1
|
Das A, Yilmaz O, Yilmaz O, Deshpande V. SOX17: a new therapeutic target for immune evasion of colorectal cancer. J Clin Pathol 2025:jcp-2024-209878. [PMID: 40350244 DOI: 10.1136/jcp-2024-209878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 05/14/2025]
Abstract
Despite advances in cancer immunotherapies across various cancers, survival outcomes in colorectal cancer (CRC) with these agents remain largely unsatisfactory despite the high tumour burden. Colorectal stem cells (CSCs), especially LGR5+ CSCs, are the significant drivers in CRC initiation, progression and resistance to conventional therapies. Although native immune surveillance is sufficient to combat early tumour formation, CRC evades early immune detection with its well-documented adenoma-to-carcinoma sequence. The exact mechanism underlying this phenomenon still needs to be better understood. SRY-related HMG box gene 17 (SOX17), a transcription factor that specifies embryonic gut formation, is increasingly recognised as a significant factor in CRC tumourigenesis. However, its role as a tumour suppressor or oncogene is still debated. Evidence from a recent study highlighted the critical role of SOX17 in reshaping the tumour immune ecosystem through the simultaneous inhibition of CD8+ T cells and selective suppression of LGR5 expression in CSCs through transcriptional repression, thereby facilitating disease progression. Given its role in immune evasion, SOX17 could be a promising marker in personalised therapy. Additionally, SOX17 could play a role in the diagnostic arena, potentially identifying dysplasia in the gastrointestinal tract. Future clinical, basic and genetic studies focusing on SOX17 are needed to ascertain its mechanistic role in tumour immunomodulation in CRC and diagnosing preneoplastic lesions in the gastrointestinal tract.
Collapse
Affiliation(s)
- Avash Das
- Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Omer Yilmaz
- Harvard Medical School, Boston, Massachusetts, USA
| | - Osman Yilmaz
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Vikram Deshpande
- Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pavlič A, Urh K, Boštjančič E, Zidar N. Analyzing the invasive front of colorectal cancer - By punching tissue block or laser capture microdissection? Pathol Res Pract 2023; 248:154727. [PMID: 37517168 DOI: 10.1016/j.prp.2023.154727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The aim of this study was to determine the advantages and limitations of two commonly used sampling techniques, i.e., punching tissue block (PTB) and laser capture microdissection (LCM) when investigating tumor cell-derived gene expression patterns at the invasive front of colorectal cancer (CRC). We obtained samples from 20 surgically removed CRCs at locations crucial for tumor progression, i.e., the central part, the expansive front and the infiltrative front exhibiting tumor budding (TB), using both sampling techniques. At each location, we separately analyzed the expressions of miR-200 family (miR-141, miR-200a, miR-200b, miR-200c and miR-429), known as reliable markers of epithelial-mesenchymal transition (EMT). We found significant downregulation of all members of miR-200 family at the infiltrative front in comparison to the central part regardless of the used sampling technique. However, when comparing miR-200 expression between the expansive and the infiltrative front, we found significant downregulation of all tested miR-200 at the infiltrative front only in samples obtained by LCM. Our results suggest that, PTB is an adequate technique for studying the differences in tumor gene expression between the central part and the invasive front of CRC, but is insufficient to analyze and compare morphologically distinct patterns along the invasive front including TB. For this purpose, the use of LCM is essential.
Collapse
Affiliation(s)
- Ana Pavlič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Kristian Urh
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Kumar M, Hasan M, Sharma A, Suhag R, Maheshwari C, Radha, Chandran D, Sharma K, Dhumal S, Senapathy M, Natarajan K, Punniyamoorthy S, Mohankumar P, Dey A, Deshmukh V, Anitha T, Balamurugan V, Pandiselvam R, Lorenzo JM, Kennedy JF. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides: A review on extraction, characterization, and bioactivities. Int J Biol Macromol 2023; 229:463-475. [PMID: 36563821 DOI: 10.1016/j.ijbiomac.2022.12.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Human awareness of the need for health and wellness practices that enhance disease resilience has increased as a result of recent health risks. Plant-derived polysaccharides with biological activity are good candidates to fight diseases because of their low toxicity. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides extract from different plant parts have been reported to possess significant biological activity such as anti-oxidant, anti-cancer, immunomodulatory, anti-diabetic, radioprotective and hepatoprotective. Several extraction and purification techniques have been used to isolate and characterize T. cordifolia polysaccharides. Along with hot-water extraction (HWE), other novel techniques like microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF), supercritical-fluid extraction (SFE), and enzyme-assisted extraction (EAE) are used to extract T cordifolia polysaccharides. SFE is a revolutionary technology that gives the best yield and purity of low-molecular-weight polysaccharides. According to the findings, polysaccharides extracted and purified from T. cordifolia have a significant impact on their structure and biological activity. As a result, the methods of extraction, structural characterization, and biological activity of T. cordifolia polysaccharides are covered in this review. Research on T. cordifolia polysaccharides and their potential applications will benefit greatly from the findings presented in this review.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India; Department of Biology, East Carolina University, Greenville 27858, USA.
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal 462038, India
| | - Anshu Sharma
- Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni 173230, India
| | - Rajat Suhag
- National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Chirag Maheshwari
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 12, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, SNNPR, Ethiopia
| | - Krishnaprabu Natarajan
- Department of Agronomy, VIT School of Agricultural Innovations and Advanced Learning, VIT University, Vellore 632014, India
| | - Sheela Punniyamoorthy
- Department of Food Science and Technology, SRM College of Agricultural Sciences, SRMIST-Vendhar Nagar, Baburayanpettai, Chengalpet 603201, India
| | - Pran Mohankumar
- School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - V Balamurugan
- Department of Agricultural Economics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala 671124, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| |
Collapse
|
4
|
Jaskiewicz L, Romaszko-Wojtowicz A, Doboszynska A, Skowronska A. The Role of Aquaporin 5 (AQP5) in Lung Adenocarcinoma: A Review Article. Cells 2023; 12:cells12030468. [PMID: 36766810 PMCID: PMC9913646 DOI: 10.3390/cells12030468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Aquaporins (AQPs) are selective, transmembrane proteins, which are primarily responsible for the transport of water and small molecules. They have been demonstrated to play a key role in the development and progression of cancer. Lung adenocarcinoma is the most common primary lung cancer diagnosed in patients in Europe and the USA. The research done so far has provided firm evidence that some AQPs can be biomarkers for various diseases. The objective of this review article is to present a potential role of AQP5 in the development of lung adenocarcinoma. Original papers discussing the involvement of AQP5 in carcinogenesis and containing relevant clinical data were identified. In order to analyze the research material in accordance with PRISMA guidelines, a systematic search of the ScienceDirect, Web of Science, and Pubmed databases was conducted. Out of the total number of 199 papers identified, 14 original articles were subject to analysis. This article presents the pathophysiological role of AQP5 in the biology of lung adenocarcinoma as well as its prognostic value. The analysis substantiates the conclusion that the prognostic value of AQP5 in lung cancer requires further research. Another aim of this paper is to disseminate knowledge about AQPs among clinicians.
Collapse
Affiliation(s)
- Lukasz Jaskiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
- Correspondence: (L.J.); (A.R.-W.)
| | - Anna Romaszko-Wojtowicz
- Department of Pulmonology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (L.J.); (A.R.-W.)
| | - Anna Doboszynska
- Department of Pulmonology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
5
|
Lee SS, Paliouras M, Trifiro MA. Functionalized Carbon Nanoparticles as Theranostic Agents and Their Future Clinical Utility in Oncology. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010108. [PMID: 36671680 PMCID: PMC9854994 DOI: 10.3390/bioengineering10010108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Over the years, research of nanoparticle applications in pre-clinical and clinical applications has greatly advanced our therapeutic and imaging approaches to many diseases, most notably neoplastic disorders. In particular, the innate properties of inorganic nanomaterials, such as gold and iron oxide, as well as carbon-based nanoparticles, have provided the greatest opportunities in cancer theranostics. Carbon nanoparticles can be used as carriers of biological agents to enhance the therapeutic index at a tumor site. Alternatively, they can also be combined with external stimuli, such as light, to induce irreversible physical damaging effects on cells. In this review, the recent advances in carbon nanoparticles and their use in cancer theranostics will be discussed. In addition, the set of evaluations that will be required during their transition from laboratory investigations toward clinical trials will be addressed.
Collapse
Affiliation(s)
- Seung S. Lee
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
| | - Miltiadis Paliouras
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence:
| | - Mark A. Trifiro
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
6
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
7
|
Guiren Fritah H, Rovelli R, Lai-Lai Chiang C, Kandalaft LE. The current clinical landscape of personalized cancer vaccines. Cancer Treat Rev 2022; 106:102383. [DOI: 10.1016/j.ctrv.2022.102383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022]
|
8
|
Izutsu R, Osaki M, Nemoto H, Jingu M, Sasaki R, Yoshioka Y, Ochiya T, Okada F. AMIGO2 contained in cancer cell-derived extracellular vesicles enhances the adhesion of liver endothelial cells to cancer cells. Sci Rep 2022; 12:792. [PMID: 35039535 PMCID: PMC8763894 DOI: 10.1038/s41598-021-04662-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Adhesion of cancer cells to vascular endothelial cells in target organs is an initial step in cancer metastasis. Our previous studies revealed that amphoterin-induced gene and open reading frame 2 (AMIGO2) promotes the adhesion of tumor cells to liver endothelial cells, followed by the formation of liver metastasis in a mouse model. However, the precise mechanism underlying AMIGO2-promoted the adhesion of tumor cells and liver endothelial cells remains unknown. This study was conducted to explore the role of cancer cell-derived AMIGO2-containing extracellular vesicles (EVs) in the adhesion of cancer cells to human hepatic sinusoidal endothelial cells (HHSECs). Western blotting indicated that AMIGO2 was present in EVs from AMIGO2-overexpressing MKN-28 gastric cancer cells. The efficiency of EV incorporation into HHSECs was independent of the AMIGO2 content in EVs. When EV-derived AMIGO2 was internalized in HHSECs, it significantly enhanced the adhesion of HHSECs to gastric (MKN-28 and MKN-74) and colorectal cancer cells (SW480), all of which lacked AMIGO2 expression. Thus, we identified a novel mechanism by which EV-derived AMIGO2 released from AMIGO2-expressing cancer cells stimulates endothelial cell adhesion to different cancer cells for the initiate step of liver metastasis.
