapping functional terms. CONCLUSIONS The establishment of the above-mentioned candidate key genes, as well as the enriched signaling cascades, provides promising molecular markers for chronic periodontitis-related AD, which may help the diagnosis and treatment of AD patients in the future.
Collapse
Affiliation(s)
- Zhengye Jiang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Yanxi Shi
- Department of Cardiology, Jiaxing Second Hospital, Jiaxing, China
| | - Wenpeng Zhao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Liwei Zhou
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Yuanyuan Xie
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Yaya Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Guowei Tan
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
10
|
Sion C, Ghannoum D, Ebel B, Gallo F, de Isla N, Guedon E, Chevalot I, Olmos E. A new perfusion mode of culture for WJ-MSCs expansion in a stirred and online monitored bioreactor. Biotechnol Bioeng 2021; 118:4453-4464. [PMID: 34387862 DOI: 10.1002/bit.27914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023]
Abstract
As a clinical dose requires a minimum of 106 cells per kilogram of patients, it is, therefore, crucial to develop a scalable method of production of Wharton Jelly mesenchymal stem cells (WJ-MSCs) with maintained inner characteristics. Scalable expansion of WJ-MSCs on microcarriers usually found in cell culture, involves specific cell detachment using trypsin and could have harmful effects on cells. In this study, the performance of batch, fed-batch, and perfused-continuous mode of culture were compared. The batch and fed-batch modes resulted in expansion factors of 5 and 43, respectively. The perfused-continuous mode strategy consisted of the implementation of a settling tube inside the bioreactor. The diameter of the tube was calculated to maintain microcarriers colonized by cells in the bioreactor whereas empty microcarriers (responsible for potentially damaging collisions) were removed, using a continuous flow rate based on MSCs physiological requirements. Thanks to this strategy, a maximal number of 800 million cells was obtained in a 1.5 L bioreactor in 10 days. Lastly, online dielectric spectroscopy was implemented in the bioreactor and indicated that cell growth could be monitored during the culture.
Collapse
Affiliation(s)
- Caroline Sion
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Dima Ghannoum
- Ingénierie Moléculaire et Physiopathologie Articulaire, Université de Lorraine, CNRS UMR 7365, Vandœuvre-lès-Nancy, France
| | - Bruno Ebel
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Fanny Gallo
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Natalia de Isla
- Ingénierie Moléculaire et Physiopathologie Articulaire, Université de Lorraine, CNRS UMR 7365, Vandœuvre-lès-Nancy, France
| | - Emmanuel Guedon
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Isabelle Chevalot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Eric Olmos
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| |
Collapse
|
11
|
Solmaz B, Şahin A, Keleştemur T, Kiliç E, Kaptanoğlu E. Evidence that osteogenic and neurogenic differentiation capability of epidural adipose tissue-derived stem cells was more pronounced than in subcutaneous cells. Turk J Med Sci 2020; 50:1825-1837. [PMID: 32222128 PMCID: PMC7775714 DOI: 10.3906/sag-2001-76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/22/2020] [Indexed: 11/03/2022] Open
Abstract
Background/aim The management of dura-related complications, such as the repairment of dural tears and reconstruction of large dural defects, remain the most challenging subjects of neurosurgery. Numerous surgical techniques and synthetic or autologous adjuvant materials have emerged as an adjunct to primary dural closure, which may result in further complications or side effects. Therefore, the subcutaneous autologous free adipose tissue graft has been recommended for the protection of the central nervous system and repairment of the meninges. In addition, human adipose tissue is also a source of multipotent stem cells. However, epidural adipose tissue seems more promising than subcutaneous because of the close location and intercellular communication with the spinal cord. Herein, it was aimed to define differentiation capability of both subcutaneous and epidural adipose tissue-derived stem cells (ASCs). Materials and methods Human subcutaneous and epidural adipose tissue specimens were harvested from the primary incisional site and the lumbar epidural space during lumbar spinal surgery, and ASCs were isolated. Results The results indicated that both types of ASCs expressed the cell surface markers, which are commonly expressed stem cells; however, epidural ASCs showed lower expression of CD90 than the subcutaneous ASCs. Moreover, it was demonstrated that the osteogenic and neurogenic differentiation capability of epidural adipose tissue-derived ASCs was more pronounced than that of the subcutaneous ASCs. Conclusion Consequently, the impact of characterization of epidural ASCs will allow for a new understanding for dural as well as central nervous system healing and recovery after an injury.
Collapse
Affiliation(s)
- Bilgehan Solmaz
- Department of Neurological Sciences, Marmara University, İstanbul, Turkey,Department of Neurosurgery, İstanbul Education Research Hospital, Ministry of Health, İstanbul, Turkey
| | - Ali Şahin
- Department of Neurological Sciences, Marmara University, İstanbul, Turkey
| | - Taha Keleştemur
- Department of Physiology, İstanbul Medipol University, İstanbul, Turkey,Regenerative and Restorative Medical Research Center, İstanbul Medipol Universtiy, İstanbul, Turkey
| | - Ertuğrul Kiliç
- Department of Physiology, İstanbul Medipol University, İstanbul, Turkey,Regenerative and Restorative Medical Research Center, İstanbul Medipol Universtiy, İstanbul, Turkey
| | - Erkan Kaptanoğlu
- Department of Neurosurgery, Başkent University, İstanbul, Turkey
| |
Collapse
|
12
|
Dahlhaus M, Roos J, Engel D, Tews D, Halbgebauer D, Funcke JB, Kiener S, Schuler PJ, Döscher J, Hoffmann TK, Zinngrebe J, Rojewski M, Schrezenmeier H, Debatin KM, Wabitsch M, Fischer-Posovszky P. CD90 Is Dispensable for White and Beige/Brown Adipocyte Differentiation. Int J Mol Sci 2020; 21:E7907. [PMID: 33114405 PMCID: PMC7663553 DOI: 10.3390/ijms21217907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Brown adipose tissue (BAT) is a thermogenic organ in rodents and humans. In mice, the transplantation of BAT has been successfully used to combat obesity and its comorbidities. While such beneficial properties of BAT are now evident, the developmental and cellular origins of brown, beige, and white adipocytes have remained only poorly understood, especially in humans. We recently discovered that CD90 is highly expressed in stromal cells isolated from human white adipose tissue (WAT) compared to BAT. Here, we studied whether CD90 interferes with brown or white adipogenesis or white adipocyte beiging. We applied flow cytometric sorting of human adipose tissue stromal cells (ASCs), a CRISPR/Cas9 knockout strategy in the human Simpson-Golabi-Behmel syndrome (SGBS) adipocyte model system, as well as a siRNA approach in human approaches supports the hypothesis that CD90 affects brown or white adipogenesis or white adipocyte beiging in humans. Taken together, our findings call the conclusions drawn from previous studies, which claimed a central role of CD90 in adipocyte differentiation, into question.
Collapse
MESH Headings
- Adipose Tissue, Beige/cytology
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/metabolism
- Adult
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- CRISPR-Cas Systems
- Cell Differentiation
- Cells, Cultured
- Female
- Flow Cytometry
- Gene Knockout Techniques
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Gigantism/genetics
- Gigantism/metabolism
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Humans
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Male
- Middle Aged
- Stromal Cells/metabolism
- Thermogenesis
- Thy-1 Antigens/genetics
- Thy-1 Antigens/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Meike Dahlhaus
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Julian Roos
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Daniel Engel
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Daniel Halbgebauer
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Jan-Bernd Funcke
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Sophie Kiener
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centre, 89075 Ulm, Germany; (P.J.S.); (J.D.); (T.K.H.)
| | - Johannes Döscher
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centre, 89075 Ulm, Germany; (P.J.S.); (J.D.); (T.K.H.)
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centre, 89075 Ulm, Germany; (P.J.S.); (J.D.); (T.K.H.)
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Markus Rojewski
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; (M.R.); (H.S.)
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; (M.R.); (H.S.)
