1
|
Millan AJ, Allain V, Nayak I, Libang JB, Quijada-Madrid LM, Arakawa-Hoyt JS, Ureno G, Rothrock AG, Shemesh A, Aguilar OA, Eyquem J, Das J, Lanier LL. SYK negatively regulates ITAM-mediated human NK cell signaling and CD19-CAR NK cell efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkaf012. [PMID: 40073103 PMCID: PMC11952873 DOI: 10.1093/jimmun/vkaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/10/2025] [Indexed: 03/14/2025]
Abstract
Natural killer (NK) cells express activating receptors that signal through ITAM (immunoreceptor tyrosine-based activation motif)-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction of Ca2+ influx. While all immature and mature human NK cells coexpress SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes, and signaling is mediated exclusively using ZAP70. Here, we examined the role of SYK and ZAP70 in a clonal human NK cell line KHYG1 by CRISPR-based deletion using a combination of experiments and mechanistic computational modeling. Elimination of SYK resulted in more robust Ca2+ influx after crosslinking of the CD16 and NKp30 receptors and enhanced phosphorylation of downstream proteins, whereas ZAP70 deletion diminished these responses. By contrast, ZAP70 depletion increased proliferation of the NK cells. As immature T cells express both SYK and ZAP70 and mature T cells often express only ZAP70, we transduced the human Jurkat cell line with SYK and found that expression of SYK increased proliferation but diminished T cell receptor-induced Ca2+ flux and activation. We performed transcriptional analysis of the matched sets of variant Jurkat and KHYG1 cells and observed profound alterations caused by SYK expression. As depletion of SYK in NK cells increased their activation, primary human NK cells were transduced with a CD19-targeting chimeric antigen receptor and were CRISPR edited to ablate SYK or ZAP70. Deletion of SYK resulted in more robust cytotoxic activity and cytokine production, providing a new therapeutic strategy of NK cell engineering for cancer immunotherapy.
Collapse
Affiliation(s)
- Alberto J Millan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Vincent Allain
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, United States
- INSERM UMR976, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Indrani Nayak
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jeremy B Libang
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Lilian M Quijada-Madrid
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Janice S Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Gabriella Ureno
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Allison Grace Rothrock
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, United States
| | - Avishai Shemesh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Oscar A Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Justin Eyquem
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
- INSERM UMR976, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, College of Medicine, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, Nationwide Children’s Hospital, College of Medicine, The Ohio State University, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Millan AJ, Allain V, Nayak I, Aguilar OA, Arakawa-Hoyt JS, Ureno G, Rothrock AG, Shemesh A, Eyquem J, Das J, Lanier LL. Spleen Tyrosine Kinase (SYK) negatively regulates ITAM-mediated human NK cell signaling and CD19-CAR NK cell efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602676. [PMID: 39026749 PMCID: PMC11257556 DOI: 10.1101/2024.07.09.602676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
NK cells express activating receptors that signal through ITAM-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction ofCa 2 + influx. While all immature and mature human NK cells co-express SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes and signaling is mediated exclusively using ZAP70. Here, we examined the role of SYK and ZAP70 in a clonal human NK cell line KHYG1 by CRISPR-based deletion using a combination of experiments and mechanistic computational modeling. Elimination of SYK resulted in more robustCa + + influx after cross-linking of the CD16 and NKp30 receptors and enhanced phosphorylation of downstream proteins, whereas ZAP70 deletion diminished these responses. By contrast, ZAP70 depletion increased proliferation of the NK cells. As immature T cells express both SYK and ZAP70 but mature T cells often express only ZAP70, we transduced the human Jurkat cell line with SYK and found that expression of SYK increased proliferation but diminished TCR-inducedCa 2 + flux and activation. We performed transcriptional analysis of the matched sets of variant Jurkat and KHYG1 cells and observed profound alterations caused by SYK expression. As depletion of SYK in NK cells increased their activation, primary human NK cells were transduced with a CD19-targeting CAR and were CRISPR edited to ablate SYK or ZAP70. Deletion of SYK resulted in more robust cytotoxic activity and cytokine production, providing a new therapeutic strategy of NK cell engineering for cancer immunotherapy.