Collapse
Affiliation(s)
- Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan.
| | - Hideyuki Nemoto
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Maho Jingu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Ryo Sasaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
9
|
Bassler MC, Stefanakis M, Sequeira I, Ostertag E, Wagner A, Bartsch JW, Roeßler M, Mandic R, Reddmann EF, Lorenz A, Rebner K, Brecht M. Comparison of Whiskbroom and Pushbroom darkfield elastic light scattering spectroscopic imaging for head and neck cancer identification in a mouse model. Anal Bioanal Chem 2021; 413:7363-7383. [PMID: 34799750 PMCID: PMC8626402 DOI: 10.1007/s00216-021-03726-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
The early detection of head and neck cancer is a prolonged challenging task. It requires a precise and accurate identification of tissue alterations as well as a distinct discrimination of cancerous from healthy tissue areas. A novel approach for this purpose uses microspectroscopic techniques with special focus on hyperspectral imaging (HSI) methods. Our proof-of-principle study presents the implementation and application of darkfield elastic light scattering spectroscopy (DF ELSS) as a non-destructive, high-resolution, and fast imaging modality to distinguish lingual healthy from altered tissue regions in a mouse model. The main aspect of our study deals with the comparison of two varying HSI detection principles, which are a point-by-point and line scanning imaging, and whether one might be more appropriate in differentiating several tissue types. Statistical models are formed by deploying a principal component analysis (PCA) with the Bayesian discriminant analysis (DA) on the elastic light scattering (ELS) spectra. Overall accuracy, sensitivity, and precision values of 98% are achieved for both models whereas the overall specificity results in 99%. An additional classification of model-unknown ELS spectra is performed. The predictions are verified with histopathological evaluations of identical HE-stained tissue areas to prove the model's capability of tissue distinction. In the context of our proof-of-principle study, we assess the Pushbroom PCA-DA model to be more suitable for tissue type differentiations and thus tissue classification. In addition to the HE-examination in head and neck cancer diagnosis, the usage of HSI-based statistical models might be conceivable in a daily clinical routine.
Collapse
Affiliation(s)
- Miriam C Bassler
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Mona Stefanakis
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edwin Ostertag
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Alexandra Wagner
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße, 35033, Marburg, Germany
| | - Marion Roeßler
- Department of Pathology, Philipps University Marburg, Baldingerstraße, 35033, Marburg, Germany
| | - Robert Mandic
- Department of Otorhinolaryngology, Philipps University Marburg, Baldingerstraße, 35033, Marburg, Germany
| | - Eike F Reddmann
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Anita Lorenz
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Karsten Rebner
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Marc Brecht
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany.
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
10
|
Long JE, Jankovic M, Maddalo D. Drug discovery oncology in a mouse: concepts, models and limitations. Future Sci OA 2021; 7:FSO737. [PMID: 34295539 PMCID: PMC8288236 DOI: 10.2144/fsoa-2021-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
The utilization of suitable mouse models is a critical step in the drug discovery oncology workflow as their generation and use are important for target identification and validation as well as toxicity and efficacy assessments. Current murine models have been instrumental in furthering insights into the mode of action of drugs before transitioning into the clinic. Recent advancements in genome editing with the development of the CRISPR/Cas9 system and the possibility of applying such technology directly in vivo have expanded the toolkit of preclinical models available. In this review, a brief presentation of the current models used in drug discovery will be provided with a particular emphasis on the novel CRISPR/Cas9 models.
Collapse
Affiliation(s)
- Jason E Long
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Maja Jankovic
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Montréal, QC, H4A 3J1, Canada
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, 4070, Switzerland
- Author for correspondence:
| |
Collapse
|
11
|
Cong ATQ, Pimenta RML, Holy J, Heikal AA. Associated anisotropy of intrinsic NAD(P)H for monitoring changes in the metabolic activities of breast cancer cells (4T1) in three-dimensional collagen matrix. Phys Chem Chem Phys 2021; 23:12692-12705. [PMID: 34036961 DOI: 10.1039/d0cp06635d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The majority of in vitro studies of living cells are routinely conducted in a two-dimensional (2D) monolayer culture. Recent studies, however, suggest that 2D cell culture promotes specific types of aberrant cell behaviors due to the growth on non-physiologically stiff surfaces and the lack of the tissue-based extracellular matrix. Here, we investigate the sensitivity of the two-photon (2P) rotational dynamics of the intrinsic reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H, to changes in the metabolic state of the metastatic murine breast cancer cells (4T1) in 2D monolayer and three-dimensional (3D) collagen matrix cultures. Time-resolved 2P-associated anisotropy measurements reveal that the rotational dynamics of free and enzyme-bound NAD(P)H in 4T1 cells are correlated to changes in the metabolic state of 2D and 3D cell cultures. In addition to the type of cell culture, we also investigated the metabolic response of 4T1 cells to treatment with two metabolic inhibitors (MD1 and TPPBr). The statistical analyses of our results enabled us to identify which of the fitting parameters of the observed time-resolved associate anisotropy of cellular NAD(P)H were significantly sensitive to changes in the metabolic state of 4T1 cells. Using a black-box model, the population fractions of free and bound NAD(P)H were used to estimate the corresponding equilibrium constant and the standard Gibbs free energy changes that are associated with underlying metabolic pathways of 4T1 cells in 2D and 3D cultures. These rotational dynamics analyses are in agreement with the standard 2P-fluorescence lifetime imaging microscopy (FLIM) measurements on the same cell line, cell cultures, and metabolic inhibition. These studies represent an important step towards the development of a noninvasive, time-resolved associated anisotropy to complement 2P-FLIM in order to elucidate the underlying cellular metabolism and metabolic plasticity in more complex in vivo, tumor-like models using intrinsic NADH autofluorescence.
Collapse
Affiliation(s)
- Anh T Q Cong
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, 1039 University Drive, Duluth, MN 55812, USA.
| | | | | | | |
Collapse
|
12
|
Frank MH, Wilson BJ, Gold JS, Frank NY. Clinical Implications of Colorectal Cancer Stem Cells in the Age of Single-Cell Omics and Targeted Therapies. Gastroenterology 2021; 160:1947-1960. [PMID: 33617889 PMCID: PMC8215897 DOI: 10.1053/j.gastro.2020.12.080] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
The cancer stem cell (CSC) concept emerged from the recognition of inherent tumor heterogeneity and suggests that within a given tumor, in analogy to normal tissues, there exists a cellular hierarchy composed of a minority of more primitive cells with enhanced longevity (ie, CSCs) that give rise to shorter-lived, more differentiated cells (ie, cancer bulk populations), which on their own are not capable of tumor perpetuation. CSCs can be responsible for cancer therapeutic resistance to conventional, targeted, and immunotherapeutic treatment modalities, and for cancer progression through CSC-intrinsic molecular mechanisms. The existence of CSCs in colorectal cancer (CRC) was first established through demonstration of enhanced clonogenicity and tumor-forming capacity of this cell subset in human-to-mouse tumor xenotransplantation experiments and subsequently confirmed through lineage-tracing studies in mice. Surface markers for CRC CSC identification and their prospective isolation are now established. Therefore, the application of single-cell omics technologies to CSC characterization, including whole-genome sequencing, RNA sequencing, and epigenetic analyses, opens unprecedented opportunities to discover novel targetable molecular pathways and hence to develop novel strategies for CRC eradication. We review recent advances in this field and discuss the potential implications of next-generation CSC analyses for currently approved and experimental targeted CRC therapies.
Collapse
Affiliation(s)
- Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts;,Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts;,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts;,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Brian J. Wilson
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts;,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Jason S. Gold
- Department of Surgery, Veterans Affairs Boston Healthcare System, Boston, Massachusetts;,Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Natasha Y. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts;,Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts;,Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Wang X, Wang J, Tsui YM, Shi C, Wang Y, Zhang X, Yan Q, Chen M, Jiang C, Yuan YF, Wong CM, Liu M, Feng ZY, Chen H, Ng IOL, Jiang L, Guan XY. RALYL increases hepatocellular carcinoma stemness by sustaining the mRNA stability of TGF-β2. Nat Commun 2021; 12:1518. [PMID: 33750796 PMCID: PMC7943813 DOI: 10.1038/s41467-021-21828-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Growing evidences suggest that cancer stem cells exhibit many molecular characteristics and phenotypes similar to their ancestral progenitor cells. In the present study, human embryonic stem cells are induced to differentiate into hepatocytes along hepatic lineages to mimic liver development in vitro. A liver progenitor specific gene, RALY RNA binding protein like (RALYL), is identified. RALYL expression is associated with poor prognosis, poor differentiation, and metastasis in clinical HCC patients. Functional studies reveal that RALYL could promote HCC tumorigenicity, self-renewal, chemoresistance, and metastasis. Moreover, molecular mechanism studies show that RALYL could upregulate TGF-β2 mRNA stability by decreasing N6-methyladenosine (m6A) modification. TGF-β signaling and the subsequent PI3K/AKT and STAT3 pathways, upregulated by RALYL, contribute to the enhancement of HCC stemness. Collectively, RALYL is a liver progenitor specific gene and regulates HCC stemness by sustaining TGF-β2 mRNA stability. These findings may inspire precise therapeutic strategies for HCC. RALYL is a liver progenitor cell-specific gene but its role in hepatocellular carcinoma (HCC) remains unknown. Here, the authors demonstrate that RALYL regulates HCC stemness through upregulation of TGF-β2 mRNA stability by decreasing N6-methyladenosine modification.
Collapse
Affiliation(s)
- Xia Wang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu-Man Tsui
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Chaoran Shi
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Ying Wang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xin Zhang
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Qian Yan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Miao Chen
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Chen Jiang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun-Fei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chun-Ming Wong
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zeng-Yu Feng
- Department of General Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Honglin Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Irene Oi Lin Ng
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Lingxi Jiang
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China. .,Department of General Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China. .,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Abdalla Y, Luo M, Mäkilä E, Day BW, Voelcker NH, Tong WY. Effectiveness of porous silicon nanoparticle treatment at inhibiting the migration of a heterogeneous glioma cell population. J Nanobiotechnology 2021; 19:60. [PMID: 33637089 PMCID: PMC7908697 DOI: 10.1186/s12951-021-00798-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Approximately 80% of brain tumours are gliomas. Despite treatment, patient mortality remains high due to local metastasis and relapse. It has been shown that transferrin-functionalised porous silicon nanoparticles (Tf@pSiNPs) can inhibit the migration of U87 glioma cells. However, the underlying mechanisms and the effect of glioma cell heterogeneity, which is a hallmark of the disease, on the efficacy of Tf@pSiNPs remains to be addressed. RESULTS Here, we observed that Tf@pSiNPs inhibited heterogeneous patient-derived glioma cells' (WK1) migration across small perforations (3 μm) by approximately 30%. A phenotypical characterisation of the migrated subpopulations revealed that the majority of them were nestin and fibroblast growth factor receptor 1 positive, an indication of their cancer stem cell origin. The treatment did not inhibit cell migration across large perforations (8 μm), nor cytoskeleton formation. This is in agreement with our previous observations that cellular-volume regulation is a mediator of Tf@pSiNPs' cell migration inhibition. Since aquaporin 9 (AQP9) is closely linked to cellular-volume regulation, and is highly expressed in glioma, the effect of AQP9 expression on WK1 migration was investigated. We showed that WK1 migration is correlated to the differential expression patterns of AQP9. However, AQP9-silencing did not affect WK1 cell migration across perforations, nor the efficacy of cell migration inhibition mediated by Tf@pSiNPs, suggesting that AQP9 is not a mediator of the inhibition. CONCLUSION This in vitro investigation highlights the unique therapeutic potentials of Tf@pSiNPs against glioma cell migration and indicates further optimisations that are required to maximise its therapeutic efficacies.
