1
|
Qiu Z, Liang N, Huang Q, Sun T, Xue H, Xie T, Wang X, Wang Q. Downregulation of DUSP9 Promotes Tumor Progression and Contributes to Poor Prognosis in Human Colorectal Cancer. Front Oncol 2020; 10:547011. [PMID: 33072575 PMCID: PMC7538709 DOI: 10.3389/fonc.2020.547011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022] Open
Abstract
Background Dual-specificity phosphatase 9 (DUSP9) belongs to the dual-specificity protein phosphatase subfamily. Recently, increasing attention has been paid on the role of DUSP9 in a variety of cancers. However, its functional role in tumor development is still unclear, especially in colorectal cancer (CRC). Methods The functional role of DUSP9 in inhibiting the progression of CRC was verified using colony formation assay, wound healing assay, nude mice xenograft model, etc. RNA-seq was performed to assess the gene expression profiling in SW480 cells with DUSP9 stable knockdown and shControl cells. Bisulfite sequencing (BSE) was performed to reveal the methylation status of CpG island in the promoter of DUSP9. Results DUSP9 was significantly downregulated in tumor tissues compared with peritumor tissues. Mechanistically, the high methylation status of CpG island in the promoter of DUSP9 may lead to the downregulation of DUSP9 in CRC. Clinically, low DUSP9 expression in CRC was closely associated with depth of invasion, metastasis (TNM) stage, and poor survival, indicating that DUSP9 may be involved in the progression of CRC. Functional study revealed that DUSP9 inhibited proliferation, migration, invasion, and epithelial–mesenchymal transition of CRC cells both in vitro and in vivo. Transcriptome profiling studies revealed that Erk signaling was involved in the tumor progression mediated by DUSP9 silencing, which is confirmed by cell experiments and clinical tissue sample staining analysis. Conclusion Our findings demonstrate that DUSP9 plays a critical role in the progression of CRC, and therapeutic intervention to increase the expression or activity of DUSP9 may be a potential target for CRC treatment in the future.
Collapse
Affiliation(s)
- Zhaoyan Qiu
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali, China
| | - Qian Huang
- Department of Obstetrics and Gynecology, The 75th Group Army Hospital, Dali, China
| | - Tao Sun
- Departmentof Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Hongyuan Xue
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianyu Xie
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xinxin Wang
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants (Basel) 2020; 9:antiox9080761. [PMID: 32824523 PMCID: PMC7465265 DOI: 10.3390/antiox9080761] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Many retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular (AMD) degeneration, are associated with elevated reactive oxygen species (ROS) levels. ROS are important intracellular signaling molecules that regulate numerous physiological actions, including vascular reactivity and neuron function. However, excessive ROS formation has been linked to vascular endothelial dysfunction, neuron degeneration, and inflammation in the retina. ROS can directly modify cellular molecules and impair their function. Moreover, ROS can stimulate the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) causing inflammation and cell death. However, there are various compounds with direct or indirect antioxidant activity that have been used to reduce ROS accumulation in animal models and humans. In this review, we report on the physiological and pathophysiological role of ROS in the retina with a special focus on the vascular system. Moreover, we present therapeutic approaches for individual retinal diseases targeting retinal signaling pathways involving ROS.
Collapse
|
3
|
Das S, Neelamegam K, Peters WN, Periyasamy R, Pandey KN. Depletion of cyclic-GMP levels and inhibition of cGMP-dependent protein kinase activate p21 Cip1 /p27 Kip1 pathways and lead to renal fibrosis and dysfunction. FASEB J 2020; 34:11925-11943. [PMID: 32686172 PMCID: PMC7540536 DOI: 10.1096/fj.202000754r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Cell-cycle regulatory proteins (p21Cip1 /p27Kip1 ) inhibit cyclin and cyclin-dependent kinase (CDK) complex that promotes fibrosis and hypertrophy. The present study examined the role of CDK blockers, p21Cip1 /p27Kip1 in the progression of renal fibrosis and dysfunction using Npr1 (encoding guanylyl cyclase/natriuretic peptide receptor-A, GC-A/NPRA) gene-knockout (0-copy; Npr1-/- ), 2-copy (Npr1+/+ ), and 4-copy (Npr1++/++ ) mice treated with GC inhibitor, A71915 and cGMP-dependent protein kinase (cGK) inhibitor, (Rp-8-Br-cGMPS). A significant decrease in renal cGMP levels and cGK activity was observed in 0-copy mice and A71915- and Rp-treated 2-copy and 4-copy mice compared with controls. An increased phosphorylation of Erk1/2, p38, p21Cip1 , and p27Kip1 occurred in 0-copy and A71915-treated 2-copy and 4-copy mice, while Rp treatment caused minimal changes than controls. Pro-inflammatory (TNF-α, IL-6) and pro-fibrotic (TGF-β1) cytokines were significantly increased in plasma and kidneys of 0-copy and A71915-treated 2-copy mice, but to lesser extent in 4-copy mice. Progressive renal pathologies, including fibrosis, mesangial matrix expansion, and tubular hypertrophy were observed in 0-copy and A71915-treated 2-copy and 4-copy mice, but minimally occurred in Rp-treated mice compared with controls. These results indicate that Npr1 has pivotal roles in inhibiting renal fibrosis and hypertrophy and exerts protective effects involving cGMP/cGK axis by repressing CDK blockers p21Cip1 and p27Kip1 .
Collapse
Affiliation(s)
- Subhankar Das
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Kandasamy Neelamegam
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Whitney N Peters
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Ramu Periyasamy
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| |
Collapse
|
4
|
ERK Dephosphorylation through MKP1 Deacetylation by SIRT1 Attenuates RAS-Driven Tumorigenesis. Cancers (Basel) 2020; 12:cancers12040909. [PMID: 32276460 PMCID: PMC7225992 DOI: 10.3390/cancers12040909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022] Open
Abstract
The role of Situin 1 (SIRT1) in tumorigenesis is still controversial due to its wide range of substrates, including both oncoproteins and tumor suppressors. A recent study has demonstrated that SIRT1 interferes in the Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven activation of the Raf-mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway, thereby inhibiting tumorigenesis. However, the molecular mechanism of SIRT1 as a tumor suppressor in RAS-driven tumorigenesis has been less clearly determined. This study presents evidence that the ectopic expression of SIRT1 attenuates RAS- or MEK-driven ERK activation and reduces cellular proliferation and transformation in vitro. The attenuation of ERK activation by SIRT1 results from prompt dephosphorylation of ERK, while MEK activity remains unchanged. We identified that MKP1, a dual specific phosphatase for MAPK, was deacetylated by SIRT1. Deacetylation of MKP1 by direct interaction with SIRT1 increased the binding affinity to ERK which in turn facilitated inactivation of ERK. Taken together, these results suggest that SIRT1 would act as a tumor suppressor by modulating RAS-driven ERK activity through MKP1 deacetylation.
Collapse
|
5
|
Role of protein phosphatases in the cancer microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:144-152. [DOI: 10.1016/j.bbamcr.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
|
6
|
Messenger ZJ, Hall JR, Jima DD, House JS, Tam HW, Tokarz DA, Smart RC. C/EBPβ deletion in oncogenic Ras skin tumors is a synthetic lethal event. Cell Death Dis 2018; 9:1054. [PMID: 30323292 PMCID: PMC6189130 DOI: 10.1038/s41419-018-1103-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Therapeutic targeting of specific genetic changes in cancer has proven to be an effective therapy and the concept of synthetic lethality has emerged. CCAAT/enhancer-binding protein-β (C/EBPβ), a basic leucine zipper transcription factor, has important roles in cellular processes including differentiation, inflammation, survival, and energy metabolism. Using a genetically engineered mouse model, we report that the deletion C/EBPβ in pre-existing oncogenic Ha-Ras mouse skin tumors in vivo resulted in rapid tumor regression. Regressing tumors exhibited elevated levels of apoptosis and p53 protein/activity, while adjacent C/EBPβ-deleted skin did not. These results indicate that the deletion of C/EBPβ de-represses p53 in oncogenic Ras tumors but not in normal wild-type Ras keratinocytes, and that C/EBPβ is essential for survival of oncogenic Ras tumors. Co-deletion of C/EBPβ and p53 in oncogenic Ras tumors showed p53 is required for tumor regression and elevated apoptosis. In tumors, loss of a pathway that confers adaptability to a stress phenotype of cancer/tumorigenesis, such as DNA damage, could result in selective tumor cell killing. Our results show that oncogenic Ras tumors display a significant DNA damage/replicative stress phenotype and these tumors have acquired a dependence on C/EBPβ for their survival. RNAseq data analysis of regressing tumors deleted of C/EBPβ indicates a novel interface between p53, type-1 interferon response, and death receptor pathways, which function in concert to produce activation of extrinsic apoptosis pathways. In summary, the deletion of C/EBPβ in oncogenic Ras skin tumors is a synthetic lethal event, making it a promising target for future potential anticancer therapies.