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, 89081 Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| |
Collapse
|
13
|
Pinheiro LHS, Trindade LD, Costa FDO, Silva NDL, Sandes AF, Nunes MAP, Correa CB, Almeida CAC, da Cruz GS, de Lyra Junior DP, Schimieguel DM. Aberrant Phenotypes in Acute Myeloid Leukemia and Its Relationship with Prognosis and Survival: A Systematic Review and Meta-Analysis. Int J Hematol Oncol Stem Cell Res 2020; 14:274-288. [PMID: 33603989 PMCID: PMC7876425 DOI: 10.18502/ijhoscr.v14i4.4484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/14/2020] [Indexed: 01/03/2023] Open
Abstract
Background: The aim of this review was to evaluate the influence of aberrant phenotypes in prognosis and survival in acute myeloid leukemia (AML) patients by multiparametric flow cytometry. Materials and Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a review of PubMed, Scopus, Science Direct and Web of Science was carried out through 1998 to 2016, conducted by two reviewers independently, evaluating titles, abstracts and full-texts of the selected studies. Results: Ten studies were included on this review, in which the aberrant phenotype expression of 17 markers were detected in AML patients. From these, 11 aberrant phenotypes were associated with prognosis, which eight had shown negative impact on prognosis: CD7, CD56, CD15, CD2, CD3, CD90low, CD123high, CD117high, and three others were associated with good prognosis: CD19, CD98high and CD117+/CD15+. Meta-analysis showed that aberrant expression of CD56 as a poor prognostic marker with unfavorable outcomes is implicated in decreased overall survival in AML patients in 28 months (95% CI: 0.62 to 0.92). Conclusion: This was observed when there was association between CD56 expression and other prognostic factors, influencing on patients' management care and treatment.
Collapse
Affiliation(s)
| | - Louise Dantas Trindade
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Nathanielly de Lima Silva
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Alex Freire Sandes
- Department of Medicine, Hematology Course, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Cristiane Bani Correa
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | | | - Dulce Marta Schimieguel
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
14
|
Pan HQ, Zhang WH, Liao CZ, He Y, Xiao ZM, Qin X, Liu WZ, Wang N, Zou JX, Liu XX, Pan BX. Chronic Stress Oppositely Regulates Tonic Inhibition in Thy1-Expressing and Non-expressing Neurons in Amygdala. Front Neurosci 2020; 14:299. [PMID: 32362809 PMCID: PMC7180173 DOI: 10.3389/fnins.2020.00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic or prolonged exposure to stress ranks among the most important socioenvironmental factors contributing to the development of neuropsychiatric diseases, a process generally associated with loss of inhibitory tone in amygdala. Recent studies have identified distinct neuronal circuits within the basolateral amygdala (BLA) engaged in different emotional processes. However, the potential circuit involved in stress-induced dysregulation of inhibitory tones in BLA remains elusive. Here, a transgenic mouse model expressing yellow fluorescent protein under control of the Thy1 promoter was used to differentiate subpopulations of projection neurons (PNs) within the BLA. We observed that the tonic inhibition in amygdala neurons expressing and not expressing Thy1 (Thy1+/-) was oppositely regulated by chronic social defeat stress (CSDS). In unstressed control mice, the tonic inhibitory currents were significantly stronger in Thy1- PNs than their Thy1+ counterparts. CSDS markedly reduced the currents in Thy1- projection neurons (PNs), but increased that in Thy1+ ones. By contrast, CSDS failed to affect both the phasic A-type γ-aminobutyric acid receptor (GABAAR) currents and GABABR currents in these two PN populations. Moreover, chronic corticosterone administration was sufficient to mimic the effect of CSDS on the tonic inhibition of Thy1+ and Thy1- PNs. As a consequence, the suppression of tonic GABAAR currents on the excitability of Thy1- PNs was weakened by CSDS, but enhanced in Thy1+ PNs. The differential regulation of chronic stress on the tonic inhibition in Thy1+ and Thy1- neurons may orchestrate cell-specific adaptation of amygdala neurons to chronic stress.
Collapse
Affiliation(s)
- Han-Qing Pan
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Wen-Hua Zhang
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Cai-Zhi Liao
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Ye He
- Center for Medical Experiments, Nanchang University, Nanchang, China
| | - Zhi-Ming Xiao
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Xia Qin
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Wei-Zhu Liu
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Na Wang
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, China
| | - Jia-Xin Zou
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Xiao-Xuan Liu
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Bing-Xing Pan
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Sun Q, Nakata H, Yamamoto M, Kasugai S, Kuroda S. Comparison of gingiva-derived and bone marrow mesenchymal stem cells for osteogenesis. J Cell Mol Med 2019; 23:7592-7601. [PMID: 31657140 PMCID: PMC6815943 DOI: 10.1111/jcmm.14632] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 07/15/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
Presently, bone marrow is considered as a prime source of mesenchymal stem cells; however, there are some drawbacks and limitations. Compared with other mesenchymal stem cell (MSC) sources, gingiva-derived mesenchymal stem cells (GMSCs) are abundant and easy to obtain through minimally invasive cell isolation techniques. In this study, MSCs derived from gingiva and bone marrow were isolated and cultured from mice. GMSCs were characterized by osteogenic, adipogenic and chondrogenic differentiation, and flow cytometry. Compared with bone marrow MSCs (BMSCs), the proliferation capacity was judged by CCK-8 proliferation assay. Osteogenic differentiation was assessed by ALP staining, ALP assay and Alizarin red staining. RT-qPCR was performed for ALP, OCN, OSX and Runx2. The results indicated that GMSCs showed higher proliferative capacity than BMSCs. GMSCs turned more positive for ALP and formed a more number of mineralized nodules than BMSCs after osteogenic induction. RT-qPCR revealed that the expression of ALP, OCN, OSX and Runx2 was significantly increased in the GMSCs compared with that in BMSCs. Moreover, it was found that the number of CD90-positive cells in GMSCs elevated more than that of BMSCs during osteogenic induction. Taking these results together, it was indicated that GMSCs might be a promising source in the future bone tissue engineering.
Collapse
Affiliation(s)
- Quan Sun
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Maiko Yamamoto
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
16
|
Exosomes in Systemic Sclerosis: Messengers Between Immune, Vascular and Fibrotic Components? Int J Mol Sci 2019; 20:ijms20184337. [PMID: 31487964 PMCID: PMC6770454 DOI: 10.3390/ijms20184337] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/18/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disease, characterized by vasculopathy and fibrosis of the skin and internal organs. This disease is still considered incurable and is associated with a high risk of mortality, which is related to fibrotic events. An early diagnosis is useful for preventing complications, and targeted therapies reduce disease progression and ameliorate patients’ quality of life. Nevertheless, there are no validated biomarkers for early diagnosis with predictive prognostic value. Exosomes are membrane vesicles, transporting proteins and nucleic acids that may be delivered to target cells, which influences cellular behavior. They play important roles in cell–cell communication, both in physiological and pathological conditions, and may be useful as circulating biomarkers. Recent evidences suggest a role for these microvesicles in the three main aspects related to the pathogenesis of SSc (immunity, vascular damage, and fibrosis). Moreover, exosomes are of particular interest in the field of nano-delivery and are used as biological carriers. In this review, we report the latest information concerning SSc pathogenesis, clinical aspects of SSc, and current approaches to the treatment of SSc. Furthermore, we indicate a possible role of exosomes in SSc pathogenesis and suggest their potential use as diagnostic and prognostic biomarkers, as well as therapeutic tools.