Collapse
Affiliation(s)
- Alberto J. Millan
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Vincent Allain
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | - Indrani Nayak
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Biomedical Sciences Graduate Program, Department of Pediatrics, Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University, Columbus OH
| | - Oscar A. Aguilar
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Janice S. Arakawa-Hoyt
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Gabriella Ureno
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Allison Grace Rothrock
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Avishai Shemesh
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Justin Eyquem
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Biomedical Sciences Graduate Program, Department of Pediatrics, Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University, Columbus OH
| | - Lewis L. Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Reeve M, Kanai M, Graham D, Karjalainen J, Luo S, Kolosov N, Adams C, Ritari J, Karczewski K, Kiiskinen T, Fuller Z, Mehtonen J, Kurki M, Khan Z, Partanen J, McCarthy M, Artomov M, Tuomi T, Pirinen M, Kero J, Xavier R, Daly M, Ripatti S, Gen F. Autoimmune hypothyroidism GWAS reveals independent autoimmune and thyroid-specific contributions and an inverse relation with cancer risk. RESEARCH SQUARE 2024:rs.3.rs-4626646. [PMID: 39041034 PMCID: PMC11261955 DOI: 10.21203/rs.3.rs-4626646/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The high prevalence of autoimmune hypothyroidism (AIHT) - more than 5% in human populations - provides a unique opportunity to unlock the most complete picture to date of genetic loci that underlie systemic and organ-specific autoimmunity. Using a meta-analysis of 81,718 AIHT cases in FinnGen and the UK Biobank, we dissect associations along axes of thyroid dysfunction and autoimmunity. This largest-to-date scan of hypothyroidism identifies 418 independent associations (p < 5×10- 8), more than half of which have not previously been documented in thyroid disease. In 48 of these, a protein-coding variant is the lead SNP or is highly correlated (r2 > 0.95) with the lead SNP at the locus, including low-frequency coding variants at LAG3, ZAP70, TG, TNFSF11, IRF3, S1PR4, HABP2, ZNF429 as well as established variants at ADCY7, IFIH1 and TYK2. The variants at LAG3 (P67T), ZAP70 (T155M), and TG (Q655X) are highly enriched in Finland and functional experiments in T-cells demonstrate that the ZAP70:T155M allele reduces T-cell activation. By employing a large-scale scan of non-thyroid autoimmunity and a published meta-analysis of TSH levels, we use a Bayesian classifier to dissect the associated loci into distinct groupings and from this estimate, a significant proportion are involved in systemic (i.e., general to multiple autoimmune conditions) autoimmunity (34%) and another subset in thyroid-specific dysfunction (17%). By comparing these association results further to other common disease endpoints, we identify a noteworthy overlap with skin cancer, with 10% of AIHT loci showing a consistent but opposite pattern of association where alleles that increase the risk of hypothyroidism have protective effects for skin cancer. The association results, including genes encoding checkpoint inhibitors and other genes affecting protein levels of PD1, bolster the causal role of natural variation in autoimmunity influencing cancer outcomes.
Collapse
Affiliation(s)
- Mary Reeve
- Institute for Molecular Medicine Finland (FiMM)
| | | | | | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki
| | - Shuang Luo
- Institute for Molecular Medicine Finland (FIMM)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jukka Kero
- Research Centre for Integrative Physiology and Pharmacology,Institute of Biomedicine, University of Turku, Turku
| | | | | | - Samuli Ripatti
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki
| | | |
Collapse
|
4
|
Weiss A. Peeking Into the Black Box of T Cell Receptor Signaling. Annu Rev Immunol 2024; 42:1-20. [PMID: 37788477 DOI: 10.1146/annurev-immunol-090222-112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
I have spent more than the last 40 years at the University of California, San Francisco (UCSF), studying T cell receptor (TCR) signaling. I was blessed with supportive mentors, an exceptionally talented group of trainees, and wonderful collaborators and colleagues during my journey who have enabled me to make significant contributions to our understanding of how the TCR initiates signaling. TCR signaling events contribute to T cell development as well as to mature T cell activation and differentiation.