Collapse
Affiliation(s)
| | - Jonathan R Hall
- Toxicology Program, Raleigh, NC, USA. .,Center of Human Health and the Environment, Raleigh, NC, USA. .,Department of Biological Sciences, Raleigh, NC, USA.
| | - Dereje D Jima
- Center of Human Health and the Environment, Raleigh, NC, USA.,Bioinformatics Research Center, Raleigh, NC, USA
| | - John S House
- Center of Human Health and the Environment, Raleigh, NC, USA.,Bioinformatics Research Center, Raleigh, NC, USA
| | | | - Debra A Tokarz
- Center of Human Health and the Environment, Raleigh, NC, USA.,Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Robert C Smart
- Toxicology Program, Raleigh, NC, USA. .,Center of Human Health and the Environment, Raleigh, NC, USA. .,Department of Biological Sciences, Raleigh, NC, USA.
| |
Collapse
|
7
|
Hinton SD. The role of pseudophosphatases as signaling regulators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:167-174. [PMID: 30077638 DOI: 10.1016/j.bbamcr.2018.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
Pseudophosphatases are atypical members of the protein tyrosine phosphatase superfamily. Mutations within their catalytic signature motif render them catalytically inactive. Despite this lack of catalytic function, pseudophosphatases have been implicated in various diseases such as Charcot Marie-Tooth disorder, cancer, metabolic disorder, and obesity. Moreover, they have roles in various signaling networks such as spermatogenesis, apoptosis, stress response, tumorigenesis, and neurite differentiation. This review highlights the roles of pseudophosphatases as essential regulators in signaling cascades, providing insight into the function of these catalytically inactive enzymes.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, USA.
| |
Collapse
|
8
|
Antagonistic roles for STYX pseudophosphatases in neurite outgrowth. Biochem Soc Trans 2017; 45:381-387. [PMID: 28408478 DOI: 10.1042/bst20160273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 12/14/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are essential players in important neuronal signaling pathways including neuronal development, plasticity, survival, learning, and memory. The inactivation of MAPKs is tightly controlled by MAPK phosphatases (MKPs), which also are important regulators of these neuronal processes. Considering that MAPKs and MKPs are major players in neuronal signaling, it follows that their misregulation is pivotal in neurodegenerative diseases such as Alzheimer's, Huntington's, Parkinson's, and amyotrophic lateral sclerosis. In contrast, the actions of their noncatalytic homologs, or pseudoenzymes, have received minimal attention as important regulators in neuronal signaling pathways and relevant diseases. There is compelling evidence, however, that pseudophosphatases, such as STYX (phospho-serine-threonine/tyrosine-binding protein) and MAPK-STYX (MK-STYX), are integral signaling molecules in regulating pathways involved in neuronal developmental processes such as neurite outgrowth. Here, we discuss how the dynamics of MK-STYX in the stress response pathway imply that this unique member of the MKP subfamily has the potential to have a major role in neuronal signaling. We further compare the actions of STYX in preventing neurite-like outgrowths and MK-STYX in inducing neurite outgrowths. The roles of these pseudophosphatases in neurite outgrowth highlight their emergence as important candidates to investigate in neurodegenerative disorders and diseases.
Collapse
|
9
|
The pseudophosphatase MK-STYX induces neurite-like outgrowths in PC12 cells. PLoS One 2014; 9:e114535. [PMID: 25479605 PMCID: PMC4257672 DOI: 10.1371/journal.pone.0114535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/10/2014] [Indexed: 01/17/2023] Open
Abstract
The rat pheochromocytoma PC12 cell line is a widely used system to study neuronal differentiation for which sustained activation of the extracellular signaling related kinase (ERK) pathway is required. Here, we investigate the function of MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] in neuronal differentiation. MK-STYX is a member of the MAPK phosphatase (MKP) family, which is generally responsible for dephosphorylating the ERKs. However, MK-STYX lacks catalytic activity due to the absence of the nucleophilic cysteine in the active site signature motif HC(X5)R that is essential for phosphatase activity. Despite being catalytically inactive, MK-STYX has been shown to play a role in important cellular pathways, including stress responses. Here we show that PC12 cells endogenously express MK-STYX. In addition, MK-STYX, but not its catalytically active mutant, induced neurite-like outgrowths in PC12 cells. Furthermore, MK-STYX dramatically increased the number of cells with neurite extensions in response to nerve growth factor (NGF), whereas the catalytically active mutant did not. MK-STYX continued to induce neurites in the presence of a MEK (MAP kinase kinase) inhibitor suggesting that MK-STYX does not act through the Ras-ERK/MAPK pathway but is involved in another pathway whose inactivation leads to neuronal differentiation. RhoA activity assays indicated that MK-STYX induced extensions through the Rho signaling pathway. MK-STYX decreased RhoA activation, whereas RhoA activation increased when MK-STYX was down-regulated. Furthermore, MK-STYX affected downstream players of RhoA such as the actin binding protein cofilin. The presence of MK-STYX decreased the phosphorylation of cofilin in non NGF stimulated cells, but increased its phosphorylation in NGF stimulated cells, whereas knocking down MK-STYX caused an opposite effect. Taken together our data suggest that MK-STYX may be a regulator of RhoA signaling, and implicate this pseudophosphatase as a regulator of neuronal differentiation.
Collapse
|
10
|
Barr JE, Munyikwa MR, Frazier EA, Hinton SD. The pseudophosphatase MK-STYX inhibits stress granule assembly independently of Ser149 phosphorylation of G3BP-1. FEBS J 2012; 280:273-84. [PMID: 23163895 PMCID: PMC3586659 DOI: 10.1111/febs.12068] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 10/28/2012] [Accepted: 11/13/2012] [Indexed: 01/07/2023]
Abstract
The pseudophosphatase MK-STYX (mitogen-activated protein kinase phosphoserine/threonine/tyrosine-binding protein) has been implicated in the stress response pathway. The expression of MK-STYX inhibits the assembly of stress granules, which are cytoplasmic storage sites for mRNA that form as a protective mechanism against stressors such as heat shock, UV irradiation and hypoxia. Furthermore, MK-STYX interacts with a key component of stress granules: G3BP-1 (Ras-GTPase activating protein SH3 domain binding protein-1). Because G3BP-1 dephosphorylation at Ser149 induces stress granule assembly, we initially hypothesized that the inhibition of stress granules by MK-STYX was G3BP-1 phosphorylation-dependent. However, in the present study, using MK-STYX constructs and G3BP-1 phosphomimetic or nonphosphorylatable mutants, we show that MK-STYX inhibits stress granule formation independently of G3BP-1 phosphorylation at Ser149. The introduction of point mutations at the ‘active site’ of MK-STYX that convert serine and phenylalanine to histidine and cysteine, respectively, is sufficient to generate an active enzyme. In separate experiments, we show that this active mutant, MK-STYXactive, has opposite effects to wild-type MK-STYK. Not only does MK-STYXactive induce stress granules, but also it has the capacity to dephosphorylate G3BP-1. Taken together, these results provide evidence that the pseudophosphatase MK-STYX plays a key role in the cellular response to stress.
Collapse
Affiliation(s)
- Justinn E Barr
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA 23185, USA
| | | | | | | |
Collapse
|
11
|
Role of PDE3A in regulation of cell cycle progression in mouse vascular smooth muscle cells and oocytes: implications in cardiovascular diseases and infertility. Curr Opin Pharmacol 2011; 11:725-9. [PMID: 22051884 DOI: 10.1016/j.coph.2011.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/06/2011] [Indexed: 12/15/2022]
Abstract
Phosphodiesterase-3 (PDE3) is a major cAMP-hydrolyzing PDE in vascular smooth muscle cells (VSMCs) and oocytes. The exact role and contribution of the two PDE3 isoforms, PDE3A and PDE3B, in VSMC growth regulation and oocyte maturation was examined using PDE3A (3A) and PDE3B (3B) knockout (KO) mouse models. PDE3A-deficient VSMCs exhibit marked reduction in mitogen-induced cell growth due to cell cycle arrest at G₀-G₁ phase, which resulted from dysregulation of cAMP/protein kinase A (PKA)-activated and mitogen-activated protein kinase (MAPK)-signaling pathways, as well as from alterations in key cell cycle regulatory proteins. Similarly, PDE3A-deficient oocytes exhibit cell cycle arrest at G₂/M phase because increased cAMP/PKA signaling in KO oocytes most likely inhibits Cdc25B-catalyzed dephosphorylation/activation of Cdc2 (maturation promoting factor (MPF)), a key regulator of G₂/M transition.
Collapse
|
12
|
Wu S, Wang Y, Sun L, Zhang Z, Jiang Z, Qin Z, Han H, Liu Z, Li X, Tang A, Gui Y, Cai Z, Zhou F. Decreased expression of dual-specificity phosphatase 9 is associated with poor prognosis in clear cell renal cell carcinoma. BMC Cancer 2011; 11:413. [PMID: 21943117 PMCID: PMC3198720 DOI: 10.1186/1471-2407-11-413] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 09/26/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The molecular mechanisms involved in the development and progression of clear cell renal cell carcinomas (ccRCCs) are poorly understood. The objective of this study was to analyze the expression of dual-specificity phosphatase 9 (DUSP-9) and determine its clinical significance in human ccRCCs. METHODS The expression of DUSP-9 mRNA was determined in 46 paired samples of ccRCCs and adjacent normal tissues by using real-time qPCR. The expression of the DUSP-9 was determined in 211 samples of ccRCCs and 107 paired samples of adjacent normal tissues by immunohistochemical analysis. Statistical analysis was performed to define the relationship between the expression of DUSP-9 and the clinical features of ccRCC. RESULTS The mRNA level of DUSP-9, which was determined by real-time RT-PCR, was found to be significantly lower in tumorous tissues than in the adjacent non-tumorous tissues (p < 0.001). An immunohistochemical analysis of 107 paired tissue specimens showed that the DUSP-9 expression was lower in tumorous tissues than in the adjacent non-tumorous tissues (p < 0.001). Moreover, there was a significant correlation between the DUSP-9 expression in ccRCCs and gender (p = 0.031), tumor size (p = 0.001), pathologic stage (p = 0.001), Fuhrman grade (p = 0.002), T stage (p = 0.001), N classification (p = 0.012), metastasis (p = 0.005), and recurrence (p < 0.001). Patients with lower DUSP-9 expression had shorter overall survival time than those with higher DUSP-9 expression (p < 0.001). Multivariate analysis indicated that low expression of the DUSP-9 was an independent predictor for poor survival of ccRCC patients. CONCLUSION To our knowledge, this is the first study that determines the relationship between DUSP-9 expression and prognosis in ccRCC. We found that decreased expression of DUSP-9 is associated with poor prognosis in ccRCC. DUSP-9 may represent a novel and useful prognostic marker for ccRCC.