Collapse
|
17
|
Kou X, Chen D, Chen N. Physical Activity Alleviates Cognitive Dysfunction of Alzheimer's Disease through Regulating the mTOR Signaling Pathway. Int J Mol Sci 2019; 20:ijms20071591. [PMID: 30934958 PMCID: PMC6479697 DOI: 10.3390/ijms20071591] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common aging-related progressive neurodegenerative disorders, and can result in great suffering for a large portion of the aged population. Although the pathogenesis of AD is being elucidated, the exact mechanisms are still unclear, thereby impeding the development of effective drugs, supplements, and other interventional strategies for AD. In recent years, impaired autophagy associated with microRNA (miRNA) dysfunction has been reported to be involved in aging and aging-related neurodegenerative diseases. Therefore, miRNA-mediated regulation for the functional status of autophagy may become one of the potent interventional strategies for AD. Mounting evidence from in vivo AD models has demonstrated that physical activity can exert a neuroprotective role in AD. In addition, autophagy is strictly regulated by the mTOR signaling pathway. In this article, the regulation of the functional status of autophagy through the mTOR signaling pathway during physical activity is systematically discussed for the prevention and treatment of AD. This concept will be beneficial to developing novel and effective targets that can create a direct link between pharmacological intervention and AD in the future.
Collapse
Affiliation(s)
- Xianjuan Kou
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| | - Dandan Chen
- Graduate School, Wuhan Sports University, Wuhan 430079, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
18
|
Kornete M, Marone R, Jeker LT. Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:2489-2501. [PMID: 29445007 DOI: 10.4049/jimmunol.1701121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022]
Abstract
Adoptive cell transfer is an important approach for basic research and emerges as an effective treatment for various diseases, including infections and blood cancers. Direct genetic manipulation of primary immune cells opens up unprecedented research opportunities and could be applied to enhance cellular therapeutic products. In this article, we report highly efficient genome engineering in primary murine T cells using a plasmid-based RNA-guided CRISPR system. We developed a straightforward approach to ablate genes in up to 90% of cells and to introduce precisely targeted single nucleotide polymorphisms in up to 25% of the transfected primary T cells. We used gene editing-mediated allele switching to quantify homology-directed repair, systematically optimize experimental parameters, and map a native B cell epitope in primary T cells. Allele switching of a surrogate cell surface marker can be used to enrich cells, with successful simultaneous editing of a second gene of interest. Finally, we applied the approach to correct two disease-causing mutations in the Foxp3 gene. Repairing the cause of the scurfy syndrome, a 2-bp insertion in Foxp3, and repairing the clinically relevant Foxp3K276X mutation restored Foxp3 expression in primary T cells.
Collapse
Affiliation(s)
- Mara Kornete
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland; and Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| | - Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland; and Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| | - Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland; and Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| |
Collapse
|
19
|
Eden T, Menzel S, Wesolowski J, Bergmann P, Nissen M, Dubberke G, Seyfried F, Albrecht B, Haag F, Koch-Nolte F. A cDNA Immunization Strategy to Generate Nanobodies against Membrane Proteins in Native Conformation. Front Immunol 2018; 8:1989. [PMID: 29410663 PMCID: PMC5787055 DOI: 10.3389/fimmu.2017.01989] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Nanobodies (Nbs) are soluble, versatile, single-domain binding modules derived from the VHH variable domain of heavy-chain antibodies naturally occurring in camelids. Nbs hold huge promise as novel therapeutic biologics. Membrane proteins are among the most interesting targets for therapeutic Nbs because they are accessible to systemically injected biologics. In order to be effective, therapeutic Nbs must recognize their target membrane protein in native conformation. However, raising Nbs against membrane proteins in native conformation can pose a formidable challenge since membrane proteins typically contain one or more hydrophobic transmembrane regions and, therefore, are difficult to purify in native conformation. Here, we describe a highly efficient genetic immunization strategy that circumvents these difficulties by driving expression of the target membrane protein in native conformation by cells of the immunized camelid. The strategy encompasses ballistic transfection of skin cells with cDNA expression plasmids encoding one or more orthologs of the membrane protein of interest and, optionally, other costimulatory proteins. The plasmid is coated onto 1 µm gold particles that are then injected into the shaved and depilated skin of the camelid. A gene gun delivers a helium pulse that accelerates the DNA-coated particles to a velocity sufficient to penetrate through multiple layers of cells in the skin. This results in the exposure of the extracellular domains of the membrane protein on the cell surface of transfected cells. Repeated immunization drives somatic hypermutation and affinity maturation of target-specific heavy-chain antibodies. The VHH/Nb coding region is PCR-amplified from B cells obtained from peripheral blood or a lymph node biopsy. Specific Nbs are selected by phage display or by screening of Nb-based heavy-chain antibodies expressed as secretory proteins in transfected HEK cells. Using this strategy, we have successfully generated agonistic and antagonistic Nbs against several cell surface ecto-enzymes and ligand-gated ion channels.
Collapse
Affiliation(s)
- Thomas Eden
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janusz Wesolowski
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philine Bergmann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marion Nissen
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gudrun Dubberke
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabienne Seyfried
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birte Albrecht
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Tan RPA, Leshchyns'ka I, Sytnyk V. Glycosylphosphatidylinositol-Anchored Immunoglobulin Superfamily Cell Adhesion Molecules and Their Role in Neuronal Development and Synapse Regulation. Front Mol Neurosci 2017; 10:378. [PMID: 29249937 PMCID: PMC5715320 DOI: 10.3389/fnmol.2017.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Immunoglobulin superfamily (IgSF) cell adhesion molecules (CAMs) are cell surface glycoproteins that not only mediate interactions between neurons but also between neurons and other cells in the nervous system. While typical IgSF CAMs are transmembrane molecules, this superfamily also includes CAMs, which do not possess transmembrane and intracellular domains and are instead attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In this review, we focus on the role GPI-anchored IgSF CAMs have as signal transducers and ligands in neurons, and discuss their functions in regulation of neuronal development, synapse formation, synaptic plasticity, learning, and behavior. We also review the links between GPI-anchored IgSF CAMs and brain disorders.
Collapse
Affiliation(s)
- Rui P A Tan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
21
|
Schultz JH, Adema CM. Comparative immunogenomics of molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:3-15. [PMID: 28322934 PMCID: PMC5494275 DOI: 10.1016/j.dci.2017.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 05/22/2023]
Abstract
Comparative immunology, studying both vertebrates and invertebrates, provided the earliest descriptions of phagocytosis as a general immune mechanism. However, the large scale of animal diversity challenges all-inclusive investigations and the field of immunology has developed by mostly emphasizing study of a few vertebrate species. In addressing the lack of comprehensive understanding of animal immunity, especially that of invertebrates, comparative immunology helps toward management of invertebrates that are food sources, agricultural pests, pathogens, or transmit diseases, and helps interpret the evolution of animal immunity. Initial studies showed that the Mollusca (second largest animal phylum), and invertebrates in general, possess innate defenses but lack the lymphocytic immune system that characterizes vertebrate immunology. Recognizing the reality of both common and taxon-specific immune features, and applying up-to-date cell and molecular research capabilities, in-depth studies of a select number of bivalve and gastropod species continue to reveal novel aspects of molluscan immunity. The genomics era heralded a new stage of comparative immunology; large-scale efforts yielded an initial set of full molluscan genome sequences that is available for analyses of full complements of immune genes and regulatory sequences. Next-generation sequencing (NGS), due to lower cost and effort required, allows individual researchers to generate large sequence datasets for growing numbers of molluscs. RNAseq provides expression profiles that enable discovery of immune genes and genome sequences reveal distribution and diversity of immune factors across molluscan phylogeny. Although computational de novo sequence assembly will benefit from continued development and automated annotation may require some experimental validation, NGS is a powerful tool for comparative immunology, especially increasing coverage of the extensive molluscan diversity. To date, immunogenomics revealed new levels of complexity of molluscan defense by indicating sequence heterogeneity in individual snails and bivalves, and members of expanded immune gene families are expressed differentially to generate pathogen-specific defense responses.