Collapse
Affiliation(s)
- Arthur Weiss
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA;
| |
Collapse
|
5
|
Mustafa A, Ahmed RHA, Eltayeb HH, Elsadeg M, Salih OAMM, Erwa NHH. Rare Biallelic Variants Affecting the Interdomain B Region of Zeta-Chain Associated Protein Kinase 70 (ZAP70) Protein in a Sudanese Patient: Case Report. Int Med Case Rep J 2024; 17:565-571. [PMID: 38836069 PMCID: PMC11149648 DOI: 10.2147/imcrj.s451600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction A class of disorders known as inborn errors of immunity (IEI) is defined by a compromised or missing immune response, which increases the vulnerability to infections, immunological dysregulation, and cancer. Severe combined immunodeficiencies (SCIDs), affecting both T and B-cell function are rare but often severe diseases. In this report, we describe a 10-month-old SCID patient from Sudan with disseminated BCG infection. Case Presentation A 10-month-old boy whose parents were first degree relatives, presented with a six-month history of repeated chest infections and fever. Physical examination revealed a very ill-looking boy with respiratory distress dependent on oxygen, had slight abdominal distention and hepatomegaly. Investigations revealed positive polymerase chain reaction (PCR) for M. tuberculosis complex infection and low CD4+ and CD8+ cells. Genetic testing showed compound heterozygosity in trans for two variants in the Zeta-chain Associated Protein Kinase 70 (ZAP70) gene associated with autosomal recessive SCID. The patient was started on BCG-related infection treatment, intravenous immunoglobulin (IVIG) replacement and trimethoprim/sulfamethoxazole prophylaxis with an excellent response and the patient responded well to the treatment. Conclusion SCIDs are rare, and early management is crucial. In this case, a diagnosis of ZAP70 deficiency was based on next-generation sequencing and inhouse bioinformatic computational analysis of the ZAP70 gene, highlighting the importance of genetic testing in the workup of immunodeficiencies in low resource settings.
Collapse
Affiliation(s)
- Alamin Mustafa
- Al-Neelain University, Faculty of Medicine, Khartoum, Sudan
| | | | | | - Malaz Elsadeg
- Faculty of Medicine, Omdurman Islamic University, Omdurman, Sudan
| | - Omaima Abdel Majeed Mohamed Salih
- Departments of Pediatrics and Child Health, Tropical and Infectious Diseases Consultant, Clinical Immunologist, Faculty of Medicine and Health Sciences, Omdurman Islamic University, Omdurman, Sudan
| | - Nahla H H Erwa
- Clinical Immunology Consultant, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
6
|
Lui VG, Hoenig M, Cabrera-Martinez B, Baxter RM, Garcia-Perez JE, Bailey O, Acharya A, Lundquist K, Capera J, Matusewicz P, Hartl FA, D’Abramo M, Alba J, Jacobsen EM, Niewolik D, Lorenz M, Pannicke U, Schulz AS, Debatin KM, Schamel WW, Minguet S, Gumbart JC, Dustin ML, Cambier JC, Schwarz K, Hsieh EW. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. J Exp Med 2024; 221:e20230927. [PMID: 37962568 PMCID: PMC10644909 DOI: 10.1084/jem.20230927] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.