Collapse
Affiliation(s)
- Youssef Abdalla
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Meihua Luo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ermei Mäkilä
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Bryan W Day
- Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. .,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, Australia. .,Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia. .,Leibniz Institut für Neue Materialien (INM), Campus D2 2, 66123, Saarbrücken, Germany.
| | - Wing Yin Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, Australia.
| |
Collapse
|
15
|
Shen X, Wang C, Zhu H, Wang Y, Wang X, Cheng X, Ge W, Lu W. Exosome-mediated transfer of CD44 from high-metastatic ovarian cancer cells promotes migration and invasion of low-metastatic ovarian cancer cells. J Ovarian Res 2021; 14:38. [PMID: 33627162 PMCID: PMC7905574 DOI: 10.1186/s13048-021-00776-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 01/18/2023] Open
Abstract
Objective To investigate the detailed roles and mechanisms of tumor-derived exosomes in progression and metastasis of ovarian cancer in vitro. Methods Exosomes were isolated by differential centrifugation method; the morphology, size and biological markers of exosomes were separately defined by transmission electron microscopy, nanoS90 and Western blotting; Trans-well chambers assay was used to assess the ability of migration and invasion of recipient cells uptaking the exosomes from HO8910PM cells. The downstream molecule was screened by mass spectrometry.CD44 was identified by western blotting and the function of CD44 was identified by trans-well chambers assay and CCK8 assay. Results Exosomes derived from HO8910PM cells could be transferred to HO8910 cells and promote cell migration and invasion in the recipient cells of ovarian cancer. And CD44 could be transferred to the HO8910 cells through exosomes from HO8910PM cells and influence the migration and invasion ability of HO8910 cells. Conclusion The more aggressive subpopulation can transfer a metastatic phenotype to the less one via secreting exosomes within a heterogeneous tumor. CD44 may be a potential therapeutic approach for ovarian cancer.
Collapse
Affiliation(s)
- Xiameng Shen
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China
| | - Conghui Wang
- Women's Reproductive Health Research Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Huihui Zhu
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China
| | - Yaping Wang
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China
| | - Xinyu Wang
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China.,Women's Reproductive Health Research Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China.,Women's Reproductive Health Research Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Wanzhong Ge
- Women's Reproductive Health Research Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China. .,Women's Reproductive Health Research Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China. .,Zhejiang University Cancer Center, Hangzhou, China.
| |
Collapse
|
16
|
Sui Y, Peng S. A Mechanism Leading to Changes in Copy Number Variations Affected by Transcriptional Level Might Be Involved in Evolution, Embryonic Development, Senescence, and Oncogenesis Mediated by Retrotransposons. Front Cell Dev Biol 2021; 9:618113. [PMID: 33644055 PMCID: PMC7905054 DOI: 10.3389/fcell.2021.618113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
In recent years, more and more evidence has emerged showing that changes in copy number variations (CNVs) correlated with the transcriptional level can be found during evolution, embryonic development, and oncogenesis. However, the underlying mechanisms remain largely unknown. The success of the induced pluripotent stem cell suggests that genome changes could bring about transformations in protein expression and cell status; conversely, genome alterations generated during embryonic development and senescence might also be the result of genome changes. With rapid developments in science and technology, evidence of changes in the genome affected by transcriptional level has gradually been revealed, and a rational and concrete explanation is needed. Given the preference of the HIV-1 genome to insert into transposons of genes with high transcriptional levels, we propose a mechanism based on retrotransposons facilitated by specific pre-mRNA splicing style and homologous recombination (HR) to explain changes in CNVs in the genome. This mechanism is similar to that of the group II intron that originated much earlier. Under this proposed mechanism, CNVs on genome are dynamically and spontaneously extended in a manner that is positively correlated with transcriptional level or contract as the cell divides during evolution, embryonic development, senescence, and oncogenesis, propelling alterations in them. Besides, this mechanism explains several critical puzzles in these processes. From evidence collected to date, it can be deduced that the message contained in genome is not just three-dimensional but will become four-dimensional, carrying more genetic information.
Collapse
Affiliation(s)
- Yunpeng Sui
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | | |
Collapse
|
17
|
Akpe V, Murhekar S, Kim TH, Brown CL, Cock IE. Profiling the Neoplasm Microenvironment of Silica Nanomaterial-Derived Scaffolds of Single, 2-, and 3-Composite Systems. Assay Drug Dev Technol 2021; 19:191-203. [PMID: 33471566 DOI: 10.1089/adt.2020.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The challenges with scaffold profiling of cell-based assay includes accelerated cancer cell proliferation, induced scaffold toxicity, and identifying irrelevant cancer cell-based assays in batch assessments. This study investigates profiling carcinoma of breast cancer cells of MCF-7 model systems using silica nanoparticles scaffold sourced from synthetic materials and plant extracts. Herein, the engineered tissue scaffolds were used to create temporary structures for cancer cell attachments, differentiation, and subsequently to assess the metabolic activity of the cancer cell colonies. The cell viability of the cancer cells was assessed using the tetrazolium compound (MTS reagent), which was reduced to colored formazan, to indicate metabolically active cancer cells in a proliferating assay. We aimed to develop cancer cell-based scaffolds that not only mimic the neoplastic activity, but that also allowed synergistic interaction with cisplatin for in vitro assay screening.
Collapse
Affiliation(s)
- Victor Akpe
- Environmental Futures Research Institute, Griffith University, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan, Australia
| | - Shweta Murhekar
- Environmental Futures Research Institute, Griffith University, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan, Australia
| | - Tak H Kim
- Environmental Futures Research Institute, Griffith University, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan, Australia
| | - Christopher L Brown
- Environmental Futures Research Institute, Griffith University, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan, Australia
| | - Ian E Cock
- Environmental Futures Research Institute, Griffith University, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan, Australia
| |
Collapse
|
18
|
Kang W, Maher L, Michaud M, Bae SW, Kim S, Lee HS, Im SA, Yang HK, Lee C. Development of a Novel Orthotopic Gastric Cancer Mouse Model. Biol Proced Online 2021; 23:1. [PMID: 33390162 PMCID: PMC7780388 DOI: 10.1186/s12575-020-00137-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/30/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Gastric cancer metastasis is a highly fatal disease with a five-year survival rate of less than 5%. One major obstacle in studying gastric cancer metastasis is the lack of faithful models available. The cancer xenograft mouse models are widely used to elucidate the mechanisms of cancer development and progression. Current procedures for creating cancer xenografts include both heterotopic (i.e., subcutaneous) and orthotopic transplantation methods. Compared to the heterotopic model, the orthotopic model has been shown to be the more clinically relevant design as it enables the development of cancer metastasis. Although there are several methods in use to develop the orthotopic gastric cancer model, there is not a model which uses various types of tumor materials, such as soft tissues, semi-liquid tissues, or culture derivatives, due to the technical challenges. Thus, developing the applicable orthotopic model which can utilize various tumor materials is essential. RESULTS To overcome the known limitations of the current orthotopic gastric cancer models, such as exposure of tumor fragments to the neighboring organs or only using firm tissues for the orthotopic implantation, we have developed a new method allowing for the complete insertion of soft tissue fragments or homogeneously minced tissues into the stomach submucosa layer of the immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mouse. With this completely-closed transplantation method, tumors with various types of tissue may be used to establish orthotopic gastric cancer models without the risks of exposure to nearby organs or cell leakage. This surgical procedure was highly reproducible in generating forty-eight mouse models with a surgery success rate of 96% and tumor formation of 93%. Among four orthotopic patient-derived xenograft (PDX) models that we generated in this study, we verified that the occurrence of organotropic metastasis in either the liver or peritoneal cavity was the same as that of the donor patients. CONCLUSION Here we describe a new protocol, step by step, for the establishment of orthotopic xenograft of gastric cancer. This novel technique will be able to increase the use of orthotopic models in broader applications for not only gastric cancer research but also any research related to the stomach microenvironment.
Collapse
Affiliation(s)
- Wonyoung Kang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Leigh Maher
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Michael Michaud
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Seong-Woo Bae
- Cancer Research Institute, Seoul National University College of Medicine, 103 Daehang-Ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seongyeong Kim
- Cancer Research Institute, Seoul National University College of Medicine, 103 Daehang-Ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, 103 Daehang-Ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University College of Medicine, 103 Daehang-Ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Han-Kwang Yang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 103 Daehang-Ro, Jongno-gu, 03080, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, 103 Daehang-Ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA.
| |
Collapse
|
19
|
Refinetti P, Morgenthaler S, Thilly WG, Arstad C, Ekstrøm PO. Tracing of Human Tumor Cell Lineages by Mitochondrial Mutations. Front Oncol 2020; 10:523860. [PMID: 33344219 PMCID: PMC7745703 DOI: 10.3389/fonc.2020.523860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/28/2020] [Indexed: 11/21/2022] Open
Abstract
Background Previous studies have shown the value in studying lineage tracing in slices of human tumors. However, a tumor is not a two-dimensional structure and to better understand how a tumor, and its corresponding metastasis grow, a three-dimensional (3-D) view is necessary. Results Using somatic mitochondrial mutations as a marker for lineage tracing, it is possible to identify and follow tumor specific cell lineages. Using cycling temperature capillary electrophoresis (CTCE) a total of 8 tissues from 5 patients (4 primary tumors and 4 metastasis) containing clear mitochondrial markers of tumor lineages were selected. From these 8 tissues over 9,500 laser capture microdisection (LCM) samples were taken and analyzed, in a way that allows 3-D rendering of the observations. Conclusion Using CTCE combined with LCM makes it possible to study the 3-D patterns formed by tumors and metastasis as they grow. These results clearly show that the majority of the volume occupied by a tumor is not composed of tumor derived cells. These cells are most likely recruited from the neighboring tissue.