Collapse
Affiliation(s)
- Song Wu
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Begum N, Hockman S, Manganiello VC. Phosphodiesterase 3A (PDE3A) deletion suppresses proliferation of cultured murine vascular smooth muscle cells (VSMCs) via inhibition of mitogen-activated protein kinase (MAPK) signaling and alterations in critical cell cycle regulatory proteins. J Biol Chem 2011; 286:26238-49. [PMID: 21632535 DOI: 10.1074/jbc.m110.214155] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cyclic nucleotide phosphodiesterase 3 (PDE3) is an important regulator of cyclic adenosine monophosphate (cAMP) signaling within the cardiovascular system. In this study, we examined the role of PDE3A and PDE3B isoforms in regulation of growth of cultured vascular smooth muscle cells (VSMCs) and the mechanisms by which they may affect signaling pathways that mediate mitogen-induced VSMC proliferation. Serum- and PDGF-induced DNA synthesis in VSMCs grown from aortas of PDE3A-deficient (3A-KO) mice was markedly less than that in VSMCs from PDE3A wild type (3A-WT) and PDE3B-deficient (3B-KO) mice. The reduced growth response was accompanied by significantly less phosphorylation of extracellular signal-regulated kinase (ERK) in 3A-KO VSMCs, most likely due to a combination of greater site-specific inhibitory phosphorylation of Raf-1(Ser-²⁵⁹) by protein kinase A (PKA) and enhanced dephosphorylation of ERKs due to elevated mitogen-activated protein kinase phosphatase 1 (MKP-1). Furthermore, 3A-KO VSMCs, compared with 3A-WT, exhibited higher basal PKA activity and cAMP response element-binding protein (CREB) phosphorylation, higher levels of p53 and p53 phosphorylation, and elevated p21 protein together with lower levels of Cyclin-D1 and retinoblastoma (Rb) protein and Rb phosphorylation. Adenoviral overexpression of inactive CREB partially restored growth effects of serum in 3A-KO VSMCs. In contrast, exposure of 3A-WT VSMCs to VP16 CREB (active CREB) was associated with inhibition of serum-induced DNA synthesis similar to that in untreated 3A-KO VSMCs. Transfection of 3A-KO VSMCs with p53 siRNA reduced p21 and MKP-1 levels and completely restored growth without affecting amounts of Cyclin-D1 and Rb phosphorylation. We conclude that PDE3A regulates VSMC growth via two complementary pathways, i.e. PKA-catalyzed inhibitory phosphorylation of Raf-1 with resulting inhibition of MAPK signaling and PKA/CREB-mediated induction of p21, leading to G₀/G₁ cell cycle arrest, as well as by increased accumulation of p53, which induces MKP-1, p21, and WIP1, leading to inhibition of G₁ to S cell cycle progression.
Collapse
Affiliation(s)
- Najma Begum
- Cardiovascular-Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
14
|
Roy Choudhury D, Small C, Wang Y, Mueller PR, Rebel VI, Griswold MD, McCarrey JR. Microarray-based analysis of cell-cycle gene expression during spermatogenesis in the mouse. Biol Reprod 2010; 83:663-75. [PMID: 20631398 DOI: 10.1095/biolreprod.110.084889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian spermatogenesis is a continuum of cellular differentiation in a lineage that features three principal stages: 1) a mitotically active stage in spermatogonia, 2) a meiotic stage in spermatocytes, and 3) a postreplicative stage in spermatids. We used a microarray-based approach to identify changes in expression of cell-cycle genes that distinguish 1) mitotic type A spermatogonia from meiotic pachytene spermatocytes and 2) pachytene spermatocytes from postreplicative round spermatids. We detected expression of 550 genes related to cell-cycle function in one or more of these cell types. Although a majority of these genes were expressed during all three stages of spermatogenesis, we observed dramatic changes in levels of individual transcripts between mitotic spermatogonia and meiotic spermatocytes and between meiotic spermatocytes and postreplicative spermatids. Our results suggest that distinct cell-cycle gene regulatory networks or subnetworks are associated with each phase of the cell cycle in each spermatogenic cell type. In addition, we observed expression of different members of certain cell-cycle gene families in each of the three spermatogenic cell types investigated. Finally, we report expression of 221 cell-cycle genes that have not previously been annotated as part of the cell cycle network expressed during spermatogenesis, including eight novel genes that appear to be testis-specific.
Collapse
|
15
|
Li GY, Lee HY, Choi YJ, Lee MO, Shin HS, Kim HY, Lee SB, Lee BH. Changes in the Expression of Ras-family Genes in Rats Exposed to Formaldehyde by Inhalation. Toxicol Res 2008; 24:201-206. [PMID: 32038796 PMCID: PMC7006268 DOI: 10.5487/tr.2008.24.3.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 11/20/2022] Open
Abstract
Exposure to formaldehyde (FA) is closely associated with adverse health effects such as irritation, inflammation, and squamous cell carcinomas of the nasal cavities. Owing to its rapid metabolism and elimination, exposure to FA does not always result in an increased concentration in blood or urine of animals and humans. Therefore, the development of biomarkers for FA exposure is necessary for risk assessment. In the present study, the effects of FA were investigated on the expression of genes involved in the MAPK pathway in vitro and results confirmed in rats exposed to FA by inhalation. Treatment of Hs 680.Tr human tracheal epithelial cells with FA induced gene expression for PDGFA, TNFSF11, SHC1, and HRAS. HRAS expression was also increased in tracheas of rats exposed to FA In addition, FA exposure induced the expression of RASSF4, a member of the Rasassociation domain family of Ras effectors, in rat tracheas. In conclusion, data showed FA-inducible expression of genes involved in the MAPK pathway occurred and increased expression of HRAS and RASSF4 was noted in rat tracheas subchronically exposed to FA by inhalation. These genes may serve as molecular targets of FA toxicity facilitating the understanding of the toxic mechanism.
Collapse
Affiliation(s)
- Guang-Yong Li
- 17College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-742 Korea
| | - Hye-Young Lee
- 17College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-742 Korea
| | - You-Jin Choi
- 17College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-742 Korea
| | - Mi-Ock Lee
- 17College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-742 Korea
| | - Ho-Sang Shin
- 27Department of Environmental Education and Abuse Drug Research Center, Kongju National University, Kongju, 314-701 Korea
| | - Hyeon-Young Kim
- Chemical Safety and Health Research Center, Occupational Safety & Health Research Institute, Daejeon, 305-380 Korea
| | - Sung-Bae Lee
- Chemical Safety and Health Research Center, Occupational Safety & Health Research Institute, Daejeon, 305-380 Korea
| | - Byung-Hoon Lee
- 17College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-742 Korea
| |
Collapse
|
16
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
17
|
Microtubule Disruption and Tumor Suppression by Mitogen-Activated Protein Kinase Phosphatase 4. Cancer Res 2007; 67:10711-9. [DOI: 10.1158/0008-5472.can-07-1968] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Haga Y, Hatanaka K, Hakomori SI. Effect of lipid mimetics of GM3 and lyso-GM3 dimer on EGF receptor tyrosine kinase and EGF-induced signal transduction. Biochim Biophys Acta Gen Subj 2007; 1780:393-404. [PMID: 18036568 DOI: 10.1016/j.bbagen.2007.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/29/2007] [Accepted: 10/30/2007] [Indexed: 11/17/2022]
Abstract
The tyrosine kinase activity associated with epidermal growth factor receptor (EGFR) has been a target in studies of pharmacological reagents to inhibit growth of cancer cells, which are mostly of epidermal origin. Lyso-GM3 dimer showed stronger inhibitory effect on the tyrosine kinase of EGFR than GM3, with minimal cytotoxicity [Y. Murozuka, et al. Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj. J. 24 (2007) 551-563]. Synthesis of lipids with sphingosine requires many steps, and the yield is low. A biocombinatory approach overcame this difficulty; however, products required a C(12) aliphatic chain, rather than the sphingosine head group [Y. Murozuka, et al. Efficient sialylation on azidododecyl lactosides by using B16 melanoma cells. Chemistry & Biodiversity 2 (2005) 1063-1078]. The present study was to clarify the effects of these lipid mimetics of GM3 and lyso-GM3 dimer on EGFR tyrosine kinase activity, and consequent changes of the A431 cell phenotype, as follows. (i) A lipid mimetic of lyso-GM3 dimer showed similar strong inhibitory effect on EGF-induced EGFR tyrosine kinase activity, and similar low cytotoxicity, as the authentic lyso-GM3 dimer. (ii) A lipid mimetic of lyso-GM3 dimer inhibited tyrosine phosphorylation of EGFR or its dimer to a level similar to that of the authentic lyso-GM3 dimer, but more strongly than GM3 or a lipid mimetic of GM3. (iii) Associated with the inhibitory effect of a lipid mimetic of lyso-GM3 dimer on EGF-induced EGFR kinase activity, only Akt kinase activity was significantly inhibited, but kinases associated with other signal transducers were not affected. (iv) The cell cycle of A431 cells, and the effects of GM3 and a lipid mimetic of lyso-GM3 dimer, were studied by flow cytometry, measuring the rate of DNA synthesis with propidium iodide. Fetal bovine serum greatly enhanced S phase and G(2)/M phase. Enhanced G(2)/M phase was selectively inhibited by pre-incubation of A431 cells with a lipid mimetic of lyso-GM3 dimer, whereas GM3 had only a minimal effect.
Collapse
Affiliation(s)
- Yoshimi Haga
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | | | | |
Collapse
|
19
|
Shen K. Analyzing protein tyrosine phosphatases by phosphotyrosine analog integration. Methods 2007; 42:234-42. [PMID: 17532510 DOI: 10.1016/j.ymeth.2007.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/04/2007] [Accepted: 03/09/2007] [Indexed: 11/22/2022] Open
Abstract
Reversible protein phosphorylation plays a central role in cellular signal transduction and is a focus of biomedical studies. However, it is a challenging task to study the effects of protein phosphorylation in the presence of protein phosphatase activities, especially for protein tyrosine phosphatases SHP1, SHP2 and LMW-PTP, which are themselves regulated by protein tyrosine phosphorylation. Expressed protein ligation, by combining chemical peptide synthesis with recombinant protein expression, allows for site-specific unnatural modifications of semisynthetic proteins. In this review, we describe how semisynthetic proteins were prepared to incorporate nonhydrolyzable phosphotyrosine analogs, and utilized in combination with site-directed mutagenesis and other means to elucidate regulatory mechanisms of protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Kui Shen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
20
|
Meloche S, Pouysségur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007; 26:3227-39. [PMID: 17496918 DOI: 10.1038/sj.onc.1210414] [Citation(s) in RCA: 834] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Ras-dependent extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway plays a central role in cell proliferation control. In normal cells, sustained activation of ERK1/ERK2 is necessary for G1- to S-phase progression and is associated with induction of positive regulators of the cell cycle and inactivation of antiproliferative genes. In cells expressing activated Ras or Raf mutants, hyperactivation of the ERK1/2 pathway elicits cell cycle arrest by inducing the accumulation of cyclin-dependent kinase inhibitors. In this review, we discuss the mechanisms by which activated ERK1/ERK2 regulate growth and cell cycle progression of mammalian somatic cells. We also highlight the findings obtained from gene disruption studies.