Collapse
Affiliation(s)
- Victor G. Lui
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Berenice Cabrera-Martinez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Josselyn E. Garcia-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olivia Bailey
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- BioInspired Syracuse and Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jesusa Capera
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Paul Matusewicz
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Frederike A. Hartl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Josephine Alba
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | | | - Doris Niewolik
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ansgar S. Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | | | - Wolfgang W. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael L. Dustin
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| |
Collapse
|
7
|
Shah I, Chiang S, Yang L, Akeno N, Kelly A, White J, Caywood E, Hwang S, Le T. γδ CD8+ T cells and novel genetic variants in ZAP70 deficiency. Pediatr Allergy Immunol 2023; 34:e14035. [PMID: 37877847 DOI: 10.1111/pai.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Affiliation(s)
- Isma Shah
- Division of Allergy & Immunology, Nemours Children's Hospital, Wilmington, Delaware, USA
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Samuel Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Li Yang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nagako Akeno
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Allison Kelly
- Division of Allergy & Immunology, Nemours Children's Hospital, Wilmington, Delaware, USA
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jason White
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Emi Caywood
- Division of Pediatric Hematology/Oncology, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Sharon Hwang
- Division of Allergy & Immunology, Nemours Children's Hospital, Wilmington, Delaware, USA
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Trong Le
- Division of Allergy & Immunology, Nemours Children's Hospital, Wilmington, Delaware, USA
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Fernández-Aguilar LM, Vico-Barranco I, Arbulo-Echevarria MM, Aguado E. A Story of Kinases and Adaptors: The Role of Lck, ZAP-70 and LAT in Switch Panel Governing T-Cell Development and Activation. BIOLOGY 2023; 12:1163. [PMID: 37759563 PMCID: PMC10525366 DOI: 10.3390/biology12091163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023]
Abstract
Specific antigen recognition is one of the immune system's features that allows it to mount intense yet controlled responses to an infinity of potential threats. T cells play a relevant role in the host defense and the clearance of pathogens by means of the specific recognition of peptide antigens presented by antigen-presenting cells (APCs), and, to do so, they are equipped with a clonally distributed antigen receptor called the T-cell receptor (TCR). Upon the specific engagement of the TCR, multiple intracellular signals are triggered, which lead to the activation, proliferation and differentiation of T lymphocytes into effector cells. In addition, this signaling cascade also operates during T-cell development, allowing for the generation of cells that can be helpful in the defense against threats, as well as preventing the generation of autoreactive cells. Early TCR signals include phosphorylation events in which the tyrosine kinases Lck and ZAP70 are involved. The sequential activation of these kinases leads to the phosphorylation of the transmembrane adaptor LAT, which constitutes a signaling hub for the generation of a signalosome, finally resulting in T-cell activation. These early signals play a relevant role in triggering the development, activation, proliferation and apoptosis of T cells, and the negative regulation of these signals is key to avoid aberrant processes that could generate inappropriate cellular responses and disease. In this review, we will examine and discuss the roles of the tyrosine kinases Lck and ZAP70 and the membrane adaptor LAT in these cellular processes.
Collapse
Grants
- PY20_01297 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
- PID2020-113943RB-I00 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PR2022-037 University of Cádiz
- PAIDI2020/DOC_01433 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
Collapse
Affiliation(s)
- Luis M. Fernández-Aguilar
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Inmaculada Vico-Barranco
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Mikel M. Arbulo-Echevarria
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Enrique Aguado
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| |