Collapse
Affiliation(s)
- Jonathan H Schultz
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
22
|
Kovac M, Vasicek J, Kulikova B, Bauer M, Curlej J, Balazi A, Chrenek P. Different RNA and protein expression of surface markers in rabbit amniotic fluid-derived mesenchymal stem cells. Biotechnol Prog 2017; 33:1601-1613. [DOI: 10.1002/btpr.2519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Michal Kovac
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Jaromir Vasicek
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
- Research Centre AgroBioTech, Slovak University of Agriculture; Nitra Slovak Republic
| | - Barbora Kulikova
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Miroslav Bauer
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
- Faculty of Natural Sciences; Constantine the Philosopher University; Nitra Slovak republic
| | - Jozef Curlej
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
| | - Andrej Balazi
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Peter Chrenek
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| |
Collapse
|
23
|
Park K, Kim J, Choi CY, Bae J, Kim SH, Kim YH, Chun T. Molecular Cloning and Expression Analysis of Pig Cd90. Anim Biotechnol 2016; 27:133-9. [PMID: 26913555 DOI: 10.1080/10495398.2015.1129630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The CD90 (Thy-1) is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein that transfers signals involved in many biological events including cell activation, cell migration, cell adhesion, and tumor suppression. In this study, we cloned pig CD90 cDNA and determined its complete cDNA sequence. Pig CD90 cDNA contained an open reading frame (486 bp) encoding 161 amino acids with three putative N-glycosylation sites and four well-conserved cysteine residues, which form a possible disulfide bond within the extracellular domain among mammalian species. Pig CD90 mRNA was detected in various tissues, indicating the multicellular functions of CD90 in pigs. Flow cytometry analyses demonstrated that anti-human CD90 antibody recognizes a pig CD90 on the cell surface. Moreover, immunohistochemistry analysis revealed that CD90 expression is widely diffused in several pig tissues. Further studies will be necessary to define the functional contribution of CD90 during specific infectious diseases in pigs.
Collapse
Affiliation(s)
- Kyungmin Park
- a Department of Biotechnology , College of Life Sciences and Biotechnology , Korea University , Seoul , Republic of Korea
| | - Jonggun Kim
- a Department of Biotechnology , College of Life Sciences and Biotechnology , Korea University , Seoul , Republic of Korea
| | - Chang-Yong Choi
- a Department of Biotechnology , College of Life Sciences and Biotechnology , Korea University , Seoul , Republic of Korea
| | - Joonbeom Bae
- a Department of Biotechnology , College of Life Sciences and Biotechnology , Korea University , Seoul , Republic of Korea
| | - Sang-Hoon Kim
- a Department of Biotechnology , College of Life Sciences and Biotechnology , Korea University , Seoul , Republic of Korea
| | - Yeon-Hui Kim
- a Department of Biotechnology , College of Life Sciences and Biotechnology , Korea University , Seoul , Republic of Korea
| | - Taehoon Chun
- a Department of Biotechnology , College of Life Sciences and Biotechnology , Korea University , Seoul , Republic of Korea
| |
Collapse
|
24
|
Kumar A, Bhanja A, Bhattacharyya J, Jaganathan BG. Multiple roles of CD90 in cancer. Tumour Biol 2016; 37:11611-11622. [PMID: 27337957 DOI: 10.1007/s13277-016-5112-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/09/2016] [Indexed: 12/26/2022] Open
|
25
|
|
26
|
Moraes DA, Sibov TT, Pavon LF, Alvim PQ, Bonadio RS, Da Silva JR, Pic-Taylor A, Toledo OA, Marti LC, Azevedo RB, Oliveira DM. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res Ther 2016; 7:97. [PMID: 27465541 PMCID: PMC4964048 DOI: 10.1186/s13287-016-0359-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/28/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are multipotent progenitor cells used in several cell therapies. MSCs are characterized by the expression of CD73, CD90, and CD105 cell markers, and the absence of CD34, CD45, CD11a, CD19, and HLA-DR cell markers. CD90 is a glycoprotein present in the MSC membranes and also in adult cells and cancer stem cells. The role of CD90 in MSCs remains unknown. Here, we sought to analyse the role that CD90 plays in the characteristic properties of in vitro expanded human MSCs. METHODS We investigated the function of CD90 with regard to morphology, proliferation rate, suppression of T-cell proliferation, and osteogenic/adipogenic differentiation of MSCs by reducing the expression of this marker using CD90-target small hairpin RNA lentiviral vectors. RESULTS The present study shows that a reduction in CD90 expression enhances the osteogenic and adipogenic differentiation of MSCs in vitro and, unexpectedly, causes a decrease in CD44 and CD166 expression. CONCLUSION Our study suggests that CD90 controls the differentiation of MSCs by acting as an obstacle in the pathway of differentiation commitment. This may be overcome in the presence of the correct differentiation stimuli, supporting the idea that CD90 level manipulation may lead to more efficient differentiation rates in vitro.
Collapse
Affiliation(s)
- Daniela A. Moraes
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
- Centro Universitario do Distrito Federal UDF, Brasília, DF Brazil
| | - Tatiana T. Sibov
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Lorena F. Pavon
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Paula Q. Alvim
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
| | - Raphael S. Bonadio
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
| | - Jaqueline R. Da Silva
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
| | - Aline Pic-Taylor
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
| | - Orlando A. Toledo
- Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF Brazil
| | - Luciana C. Marti
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa - Centro de Pesquisa Experimental São Paulo, São Paulo, SP Brazil
| | - Ricardo B. Azevedo
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
| | - Daniela M. Oliveira
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
- IB-Departamento de Genética e Morfologia, Universidade de Brasília - UNB, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, CEP 70910-970 Brazil
| |
Collapse
|
27
|
Hussein H, Boyaka P, Dulin J, Bertone A. Cathepsin K inhibition renders equine bone marrow nucleated cells hypo-responsive to LPS and unmethylated CpG stimulation in vitro. Comp Immunol Microbiol Infect Dis 2016; 45:40-7. [PMID: 27012920 DOI: 10.1016/j.cimid.2016.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 11/24/2022]
Abstract
Cathepsin K (CatK) is an important enzyme regulating bone degradation and has been shown to contribute to the immune response. We have studied two inflammatory models in equine bone marrow nucleated cells (BMNCs); the LPS and the unmethylated CpG stimulation with the following objectives to: 1.determine whether CatK inhibition will alter the cytokine secretion by stimulated BMNCs; specifically IL-1β, IL-6, and TNF-α, and 2.determine the changes in BMNCs surface markers' expression and MHC II molecule under CatK inhibition. Cathepsin K inhibition promoted BMNCs viability and reduced cell apoptosis. Moreover, CatK inhibition significantly decreased cytokine secretion of either naïve or stimulated BMNCs, and altered their MHC II molecule expression. In conclusion, CatK inhibition in horses did affect BMNCs other than mature osteoclasts rendering them hypo-responsive to both TLR4- and TLR9-induced inflammation, predicting a proteolytic activity for CatK within the MyD88 pathway and/or the following proteolytic events required for the cytokines secretion.
Collapse
Affiliation(s)
- Hayam Hussein
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, United States
| | - Prosper Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Jennifer Dulin
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, United States
| | - Alicia Bertone
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, United States; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
28
|
Rao SR, Subbarayan R, Dinesh MG, Arumugam G, Raja STK. Differentiation of human gingival mesenchymal stem cells into neuronal lineages in 3D bioconjugated injectable protein hydrogel construct for the management of neuronal disorder. Exp Mol Med 2016; 48:e209. [PMID: 26869025 PMCID: PMC4892868 DOI: 10.1038/emm.2015.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
The success of regeneration attempt is based on an ideal combination of stem cells, scaffolding and growth factors. Tissue constructs help to maintain stem cells in a required area for a desired time. There is a need for easily obtainable cells, potentially autologous stem cells and a biologically acceptable scaffold for use in humans in different difficult situations. This study aims to address these issues utilizing a unique combination of stem cells from gingiva and a hydrogel scaffold, based on a natural product for regenerative application. Human gingival mesenchymal stem cells (HGMSCs) were, with due induction, differentiated to neuronal lineages to overcome the problems associated with birth tissue-related stem cells. The differentiation potential of neuronal lineages was confirmed with suitable specific markers. The properties of mesenchymal stem cells in encapsulated form were observed to be similar to free cells. The encapsulated cells (3D) were then subjected to differentiation into neuronal lineages with suitable inducers, and the morphology and gene expression of transient cells were analyzed. HGMSCs was differentiated into neuronal lineages as both free and encapsulated forms without any significant differences. The presence of Nissl bodies and the neurite outgrowth confirm the differentiation. The advantages of this new combination appear to make it a promising tissue construct for translational application.