Collapse
Affiliation(s)
- S Meloche
- Departments of Pharmacology and Molecular Biology, Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
21
|
Hoffmann MS, Singh P, Wolk R, Romero-Corral A, Raghavakaimal S, Somers VK. Microarray studies of genomic oxidative stress and cell cycle responses in obstructive sleep apnea. Antioxid Redox Signal 2007; 9:661-9. [PMID: 17511582 DOI: 10.1089/ars.2007.1589] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obstructive sleep apnea (OSA), the commonest form of sleep-disordered breathing, is characterized by recurrent episodes of intermittent hypoxia and sleep fragmentation. This study evaluated microarray measures of gene transcript levels in OSA subjects compared to age and BMI matched healthy controls. Measurements were obtained before and after: (a) a night of normal sleep in controls; and (b) a night of untreated apnea in OSA patients. All subjects underwent full polysomnography. mRNA from the whole blood samples was analyzed by HG-U133A and B Affymetrix GeneChip arrays using Spotfire 7.2 data analysis platform. After sleep in OSA patients, changes were noted in several genes involved in modulation of reactive oxygen species (ROS), including heme oxygenase 1, superoxide dismutase 1 and 2, and catalase. Changes were also observed in genes involved in cell growth, proliferation, and the cell cycle such as cell division cycle 25B, signaling lymphocyte activating molecule (SLAM), calgizzarin S100A11, B-cell translocation gene, Src-like adapter protein (SLAP), and eukaryotic translation initiation factor 4E binding protein 2. These overnight changes in OSA patients are suggestive of activation of several mechanisms to modulate, and adapt to, increased ROS developing in response to the frequent episodes of intermittent hypoxia.
Collapse
Affiliation(s)
- Michal S Hoffmann
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
22
|
Wang X, Meng X, Kuhlman JR, Nelin LD, Nicol KK, English BK, Liu Y. Knockout of Mkp-1 enhances the host inflammatory responses to gram-positive bacteria. THE JOURNAL OF IMMUNOLOGY 2007; 178:5312-20. [PMID: 17404316 DOI: 10.4049/jimmunol.178.8.5312] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MAPK phosphatase (MKP)-1 is an archetypal member of the dual specificity protein phosphatase family that dephosphorylates MAPK. We have previously demonstrated that MKP-1 acts as a negative regulator of p38 and JNK in immortalized macrophages after stimulation with peptidoglycan isolated from Gram-positive bacteria. To define the physiological function of MKP-1 during Gram-positive bacterial infection, we studied the innate immune responses to Gram-positive bacteria using Mkp-1 knockout (KO) mice. We found that Mkp-1(-/-) macrophages exhibited prolonged activation of p38 and JNK, but not of ERK, following exposure to either peptidoglycan or lipoteichoic acid. Compared with wild-type (WT) macrophages, Mkp-1(-/-) macrophages produced more proinflammatory cytokines such as TNF-alpha and IL-6. Moreover, after challenge with peptidoglycan, lipoteichoic acid, live or heat-killed Staphylococcus aureus bacteria, Mkp-1 KO mice also mounted a more robust production of cytokines and chemokines, including TNF-alpha, IL-6, IL-10, and MIP-1alpha, than did WT mice. Accordingly, Mkp-1 KO mice also exhibited greater NO production, more robust neutrophil infiltration, and more severe organ damage than did WT mice. Surprisingly, WT and Mkp-1 KO mice exhibited no significant difference in either bacterial load or survival rates when infected with live S. aureus. However, in response to challenge with heat-killed S. aureus, Mkp-1 KO mice exhibited a substantially higher mortality rate compared with WT mice. Our studies indicate that MKP-1 plays a critical role in the inflammatory response to Gram-positive bacterial infection. MKP-1 serves to limit the inflammatory reaction by inactivating JNK and p38, thus preventing multiorgan failure caused by exaggerated inflammatory responses.
Collapse
Affiliation(s)
- Xianxi Wang
- Center for Perinatal Research, Columbus Children's Research Institute, Columbus Children's Hospital, Columbus, OH 43205, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Wayne J, Sielski J, Rizvi A, Georges K, Hutter D. ERK regulation upon contact inhibition in fibroblasts. Mol Cell Biochem 2006; 286:181-9. [PMID: 16467968 DOI: 10.1007/s11010-005-9089-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Despite the understanding of the importance of mitogen-activated protein (MAP) kinase activation in the stimulation of growth, little is known about the role of MAP kinase regulation during contact inhibited growth control. To investigate the role of the MAP kinase extracellular signal-regulated kinase (ERK) during the transition to a contact inhibited state, cultures of normal fibroblasts (BJ) were grown to different stages of confluency. The levels of MAP kinase phosphatase (MKP) expression and the amount of active ERK and MAP ERK kinase (MEK) in these cultures were assessed through western blot analysis and were compared to fibrosarcoma cell cultures (HT-1080), which lack contact inhibition. In normal fibroblasts, the amounts of active MEK and ERK decline at contact inhibition, concurrently with a rise in MKP-1, MKP-2, and MKP-3 protein levels. In contrast, fibrosarcoma cells appear to lack density-dependent regulation of the ERK pathway. Additionally, altering the redox environment of fibrosarcoma cells to a less reducing state, as seen during contact inhibition, results in increased MKP-1 expression. Taken together, these results suggest that the altered redox environment upon contact inhibition may contribute to the regulation of ERK inactivation by MKPs.
Collapse
Affiliation(s)
- Joshua Wayne
- Department of Biology, Monmouth University, West Long Branch, NJ 07764, USA
| | | | | | | | | |
Collapse
|
24
|
Rauhala HE, Porkka KP, Tolonen TT, Martikainen PM, Tammela TLJ, Visakorpi T. Dual-specificity phosphatase 1 and serum/glucocorticoid-regulated kinase are downregulated in prostate cancer. Int J Cancer 2006; 117:738-45. [PMID: 15981206 DOI: 10.1002/ijc.21270] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inactivation of tumor suppressor genes through deletion, mutation and epigenetic silencing has been shown to occur in cancer. In our study, we combined DNA demethylation and histone deacetylation inhibition treatments with suppression subtraction hybridization (SSH) and cDNA microarrays to identify potentially epigenetically downregulated genes in PC-3 prostate cancer cell line. We found 11 genes whose expression was upregulated after relieving epigenetic regulation. Expression of 3 genes [dual-specificity phosphatase 1 (DUSP1), serum/glucocorticoid regulated kinase (SGK) and spermidine/spermine N1-acetyltransferase (SAT)] was subsequently studied in clinical sample material using real-time quantitative RT-PCR and immunohistochemistry. The DUSP1 and SGK mRNA expression was lower in hormone-refractory prostate carcinomas compared to benign prostate hyperplasia (BPH) or untreated prostate carcinomas. BPH, normal prostate and high-grade prostate intraepithelial neoplasia (PIN) expressed high levels of DUSP1 and SGK proteins. Ninety-two percent and 48% of the prostate carcinomas showed almost complete lack of DUSP1 and SGK proteins, respectively, indicating common downregulation of these genes. The genomic bisulphite sequencing did not reveal dense hypermethylation in the promoter regions of either DUSP1 or SGK. In conclusion, the data suggest that downregulation of DUSP1 and SGK is an early event and could be important in the tumorigenesis of prostate cancer.
Collapse
Affiliation(s)
- Hanna E Rauhala
- Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere and Tampere University Hospital, University of Tampere, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
25
|
Shen K, Hines AC, Schwarzer D, Pickin KA, Cole PA. Protein kinase structure and function analysis with chemical tools. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:65-78. [PMID: 16213197 DOI: 10.1016/j.bbapap.2005.08.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 08/01/2005] [Accepted: 08/02/2005] [Indexed: 10/25/2022]
Abstract
Protein kinases are the largest enzyme superfamily involved in cell signal transduction and represent therapeutic targets for a range of diseases. There have been intensive efforts from many labs to understand their catalytic mechanisms, discover inhibitors and discern their cellular functions. In this review, we will describe two approaches developed to analyze protein kinases: bisubstrate analog inhibition and phosphonate analog utilization. Both of these methods have been used in combination with the protein semisynthesis method expressed protein ligation to advance our understanding of kinase-substrate interactions and functional elucidation of phosphorylation. Previous work on the nature of the protein kinase mechanism suggests it follows a dissociative transition state. A bisubstrate analog was designed against the insulin receptor kinase to mimic the geometry of a dissociative transition state reaction coordinate distance. This bisubstrate compound proved to be a potent inhibitor against the insulin receptor kinase and occupied both peptide and nucleotide binding sites. Bisubstrate compounds with altered hydrogen bonding potential as well as varying spacers between the adenine and the peptide demonstrate the importance of the original design features. We have also shown that related bisubstrate analogs can be used to potently block serine/threonine kinases including protein kinase A. Since many protein kinases recognize folded protein substrates for efficient phosphorylation, it was advantageous to incorporate the peptide-ATP conjugates into protein structures. Using expressed protein ligation, a Src-ATP conjugate was produced and shown to be a high affinity ligand for the Csk tyrosine kinase. Nonhydrolyzable mimics of phosphoSer/phosphoTyr can be useful in examining the functionality of phosphorylation events. Using expressed protein ligation, we have employed phosphonomethylene phenylalanine and phosphonomethylene alanine to probe the phosphorylation of Tyr and Ser, respectively. These tools have permitted an analysis of the SH2-phosphatases (SHP1 and SHP2), revealing a novel intramolecular stimulation of catalytic activity mediated by the corresponding phosphorylation events. They have also been used to characterize the cellular regulation of the melatonin rhythm enzyme by phosphorylation.
Collapse
Affiliation(s)
- Kui Shen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
26
|
Wu JJ, Bennett AM. Essential role for mitogen-activated protein (MAP) kinase phosphatase-1 in stress-responsive MAP kinase and cell survival signaling. J Biol Chem 2005; 280:16461-6. [PMID: 15722358 DOI: 10.1074/jbc.m501762200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) constitute a family of 11 dual-specificity phosphatases that inactivate the MAPKs by dephosphorylation. Although the contribution of MAPKs to cell growth and cell death has been examined extensively, it remains unclear whether MKPs play an essential role in the regulation of these processes. To clarify the role of MKP-1, we determined the effects on the MAPKs and cell growth and death in primary fibroblasts derived from mice lacking MKP-1. Here we have shown that MKP-1 is critical for the inactivation of p38 MAPK and JNK following stimulation with serum, anisomycin, and osmotic stress. In addition, MKP-1 was identified as a critical negative regulator of the cAMP-mediated p38 MAPK pathway. MKP-1-deficient mouse embryonic fibroblasts (MEFs) displayed enhanced p38 MAPK activity and cAMP-response element-dependent transcriptional activation in response to forskolin. Surprisingly, MKP-1-deficient fibroblasts exhibited reduced cell growth compared with wild type MEFs as a result of enhanced cell death. The enhanced level of cell death in MKP-1-deficient MEFs was rescued by SB203580, an inhibitor of p38 MAPK. MKP-1-deficient MEFs were also sensitive to anisomycin-induced apoptosis. Collectively, these data demonstrate that MKP-1 promotes cell survival by attenuating stress-responsive MAPK-mediated apoptosis.