Collapse
Affiliation(s)
- Paulo Refinetti
- Chair of Applied Statistics, Mathematics Section, School of Basic Sciences, École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzerland
| | - Stephan Morgenthaler
- Chair of Applied Statistics, Mathematics Section, School of Basic Sciences, École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzerland
| | - William G Thilly
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Christian Arstad
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo, Norway
| | - Per O Ekstrøm
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
20
|
Marino GE, Weeraratna AT. A glitch in the matrix: Age-dependent changes in the extracellular matrix facilitate common sites of metastasis. AGING AND CANCER 2020; 1:19-29. [PMID: 35694033 PMCID: PMC9187055 DOI: 10.1002/aac2.12013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
People over 55 years old represent the majority of cancer patients and suffer from increased metastatic burden compared to the younger patient population. As the aging population increases globally, it is prudent to understand how the intrinsic aging process contributes to cancer progression. As we age, we incur aberrant changes in the extracellular matrix (ECM) of our organs, which contribute to numerous pathologies, including cancer. Notably, the lung, liver, and bone represent the most common sites of distal metastasis for all cancer types. In this review, we describe how age-dependent changes in the ECM of these organs influence cancer progression. Further, we outline how these alterations prime the premetastatic niche and why these may help explain the disparity in outcome for older cancer patients.
Collapse
Affiliation(s)
- Gloria E. Marino
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Baliu-Piqué M, Pandiella A, Ocana A. Breast Cancer Heterogeneity and Response to Novel Therapeutics. Cancers (Basel) 2020; 12:E3271. [PMID: 33167363 PMCID: PMC7694303 DOI: 10.3390/cancers12113271] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Targeted cancer therapies against oncogenic drivers are actively being developed and tested in clinical trials. Targeting an oncogenic driver may only prove effective if the mutation is present in most tumoral cells. Therefore, highly heterogeneous tumors may be refractory to these therapies. This makes tumor heterogeneity a major challenge in cancer therapy. Although heterogeneity has traditionally been attributed to genetic diversity within cancer cell populations, it is now widely recognized that human cancers are heterogeneous in almost all distinguishable phenotypic characteristics. Understanding the genetic variability and also the non-genetic influences of tumor heterogeneity will provide novel insights into how to reverse therapeutic resistance and improve cancer therapy.
Collapse
Affiliation(s)
- Mariona Baliu-Piqué
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos and CIBERONC, 28040 Madrid, Spain;
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, CSIC-IBSAL, 37007 Salamanca, Spain;
| | - Alberto Ocana
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos and CIBERONC, 28040 Madrid, Spain;
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomedicas, Castilla-La Mancha University (CRIB-UCLM), 02008 Albacete, Spain
| |
Collapse
|
22
|
Lee WC, Reuben A, Hu X, McGranahan N, Chen R, Jalali A, Negrao MV, Hubert SM, Tang C, Wu CC, Lucas AS, Roh W, Suda K, Kim J, Tan AC, Peng DH, Lu W, Tang X, Chow CW, Fujimoto J, Behrens C, Kalhor N, Fukumura K, Coyle M, Thornton R, Gumbs C, Li J, Wu CJ, Little L, Roarty E, Song X, Lee JJ, Sulman EP, Rao G, Swisher S, Diao L, Wang J, Heymach JV, Huse JT, Scheet P, Wistuba II, Gibbons DL, Futreal PA, Zhang J, Gomez D, Zhang J. Multiomics profiling of primary lung cancers and distant metastases reveals immunosuppression as a common characteristic of tumor cells with metastatic plasticity. Genome Biol 2020; 21:271. [PMID: 33148332 PMCID: PMC7640699 DOI: 10.1186/s13059-020-02175-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metastasis is the primary cause of cancer mortality accounting for 90% of cancer deaths. Our understanding of the molecular mechanisms driving metastasis is rudimentary. RESULTS We perform whole exome sequencing (WES), RNA sequencing, methylation microarray, and immunohistochemistry (IHC) on 8 pairs of non-small cell lung cancer (NSCLC) primary tumors and matched distant metastases. Furthermore, we analyze published WES data from 35 primary NSCLC and metastasis pairs, and transcriptomic data from 4 autopsy cases with metastatic NSCLC and one metastatic lung cancer mouse model. The majority of somatic mutations are shared between primary tumors and paired distant metastases although mutational signatures suggest different mutagenesis processes in play before and after metastatic spread. Subclonal analysis reveals evidence of monoclonal seeding in 41 of 42 patients. Pathway analysis of transcriptomic data reveals that downregulated pathways in metastases are mainly immune-related. Further deconvolution analysis reveals significantly lower infiltration of various immune cell types in metastases with the exception of CD4+ T cells and M2 macrophages. These results are in line with lower densities of immune cells and higher CD4/CD8 ratios in metastases shown by IHC. Analysis of transcriptomic data from autopsy cases and animal models confirms that immunosuppression is also present in extracranial metastases. Significantly higher somatic copy number aberration and allelic imbalance burdens are identified in metastases. CONCLUSIONS Metastasis is a molecularly late event, and immunosuppression driven by different molecular events, including somatic copy number aberration, may be a common characteristic of tumors with metastatic plasticity.
Collapse
Affiliation(s)
- Won-Chul Lee
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Runzhe Chen
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shawna M Hubert
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony San Lucas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Whijae Roh
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kenichi Suda
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Jihye Kim
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aik-Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi-Wan Chow
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neda Kalhor
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kazutaka Fukumura
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcus Coyle
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Thornton
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curtis Gumbs
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Latasha Little
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Roarty
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erik P Sulman
- New York University Langone School of Medicine, New York, NY, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Swisher
- Department of Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Current Address: Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jianjun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Inferring clonal composition from multiple tumor biopsies. NPJ Syst Biol Appl 2020; 6:27. [PMID: 32843649 PMCID: PMC7447821 DOI: 10.1038/s41540-020-00147-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
Knowledge about the clonal evolution of a tumor can help to interpret the function of its genetic alterations by identifying initiating events and events that contribute to the selective advantage of proliferative, metastatic, and drug-resistant subclones. Clonal evolution can be reconstructed from estimates of the relative abundance (frequency) of subclone-specific alterations in tumor biopsies, which, in turn, inform on its composition. However, estimating these frequencies is complicated by the high genetic instability that characterizes many cancers. Models for genetic instability suggest that copy number alterations (CNAs) can influence mutation-frequency estimates and thus impede efforts to reconstruct tumor phylogenies. Our analysis suggested that accurate mutation frequency estimates require accounting for CNAs—a challenging endeavour using the genetic profile of a single tumor biopsy. Instead, we propose an optimization algorithm, Chimæra, to account for the effects of CNAs using profiles of multiple biopsies per tumor. Analyses of simulated data and tumor profiles suggested that Chimæra estimates are consistently more accurate than those of previously proposed methods and resulted in improved phylogeny reconstructions and subclone characterizations. Our analyses inferred recurrent initiating mutations in hepatocellular carcinomas, resolved the clonal composition of Wilms’ tumors, and characterized the acquisition of mutations in drug-resistant prostate cancers.
Collapse
|
24
|
Forman A, Sotelo J. Tumor-Based Genetic Testing and Familial Cancer Risk. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036590. [PMID: 31570381 DOI: 10.1101/cshperspect.a036590] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
As genetic testing on somatic tumor tissue becomes a more routine part of personalized cancer treatment, a growing opportunity arises to identify hereditary germline variants within those results. These germline results can affect future cancer screening for both patients and their family members. Finding this germline information can be complicated as a result of differences between somatic and germline testing processes, nomenclature, and outcome goals (e.g., treatment impact). The goal of this review is to highlight differences between somatic and germline testing and outline a potential guide to allow for appropriate clinical interpretation of somatic testing results in order to better facilitate genetic counseling referrals and confirmatory germline testing.
Collapse
Affiliation(s)
- Andrea Forman
- Department of Clinical Genetics, Risk Assessment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Jilliane Sotelo
- Center for Cancer Genetics and Prevention, Dana Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
25
|
Celià-Terrassa T, Jolly MK. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition in Cancer Metastasis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036905. [PMID: 31570380 DOI: 10.1101/cshperspect.a036905] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cancer stem cell (CSC) concept stands for undifferentiated tumor cells with the ability to initiate heterogeneous tumors. It is also relevant in metastasis and can explain how metastatic tumors mirror the heterogeneity of primary tumors. Cellular plasticity, including the epithelial-to-mesenchymal transition (EMT), enables the generation of CSCs at different steps of the metastatic process including metastatic colonization. In this review, we update the concept of CSCs and provide evidence of the existence of metastatic stem cells (MetSCs). In addition, we highlight the nuanced understanding of EMT that has been gained recently and the association of mesenchymal-to-epithelial transition (MET) with the acquisition of CSCs properties during metastasis. We also comment on the computational approaches that have profoundly influenced our understanding of CSCs and EMT; and how these studies and new experimental technologies can yield a deeper understanding of the biological aspects of metastasis.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
Akpe V, Kim TH, Brown CL, Cock IE. Circulating tumour cells: a broad perspective. J R Soc Interface 2020; 17:20200065. [PMCID: PMC7423436 DOI: 10.1098/rsif.2020.0065] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/09/2020] [Indexed: 08/13/2023] Open
Abstract
Circulating tumour cells (CTCs) have recently been identified as valuable biomarkers for diagnostic and prognostic evaluations, as well for monitoring therapeutic responses to treatments. CTCs are rare cells which may be present as one CTC surrounded by approximately 1 million white blood cells and 1 billion red blood cells per millilitre of peripheral blood. Despite the various challenges in CTC detection, considerable progress in detection methods have been documented in recent times, particularly for methodologies incorporating nanomaterial-based platforms and/or integrated microfluidics. Herein, we summarize the importance of CTCs as biological markers for tumour detection, highlight their mechanism of cellular invasion and discuss the various challenges associated with CTC research, including vulnerability, heterogeneity, phenotypicity and size differences. In addition, we describe nanomaterial agents used for electrochemistry and surface plasmon resonance applications, which have recently been used to selectively capture cancer cells and amplify signals for CTC detection. The intrinsic properties of nanomaterials have also recently been exploited to achieve photothermal destruction of cancer cells. This review describes recent advancements and future perspectives in the CTC field.