Collapse
|
9
|
Zhong H, Lu W, Tang Y, Wiel C, Wei Y, Cao J, Riedlinger G, Papagiannakopoulos T, Guo JY, Bergo MO, Kang Y, Ganesan S, Sabaawy HE, Pine SR. SOX9 drives KRAS-induced lung adenocarcinoma progression and suppresses anti-tumor immunity. Oncogene 2023; 42:2183-2194. [PMID: 37258742 PMCID: PMC11809655 DOI: 10.1038/s41388-023-02715-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
The SOX9 transcription factor ensures proper tissue development and homeostasis and has been implicated in promoting tumor progression. However, the role of SOX9 as a driver of lung adenocarcinoma (LUAD), or any cancer, remains unclear. Using CRISPR/Cas9 and Cre-LoxP gene knockout approaches in the KrasG12D-driven mouse LUAD model, we found that loss of Sox9 significantly reduces lung tumor development, burden and progression, contributing to significantly longer overall survival. SOX9 consistently drove organoid growth in vitro, but SOX9-promoted tumor growth was significantly attenuated in immunocompromised mice compared to syngeneic mice. We demonstrate that SOX9 suppresses immune cell infiltration and functionally suppresses tumor associated CD8+ T, natural killer and dendritic cells. These data were validated by flow cytometry, gene expression, RT-qPCR, and immunohistochemistry analyses in KrasG12D-driven murine LUAD, then confirmed by interrogating bulk and single-cell gene expression repertoires and immunohistochemistry in human LUAD. Notably, SOX9 significantly elevates collagen-related gene expression and substantially increases collagen fibers. We propose that SOX9 increases tumor stiffness and inhibits tumor-infiltrating dendritic cells, thereby suppressing CD8+ T cell and NK cell infiltration and activity. Thus, SOX9 drives KrasG12D-driven lung tumor progression and inhibits anti-tumor immunity at least partly by modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hua Zhong
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Wen Lu
- Howard Hughes Medical Institute, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143-0795, USA
| | - Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Clotilde Wiel
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Gregory Riedlinger
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Thales Papagiannakopoulos
- Perlmutter NYU Cancer Center, Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, 08854, USA
| | - Martin O Bergo
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Hatim E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Mongellaz C, Vicente R, Noroski LM, Noraz N, Courgnaud V, Chinen J, Faria E, Zimmermann VS, Taylor N. Combined immunodeficiency caused by pathogenic variants in the ZAP70 C-terminal SH2 domain. Front Immunol 2023; 14:1155883. [PMID: 37313400 PMCID: PMC10258307 DOI: 10.3389/fimmu.2023.1155883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction ZAP-70, a protein tyrosine kinase recruited to the T cell receptor (TCR), initiates a TCR signaling cascade upon antigen stimulation. Mutations in the ZAP70 gene cause a combined immunodeficiency characterized by low or absent CD8+ T cells and nonfunctional CD4+ T cells. Most deleterious missense ZAP70 mutations in patients are located in the kinase domain but the impact of mutations in the SH2 domains, regulating ZAP-70 recruitment to the TCR, are not well understood. Methods Genetic analyses were performed on four patients with CD8 lymphopenia and a high resolution melting screening for ZAP70 mutations was developed. The impact of SH2 domain mutations was evaluated by biochemical and functional analyses as well as by protein modeling. Results and discussion Genetic characterization of an infant who presented with pneumocystis pneumonia, mycobacterial infection, and an absence of CD8 T cells revealed a novel homozygous mutation in the C-terminal SH2 domain (SH2-C) of the ZAP70 gene (c.C343T, p.R170C). A distantly related second patient was found to be compound heterozygous for the R170C variant and a 13bp deletion in the ZAP70 kinase domain. While the R170C mutant was highly expressed, there was an absence of TCR-induced proliferation, associated with significantly attenuated TCR-induced ZAP-70 phosphorylation and a lack of binding of ZAP-70 to TCR-ζ. Moreover, a homozygous ZAP-70 R192W variant was identified in 2 siblings with combined immunodeficiency and CD8 lymphopenia, confirming the pathogenicity of this mutation. Structural modeling of this region revealed the critical nature of the arginines at positions 170 and 192, in concert with R190, forming a binding pocket for the phosphorylated TCR-ζ chain. Deleterious mutations in the SH2-C domain result in attenuated ZAP-70 function and clinical manifestations of immunodeficiency.