Collapse
Affiliation(s)
- J Julie Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
27
|
Watanabe T, Satoo H, Kohara K, Takami R, Motoyashiki T, Morita T, Ueki H. Orthovanadate stimulates cAMP phosphodiesterase 3 activity in isolated rat hepatocytes through mitogen-activated protein kinase activation dependent on cAMP-dependent protein kinase. Biol Pharm Bull 2005; 27:789-96. [PMID: 15187419 DOI: 10.1248/bpb.27.789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orthovanadate (vanadate) as well as insulin stimulated phosphodiesterase 3 (PDE3) in the particulate fraction of rat hepatocytes. The vanadate-induced activations of PDE3 and mitogen-activated protein kinase (MAPK) were inhibited by H-89 and PD98059, suggesting that the MAPK activation via cAMP-dependent protein kinase (PKA) and MAPK kinase is involved in the vanadate action. On the other hand, the insulin-induced activations of PDE3 and Akt were inhibited by wortmannin, suggesting involvement of the Akt activation via phosphatidylinositol 3-kinase (PI3K) in the insulin action. The vanadate-induced activations of PKA and PDE3 were inhibited in part by propranolol or genistein, suggesting that vanadate may exert its actions via dual signaling pathways of beta-adrenergic receptors and receptor tyrosine kinases of growth factors. Vanadate, in contrast to insulin, did not promote the phosphorylation of insulin receptor substrate-1. The vanadate-induced increase in the phosphorylation of a main isoform of MAPKs, p44 protein, was detected by immunoblotting migration patterns of SDS-PAGE. A partially purified PDE3 activity was increased by addition of MAPK or Akt to the reaction mixture, suggesting that MAPK as well as Akt acts upstream of PDE3. The activation of PDE3 by insulin was independent of a transient increase in the MAPK activity, probably due to the dephosphorylated inactivation mediated by the induced activation of MAPK phosphatases (MKPs). Vanadate did not affect the MKP activity. These results indicate that vanadate stimulates the particulate PDE3 activity by activating mainly p44 MAPK via a PKA-dependent process, and that it differs from insulin with regard to a phosphorylation cascade of PDE3 activation.
Collapse
Affiliation(s)
- Tomoyasu Watanabe
- Department of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Ohki R, Yamamoto K, Ueno S, Mano H, Misawa Y, Fuse K, Ikeda U, Shimada K. Transcriptional profile of genes induced in human atrial myocardium with pressure overload. Int J Cardiol 2004; 96:381-7. [PMID: 15301891 DOI: 10.1016/j.ijcard.2003.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Revised: 07/11/2003] [Accepted: 07/25/2003] [Indexed: 11/16/2022]
Abstract
BACKGROUND The molecular response of human myocardium to mechanical stimuli, particularly the difference between pressure or volume overload cardiac hypertrophy, remains incompletely defined. METHODS We investigated the transcriptional profile of genes induced in human pressure- or volume-overloaded myocardium with DNA microarray technology. We used right atrial tissue from patients who underwent cardiac surgery. On the basis of pressure data and echocardiographic findings, the patients were divided into three groups: control group (n=3), pressure overload group (mean right atrial pressure of >7 mm Hg, n=3), and volume overload group (moderate or severe tricuspid regurgitation, n=3). Expression profiles of 2139 human genes were investigated with mRNA obtained from the samples. RESULTS In the pressure overload group, expression of genes of cyclin-dependent kinase inhibitor 1A (CDKI1A, 11.7+/-3.1-fold vs. control), and mitogen-activated protein kinase phosphatase-1 (MKP-1, 26.2+/-2.1-fold) was significantly increased compared with those in control or volume overload group (P<0.05). The specificity of these gene expressions was confirmed by a quantitative "real-time" polymerase chain reaction (PCR) analysis. In addition, mechanical strain induced CDKI1A and MKP-1 protein expressions in neonatal rat cardiac myocytes in an amplitude-dependent manner. In contrast, transcripts of growth factors did not significantly increase. CONCLUSIONS This study demonstrated that gene expressions of CDKI1A and MKP-1, but not growth factors, are induced in chronic pressure-overloaded myocardium. These findings suggest that suppressors of the cell cycle or cell proliferation may play a critical role in the pathophysiology of pressure overload.
Collapse
Affiliation(s)
- Ruri Ohki
- Division of Cardiovascular Medicine, Jichi Medical School, Minamikawachi-Machi, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hardy K, Mansfield L, Mackay A, Benvenuti S, Ismail S, Arora P, O'Hare MJ, Jat PS. Transcriptional networks and cellular senescence in human mammary fibroblasts. Mol Biol Cell 2004; 16:943-53. [PMID: 15574883 PMCID: PMC545924 DOI: 10.1091/mbc.e04-05-0392] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Senescence, the molecular program that limits the finite proliferative potential of a cell, acts as an important barrier to protect the body from cancer. Techniques for measuring transcriptome changes and for modulating their expression suggest that it may be possible to dissect the transcriptional networks underlying complex cellular processes. HMF3A cells are conditionally immortalized human mammary fibroblasts that can be induced to undergo coordinated senescence. Here, we used these cells in conjunction with microarrays, RNA interference, and in silico promoter analysis to promote the dissection of the transcriptional networks responsible for regulating cellular senescence. We first identified changes in the transcriptome when HMF3A cells undergo senescence and then compared them with those observed upon replicative senescence in primary human mammary fibroblasts. In addition to DUSP1 and known p53 and E2F targets, a number of genes such as PHLDA1, NR4A3, and a novel splice variant of STAC were implicated in senescence. Their role in senescence was then analyzed by RNA silencing followed by microarray analysis. In silico promoter analysis of all differential genes predicted that nuclear factor-kappaB and C/EBP transcription factors are activated upon senescence, and we confirmed this by electrophoretic mobility shift assay. The results suggest a putative signaling network for cellular senescence.
Collapse
Affiliation(s)
- K Hardy
- Ludwig Institute for Cancer Research, University College School of Medicine, London W1W 7BS, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Qin L, Li X, Ko JK, Partridge NC. Parathyroid hormone uses multiple mechanisms to arrest the cell cycle progression of osteoblastic cells from G1 to S phase. J Biol Chem 2004; 280:3104-11. [PMID: 15513917 DOI: 10.1074/jbc.m409846200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) plays a major role in bone remodeling and has the ability to increase bone mass if administered daily. In vitro, PTH inhibits the growth of osteoblastic cell lines, arresting them in G(1) phase. Here, we demonstrate that PTH regulates the expression of at least three genes to achieve the following: inducing expression of MAPK phosphatase 1 (MKP-1) and p21(Cip1) and decreasing expression of cyclin D1 at both mRNA and protein levels. The induction of MKP-1 causes the dephosphorylation of extracellular signal-regulated kinase and therefore the decrease in cyclin D1. Overexpression of MKP-1 arrests UMR cells in G(1) phase. The mechanisms involved in PTH regulation of these genes were studied. Most importantly, PTH administration produces similar effects on expression of these genes in rat femoral metaphyseal primary spongiosa. Analyses of p21(Cip1) expression levels in bone indicate that repeated daily PTH injections make the osteoblast more sensitive to successive PTH treatments, and this might be an important feature for the anabolic functions of PTH. In summary, our data suggest that one mechanism for PTH to exert its anabolic effect is to arrest the cell cycle progression of the osteoblast and hence increase its differentiation.
Collapse
Affiliation(s)
- Ling Qin
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
31
|
Hayashi D, Kudoh S, Shiojima I, Zou Y, Harada K, Shimoyama M, Imai Y, Monzen K, Yamazaki T, Yazaki Y, Nagai R, Komuro I. Atrial natriuretic peptide inhibits cardiomyocyte hypertrophy through mitogen-activated protein kinase phosphatase-1. Biochem Biophys Res Commun 2004; 322:310-9. [PMID: 15313208 DOI: 10.1016/j.bbrc.2004.07.119] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Indexed: 11/22/2022]
Abstract
Cardiac hypertrophy is formed in response to hemodynamic overload. Although a variety of factors such as catecholamines, angiotensin II (AngII), and endothelin-1 (ET-1) have been reported to induce cardiac hypertrophy, little is known regarding the factors that inhibit the development of cardiac hypertrophy. Production of atrial natriuretic peptide (ANP) is increased in the hypertrophied heart and ANP has recently been reported to inhibit the growth of various cell types. We therefore examined whether ANP inhibits the development of cardiac hypertrophy. Pretreatment of cultured cardiomyocytes with ANP inhibited the AngII- or ET-1-induced increase in the cell size and the protein synthesis. ANP also inhibited the AngII- or ET-1-induced hypertrophic responses such as activation of mitogen-activated protein kinase (MAPK) and induction of immediate early response genes and fetal type genes. To determine how ANP inhibits cardiomyocyte hypertrophy, we examined the mechanism of ANP-induced suppression of the MAPK activation. ANP strongly induced expression of MAPK phosphatase-1 (MKP-1) and overexpression of MKP-1 inhibited AngII- or ET-1-induced hypertrophic responses. These growth-inhibitory actions of ANP were mimicked by a cyclic GMP analog 8-bromo-cyclic GMP. Taken together, ANP directly inhibits the growth factor-induced cardiomyocyte hypertrophy at least partly via induction of MKP-1. Our present study suggests that the formation of cardiac hypertrophy is regulated not only by positive but by negative factors in response to hemodynamic load.