Collapse
Affiliation(s)
- Victor Akpe
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Tak H. Kim
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Christopher L. Brown
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Ian E. Cock
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| |
Collapse
|
27
|
Exploiting Cancer's Tactics to Make Cancer a Manageable Chronic Disease. Cancers (Basel) 2020; 12:cancers12061649. [PMID: 32580319 PMCID: PMC7352192 DOI: 10.3390/cancers12061649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
The history of modern oncology started around eighty years ago with the introduction of cytotoxic agents such as nitrogen mustard into the clinic, followed by multi-agent chemotherapy protocols. Early success in radiation therapy in Hodgkin lymphoma gave birth to the introduction of radiation therapy into different cancer treatment protocols. Along with better understanding of cancer biology, we developed drugs targeting cancer-related cellular and genetic aberrancies. Discovery of the crucial role of vasculature in maintenance, survival, and growth of a tumor opened the way to the development of anti-angiogenic agents. A better understanding of T-cell regulatory pathways advanced immunotherapy. Awareness of stem-like cancer cells and their role in cancer metastasis and local recurrence led to the development of drugs targeting them. At the same time, sequential and rapidly accelerating advances in imaging and surgical technology have markedly increased our ability to safely remove ≥90% of tumor cells. While we have advanced our ability to kill cells from multiple directions, we have still failed to stop most types of cancer from recurring. Here we analyze the tactics employed in cancer evolution; namely, chromosomal instability (CIN), intra-tumoral heterogeneity (ITH), and cancer-specific metabolism. These tactics govern the resistance to current cancer therapeutics. It is time to focus on maximally delaying the time to recurrence, with drugs that target these fundamental tactics of cancer evolution. Understanding the control of CIN and the optimal state of ITH as the most important tactics in cancer evolution could facilitate the development of improved cancer therapeutic strategies designed to transform cancer into a manageable chronic disease.
Collapse
|
28
|
Ding S, Li S, Zhang S, Li Y. Genetic Alterations and Checkpoint Expression: Mechanisms and Models for Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:227-250. [PMID: 32185713 DOI: 10.1007/978-981-15-3266-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we will sketch a story that begins with the breakdown of chromosome homeostasis and genomic stability. Genomic alterations may render tumor cells eternal life at the expense of immunogenicity. Although antitumor immunity can be primed through neoantigens or inflammatory signals, tumor cells have evolved countermeasures to evade immune surveillance and strike back by modulating immune checkpoint related pathways. At present, monoclonal antibody drugs targeting checkpoints like PD-1 and CTLA-4 have significantly prolonged the survival of a variety of cancer patients, and thus have marked a great achievement in the history of antitumor therapy. Nevertheless, this is not the end of the story. As the relationship between genomic alteration and checkpoint expression is being delineated though the advances of preclinical animal models and emerging technologies, novel checkpoint targets are on the way to be discovered.
Collapse
Affiliation(s)
- Shuai Ding
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Siqi Li
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Shujie Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Yan Li
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China.
| |
Collapse
|
29
|
Chen J, Zhang F, Wang D, Yang Z, Liu S, Dong Z. Prognostic ability of DNA-binding protein inhibitor ID-1 expression in patients with oral squamous cell carcinoma. Oncol Lett 2020; 19:3917-3922. [PMID: 32382338 PMCID: PMC7202274 DOI: 10.3892/ol.2020.11506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
DNA-binding protein inhibitor ID-1 (ID-1) plays a vital role in the development of cancer. In the present study, ID-1 expression in oral squamous cell carcinoma (OSCC), and its association with prognosis were investigated in 128 patients with OSCC, treated at the Qilu Hospital of Shandong University and followed up for an additional 10 years. Immunohistochemical analysis was performed to detect ID-1 expression, and the association between ID-1 expression and recurrence, and estimated disease-specific survival (DSS) time were subsequently analyzed using the Mann-Whitney U test and the Kaplan-Meier method, respectively. In addition, the log-rank test was implemented to compare the survival curves and multivariate Cox proportional hazards analysis was performed to assess the prognostic value of ID-1. The results demonstrated that ID-1 was highly expressed in the majority of OSCC tissues investigated, and ID-1 expression was significantly higher in cases with recurrence of local tumors and lymph node metastasis. Furthermore, higher ID-1 expression levels were associated with a shorter DSS time. Taken together, the results of the present study suggest that ID-1 may serve as an independent prognostic factor to predict DSS time in patients with OSCC.
Collapse
Affiliation(s)
- Jian Chen
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Zhongjun Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shaohua Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zuoqing Dong
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
30
|
Cieślikowski WA, Budna-Tukan J, Świerczewska M, Ida A, Hrab M, Jankowiak A, Mazel M, Nowicki M, Milecki P, Pantel K, Alix-Panabières C, Zabel M, Antczak A. Circulating Tumor Cells as a Marker of Disseminated Disease in Patients with Newly Diagnosed High-Risk Prostate Cancer. Cancers (Basel) 2020; 12:E160. [PMID: 31936460 PMCID: PMC7017349 DOI: 10.3390/cancers12010160] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate whether the enumeration of circulating tumor cells (CTCs) in blood can differentiate between true localized and metastatic prostate cancer. A cross-sectional study of 104 prostate cancer patients with newly diagnosed high-risk prostate cancer was conducted. In total, 19 patients presented metastatic disease and 85 were diagnosed with localized disease. Analyses included intergroup comparison of CTC counts, determined using the CellSearch® system, EPISPOT assay and GILUPI CellCollector®, and ROC analysis verifying the accuracy of CTC count as a maker of disseminated prostate cancer. The vast majority (94.7%) of patients with advanced-stage cancer tested positively for CTCs in at least one of the assays. However, significantly higher CTC counts were determined with the CellSearch® system compared to EPISPOT assay and GILUPI CellCollector®. Identification of ≥4 CTCs with the CellSearch® system was the most accurate predictor of metastatic disease (sensitivity 0.500; specificity 0.900; AUC (95% CI) 0.760 (0.613-0.908). Furthermore, we tried to create a model to enhance the specificity and sensitivity of metastatic prediction with CTC counts by incorporating patient's clinical data, including PSA serum levels, Gleason score and clinical stage. The composite biomarker panel achieved the following performance: sensitivity, 0.611; specificity, 0.971; AUC (95% CI), 0.901 (0.810-0.993). Thus, although the sensitivity of CTC detection needs to be further increased, our findings suggest that high CTC counts might contribute to the identification of high-risk prostate cancer patients with occult metastases at the time of diagnosis.
Collapse
Affiliation(s)
- Wojciech A. Cieślikowski
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Agnieszka Ida
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| | - Michał Hrab
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| | - Agnieszka Jankowiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Martine Mazel
- Laboratory of Rare Human Circulating Cells, University Medical Center, 34093 Montpellier CEDEX 5, France; (M.M.); (C.A.-P.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Piotr Milecki
- Department of Electroradiology, Poznan University of Medical Sciences, 61-868 Poznan, Poland;
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center, 34093 Montpellier CEDEX 5, France; (M.M.); (C.A.-P.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Division of Anatomy and Histology, University of ZielonaGóra, 65-046 ZielonaGóra, Poland
| | - Andrzej Antczak
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| |
Collapse
|
31
|
Pirastehzad A, Taghizadeh A, Jamshidi AA. The formation of cancer stem cells in EMT6/Ro tumor: Hybrid modeling within its micro-environment. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2019.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
32
|
Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J, Velho S. Animal Models to Study Cancer and Its Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:389-401. [PMID: 32130710 DOI: 10.1007/978-3-030-34025-4_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancers are complex tissues composed by genetically altered cancer cells and stromal elements such as inflammatory/immune cells, fibroblasts, endothelial cells and pericytes, neuronal cells, and a non-cellular component, the extracellular matrix. The complex network of interactions and crosstalk established between cancer cells and the supportig cellular and non-cellular components of the microenvironment are of extreme importance for tumor initiation and progression, strongly impacting the course and the outcome of the disease. Therefore, a better understanding of the tumorigenic processes implies the combined study of the cancer cell and the biologic, chemical and mechanic constituents of the tumor microenvironment, as their concerted action plays a major role in the carcinogenic pathway and is a key determinant of the efficacy of anti-cancer treatments. The use of animal models (e.g. Mouse, Zebrafish and Drosophila) to study cancer has greatly impacted our understanding of the processes governing initiation, progression and metastasis and allowed the discovery and pre-clinical validation of novel cancer treatments as it allows to recreate tumor development in a more pathophysiologic environment.
Collapse
Affiliation(s)
- N Mendes
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| | - P Dias Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - F Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Mendonça
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - A R Malheiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - A Ribeiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - J Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Velho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
33
|
Bartram I, Jeschke JM. Do cancer stem cells exist? A pilot study combining a systematic review with the hierarchy-of-hypotheses approach. PLoS One 2019; 14:e0225898. [PMID: 31834886 PMCID: PMC6910685 DOI: 10.1371/journal.pone.0225898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of cancer cell heterogeneity has been explained by different hypotheses, each entailing different therapy strategies. The most recent is the cancer stem cell model, which says that tumourigenicity and self-renewal are restricted to rare stem cell-like cancer cells. Since its conception, conflicting evidence has been published. In this study, we tested the applicability of a new approach developed in the field of ecology, the hierarchy-of-hypotheses approach, for the Cancer Stem Cell hypothesis. This approach allows to structure a broad concept into more specific sub-hypotheses, which in turn can be connected to available empirical studies. To generate a dataset with empirical studies, we conducted a systematic literature review in the Web of Science limited to the first 1000 publications returned by the search. From this pool, 51 publications were identified that tested whether a cell sub-population had cancer stem cell properties. By classifying the studies according to: (1) assessed indicators, (2) experimental assays and (3) model cancer cells used, we built a hierarchical structure of sub-hypotheses. The empirical tests from the selected studies were subsequently assigned to this hierarchy of hypotheses, and the percentage of supporting, undecided and questioning evidence was calculated for each sub-hypothesis, as well as additional experimental characteristics. Our approach successfully allowed us to determine that within our dataset, the empirical support for the CSC hypothesis was only 49.0%. The support of different sub-hypotheses was highly variable. Most noticeable, the conception that putative cancer stem cells are a rare subset of cells could not be confirmed by most studies (13.5% support). The empirical support varied also between types of cancer, animal models and cell isolation method used. For the first time, this study showed the applicability of the hierarchy-of-hypotheses approach for synthesizing and evaluating empirical evidence for a broad hypothesis in the field of bio-medical research.