Collapse
Affiliation(s)
- Suresh Ranga Rao
- Department of Periodontology and Implantology, Faculty of Dental Sciences, Centre for Regenerative Medicine and Stem Cell Research, Sri Ramachandra University, Chennai, India
| | - Rajasekaran Subbarayan
- Centre for Regenerative Medicine and Stem Cell Research, Central Research Facility, Sri Ramachandra University, Chennai, India
| | - Murugan Girija Dinesh
- Centres for Indian Systems of Medicine Quality Assurance and Standardization, Sri Ramachandra University, Chennai, India
| | - Gnanamani Arumugam
- Microbiology Division, Central Leather Research Institute Adyar, Chennai, India
| | | |
Collapse
|
29
|
Kim YK, Nakata H, Yamamoto M, Miyasaka M, Kasugai S, Kuroda S. Osteogenic Potential of Mouse Periosteum-Derived Cells Sorted for CD90 In Vitro and In Vivo. Stem Cells Transl Med 2015; 5:227-34. [PMID: 26718647 DOI: 10.5966/sctm.2015-0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022] Open
Abstract
The treatment of bone defects still presents complex problems, although various techniques have been developed. The periosteum is considered a good source of osteogenic precursor cells for new bone formation. It can be collected easily in the clinical setting and is less invasive to the donor site. However, the murine skull periosteum has a poor cellular component, and growth is very slow, making it important to identify a culture method for efficient growth. In the present study, we used three-dimensional cell migration with atelocollagen and gelatin media and found that both were effective for promoting the proliferation of periosteum-derived cells. Moreover, atelocollagen medium is expected to provide an added benefit as a scaffold structure in the ambient temperature of the human body. The selection of a proper surface marker for osteogenesis is imperative for bone regeneration. CD90 is a mesenchymal stem cell marker. Periosteum-derived cells sorted with CD90 showed higher proliferative capacity and osteogenic potential than that of unsorted periosteum-derived cells in vivo and in vitro. Thus, periosteum-derived cells sorted with CD90 are expected to be a good source for bone regeneration. Significance: Periosteum-derived cells showed higher proliferative capacity and osteogenic potential. Periosteum can be collected easily in the clinical setting and is less invasive to the donor site. Thus, periosteum-derived cells can be expected to be a good source for bone regeneration.
Collapse
Affiliation(s)
- You-Kyoung Kim
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Maiko Yamamoto
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Munemitsu Miyasaka
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
30
|
Tepekoy F, Ozturk S, Sozen B, Ozay RS, Akkoyunlu G, Demir N. CD90 and CD105 expression in the mouse ovary and testis at different stages of postnatal development. Reprod Biol 2015; 15:195-204. [PMID: 26679159 DOI: 10.1016/j.repbio.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 11/16/2022]
Abstract
CD90 (i.e., THY1) and CD105 (i.e., endoglin) are glycoproteins known as mesenchymal stem cell markers that are expressed in various cell types including male and female gonadal cells. We aimed to determine ovarian and testicular expression of CD90 and CD105 in various cell types during postnatal development in mice. The present study was carried out on male (C57BL/6) and female (Balb/C) mice during critical stages of gonadal development. Immunohistochemical localization of CD90 and CD105 was determined in the ovaries obtained at postnatal days (PND) -1, -7, -21 and -60 and in the testes obtained at PND6, -8, -16, -20, -29, -32 and -88. The relative expression of CD90 and CD105 was evaluated by ImageJ software and data were analyzed by analysis of variance. The relative expression of CD90 and CD105 varied during postnatal development and increased significantly in the adult ovary (PND60) and testis (PND88) compared to the early postnatal gonads. In the ovaries, the expression of CD90 was significantly higher in somatic cells in comparison to germ cell compartments. In the testis, CD90 expression was greater in germ cells and Sertoli cells compared to other cell types. Expression of CD105 was higher in germ cells than somatic cells of both the ovary and testis. In addition to different expression of CD90 and CD105 during various developmental stages, also their altered expression in particular cell types suggests specific roles of these glycoproteins in physiological processes of mouse gonads.
Collapse
Affiliation(s)
- Filiz Tepekoy
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070, Campus, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070, Campus, Antalya, Turkey
| | - Berna Sozen
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070, Campus, Antalya, Turkey
| | - Recep S Ozay
- Faculty of Medicine, Akdeniz University, 07070, Campus, Antalya, Turkey
| | - Gokhan Akkoyunlu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070, Campus, Antalya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070, Campus, Antalya, Turkey.
| |
Collapse
|
31
|
Jeon YJ, Kim J, Cho JH, Chung HM, Chae JI. Comparative Analysis of Human Mesenchymal Stem Cells Derived From Bone Marrow, Placenta, and Adipose Tissue as Sources of Cell Therapy. J Cell Biochem 2015; 117:1112-25. [PMID: 26448537 DOI: 10.1002/jcb.25395] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
Abstract
Various source-derived mesenchymal stem cells (MSCs) with multipotent capabilities were considered for cell therapeutics of incurable diseases. The applicability of MSCs depends on the cellular source and on their different in vivo functions, despite having similar phenotypic and cytological characteristics. We characterized MSCs from different sources, including human bone marrow (BM), placenta (PL), and adipose tissue (AT), in terms of the phenotype, surface antigen expression, differentiation ability, proteome reference map, and blood flow recovery in a hindlimb ischemic disease model. The MSCs exhibit different differentiation potentials depending on the cellular source despite having similar phenotypic and surface antigen expression. We identified approximately 90 differentially regulated proteins. Most up- or down-regulated proteins show cytoskeletal or oxidative stress, peroxiredoxin, and apoptosis roles according to their functional involvement. In addition, the PL-MSCs retained a higher therapeutic efficacy than the BM- and AT-MSCs in the hindlimb ischemic disease model. In summary, we examined differentially expressed key regulatory factors for MSCs that were obtained from several cellular sources and demonstrated their differentially expressed proteome profiles. Our results indicate that primitive PL-MSCs have biological advantages relative to those from other sources, making PL-MSCs a useful model for clinical applications of cell therapy.