Collapse
Affiliation(s)
- Doubun Hayashi
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Castillo SS, Teegarden D. Sphingosine-1-Phosphate Inhibition of Apoptosis Requires Mitogen-Activated Protein Kinase Phosphatase-1 in Mouse Fibroblast C3H10T½ Cells. J Nutr 2003; 133:3343-9. [PMID: 14608042 DOI: 10.1093/jn/133.11.3343] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The roles of extracellular regulated kinase (ERK) activation and mitogen-activated protein kinase phosphatase-1 (MKP-1) were examined in sphingosine-1-phosphate (S1P)-mediated inhibition of apoptosis in C3H10T 1/2 fibroblast cells. Apoptosis induced by the ceramide analog, C8-ceramine, was inhibited by S1P (ceramine/S1P). Stress activated protein kinase or c-Jun N-terminal kinase (SAPK/JNK) activation was significantly higher after ceramine and ceramine/S1P treatments. Ceramine/S1P treatment also significantly increased ERK activation and MKP-1 protein levels. ERK activation was required for the inhibition of apoptosis by S1P as shown using the mitogen-activated protein kinase kinase inhibitor, PD98059. Transfection with a dominant negative mutant construct of the MKP-1 gene prevented S1P inhibition of apoptosis and resulted in sustained SAPK/JNK activity. The MKP-1 mutant did not affect ERK activity, indicating that MKP-1 preferentially down-regulates SAPK/JNK in C3H10T 1/2 cells. Finally, the S1P activation of ERK and inhibition of apoptosis were reduced by pertussis toxin treatment, suggesting that G-protein-coupled receptors, such as the endothelial differentiation gene (EDG) receptor, play a role. Thus, both ERK activation and MKP-1, which down-regulates SAPK/JNK, are required for S1P-mediated inhibition of apoptosis.
Collapse
Affiliation(s)
- S Sianna Castillo
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907-1264, USA
| | | |
Collapse
|
33
|
Liao Q, Guo J, Kleeff J, Zimmermann A, Büchler MW, Korc M, Friess H. Down-regulation of the dual-specificity phosphatase MKP-1 suppresses tumorigenicity of pancreatic cancer cells. Gastroenterology 2003; 124:1830-45. [PMID: 12806617 DOI: 10.1016/s0016-5085(03)00398-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS In both pancreatic cancer and chronic pancreatitis, there is enhanced expression of mitogenic growth factors and their tyrosine kinase receptors, which have the capacity to activate mitogen-activated protein kinase (MAPK). In view of the important role of MAPK kinase phosphatase (MKP)-1 in the regulation of MAPK activation, the expression and functional role of MKP-1 was analyzed. METHODS Pancreatic tissues were analyzed by Northern blotting, Western blotting, and immunohistochemistry. Pancreatic cancer cells were transfected with a full-length MKP-1 antisense construct. Growth characteristics and tumorigenicity in vivo and the effects of mitogenic growth factors on cell growth and MAPK activation were determined in transfected and control cells. RESULTS MKP-1 messenger RNA (mRNA) levels were increased in pancreatic cancer and chronic pancreatitis (CP) tissues. Moderate to strong MKP-1 immunoreactivity was present in the cancer cells, ductal cells of pancreatic intraepithelial neoplasia, and in tubular complexes in CP. Down-regulation of MKP-1 resulted in decreased anchorage-dependent and -independent growth of pancreatic cancer cells, and decreased tumorigenicity in a nude mouse tumor model. MKP-1 down-regulation led to decreased proliferation and sustained MAPK activation in response to mitogens. CONCLUSIONS Suppression of MKP-1 expression reduces the tumorigenicity of pancreatic cancer cells in vivo, suggesting that MKP-1 contributes to enhanced mitogenic signaling in pancreatic cancer cells.
Collapse
Affiliation(s)
- Quan Liao
- Department of General Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Ursø B, Ilondo MM, Holst PA, Christoffersen CT, Ouwens M, Giorgetti S, Van Obberghen E, Naor D, Tornqvist H, De Meyts P. IRS-4 mediated mitogenic signalling by insulin and growth hormone in LB cells, a murine T-cell lymphoma devoid of IGF-I receptors. Cell Signal 2003; 15:385-94. [PMID: 12618213 DOI: 10.1016/s0898-6568(02)00113-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin and growth hormone (GH) induce mitogenic and metabolic signals in cells, GH either directly or indirectly via IGF-I production. We have studied a spontaneous murine T-cell lymphoma (LB cells) devoid of IGF-1 receptors in which proliferation is maintained by insulin [Int. J. Cancer 50 (1992) 80], and show that GH is more potent than insulin, with both GH and insulin dose-response curves for thymidine incorporation being bell-shaped. Binding showed somatogenic rather than lactogenic GH receptors. Insulin stimulated phosphorylation of the insulin receptor and of a 160-kDa protein, identified as the IRS-4 protein. This phosphorylated IRS-4 associated with PI3-kinase, which was activated along with the downstream p70(S6) kinase, whereas the Ras-MAPK pathway was not. Using selective inhibitors, the PI3-kinase, but not p70(S6) kinase or MEK, was found to be involved in insulin-stimulated DNA synthesis. GH induced tyrosine phosphorylation of IRS-4 and nuclear translocation of STAT5. The LB cells constitute a new model for studying GH and insulin signalling without interference of IGF-1 receptors.
Collapse
Affiliation(s)
- Birgitte Ursø
- Department of Receptor Biology, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cerebral vasospasm is a deadly complication following the rupture of intracranial aneurysms. The time course of cerebral vasospasm is unique in that it is slow developing, usually takes 4-7 days to peak, but lasts up to 2-3 weeks, and is resistant to most known vasodilators. These special features make cerebral vasospasm the most important determinant in the outcome of patients suffering subarachnoid hemorrhage. The available treatment strategies include mechanical dilation of spastic cerebral arteries (angioplasty) and non-selective vasodilatation such as by Ca(2+) channel blockers. One new development in the experimental treatment of cerebral vasospasm is the looming target of signaling pathways. Understanding vasospastic signals in cerebral arteries might offer a new avenue for selective treatment of cerebral vasospasm in the future.
Collapse
Affiliation(s)
- Alexander Y. Zubkov
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | |
Collapse
|
36
|
Vedoy CG, Sogayar MC. Isolation and characterization of genes associated with the anti-tumor activity of glucocorticoids. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 106:57-69. [PMID: 12393265 DOI: 10.1016/s0169-328x(02)00410-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Treatment of ST1 rat glioma cells with glucocorticoid hormones leads to complete reversion of their transformed phenotype and loss of their tumorigenic potential. In order to study the molecular basis of the anti-tumor activity of these hormones, we isolated glucocorticoid-regulated cDNA sequences associated with ST1 cells' phenotypic reversion, using suppression subtractive hybridization (SSH). DNA sequencing of the subtracted cDNA pool, cloned into the pBluescript vector, revealed three widely expressed, well known negative growth regulators, namely, thrombospondin 1, cyclin G and tyrosine phosphatase CL100, as primary targets of glucocorticoid hormones. Additionally, a gene recently described in human brain, NRP/B (nuclear restricted protein in brain) that associates with p110Rb in induction of neuronal differentiation and a new truncated transcript of the tenascin-X gene family, are also shown to be up-regulated by glucocorticoids. The products of these genes are strong candidates to be important players in glucocorticoids anti-tumor activity.
Collapse
Affiliation(s)
- Cleber Giovane Vedoy
- Instituto de Qui;mica, Universidade de São Paulo, C.P. 26.077, 05513-970 SP, São Paulo, Brazil
| | | |
Collapse
|
37
|
Manzano RG, Montuenga LM, Dayton M, Dent P, Kinoshita I, Vicent S, Gardner GJ, Nguyen P, Choi YH, Trepel J, Auersperg N, Birrer MJ. CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential. Oncogene 2002; 21:4435-47. [PMID: 12080474 DOI: 10.1038/sj.onc.1205542] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Revised: 03/27/2002] [Accepted: 04/02/2002] [Indexed: 01/09/2023]
Abstract
Although early stage ovarian cancer can be effectively treated with surgery and chemotherapy, the majority of cases present with advanced disease, which remains essentially incurable. Unfortunately, little is known about the genes important for the development and progression of this disease. In this study, the expression of 68 phosphatases was determined in immortalized ovarian epithelial cells (IOSE) and compared to ovarian cancer cell lines. CL100, a dual specificity phosphatase, displayed 10-25-fold higher expression in normal compared to malignant ovarian cell lines. Immunohistochemical staining of normal ovaries and 68 ovarian cancer specimens confirmed this differential expression. Re-expression of CL100 in ovarian cancer cells decreased adherent and non-adherent cell growth and induced phenotypic changes including loss of filopodia and lamellipodia with an associated decrease in cell motility. Induced expression of CL100 in ovarian cancer cells suppressed intraperitoneal tumor growth in nude mice. These results show for the first time that CL100 expression is altered in human ovarian cancer, that CL100 expression changes cell morphology and motility, and that it suppresses intraperitoneal growth of human ovarian epithelial cancer. These data suggest that down-regulation of CL100 may play a role in the progression of human ovarian cancer.
Collapse
Affiliation(s)
- Ramon G Manzano
- Cell and Cancer Biology Department, National Cancer Institute, 9610 Medical Center Drive, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Linnemann T, Kiel C, Herter P, Herrmann C. The activation of RalGDS can be achieved independently of its Ras binding domain. Implications of an activation mechanism in Ras effector specificity and signal distribution. J Biol Chem 2002; 277:7831-7. [PMID: 11748241 DOI: 10.1074/jbc.m110800200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small GTPases of the Ras family are major players of signal transduction in eukaryotic cells. They receive signals from a number of receptors and transmit them to a variety of effectors. The distribution of signals to different effector molecules allows for the generation of opposing effects like proliferation and differentiation. To understand the specificity of Ras signaling, we investigated the activation of RalGDS, one of the Ras effector proteins with guanine-nucleotide exchange factor activity for Ral. We determined the GTP level on RalA and showed that the highly conserved Ras binding domain (RBD) of RalGDS, which mediates association with Ras, is important but not sufficient to explain the stimulation of the exchange factor. Although a point mutation in the RBD of RalGDS, which abrogates binding to Ras, renders RalGDS independent to activated Ras, an artificially membrane-targeted version of RalGDS lacking its RBD could still be activated by Ras. The switch II region of Ras is involved in the activation, because the mutant Y64W in this region is impaired in the RalGDS activation. Furthermore, it is shown that Rap1, which was originally identified as a Ras antagonist, can block Ras-mediated RalGDS signaling only when RalGDS contains an intact RBD. In addition, kinetic studies of the complex formation between RalGDS-RBD and Ras suggest that the fast association between RalGDS and Ras, which is analogous to the Ras/Raf case, achieves signaling specificity. Conversely, the Ras x RalGDS complex has a short lifetime of 0.1 s and Rap1 forms a long-lived complex with RalGDS, possibly explaining its antagonistic effect on Ras.