Collapse
Affiliation(s)
- Isabelle Bartram
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jonathan M. Jeschke
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
34
|
Chow EYC, Zhang J, Qin H, Chan TF. Characterization of Hepatocellular Carcinoma Cell Lines Using a Fractionation-Then-Sequencing Approach Reveals Nuclear-Enriched HCC-Associated lncRNAs. Front Genet 2019; 10:1081. [PMID: 31781161 PMCID: PMC6857473 DOI: 10.3389/fgene.2019.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Advances in sequencing technologies have greatly improved our understanding of long noncoding RNA (lncRNA). These transcripts with lengths of >200 nucleotides may play significant regulatory roles in various biological processes. Importantly, the dysregulation of better characterized lncRNAs has been associated with multiple types of cancers, including hepatocellular carcinoma (HCC). There are many studies on altered lncRNA expression levels, very few, however, have focused on their subcellular localizations, from which accumulating evidences have indicated their close relationships to lncRNA functions. A transcriptome-wide investigation of the subcellular distributions of lncRNAs might thus provide new insights into their roles and functions in cancers. Results: In this study, we subjected eight patient-derived HCC cell lines to subcellular fractionation and independently sequenced RNAs from the nuclear and cytoplasmic compartments. With the integration of tumor and tumor-adjacent RNA-seq datasets of liver hepatocellular carcinoma (LIHC) from The Cancer Genome Atlas (TCGA), de novo transcriptome assembly and differential expression analysis were conducted successively and identified 26 nuclear-enriched HCC-associated lncRNAs shared between the HCC samples and the TCGA datasets, including the reported cancer driver PXN-AS1. The majority of nuclear-enriched HCC-associated lncRNAs were associated with the survival outcomes of HCC patients, exhibited characteristics similar to those of many experimentally supported HCC prognostic lncRNAs, and were co-expressed with protein-coding genes that have been linked to disease progression in various cancer types. Conclusion: We adopted a fractionation-then-sequencing approach on multiple patient-derived HCC samples and identified nuclear-enriched, HCC-associated lncRNAs that could serve as important targets for HCC diagnosis and therapeutic development. This approach could be widely applicable to other studies into the disease etiologies of lncRNA.
Collapse
Affiliation(s)
| | - Jizhou Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hao Qin
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
35
|
Januškevičienė I, Petrikaitė V. Heterogeneity of breast cancer: The importance of interaction between different tumor cell populations. Life Sci 2019; 239:117009. [PMID: 31669239 DOI: 10.1016/j.lfs.2019.117009] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/12/2019] [Accepted: 10/20/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Breast cancer is the most common cancer and the second leading cause of cancer-related death in women worldwide. Despite the early detection of breast cancer and increasing knowledge of its biology and chemo-resistance, metastatic breast cancer is largely incurable disease. We provide a review of the intertumor and intratumor heterogeneity, explain the differences between triple-negative breast cancer subtypes. Also, we describe the interaction of breast tumor cells with their microenvironment cells and explain how this interaction contributes to the tumor progression, metastasis formation and resistance to the treatment. DISCUSSION One of the main causes that complicate the treatment is tumor heterogeneity. It is observed among patients (intertumor heterogeneity) and in each individual tumor (intratumor heterogeneity). In the case of intratumor heterogeneity, the tumor consists of different phenotypical cell populations. During breast cancer subtype identification, a small piece of solid tumor tissue does not necessarily represent all the tumor composition. Breast tumor cell phenotypical differences may appear due to cell localization in different tumor sites, unique response to the treatment, cell interaction with tumor microenvironment or tumor cell interaction with each other. This heterogeneity may lead to breast cancer aggressiveness and challenging treatment. CONCLUSION Understanding the molecular and cellular mechanisms of tumor heterogeneity that are relevant to the development of treatment resistance is a major area of research. Identification of differences between populations and their response to anticancer drugs would help to predict the potential resistance to chemotherapy and thus would help to select the most suitable anticancer treatment.
Collapse
Affiliation(s)
- Indrė Januškevičienė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Av. 13, LT-50161, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Av. 13, LT-50161, Kaunas, Lithuania; Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
36
|
Lim SB, Lim CT, Lim WT. Single-Cell Analysis of Circulating Tumor Cells: Why Heterogeneity Matters. Cancers (Basel) 2019; 11:cancers11101595. [PMID: 31635038 PMCID: PMC6826423 DOI: 10.3390/cancers11101595] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Unlike bulk-cell analysis, single-cell approaches have the advantage of assessing cellular heterogeneity that governs key aspects of tumor biology. Yet, their applications to circulating tumor cells (CTCs) are relatively limited, due mainly to the technical challenges resulting from extreme rarity of CTCs. Nevertheless, recent advances in microfluidics and immunoaffinity enrichment technologies along with sequencing platforms have fueled studies aiming to enrich, isolate, and sequence whole genomes of CTCs with high fidelity across various malignancies. Here, we review recent single-cell CTC (scCTC) sequencing efforts, and the integrated workflows, that have successfully characterized patient-derived CTCs. We examine how these studies uncover DNA alterations occurring at multiple molecular levels ranging from point mutations to chromosomal rearrangements from a single CTC, and discuss their cellular heterogeneity and clinical consequences. Finally, we highlight emerging strategies to address key challenges currently limiting the translation of these findings to clinical practice.
Collapse
Affiliation(s)
- Su Bin Lim
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Chwee Teck Lim
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore.
| | - Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.
- Office of Academic and Clinical Development, Duke-NUS Medical School, Singapore 169857, Singapore.
- IMCB NCC MPI Singapore Oncogenome Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore.
| |
Collapse
|
37
|
Sun M, Zhao W, Chen Z, Li M, Li S, Wu B, Bu R. Circular RNA CEP128 promotes bladder cancer progression by regulating Mir-145-5p/Myd88 via MAPK signaling pathway. Int J Cancer 2019; 145:2170-2181. [PMID: 30939216 DOI: 10.1002/ijc.32311] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 02/09/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022]
Abstract
The present experiment was designed for exploring the regulatory mechanism of circ-CEP128/miR-145-5p/MYD88 axis in bladder cancer. MiRNAs and circRNAs expression data were derived from Gene Expression Omnibus database with bladder tumor tissues and paracarcinoma tissue samples. Differentially expressed genes in tumor were analyzed via R software. Interaction network of differently expressed miRNAs and differently expressed mRNA was established by means of Cytoscape software. CircCEP128 and miR-145-5p expression levels were determined using qRT-PCR. The expression of MAPK signaling-related proteins MYD88, p38, ERK and JNK was examined by western blot. The relationship between circCEP128 and miR-145-5p was validated using RNA immunoprecipitation. The level of cell propagation and migration was determined by CCK8 and wound healing assay, 5-bromo-2'-deoxyuridine assay and migration assay. Cell apoptosis rate and cell cycle were detected via flow cytometry. Tumor xenograft assay was implemented to investigate the function of circCEP128 in vivo. CircCEP128 and MYD88 were overexpressed in bladder cancer based on microarray analysis and miR-145-5p was a potential targeting factor in bladder cancer. CircCEP128 targeted miR-145-5p and miR-145-5p targeted MYD88. Expression of miR-145-5p was decreased in cancer samples. Knockdown of circCEP128 induced the inhibition of cell viability and mobility and cell cycle arrest. Overexpression of miR-145-5p or knockdown of circCEP128 promoted MAKP signaling pathway and related proteins expression. In addition, knockdown of circCEP128 suppressed the growth of bladder cancer tumor tissues in vivo. Overexpression of circCEP128 promoted bladder cancer progression through modulating miR-145-5p and MYD88 via MAKP signaling pathway.
Collapse
Affiliation(s)
- Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaofu Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuqiang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Renge Bu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
38
|
Kuo CL, Jiang ZY, Wang YW, Lin TY, Huang WL, Wu FJ, Luo CW. In vivo selection reveals autophagy promotes adaptation of metastatic ovarian cancer cells to abdominal microenvironment. Cancer Sci 2019; 110:3204-3214. [PMID: 31385416 PMCID: PMC6778661 DOI: 10.1111/cas.14162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022] Open
Abstract
Peritoneal dissemination is the most frequent metastatic route of ovarian cancer. However, due to the high heterogeneity in ovarian cancer, most conventional studies lack parental tumor controls relevant to metastases and, thus, it is difficult to trace the molecular changes of cancer cells along with the selection by the abdominal microenvironment. Here, we established an in vivo mouse peritoneal dissemination scheme that allowed us to select more aggressive sublines from parental ovarian cancer cells, including A2780 and SKOV-3. Microarray and gene profiling analyses indicated that autophagy-related genes were enriched in selected malignant sublines. Detection of LC3-II, p62 and autophagic puncta demonstrated that these malignant variants were more sensitive to autophagic induction when exposed to diverse stress conditions, such as high cell density, starvation and drug treatment. As compared with parental A2780, the selected variant acquired the ability to grow better under high-density stress; however, this effect was reversed by addition of autophagic inhibitors or knockdown of ATG5. When analyzing the clinical profiles of autophagy-related genes identified to be enriched in malignant A2780 variant, 73% of them had prognostic significance for the survival of ovarian cancer patients. Taken together, our findings indicate that an increase in autophagic potency among ovarian cancer cells is crucial for selection of metastatic colonies in the abdominal microenvironment. In addition, the derived autophagic gene profile can not only predict prognosis well but can also be potentially applied to precision medicine for identifying those ovarian cancer patients suitable for taking anti-autophagy cancer drugs.
Collapse
Affiliation(s)
- Chih-Lin Kuo
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Zhe-Yu Jiang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Wen Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ting-Yu Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Lin Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Fang-Ju Wu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Wei Luo
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
39
|
Roberts CM, Cardenas C, Tedja R. The Role of Intra-Tumoral Heterogeneity and Its Clinical Relevance in Epithelial Ovarian Cancer Recurrence and Metastasis. Cancers (Basel) 2019; 11:E1083. [PMID: 31366178 PMCID: PMC6721439 DOI: 10.3390/cancers11081083] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecologic cancer, due in large part to recurrent tumors. Recurrences tend to have metastasized, mainly in the peritoneal cavity and developed resistance to the first line chemotherapy. Key to the progression and ultimate lethality of ovarian cancer is the existence of extensive intra-tumoral heterogeneity (ITH). In this review, we describe the genetic and epigenetic changes that have been reported to give rise to different cell populations in ovarian cancer. We also describe at length the contributions made to heterogeneity by both linear and parallel models of clonal evolution and the existence of cancer stem cells. We dissect the key biological signals from the tumor microenvironment, both directly from other cell types in the vicinity and soluble or circulating factors. Finally, we discuss the impact of tumor heterogeneity on the choice of therapeutic approaches in the clinic. Variability in ovarian tumors remains a major barrier to effective therapy, but by leveraging future research into tumor heterogeneity, we may be able to overcome this barrier and provide more effective, personalized therapy to patients.