Collapse
Affiliation(s)
- Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Jumi Kim
- Samsung Advanced Institute of Technology, Well Aging Research Center, Suwon, Republic of Korea
| | - Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| |
Collapse
|
32
|
Immunomodulator CD200 Promotes Neurotrophic Activity by Interacting with and Activating the Fibroblast Growth Factor Receptor. Mol Neurobiol 2014; 53:584-594. [DOI: 10.1007/s12035-014-9037-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/30/2014] [Indexed: 11/26/2022]
|
33
|
Fiore VF, Ju L, Chen Y, Zhu C, Barker TH. Dynamic catch of a Thy-1–α5β1+syndecan-4 trimolecular complex. Nat Commun 2014; 5:4886. [DOI: 10.1038/ncomms5886] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/01/2014] [Indexed: 01/09/2023] Open
|
34
|
Leyton L, Hagood JS. Thy-1 Modulates Neurological Cell–Cell and Cell–Matrix Interactions Through Multiple Molecular Interactions. ADVANCES IN NEUROBIOLOGY 2014; 8:3-20. [DOI: 10.1007/978-1-4614-8090-7_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Sánchez-Céspedes R, Maniscalco L, Iussich S, Martignani E, Guil-Luna S, De Maria R, Martín de Las Mulas J, Millán Y. Isolation, purification, culture and characterisation of myoepithelial cells from normal and neoplastic canine mammary glands using a magnetic-activated cell sorting separation system. Vet J 2013; 197:474-82. [PMID: 23583698 DOI: 10.1016/j.tvjl.2013.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 02/25/2013] [Accepted: 03/02/2013] [Indexed: 01/08/2023]
Abstract
Mammary gland tumours, the most common malignant neoplasm in bitches, often display myoepithelial (ME) cell proliferation. The aim of this study was to isolate, purify, culture and characterise ME cells from normal and neoplastic canine mammary glands. Monodispersed cells from three normal canine mammary glands and five canine mammary tumours were incubated with an anti-Thy1 antibody and isolated by magnetic-activated cell sorting (MACS). Cells isolated from two normal glands (cell lines CmME-N1 and CmME-N2) and four tumours (cell lines CmME-K1 from a complex carcinoma, CmME-K2 from a simple tubulopapillary carcinoma, and CmME-K3 and CmME-K4 from two carcinomas within benign tumours) were cultured in supplemented DMEM/F12 media for 40days. Cell purity was >90%. Tumour-derived ME cell lines exhibited heterogeneous morphology, growth patterns and immunocytochemical expression of cytokeratins, whereas cell lines from normal glands retained their morphology and levels of cytokeratin expression during culture. Cell lines from normal glands and carcinomas within benign tumours grew more slowly than those from simple and complex carcinomas. This methodology has the potential to be used for in vitro analysis of the role of ME cells in the growth and progression of canine mammary tumours.
Collapse
Affiliation(s)
- R Sánchez-Céspedes
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Córdoba, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kato C, Kato A, Adachi K, Fujii E, Isobe K, Matsushita T, Watanabe T, Suzuki M. Anti-Thy-1 Antibody-mediated Complement-dependent Cytotoxicity is Regulated by the Distribution of Antigen, Antibody and Membrane Complement Regulatory Proteins in Rats. J Toxicol Pathol 2013; 26:41-9. [PMID: 23723567 PMCID: PMC3620213 DOI: 10.1293/tox.26.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/10/2012] [Indexed: 01/01/2023] Open
Abstract
Some therapeutic antibodies as anticancer agents exert their effects through the host immune system, but the factors that predict their cytotoxicity, including complement-dependent cytotoxicity (CDC), are unclear. In the present study, we attempted to elucidate some of these factors in a preclinical model. CDC-related mesangiolysis caused by administration of the anti-Thy-1.1 antibody can be studied in the rat anti-Thy-1 glomerulonephritis model, so the model was used in this study. Three animals each were sacrificed at 0.5, 1, 8, 24 and 48 hours after i.v. administration of the anti-Thy-1.1 antibody at 1mg/kg. The distribution of the Thy-1.1 antigen and 2 membrane complement regulatory proteins (mCRPs), Crry and CD55, in three non-treated animals and the distribution of the injected antibody and C3 in the model was studied by immunohistochemistry. In the mesangial cells of the kidney, both expression of the antigen and distribution of the antibody with C3 deposition were observed with weak expression of mCRPs. There was also antigen and antibody distribution in the medullary cells of the adrenal gland and in the lymphocytes of the thymus but no C3 deposition, which was thought to be related to high expression of mCRPs. The antigen was observed in several other organs and tissues without distribution of the antibody. Cell death was only observed in the mesangial cells. These results clearly demonstrate that activation of CDC is regulated by several factors, such as distribution of the target molecule, antibody distribution and the balance among the molecules of the CDC cascade and mCRPs.
Collapse
Affiliation(s)
- Chie Kato
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Atsuhiko Kato
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Kenji Adachi
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Etsuko Fujii
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Kaori Isobe
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Tomochika Matsushita
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Takeshi Watanabe
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Masami Suzuki
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| |
Collapse
|
37
|
Kollert F, Christoph S, Probst C, Budweiser S, Bannert B, Binder M, Sehnert B, Voll RE, Warnatz K, Zissel G, Walker UA, Prasse A, Saalbach A. Soluble CD90 as a potential marker of pulmonary involvement in systemic sclerosis. Arthritis Care Res (Hoboken) 2013; 65:281-7. [DOI: 10.1002/acr.21799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 06/27/2012] [Indexed: 12/22/2022]
|
38
|
Thy-1-Interacting Molecules and Cellular Signaling in Cis and Trans. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:163-216. [DOI: 10.1016/b978-0-12-407695-2.00004-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Lobba ARM, Forni MF, Carreira ACO, Sogayar MC. Differential expression of CD90 and CD14 stem cell markers in malignant breast cancer cell lines. Cytometry A 2012; 81:1084-91. [PMID: 23090904 DOI: 10.1002/cyto.a.22220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 01/15/2023]
Abstract
The recently emerged concept of cancer stem cell (CSC) has led to a new hypothesis on the basis for tumor progression. Basically, the CSC theory hypothesizes the presence of a hierarchically organized and relatively rare cell population, which is responsible for tumor initiation, self-renewal, and maintenance, in addition to accumulation of mutation and resistance to chemotherapy. CSCs have recently been described in breast cancer. Different genetic markers have been used to isolate breast CSCs, none of which have been correlated with the tumorigenicity or metastatic potential of the cells, limiting their precise characterization and clinical application in the development of therapeutic protocols. Here, we sought for subpopulations of CSCs by analyzing 10 judiciously chosen stem cell markers in a normal breast cell line (MCF10-A) and in four human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435, and Hs578-T) displaying different degrees of metastatic and invasiveness potential. We were able to identify two markers, which are differentially expressed in nontumorigenic versus tumor cells. The CD90 marker was highly expressed in the malignant cell lines. Interestingly, the CD14 molecule displayed higher expression levels in the nontumorigenic cell line. Therefore, we demonstrated that these two markers, which are more commonly used to isolate and characterize stem cells, are differentially expressed in breast tumor cells, when compared with nontumorigenic breast cells.
Collapse
Affiliation(s)
- A R M Lobba
- Biochemistry Department, Chemistry Institute, Cell and Molecular Therapy Center (NUCEL), University of São Paulo, 05508-000 São Paulo, Brazil
| | | | | | | |
Collapse
|
40
|
Chen YT, Tsai MS, Yang TL, Ku AT, Huang KH, Huang CY, Chou FJ, Fan HH, Hong JB, Yen ST, Wang WL, Lin CC, Hsu YC, Su KY, Su IC, Jang CW, Behringer RR, Favaro R, Nicolis SK, Chien CL, Lin SW, Yu IS. R26R-GR: a Cre-activable dual fluorescent protein reporter mouse. PLoS One 2012; 7:e46171. [PMID: 23049968 PMCID: PMC3458011 DOI: 10.1371/journal.pone.0046171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/30/2012] [Indexed: 12/17/2022] Open
Abstract
Green fluorescent protein (GFP) and its derivatives are the most widely used molecular reporters for live cell imagining. The development of organelle-specific fusion fluorescent proteins improves the labeling resolution to a higher level. Here we generate a R26 dual fluorescent protein reporter mouse, activated by Cre-mediated DNA recombination, labeling target cells with a chromatin-specific enhanced green fluorescence protein (EGFP) and a plasma membrane-anchored monomeric cherry fluorescent protein (mCherry). This dual labeling allows the visualization of mitotic events, cell shapes and intracellular vesicle behaviors. We expect this reporter mouse to have a wide application in developmental biology studies, transplantation experiments as well as cancer/stem cell lineage tracing.