Collapse
Affiliation(s)
- Thomas Linnemann
- Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | | | | | | |
Collapse
|
39
|
Denys A, Hichami A, Khan NA. Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase enzyme activity in human T-cells. Mol Cell Biochem 2002; 232:143-8. [PMID: 12030372 DOI: 10.1023/a:1014806122510] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In order to investigate the implication of docosahexacnoic acid (DHA) and eicosapentaenoic acid (EPA) in T signalling, we assessed their effects on the activation of two mitogen activated protein (MAP) kinases, i.e. extracellularly-regulated kinases 1 and 2 (ERK1/ERK2) in Jurkat T-cells. The n-3 polyunsaturated fatty acids (PUFAs) alone failed to induce MAP kinase (MAPK) enzyme activity. To elucidate whether DHA and EPA act via protein kinase C (PKC) dependent and independent pathways, we employed their respective activators, i.e. phorbol 12-myristate 13-acetate (PMA) and antiCD3 antibodies. We observed that U0126, an inhibitor of MAPK kinase-ERK kinase 1/2 (MEK1/2), abolished the actions of these two agents on MAPK activation, suggesting that they act upstream of MEK1/2. Further EPA and DHA diminished both the PMA- and antiCD3 antibodies-induced enzyme activity of ERK1/ERK2 in Jurkat T-cells. Interestingly, okadaic acid (OA), a phosphatase inhibitor seems to act downstream of MEK1/2 as U0126 failed to inhibit the OA-induced MAPK activation. It is noteworthy that EPA and DHA not only failed to curtail the OA-induced MAPK activity but also these n-3 PUFAs at 20 microM potentiated the action of OA. Therefore, EPA and DHA seem to modulate MAPK activation upstream and downstream of MEK1/2. On the hand, arachidonic acid, an n-6 PUFA potentiated the MAPK enzyme activity. In conclusion, our study shows that EPA and DHA may regulate T-cells functions by modulating MAPK enzyme activity.
Collapse
Affiliation(s)
- Anne Denys
- University of Burgundy, Department of Physiology, UPRES Lipids and Nutrition, Faculty of Life Sciences, Dijon, France
| | | | | |
Collapse
|
40
|
Wellbrock C, Weisser C, Geissinger E, Troppmair J, Schartl M. Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling. J Biol Chem 2002; 277:6443-54. [PMID: 11734563 DOI: 10.1074/jbc.m110684200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma is a cancer whose incidence is rising rapidly, but the mechanism by which normal melanocytes become malignant in vivo is still little understood. In the course of melanoma progression, a fraction of cells often becomes depigmented, which reflects the loss of the balance between mitogenic activities and differentiation in those pigment cells. A key factor involved in differentiation in pigment cells is mitogen-activated protein kinase (MAPK). However, because both activation and inhibition of MAPK signaling is known to correlate with differentiation, its function in pigment cells is still unclear. We investigated the role of MAPK signaling in pigment cells using the melanoma-inducing receptor tyrosine kinase Xmrk. Xmrk signaling in mouse melanocytes suppressed differentiation and induced a transformed phenotype. We found that this was based on sustained MAPK activation caused by low and transient expression of MAPK-phosphatase MKP-1. The Src kinase p59(Fyn) was thereby identified as being crucial for the receptor-mediated suppression of differentiation by down-regulating MKP-1 expression. Our findings reveal a novel mechanism of regulating the balance between differentiation and proliferation based on a Src kinase-modified MAPK activity. Moreover, they point to a new role for Src kinases in dedifferentiation and transformation of pigment cells.
Collapse
Affiliation(s)
- Claudia Wellbrock
- Department of Physiological Chemistry I, Theodor-Boveri Institut, University of Würzburg, 97094 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
41
|
Sohaskey ML, Ferrell JE. Activation of p42 mitogen-activated protein kinase (MAPK), but not c-Jun NH(2)-terminal kinase, induces phosphorylation and stabilization of MAPK phosphatase XCL100 in Xenopus oocytes. Mol Biol Cell 2002; 13:454-68. [PMID: 11854404 PMCID: PMC65641 DOI: 10.1091/mbc.01-11-0553] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dual-specificity protein phosphatases are implicated in the direct down-regulation of mitogen-activated protein kinase (MAPK) activity in vivo. Accumulating evidence suggests that these phosphatases are components of negative feedback loops that restore MAPK activity to low levels after diverse physiological responses. Limited information exists, however, regarding their posttranscriptional regulation. We cloned two Xenopus homologs of the mammalian dual-specificity MAPK phosphatases MKP-1/CL100 and found that overexpression of XCL100 in G2-arrested oocytes delayed or prevented progesterone-induced meiotic maturation. Epitope-tagged XCL100 was phosphorylated on serine during G2 phase, and on serine and threonine in a p42 MAPK-dependent manner during M phase. Threonine phosphorylation mapped to a single residue, threonine 168. Phosphorylation of XCL100 had no measurable effect on its ability to dephosphorylate p42 MAPK. Similarly, mutation of threonine 168 to either valine or glutamate did not significantly alter the binding affinity of a catalytically inactive XCL100 protein for active p42 MAPK in vivo. XCL100 was a labile protein in G2-arrested and progesterone-stimulated oocytes; surprisingly, its degradation rate was increased more than twofold after exposure to hyperosmolar sorbitol. In sorbitol-treated oocytes expressing a conditionally active DeltaRaf-DD:ER chimera, activation of the p42 MAPK cascade led to phosphorylation of XCL100 and a pronounced decrease in the rate of its degradation. Our results provide mechanistic insight into the regulation of a dual-specificity MAPK phosphatase during meiotic maturation and the adaptation to cellular stress.
Collapse
Affiliation(s)
- Michael L Sohaskey
- Department of Molecular Pharmacology and Program in Cancer Biology, Stanford University School of Medicine, Stanford, California 94305-5174, USA.
| | | |
Collapse
|
42
|
Gronda M, Arab S, Iafrate B, Suzuki H, Zanke BW. Hematopoietic protein tyrosine phosphatase suppresses extracellular stimulus-regulated kinase activation. Mol Cell Biol 2001; 21:6851-8. [PMID: 11564869 PMCID: PMC99862 DOI: 10.1128/mcb.21.20.6851-6858.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) are signaling molecules that become enzymatically activated through phosphorylation by diverse stimuli. Hematopoietic cytokines, growth factors, and stimulated lymphocyte antigen receptors may activate specific MAPKs by altering the balance of MAPK-activating protein kinases and the protein phosphatases that target their activation sites. Hematopoietic protein tyrosine phosphatase (HePTP) is a hematopoiesis-specific cytoplasmic protein tyrosine phosphatase whose expression is induced by mitogenic stimuli. To investigate the role of HePTP in hematopoietic development, we constructed mice deficient in this phosphatase using the technique of homologous recombination. Primary lymphocytes from HePTP(-/-) mice show enhanced activation of extracellular stimulus-regulated kinase (ERK) after both phorbol myristate acetate (PMA) and anti-CD3-mediated T-cell receptor (TCR) stimulation, suggesting a true physiological relationship between these two molecules. Activation of MEK, the physiological activator of ERK, by anti-CD3 or PMA is not affected by HePTP deletion. The distribution of hematopoietic lineages in bone marrow and peripheral blood samples and the in vitro proliferative capacity of bone marrow progenitors from HePTP deletion mice do not deviate from those of matched littermate controls. Similarly, lymphocyte activation and development are indistinguishable in HePTP(-/-) mice and controls. We conclude that HePTP is a physiological regulator of ERK on the basis of these studies and hypothesize that its deletion is well compensated for in the developing mouse through reduction of ERK targets or enhancement of physiologically opposed signaling pathways.
Collapse
Affiliation(s)
- M Gronda
- Department of Medical Biophysics, University of Toronto, Princess Margaret Hospital and Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | |
Collapse
|
43
|
Colucci R, Fleming JV, Xavier R, Wang TC. L-histidine decarboxylase decreases its own transcription through downregulation of ERK activity. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1081-91. [PMID: 11557529 DOI: 10.1152/ajpgi.2001.281.4.g1081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A poorly defined negative feedback loop decreases transcription of the L-histidine decarboxylase (HDC) gene. To help understand this regulation, we have studied the effect of HDC protein expression on HDC gene transcription in transfected AGS-B cells. Expression of the rat HDC protein inhibited HDC promoter activity in a dose-dependent fashion. The region of the HDC promoter mediating this inhibitory effect corresponded to a previously defined gastrin and extracellular signal-related kinase (ERK)-1 response element. Overexpression of the HDC protein reduced nuclear factor binding in this region. Experiments employing specific histamine receptor agonists indicated that the inhibitory effect was not dependent on histamine production, and studies with the HDC inhibitor alpha-fluoromethylhistidine revealed that inhibition was unrelated to enzyme activity. Instead, an enzymatically inactive region at the amino terminal of the HDC enzyme (residues 1-271) was shown to mediate inhibition. Fluorescent chimeras containing this domain were not targeted to the nucleus, arguing against specific inhibition of the HDC transcription machinery. Instead, we found that overexpression of HDC protein decreased ERK protein levels and ERK activity and that the inhibitory effect of HDC protein could be overcome by overexpression of ERK1. These data suggest a novel feedback-inhibitory role for amino terminal sequences of the HDC protein.
Collapse
Affiliation(s)
- R Colucci
- Harvard Medical School and Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
44
|
Lu W, Gong D, Bar-Sagi D, Cole PA. Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol Cell 2001; 8:759-69. [PMID: 11684012 DOI: 10.1016/s1097-2765(01)00369-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The regulation of protein tyrosine phosphatase (PTPase) SHP-2 is proposed to involve tyrosine phosphorylation on two tail tyrosine residues. Using "expressed protein ligation", nonhydrolyzable phosphotyrosine analogs were introduced at known phosphorylation sites in SHP-2. Biochemical analysis suggests that a phosphonate at Tyr542 interacts intramolecularly with the N-terminal SH2 domain to relieve basal inhibition of the PTPase, whereas a phosphonate at Tyr-580 stimulates the PTPase activity by interaction with the C-terminal SH2 domain. Microinjection experiments indicate that a single phosphorylation of Tyr-542 of SHP-2 is sufficient to activate the MAP kinase pathway in living cells. These studies support a novel mechanism explaining how tyrosine phosphorylation of a PTPase is important in signal transduction.