Collapse
Affiliation(s)
- Cai M Roberts
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlos Cardenas
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Roslyn Tedja
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
40
|
Chernysheva O, Markina I, Demidov L, Kupryshina N, Chulkova S, Palladina A, Antipova A, Tupitsyn N. Bone Marrow Involvement in Melanoma. Potentials for Detection of Disseminated Tumor Cells and Characterization of Their Subsets by Flow Cytometry. Cells 2019; 8:E627. [PMID: 31234438 PMCID: PMC6627631 DOI: 10.3390/cells8060627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Disseminated tumor cells (DTCs) are studied as a prognostic factor in many non-hematopoietic tumors. Melanoma is one of the most aggressive tumors. Forty percent of melanoma patients develop distant metastases at five or more years after curative surgery, and frequent manifestations of melanoma without an identified primary lesion may reflect the tendency of melanoma cells to spread from indolent sites such as bone marrow (BM). The purpose of this work was to evaluate the possibility of detecting melanoma DTCs in BM based on the expression of a cytoplasmatic premelanocytic glycoprotein HMB-45 using flow cytometry, to estimate the influence of DTCs' persistence in BM on hematopoiesis, to identify the frequency of BM involvement in patients with melanoma, and to analyze DTC subset composition in melanoma. DTCs are found in 57.4% of skin melanoma cases and in as many as 28.6% of stage I cases, which confirms the aggressive course even of localized disease. Significant differences in the groups with the presence of disseminated tumor cells (DTCs+) and the lack thereof (DTC-) are noted for blast cells, the total content of granulocyte cells, and oxyphilic normoblasts of erythroid raw cells.
Collapse
Affiliation(s)
- Olga Chernysheva
- FSBI "N.N. Blokhin Russian Cancer Research Center" of Ministry of Health of the Russian Federation, 115478 Moscow, Russia.
| | - Irina Markina
- FSBI "N.N. Blokhin Russian Cancer Research Center" of Ministry of Health of the Russian Federation, 115478 Moscow, Russia.
| | - Lev Demidov
- FSBI "N.N. Blokhin Russian Cancer Research Center" of Ministry of Health of the Russian Federation, 115478 Moscow, Russia.
| | - Natalia Kupryshina
- FSBI "N.N. Blokhin Russian Cancer Research Center" of Ministry of Health of the Russian Federation, 115478 Moscow, Russia.
| | - Svetlana Chulkova
- FSBI "N.N. Blokhin Russian Cancer Research Center" of Ministry of Health of the Russian Federation, 115478 Moscow, Russia.
| | - Alexandra Palladina
- FSBI "N.N. Blokhin Russian Cancer Research Center" of Ministry of Health of the Russian Federation, 115478 Moscow, Russia.
| | - Alina Antipova
- FSBI "N.N. Blokhin Russian Cancer Research Center" of Ministry of Health of the Russian Federation, 115478 Moscow, Russia.
| | - Nikolai Tupitsyn
- FSBI "N.N. Blokhin Russian Cancer Research Center" of Ministry of Health of the Russian Federation, 115478 Moscow, Russia.
| |
Collapse
|
41
|
[Oligometastasis in pancreatic cancer : Current state of knowledge and spectrum of local therapy]. Chirurg 2019; 89:510-515. [PMID: 29557488 DOI: 10.1007/s00104-018-0626-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Several case series reported results of surgical resection in patients with pancreatic ductal adenocarcinoma in a metastasized stage. AIM A summarized overview of the current state of knowledge and a summary of the results of currently available studies. MATERIAL AND METHODS A systematic search was carried out in MEDLINE and PubMed with respect to metastasized pancreatic cancer and surgical resection. RESULTS The evidence level for surgical resection in the metastasized stage is weak and so far no prospective trials are available. The largest single-arm trial included 85 patients with hepatic metastasis. In cases of hepatic oligometastasis an overall survival of 11-14 months was observed. In the presence of pulmonary metastasis, overall survival seems to be prolonged compared to intra-abdominal metastasis, although the evidence level is relatively weak. CONCLUSION According to the available results, a general recommendation for surgical resection in a metastasized stage cannot be given; however, the results show a possible benefit for some well-selected patient subgroups. Prospective trials must validate these data and investigate the use of combined surgical and systemic treatments in the case of resectable metastatic pancreatic cancer.
Collapse
|
42
|
Singh B, Sarli VN, Kinne HE, Shamsnia A, Lucci A. Evaluation of 6-mercaptopurine in a cell culture model of adaptable triple-negative breast cancer with metastatic potential. Oncotarget 2019; 10:3681-3693. [PMID: 31217902 PMCID: PMC6557209 DOI: 10.18632/oncotarget.26978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Progenitor-like cancer cells that can survive in reversible quiescence when faced with various challenges in the body are often behind disease progression. A lack of glutamine in culture medium, which eliminates >99.9% of proliferating SUM149 triple-negative breast cancer cells, selects such adaptable, pan-resistant cells. Our data support the hypothesis that a lack of glutamine forces the selection of an epigenetic state that does not require a high level of TET2, thus selecting an “undifferentiated” therapy-resistant phenotype as seen in TET2-mutant cancers. Our data suggesting that highly adaptable cells are generated through reprograming of the epigenome and transcriptome led us to evaluate low-dose 6-mercaptopurine as a potential therapy in our model. We found that a long treatment with low-dose 6-mercaptopurine inhibited the proliferation of these adaptable cells to a greater extent than it inhibited parental cells. Importantly, a small percentage of adaptable cells survived a low-dose 6-mercaptopurine treatment in a reversible quiescence, analogous to the persistence of abnormal progenitor-like cells in inflammatory bowel disease, which stays in a durable remission with a 6-mercaptopurine treatment. Based on a biomarkers analysis, a long treatment with 6-mercaptopurine or aspirin partially reversed epithelial to mesenchymal transition in adaptable cancer cells. A cell culture model of adaptable cancer cells that persist in the body will help in discovering superior therapies that can be offered before the disease advances to metastasis.
Collapse
Affiliation(s)
- Balraj Singh
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vanessa N Sarli
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah E Kinne
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Shamsnia
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony Lucci
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Zhang C, Leighl NB, Wu YL, Zhong WZ. Emerging therapies for non-small cell lung cancer. J Hematol Oncol 2019; 12:45. [PMID: 31023335 PMCID: PMC6482588 DOI: 10.1186/s13045-019-0731-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023] Open
Abstract
Recent advances in the field of novel anticancer agents prolong patients' survival and show a promising future. Tyrosine kinase inhibitors and immunotherapy for lung cancer are the two major areas undergoing rapid development. Although increasing novel anticancer agents were innovated, how to translate and optimize these novel agents into clinical practice remains to be explored. Besides, toxicities and availability of these drugs in specific regions should also be considered during clinical determination. Herein, we summarize emerging agents including tyrosine kinase inhibitors, checkpoint inhibitors, and other potential immunotherapy such as chimeric antigen receptor T cell for non-small cell lung cancer attempting to provide insights and perspectives of the future in anticancer treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | | | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
44
|
A nonlinear mathematical model of cell-mediated immune response for tumor phenotypic heterogeneity. J Theor Biol 2019; 471:42-50. [PMID: 30930063 DOI: 10.1016/j.jtbi.2019.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 01/21/2023]
Abstract
Human cancers display intra-tumor heterogeneity in many phenotypic features, such as expression of cell surface receptors, growth, and angiogenic, proliferative, and immunogenic factors, which represent obstacles to a successful immune response. In this paper, we propose a nonlinear mathematical model of cancer immunosurveillance that takes into account some of these features based on cell-mediated immune responses. The model describes phenomena that are seen in vivo, such as tumor dormancy, robustness, immunoselection over tumor heterogeneity (also called "cancer immunoediting") and strong sensitivity to initial conditions in the composition of tumor microenvironment. The results framework has as common element the tumor as an attractor for abnormal cells. Bifurcation analysis give us as tumor attractors fixed-points, limit cycles and chaotic attractors, the latter emerging from period-doubling cascade displaying Feigenbaum's universality. Finally, we simulated both elimination and escape tumor scenarios by means of a stochastic version of the model according to the Doob-Gillespie algorithm.
Collapse
|
45
|
Chumakova AP, Hitomi M, Sulman EP, Lathia JD. High-Throughput Automated Single-Cell Imaging Analysis Reveals Dynamics of Glioblastoma Stem Cell Population During State Transition. Cytometry A 2019; 95:290-301. [PMID: 30729665 DOI: 10.1002/cyto.a.23728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are a heterogeneous and dynamic self-renewing population that stands at the top of tumor cellular hierarchy and contribute to tumor recurrence and therapeutic resistance. As methods of CSC isolation and functional interrogation advance, there is a need for a reliable and accessible quantitative approach to assess heterogeneity and state transition dynamics in CSCs. We developed a high-throughput automated single cell imaging analysis (HASCIA) approach for the quantitative assessment of protein expression with single-cell resolution and applied the method to investigate spatiotemporal factors that influence CSC state transition using glioblastoma (GBM) CSCs (GSCs) as a model system. We were able to validate the quantitative nature of this approach through comparison of the protein expression levels determined by HASCIA to those determined by immunoblotting. A virtue of HASCIA was exemplified by detection of a subpopulation of SOX2-low cells, which expanded in fraction size during state transition. HASCIA also revealed that GSCs were committed to loose stem cell state at an earlier time point than the average SOX2 level decreased. Functional assessment of stem cell frequency in combination with the quantification of SOX2 expression by HASCIA defined a stable cutoff of SOX2 expression level for stem cell state. We also developed an approach to assess local cell density and found that denser monolayer areas possess higher average levels of SOX2, higher cell diversity, and a presence of a sub-population of slowly proliferating SOX2-low GSCs. HASCIA is an open source software that facilitates understanding the dynamics of heterogeneous cell population such as that of GSCs and their progeny. It is a powerful and easy-to-use image analysis and statistical analysis tool available at https://hascia.lerner.ccf.org. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Anastasia P Chumakova
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Masahiro Hitomi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland, Ohio, USA
| |
Collapse
|
46
|
Therapeutic targeting of lipid synthesis metabolism for selective elimination of cancer stem cells. Arch Pharm Res 2018; 42:25-39. [PMID: 30536027 DOI: 10.1007/s12272-018-1098-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are believed to have an essential role in tumor resistance and metastasis; however, no therapeutic strategy for the selective elimination of CSCs has been established. Recently, several studies have shown that the metabolic regulation for ATP synthesis and biological building block generation in CSCs are different from that in bulk cancer cells and rather similar to that in normal tissue stem cells. To take advantage of this difference for CSC elimination therapy, many studies have tested the effect of blocking these metabolism. Two specific processes for lipid biosynthesis, i.e., fatty acid unsaturation and cholesterol biosynthesis, have been shown to be very effective and selective for CSC targets. In this review, lipid metabolism specific to CSCs are summarized. In addition, how monounsaturated fatty acid and cholesterol synthesis may contribute to CSC maintenance are discussed. Specifically, the molecular mechanism required for lipid synthesis and essential for stem cell biology is highlighted. The limit and preview of the lipid metabolism targeting for CSCs are also discussed.