Collapse
Affiliation(s)
- You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Shian Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Amy Tsu Ku
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ke-Han Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Yen Huang
- The First Core Laboratory, Branch Office of Medical Research and Development, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu-Ju Chou
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Hsuan Fan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shuo-Ting Yen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Le Wang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chang-Ching Lin
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Genomic Medicine, NTU Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yi Su
- Division of Genomic Medicine, NTU Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - I-Chang Su
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chuan-Wei Jang
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Genetics and Center for Stem Cell and Developmental Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Richard R. Behringer
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Genetics and Center for Stem Cell and Developmental Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rebecca Favaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Silvia K. Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Chung-Liang Chien
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (S-WL); (I-SY)
| | - I-Shing Yu
- Transgenic Mouse Model Core Facility of the National Research Program for Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (S-WL); (I-SY)
| |
Collapse
|
41
|
End-point effector stress mediators in neuroimmune interactions: their role in immune system homeostasis and autoimmune pathology. Immunol Res 2012; 52:64-80. [PMID: 22396175 DOI: 10.1007/s12026-012-8275-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Much evidence has identified a direct anatomical and functional link between the brain and the immune system, with glucocorticoids (GCs), catecholamines (CAs), and neuropeptide Y (NPY) as its end-point mediators. This suggests the important role of these mediators in immune system homeostasis and the pathogenesis of inflammatory autoimmune diseases. However, although it is clear that these mediators can modulate lymphocyte maturation and the activity of distinct immune cell types, their putative role in the pathogenesis of autoimmune disease is not yet completely understood. We have contributed to this field by discovering the influence of CAs and GCs on fine-tuning thymocyte negative selection and, in particular, by pointing to the putative CA-mediated mechanisms underlying this influence. Furthermore, we have shown that CAs are implicated in the regulation of regulatory T-cell development in the thymus. Moreover, our investigations related to macrophage biology emphasize the complex interaction between GCs, CAs and NPY in the modulation of macrophage functions and their putative significance for the pathogenesis of autoimmune inflammatory diseases.
Collapse
|
42
|
Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int 2012; 2012:975871. [PMID: 22666272 PMCID: PMC3361338 DOI: 10.1155/2012/975871] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/29/2012] [Indexed: 12/13/2022] Open
Abstract
Given the observed efficacy of culture-expanded multipotential stromal cells, also termed mesenchymal stem cells (MSCs), in the treatment of graft-versus host and cardiac disease, it remains surprising that purity and potency characterization of manufactured cell batches remains rather basic. In this paper, we will initially discuss surface and molecular markers that were proposed to serve as the indicators of the MSC potency, in terms of their proliferative potential or the ability to differentiate into desired lineages. The second part of this paper will be dedicated to a critical discussion of surface markers of uncultured (i.e., native) bone marrow (BM) MSCs. Although no formal consensus has yet been reached on which markers may be best suited for prospective BM MSC isolation, markers that cross-react with MSCs of animal models (such as CD271 and W8-B2/MSCA-1) may have the strongest translational value. Whereas small animal models are needed to discover the in vivo function on these markers, large animal models are required for safety and efficacy testing of isolated MSCs, particularly in the field of bone and cartilage tissue engineering.
Collapse
|
43
|
Agostini J, Benoist S, Seman M, Julié C, Imbeaud S, Letourneur F, Cagnard N, Rougier P, Brouquet A, Zucman-Rossi J, Laurent-Puig P. Identification of molecular pathways involved in oxaliplatin-associated sinusoidal dilatation. J Hepatol 2012; 56:869-76. [PMID: 22200551 DOI: 10.1016/j.jhep.2011.10.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/04/2011] [Accepted: 10/19/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Oxaliplatin-based chemotherapy for colorectal liver metastases (CRLM) can result in vascular liver lesions such as sinusoidal dilatations. Physiopathology remains unclear and variability between patients suggests that there is individual susceptibility. A better understanding of the molecular mechanisms of oxaliplatin liver toxicity may allow the identification of biomarkers and adaptation of chemotherapy delivery. METHODS Between 1998 and 2009, 83 non-tumor frozen liver samples were obtained from patients operated on for CRLM after an exclusive oxaliplatin-based chemotherapy. Gene-expression profiles were first analyzed by microarray on a selected population of 19 patients: 9 patients with severe sinusoidal dilatation after a short period of chemotherapy and 10 patients without any sinusoidal dilatation after a long period of chemotherapy. These were compared with a control group of 5 patients without any chemotherapy and lesions. Twenty-two differentially-expressed (at least 1.5-fold difference in expression) genes were selected. These were validated using microfluidic quantitative RT-PCR in an independent set of 58 patients (28 with sinusoidal dilatation and 30 without sinusoidal dilatation). RESULTS Among the 22 selected genes, 12 were validated as being up-regulated in samples from patients with sinusoidal dilatation compared to patients without sinusoidal dilatation. Genes involved in angiogenesis (VEGFD, THY-1, GPNMB) and cellular adhesion (VWF, CDH13, THBS2), and extracellular matrix components (COL1A1, COL4A1, SLCO1A2) were over-represented in patients with sinusoidal dilatation. CONCLUSIONS This molecular signature confirms the involvement of angiogenesis and coagulation in sinusoidal injuries induced by oxaliplatin and reinforces a potential protective role of bevacizumab and aspirin, as suggested in retrospective clinical studies.
Collapse
Affiliation(s)
- Julie Agostini
- Paris Descartes University, Paris Sorbonne Cité, INSERM UMR-S775, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Partida GJ, Stradleigh TW, Ogata G, Godzdanker I, Ishida AT. Thy1 associates with the cation channel subunit HCN4 in adult rat retina. Invest Ophthalmol Vis Sci 2012; 53:1696-703. [PMID: 22281825 PMCID: PMC3339924 DOI: 10.1167/iovs.11-9307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/15/2012] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The membrane expression and gene promoter of the glycosylphosphatidylinositol (GPI)-anchored protein Thy1 have been widely used to examine the morphology and distribution of retinal ganglion cells in normal eyes and disease models. However, it is not known how adult mammalian retinal neurons use Thy1. Because Thy1 is not a membrane-spanning protein and, instead, complexes with structural and signaling proteins in other tissues, the aim of this study was to find protein partners of retinal Thy1. METHODS Coimmunoprecipitation, immunohistochemistry, confocal imaging, and patch-clamp recording were used to test for association of Thy1 and HCN4, a cation channel subunit, in adult rat retina. RESULTS Hyperpolarization of cells immunopanned by an anti-Thy1 antibody activated HCN channels. Confocal imaging showed that individual somata in the ganglion cell layer bound antibodies against Thy1 and HCN4, that the majority of these bindings colocalized, and that some of the immunopositive cells also bound antibody against a ganglion cell marker (Brn3a). Consistent with these results, Thy1 and HCN4 were coimmunoprecipitated by magnetic beads coated with either anti-Thy1 antibody or anti-HCN4 antibody. In control experiments, beads coated with these antibodies did not immunoprecipitate a photoreceptor rim protein (ABCR) and uncoated beads did not immunoprecipitate either Thy1 or HCN4. CONCLUSIONS This is the first report that Thy1 colocalizes and coimmunoprecipitates with a membrane-spanning protein in retina, that Thy1 complexes with an ion channel protein in any tissue, and that a GPI-anchored protein associates with an HCN channel subunit protein.
Collapse
Affiliation(s)
| | | | - Genki Ogata
- From the Section of Neurobiology, Physiology, and Behavior and
| | - Iv Godzdanker
- From the Section of Neurobiology, Physiology, and Behavior and
| | - Andrew T. Ishida
- From the Section of Neurobiology, Physiology, and Behavior and
- the Department of Ophthalmology and Vision Science, University of California, Davis, California
| |
Collapse
|
45
|
Pan D, Das A, Liu D, Veazey RS, Pahar B. Isolation and characterization of intestinal epithelial cells from normal and SIV-infected rhesus macaques. PLoS One 2012; 7:e30247. [PMID: 22291924 PMCID: PMC3266894 DOI: 10.1371/journal.pone.0030247] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/15/2011] [Indexed: 01/14/2023] Open
Abstract
Impairment of intestinal epithelial barriers contributes to the progression of HIV/SIV infection and leads to generalized HIV-induced immune-cell activation during chronic infection. Rhesus macaques are the major animal model for studying HIV pathogenesis. However, detailed characterization of isolated rhesus epithelial cells (ECs) from intestinal tissues is not well defined. It is also not well documented whether isolated ECs had any other cell contaminants from intestinal tissues during the time of processing that might hamper interpretation of EC preparations or cultures. In this study, we identify and characterize ECs based on flow cytometry and immunohistochemistry methods using various enzymatic and mechanical isolation techniques to enrich ECs from intestinal tissues. This study shows that normal healthy ECs differentially express HLA-DR, CD23, CD27, CD90, CD95 and IL-10R markers. Early apoptosis and upregulation of ICAM-1 and HLA-DR in intestinal ECs are thought to be the key features in SIV mediated enteropathy. The data suggest that intestinal ECs might be playing an important role in mucosal immune responses by regulating the expression of different important regulatory and adhesion molecules and their function.