Collapse
Affiliation(s)
- W Lu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
45
|
Kling DE, Narra V, Islam S, Kinane TB, Alessandrini A, Ercolani L, Donahoe PK, Schnitzer JJ. Decreased mitogen activated protein kinase activities in congenital diaphragmatic hernia-associated pulmonary hypoplasia. J Pediatr Surg 2001; 36:1490-6. [PMID: 11584394 DOI: 10.1053/jpsu.2001.27029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND/PURPOSE The mechanisms that cause pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH) currently are unknown. The authors proposed that the reduced size and immaturity of these lungs may be associated with differences in the levels of mitogen activated protein (MAP) kinase phosphorylation (extracellular signal regulated protein kinases, ERK-1 and -2). METHODS ERK-1 activities were measured using immune-complex kinase assays on fetal whole-lung lysates obtained from both nitrofen and olive oil-treated (control) pregnant rats. In addition, ERK-1 and ERK-2 functional activities were estimated by semiquantitative Western blot analysis, using an antibody specific for the diphosphorylated (dp-ERK, activated) forms of the enzymes. RESULTS ERK-1 activities, measured using immune-complex kinase assays, were reduced in CDH lungs compared with olive oil-treated controls (P <.02). In addition, dp-ERK-1 and dp-ERK-2 levels were found to be reduced in CDH lungs compared with controls (dp-ERK-1, P =.003; dp-ERK-2, P =.04), whereas ERK-1 and ERK-2 protein levels were unchanged. CONCLUSIONS The lower values of ERK-1 activity and reduced amounts of dp-ERK-1 and dp-ERK-2 in lung tissue from CDH animals, suggests that ERK-1 and ERK-2 activities are reduced in pulmonary hypoplasia associated with CDH. The observed reduction in ERK-1 and ERK-2 activities implicates attenuated cell signaling upstream of the ERK-1 and -2 enzymes.
Collapse
Affiliation(s)
- D E Kling
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Guo YL, Wang S, Colman RW. Kininostatin, an angiogenic inhibitor, inhibits proliferation and induces apoptosis of human endothelial cells. Arterioscler Thromb Vasc Biol 2001; 21:1427-33. [PMID: 11557667 DOI: 10.1161/hq0901.095277] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We recently reported that domain 5 (D5) of high-molecular-weight kininogen inhibited critical steps required for angiogenesis. Thus, it was named kininostatin. To understand its mechanism of action, we further investigated the effects of D5 on basic fibroblast growth factor (bFGF)-induced endothelial cell proliferation and cell viability. We report here that D5-inhibited cell proliferation of human endothelial cells stimulated by bFGF was associated with a significant reduction of cyclin D1 expression, which is a critical component required for the transition from G(1) to S phase of the cell cycle. However, inhibition of cell proliferation by D5 was not due to an inhibition of extracellular signal-regulated protein kinase activity. Endothelial cells underwent apoptosis when cultured in a serum-free medium, which was prevented by bFGF. D5 reversed the protective effect of bFGF by 80%. Cells treated with D5 in the presence of bFGF showed typical morphological features of apoptosis, which was further confirmed by 2 additional assays: Hoechst 33258 cell staining and DNA fragmentation analysis. We conclude that the inhibition of endothelial cell proliferation and induction of apoptosis together represent a major contribution to the antiangiogenic activity of D5.
Collapse
Affiliation(s)
- Y L Guo
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
47
|
Hannken T, Schroeder R, Stahl RA, Wolf G. Atrial natriuretic peptide attenuates ANG II-induced hypertrophy of renal tubular cells. Am J Physiol Renal Physiol 2001; 281:F81-90. [PMID: 11399649 DOI: 10.1152/ajprenal.2001.281.1.f81] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ANG II arrests LLC-PK1 cells in the G1 phase of the cell cycle and induces hypertrophy, an effect mediated by induction of p27Kip1. We studied whether atrial natriuretic peptide (ANP) may modulate ANG II-induced hypertrophy and p27Kip1 expression in tubular LLC-PK1 cells. ANP, through its fragments 3---28 and 4---27, prevented ANG II-induced cell cycle arrest. ANP inhibited >80% of ANG II-induced p27Kip1 protein expression (Western blots). ANP stimulated expression of MKP-1, a phosphatase involved in dephosphorylation of p44/42 mitogen-activated protein (MAP) kinase, up to 12 h. ANP prevented the ANG II-mediated phosphorylation peak of MAP kinase after 12 h of stimulation. 8-Bromo-cGMP mimicked all the effects of ANP. Transfection with MKP-1 antisense, but not sense, oligonucleotides abolished the modifying role of ANP on ANG II-mediated cell cycle arrest. The effect of ANP on ANG II-mediated hypertrophy of LLC-PK1 cells is regulated on the level of MAP kinase phosphorylation, a key step in the induction of p27Kip1. Although ANP and ANG II both stimulate generation of reactive oxygen species, ANP additionally induces expression of MKP-1, leading to interference with ANG II-mediated MAP kinase phosphorylation.
Collapse
Affiliation(s)
- T Hannken
- Department of Medicine, Division of Nephrology and Osteology, University of Hamburg, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
48
|
Rumora L, Shaver A, Zanic Grubisic T, Maysinger D. MKP-1 as a target for pharmacological manipulations in PC12 cell survival. Neurochem Int 2001; 39:25-32. [PMID: 11311446 DOI: 10.1016/s0197-0186(01)00004-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dual specificity mitogen activated protein kinase phosphatase-1 (MKP-1) inactivates extracellular signal-regulated kinase (ERK), p38 and/or c-jun N-terminal protein kinase (JNK) by dephosphorylation via a negative feed-back loop. The aim of the present study was to assess the role of expression of MKP-1 and phosphorylation status of mitogen-activated protein kinases (MAPKs) in promoting cell survival in PC12 cells. We used FK506 and three different monoperoxovanadium complexes (mpVs) as pharmacological tools for manipulation of MKP-1 expression. Peroxovanadium compounds, known to be insulinomimetic agents and protein tyrosine phosphatase inhibitors, are cytotoxic to the cells, they activate JNK and down-regulate MPK-1. On the other hand, FK 506 has transient effect on ERK activation. However, when the agents are used in combination, ERK phosphorylation is prolonged and intensified, MKP-1 expression is increased, and cell survival is enhanced. The concomitant alterations observed in intensities and duration of phospho-ERKs and phospho-JNKs signals suggest that monoperoxovanadium complexes in combination with FK 506 enhance survival of PC12 cells by an induction of MKP-1 expression.
Collapse
Affiliation(s)
- L Rumora
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Que, Canada.
| | | | | | | |
Collapse
|
49
|
Hiroi Y, Hiroi J, Kudoh S, Yazaki Y, Nagai R, Komuro I. Two distinct mechanisms of angiotensin II-induced negative regulation of the mitogen-activated protein kinases in cultured cardiac myocytes. Hypertens Res 2001; 24:385-94. [PMID: 11510751 DOI: 10.1291/hypres.24.385] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Increasing evidence has suggested that mitogen-activated protein kinases (MAPKs) play important roles in the development of cardiac hypertrophy. We and others have reported that the activity of MAPKs is tightly regulated by angiotensin II (Ang II) in cardiac myocytes. In the present study, we determined the molecular mechanism of Ang II-induced inactivation of MAPKs in rat neonatal cardiac myocytes. Ang II increased MAPK phosphatase 1 (MKP-1) gene expressions within 10 min. Levels of MKP-1 transcripts peaked at 30 min and gradually decreased thereafter. The increase in MKP-1 mRNA levels was Ang II-concentration dependent. An Ang II type 1 receptor (AT1)-specific antagonist, CV-11974, completely suppressed the Ang II-induced increase in MKP-1 gene expression, while a type 2 receptor (AT2)-specific antagonist, PD-123319, had no significant effects. Induction of MKP-1 gene expressions by Ang II was inhibited by pretreatment with an intracellular Ca2+ chelator, BAPTA-AM, or with the protein kinase C inhibitors, H-7 and Calphostin C. Phorbol ester and Ca2+ ionophore both significantly increased MKP-1 mRNA levels and showed synergistic action. Overexpression of MKP-1 cDNA blocked the Ang II-induced increase in expressions of immediate early response genes. In addition, Ang II-induced MAPK activation was significantly inhibited by pretreatment with CV-11974, but significantly enhanced by pretreatment with PD-123319. Addition of the AT2 agonist, CGP42112A, reduced basal MAPK activities, and pretreatment with PD-123319 abolished MAPK inactivation by CGP42112A. In conclusion, these observations suggest that Ang II negatively regulates MAPKs through AT1 receptors by increasing MKP-1 mRNA levels and through AT2 receptors by unknown mechanisms.
Collapse
Affiliation(s)
- Y Hiroi
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Barry OP, Mullan B, Sheehan D, Kazanietz MG, Shanahan F, Collins JK, O'Sullivan GC. Constitutive ERK1/2 activation in esophagogastric rib bone marrow micrometastatic cells is MEK-independent. J Biol Chem 2001; 276:15537-46. [PMID: 11297525 DOI: 10.1074/jbc.m010847200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we examined the mitogen-activated protein kinase (MAPK) cascade in micrometastatic cell lines generated from rib bone marrow (RBM) of patients undergoing resection of esophagogastric malignancies. The molecular mechanism(s) involved in esophagogastric MAPK activation have not previously been investigated. Constitutive activation of both ERK1 and -2 isoforms was evident in each of the five RBM cell lines. Elk-1, a transcription factor activated by the ERK1/2 pathway was also found to be constitutively activated. Cell lines generated from metastases of involved lymph nodes (OC2) and ascites (OC1) of patients with esophageal cancer do not display, however, hyperphosphorylation of ERK1/2. Constitutive RBM ERK1/2 activation is protein kinase C and phosphatidylinositol 3-kinase dependent. Surprisingly, constitutive ERK1/2 activation is MEK-independent. Pharmacological inhibition of MEK with two specific inhibitors, PD 98059 and U0126, were both ineffective in blocking ERK activation. Similarly, the use of a dominant negative MEK mutant was without effect. Interestingly, experiments overexpressing two different dominant negative Pak1 mutants significantly reduced RBM ERK1/2 activation, albeit not to the same extent for all cell lines. We also examined the role of three different phosphatases, PAC1, MKP-1, and -2. While RBM ERK1/2 activation was found to be PAC1- and MKP-2-independent, surprisingly, MKP-1 was down-regulated in all five RBM cell lines. In conclusion, we provide evidence for the first time for a MEK-independent constitutive ERK1/2 activation pathway in esophagogastric RBM cell lines. These findings have important implications for drug treatment strategies which currently target MEK in other forms of cancer.
Collapse
Affiliation(s)
- O P Barry
- Cork Cancer Research Center, National University of Ireland, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|