Collapse
|
47
|
Hu Y, Luo KJ, Wen J, Zhu ZH. Strong expression of Id-1 in metastatic lymph nodes from esophageal squamous cell carcinoma is associated with better clinical outcome. J Thorac Dis 2018; 10:5499-5507. [PMID: 30416799 DOI: 10.21037/jtd.2018.09.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Over-expression of inhibitor of differentiation or DNA binding 1 (Id-1) is associated with poor prognosis in esophageal squamous cell carcinoma (ESCC). However, some biomarkers discordant expression in metastasis has been reported previously. We aimed to confirm possible differential expression and prognostic value of Id-1 in paired metastatic lymph node (PMLN). Methods Expression of Id-1 in primary tumors (PT) and paired regional metastatic lymph nodes of ESCC were evaluated with immunohistochemical (IHC) analysis. Statistical analysis of Kaplan-Meier method was performed to test the prognostic significance of Id-1 expression. Results The expression of Id-1 was down-regulated in metastatic lymph nodes compared with primary esophageal tumors (P<0.001). Patients with 1 to 2 lymph nodes involved had significantly higher Id-1 expression in metastatic lymph nodes (P=0.028). The similar association was observed between a ratio of involved to examined lymph nodes ≤0.2 and high level Id-1 expression in lymphatic metastases (P=0.011). Better overall survival with statistical significance was observed in patients with higher level Id-1 expression in metastatic lymph nodes (P=0.015). The results of Id-1 expression in metastatic lymph node and paired PT was to predict prognosis effective in out cohort (P=0.035). Conclusions The level of Id-1 protein expression was down-regulated from PT to metastatic lymph node. It was contrary to previous studies that strong expression of Id-1 in metastatic lymph nodes was associated with better clinical outcomes in patients with stage T3N1-3M0 ESCC.
Collapse
Affiliation(s)
- Yi Hu
- State Key Laboratory of Oncology in South China, Cancer Center Sun Yat-sen University, Guangzhou 510060, China.,Department of Thoracic Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Kong-Jia Luo
- State Key Laboratory of Oncology in South China, Cancer Center Sun Yat-sen University, Guangzhou 510060, China.,Department of Thoracic Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Cancer Center Sun Yat-sen University, Guangzhou 510060, China.,Department of Thoracic Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhi-Hua Zhu
- State Key Laboratory of Oncology in South China, Cancer Center Sun Yat-sen University, Guangzhou 510060, China.,Department of Thoracic Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
48
|
Liu Z, Chen R, Li Y, Liu J, Wang P, Xia X, Qin L. Integrated Microfluidic Chip for Efficient Isolation and Deformability Analysis of Circulating Tumor Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zongbin Liu
- Department of Nanomedicine; Houston Methodist Research Institute; Houston TX 77030 USA
- Department of Cell and Developmental Biology; Weill Medical College of Cornell University; New York NY 10065 USA
| | - Rui Chen
- Department of Nanomedicine; Houston Methodist Research Institute; Houston TX 77030 USA
- Department of Cell and Developmental Biology; Weill Medical College of Cornell University; New York NY 10065 USA
- The Third Affiliated Hospital of Guangzhou Medical University; Guangzhou Medical University; Guangzhou Guangdong 510150 China
| | - Ying Li
- Department of Nanomedicine; Houston Methodist Research Institute; Houston TX 77030 USA
- Department of Cell and Developmental Biology; Weill Medical College of Cornell University; New York NY 10065 USA
| | - Jianqiao Liu
- The Third Affiliated Hospital of Guangzhou Medical University; Guangzhou Medical University; Guangzhou Guangdong 510150 China
| | - Ping Wang
- Department of Pathology and Genomic Medicine; Houston Methodist Hospital; Houston TX 77030 USA
| | - Xuefeng Xia
- The Third Affiliated Hospital of Guangzhou Medical University; Guangzhou Medical University; Guangzhou Guangdong 510150 China
| | - Lidong Qin
- Department of Nanomedicine; Houston Methodist Research Institute; Houston TX 77030 USA
- Department of Cell and Developmental Biology; Weill Medical College of Cornell University; New York NY 10065 USA
| |
Collapse
|
49
|
Shergill K, Sen A, Pillai HJ. Role of E-cadherin and cyclin D1 as predictive markers of aggression and clonal expansion in head and neck squamous cell carcinoma. J Korean Assoc Oral Maxillofac Surg 2018; 44:182-190. [PMID: 30181985 PMCID: PMC6117463 DOI: 10.5125/jkaoms.2018.44.4.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/06/2017] [Accepted: 12/27/2017] [Indexed: 11/07/2022] Open
Abstract
Objectives Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Inconsistency in various histopathologic features for predicting nodal metastasis and overall prognosis and a better understanding of molecular mechanisms of tumourigenesis have shifted the focus to a search for more definitive predictive markers. To identify the role of two immunohistochemical (IHC) markers, E-cadherin and cyclin D1, as predictive markers of aggressiveness in HNSCC and to assess clonal expansion of tumour cells. Materials and Methods A total of 66 cases of HNSCC with neck node dissection were studied. IHC was performed on primary tumour sections and lymph nodes showing metastatic deposits. Histopathological parameters such as tumour grade and TNM stage together with nodal status were compared according to expression of the two markers. Fischer's chi-square test was used to assess the correlation between the two markers and histopathological parameters. Results Out of 66 cases studied, 37 showed LN metastasis. Most of the patients were male, and the most common tumour site was buccal mucosa. We found a significant association between loss of E-cadherin and node metastasis (P<0.001) and higher TNM stage (P<0.001). Cyclin D1 overexpression was significantly associated with only nodal metastasis (P=0.007). No significant association with tumour grade was found for either marker. The subgroup of E-cadherin loss with cyclin D1 overexpression was associated with the maximum incidence of nodal metastasis and higher TNM stage, highlighting the importance of using a combination of these two markers. A significant association was noted between the expression of markers at the primary site and at nodal deposits, indicating clonal expansion. Conclusion A combination of the two markers E-cadherin and cyclin D1 can predict prognosis in HNSCC, although tumour heterogeneity may affect this association in some cases.
Collapse
Affiliation(s)
| | - Arijit Sen
- Department of Pathology, Armed Forces Medical College, Pune, India
| | | |
Collapse
|
50
|
Silvestri E, Scolozzi V, Rizzo G, Indovina L, Castellaro M, Mattoli MV, Graziano P, Cardillo G, Bertoldo A, Calcagni ML. The kinetics of 18F-FDG in lung cancer: compartmental models and voxel analysis. EJNMMI Res 2018; 8:88. [PMID: 30159686 PMCID: PMC6115323 DOI: 10.1186/s13550-018-0439-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/09/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The validation of the most appropriate compartmental model that describes the kinetics of a specific tracer within a specific tissue is mandatory before estimating quantitative parameters, since the behaviour of a tracer can be different among organs and diseases, as well as between primary tumours and metastases. The aims of our study were to assess which compartmental model better describes the kinetics of 18F-Fluorodeoxygluxose(18F-FDG) in primary lung cancers and in metastatic lymph nodes; to evaluate whether quantitative parameters, estimated using different innovative technologies, are different between lung cancers and lymph nodes; and to evaluate the intra-tumour inhomogeneity. RESULTS Twenty-one patients (7 females; 71 ± 9.4 years) with histologically proved lung cancer, prospectively evaluated, underwent 18F-FDG PET-CT for staging. Spectral analysis iterative filter (SAIF) method was used to design the most appropriate compartmental model. Among the compartmental models arranged using the number of compartments suggested by SAIF results, the best one was selected according to Akaike information criterion (AIC). Quantitative analysis was performed at the voxel level. K1, Vb and Ki were estimated with three advanced methods: SAIF approach, Patlak analysis and the selected compartmental model. Pearson's correlation and non-parametric tests were used for statistics. SAIF showed three possible irreversible compartmental models: Tr-1R, Tr-2R and Tr-3R. According to well-known 18F-FDG physiology, the structure of the compartmental models was supposed to be catenary. AIC indicated the Sokoloff's compartmental model (3K) as the best one. Excellent correlation was found between Ki estimated by Patlak and by SAIF (R2 = 0.97, R2 = 0.94, at the global and the voxel level respectively), and between Ki estimated by 3K and by SAIF (R2 = 0.98, R2 = 0.95, at the global and the voxel level respectively). Using the 3K model, the lymph nodes showed higher mean and standard deviation of Vb than lung cancers (p < 0.0014, p < 0.0001 respectively) and higher standard deviation of K1 (p < 0.005). CONCLUSIONS One-tissue reversible plus one-tissue irreversible compartmental model better describes the kinetics of 18F-FDG in lung cancers, metastatic lymph nodes and normal lung tissues. Quantitative parameters, estimated at the voxel level applying different advanced approaches, show the inhomogeneity of neoplastic tissues. Differences in metabolic activity and in vascularization, highlighted among all cancers and within each individual cancer, confirm the wide variability in lung cancers and metastatic lymph nodes. These findings support the need of a personalization of therapeutic approaches.
Collapse
Affiliation(s)
- Erica Silvestri
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy
| | - Valentina Scolozzi
- Department of Diagnostic Imaging, Radiation Oncology and Haematology, Institute of Nuclear Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS – Università Cattolica del Sacro Cuore, Roma, Italy
| | - Gaia Rizzo
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy
| | - Luca Indovina
- Medical Physics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy
| | - Maria Vittoria Mattoli
- Department of Diagnostic Imaging, Radiation Oncology and Haematology, Institute of Nuclear Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS – Università Cattolica del Sacro Cuore, Roma, Italy
| | - Paolo Graziano
- Unit of Pathology, Scientific Institute for Research and Health Care “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, San Camillo Forlanini Hospital, Rome, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy
| | - Maria Lucia Calcagni
- Department of Diagnostic Imaging, Radiation Oncology and Haematology, Institute of Nuclear Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS – Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|