Collapse
Affiliation(s)
- Diganta Pan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David Liu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
46
|
Metcalfe C, Cresswell P, Ciaccia L, Thomas B, Barclay AN. Labile disulfide bonds are common at the leucocyte cell surface. Open Biol 2011; 1:110010. [PMID: 22645650 PMCID: PMC3352085 DOI: 10.1098/rsob.110010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 10/31/2011] [Indexed: 12/22/2022] Open
Abstract
Redox conditions change in events such as immune and platelet activation, and during viral infection, but the biochemical consequences are not well characterized. There is evidence that some disulfide bonds in membrane proteins are labile while others that are probably structurally important are not exposed at the protein surface. We have developed a proteomic/mass spectrometry method to screen for and identify non-structural, redox-labile disulfide bonds in leucocyte cell-surface proteins. These labile disulfide bonds are common, with several classes of proteins being identified and around 30 membrane proteins regularly identified under different reducing conditions including using enzymes such as thioredoxin. The proteins identified include integrins, receptors, transporters and cell-cell recognition proteins. In many cases, at least one cysteine residue was identified by mass spectrometry as being modified by the reduction process. In some cases, functional changes are predicted (e.g. in integrins and cytokine receptors) but the scale of molecular changes in membrane proteins observed suggests that widespread effects are likely on many different types of proteins including enzymes, adhesion proteins and transporters. The results imply that membrane protein activity is being modulated by a 'redox regulator' mechanism.
Collapse
Affiliation(s)
- Clive Metcalfe
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Peter Cresswell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8011, USA
| | - Laura Ciaccia
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8011, USA
| | - Benjamin Thomas
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - A. Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
47
|
Schubert K, Polte T, Bönisch U, Schader S, Holtappels R, Hildebrandt G, Lehmann J, Simon JC, Anderegg U, Saalbach A. Thy-1 (CD90) regulates the extravasation of leukocytes during inflammation. Eur J Immunol 2011; 41:645-56. [DOI: 10.1002/eji.201041117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/11/2010] [Accepted: 12/16/2010] [Indexed: 11/08/2022]
|
48
|
Itami S, Tamotsu S, Sakai A, Yasuda K. The roles of THY1 and integrin beta3 in cell adhesion during theca cell layer formation and the effect of follicle-stimulating hormone on THY1 and integrin beta3 localization in mouse ovarian follicles. Biol Reprod 2011; 84:986-95. [PMID: 21228213 DOI: 10.1095/biolreprod.110.087429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mechanism of theca cell layer formation in mammalian ovaries has not been elucidated. In the present study, we examined the roles of THY1 and integrin beta3 in theca cell layer formation during mouse folliculogenesis. The localization pattern of THY1 and integrin beta3 in adult mouse ovary was investigated immunohistochemically. The strongest THY1 signal was observed in theca cell layers from secondary to preantral follicles, at which time theca cells have begun to participate in follicle formation. Integrin beta3 also localized to the theca cell layer of secondary to preantral follicles and showed a localization pattern similar to that of THY1. Moreover, the role of THY1 in theca cell layer formation was examined using a follicle culture system. When anti-THY1 antibody was added to this culture, no theca cell layers were formed, and the granulosa cells were distanced from each other. Because a THY1 signal was not observed in ovaries at stages earlier than prepuberty, THY1 localization also appeared to be affected by mouse development. This possibility was examined by determining the effect of administering follicle-stimulating hormone, luteinizing hormone, and 17beta-estradiol to 7-day-old mice on THY1 localization in the ovary 3 days later. Only follicle-stimulating hormone induced a THY1 signal in 10-day-old mouse ovaries. No THY1 signal was observed in untreated 10-day-old ovaries. In conclusion, THY1 might play a role in cell adhesion via binding to integrin beta3 in mouse ovaries. The present results suggest that THY1 localization may be affected by follicle-stimulating hormone in mouse ovaries.
Collapse
Affiliation(s)
- Saori Itami
- School of Natural Science and Ecological Awareness, Graduate School of Humanities and Sciences, Faculty of Science, Nara Women's University, Nara, Japan
| | | | | | | |
Collapse
|
49
|
McKenna KC, Vicetti Miguel RD, Beatty KM, Bilonick RA. A caveat for T cell transfer studies: generation of cytotoxic anti-Thy1.2 antibodies in Thy1.1 congenic mice given Thy1.2+ tumors or T cells. J Leukoc Biol 2010; 89:291-300. [PMID: 20959413 DOI: 10.1189/jlb.0610333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thy1.1 congenic B6.PL mice were used to simultaneously monitor Thy1.2+ E.G7-OVA tumors transplanted in the a.c. of the eye and i.v.-transferred tumor-specific Thy1.2+ CTLs to determine mechanisms that inhibit the tumoricidal activity of CTL responses in mice with established ocular tumors. Transferred CTLs were systemically deleted in mice with established ocular tumors. However, this deletion was not a unique mechanism of immune evasion by ocular tumors. Rather, development of Thy1.2+ tumors in the eye or skin of B6.PL mice generated cytotoxic anti-Thy1.2 antibodies that eliminated a subsequent Thy1.2+ T cell transfer. Anti-Thy1.2 immune responses in B6.PL mice were influenced by the route of antigen administration, as the serum concentration of cytotoxic anti-Thy1.2 antibodies was 92-fold greater in mice with eye tumors in comparison with mice with skin tumors. In addition, anti-Thy1.2 immune responses were detected in B6.PL mice given naïve Thy1.2+ T cells i.p. but not i.v. Anti-Thy1.2 responses were augmented in B6.PL mice with ocular Thy1.2+ EL-4 tumors that did not express OVA, suggesting immunodominance of OVA antigen over Thy1.2. Thy1.1+ T cells given i.p. was not immunogenic in Thy1.2 congenic mice. These data reaffirm that the introduction of antigens in the a.c. induces robust antibody responses. Experimentation using allotypic differences in Thy1 between donor cells and recipient mice must consider cytotoxic anti-Thy1 antibody generation in the interpretation of results.
Collapse
Affiliation(s)
- Kyle C McKenna
- University of Pittsburgh, Eye and Ear Institute, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
Thy-1 or CD90 is a glycophosphatidylinositol-linked glycoprotein expressed on the surface of neurons, thymocytes, subsets of fibroblasts, endothelial cells, mesangial cells and some hematopoietic cells. Thy-1 is evolutionarily conserved, developmentally regulated, and often has dramatic effects on cell phenotype; however, the effects vary between and in some cases within cell types and tissues, and between similar tissues in different species, indicating that the biological role of Thy-1 is context-dependent. Thy-1 exists in soluble form in some body fluids; however, the mechanisms of its shedding are unknown. In addition, Thy-1 expression can be regulated by epigenetic silencing. Because Thy-1 modulates many basic cellular processes and is involved in the pathogenesis of a number of diseases, it is important to better understand its regulation.
Collapse
Affiliation(s)
- John E Bradley
- Department of Pediatrics, University of Alabama-Birmingham, AL, USA
| | | | | |
Collapse
|