Collapse
Affiliation(s)
- Cédric Mongellaz
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Rita Vicente
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Lenora M. Noroski
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Nelly Noraz
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Emilia Faria
- Immunoallergy Department, Coimbra Hospital and University Centre (CHUC), Coimbra, Portugal
| | - Valérie S. Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
11
|
Cheng J, Yan J, Liu Y, Shi J, Wang H, Zhou H, Zhou Y, Zhang T, Zhao L, Meng X, Gong H, Zhang X, Zhu H, Jiang P. Cancer-cell-derived fumarate suppresses the anti-tumor capacity of CD8 + T cells in the tumor microenvironment. Cell Metab 2023:S1550-4131(23)00171-7. [PMID: 37178684 DOI: 10.1016/j.cmet.2023.04.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/06/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Metabolic alterations in the microenvironment significantly modulate tumor immunosensitivity, but the underlying mechanisms remain obscure. Here, we report that tumors depleted of fumarate hydratase (FH) exhibit inhibition of functional CD8+ T cell activation, expansion, and efficacy, with enhanced malignant proliferative capacity. Mechanistically, FH depletion in tumor cells accumulates fumarate in the tumor interstitial fluid, and increased fumarate can directly succinate ZAP70 at C96 and C102 and abrogate its activity in infiltrating CD8+ T cells, resulting in suppressed CD8+ T cell activation and anti-tumor immune responses in vitro and in vivo. Additionally, fumarate depletion by increasing FH expression strongly enhances the anti-tumor efficacy of anti-CD19 CAR T cells. Thus, these findings demonstrate a role for fumarate in controlling TCR signaling and suggest that fumarate accumulation in the tumor microenvironment (TME) is a metabolic barrier to CD8+ T cell anti-tumor function. And potentially, fumarate depletion could be an important strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Jie Cheng
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jinxin Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiangzhou Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Haoyu Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hanyang Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yinglin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Lina Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xianbin Meng
- National Center for Protein Science, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinxiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China.
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
12
|
Luo X, Liu Q, Zhou L, Tang X, Zhao X, Zhang Z. Two patients with ZAP-70 deficiency in China present with a different genetic, immunological, and clinical phenotype. BMC Pediatr 2023; 23:195. [PMID: 37101133 PMCID: PMC10131425 DOI: 10.1186/s12887-023-03975-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Zeta(ζ)-Chain Associated Protein Kinase 70 kDa (ZAP-70) deficiency is a rare autosomal recessive primary immunodeficiency disease. Little is known about this disease. In this study, we report two patients to extend the range of clinical phenotypes and immunophenotypes associated with ZAP-70 mutations. We describe the clinical, genetic, and immunological phenotypes of two patients with ZAP-70 deficiency in China, and the data are also compared with the literature. Case 1 presented with leaky severe combined immunodeficiency with low to the absence of CD8 + T cells, while case 2 suffered from a recurrent respiratory infection and had a past medical history of non-EBV-associated Hodgkin's lymphoma. Sequencing revealed novel compound heterozygous mutations in ZAP-70 of these patients. Case 2 is the second ZAP-70 patient presenting a normal CD8 + T cell number. These two cases have been treated with hematopoietic stem cell transplantation. Selective CD8 + T cell loss is an essential feature of the immunophenotype of ZAP-70 deficiency patients, but there are exceptions. Hematopoietic stem cell transplantation can provide excellent long-term immune function and resolution of clinical problems.
Collapse
Affiliation(s)
- Xianze Luo
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Qing Liu
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Lina Zhou
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xiaodong Zhao
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.
| | - Zhiyong Zhang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.
| |
Collapse
|
13
|
Tanaka A, Maeda S, Nomura T, Llamas-Covarrubias MA, Tanaka S, Jin L, Lim EL, Morikawa H, Kitagawa Y, Akizuki S, Ito Y, Fujimori C, Hirota K, Murase T, Hashimoto M, Higo J, Zamoyska R, Ueda R, Standley DM, Sakaguchi N, Sakaguchi S. Construction of a T cell receptor signaling range for spontaneous development of autoimmune disease. J Exp Med 2023; 220:213728. [PMID: 36454183 PMCID: PMC9718937 DOI: 10.1084/jem.20220386] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Thymic selection and peripheral activation of conventional T (Tconv) and regulatory T (Treg) cells depend on TCR signaling, whose anomalies are causative of autoimmunity. Here, we expressed in normal mice mutated ZAP-70 molecules with different affinities for the CD3 chains, or wild type ZAP-70 at graded expression levels under tetracycline-inducible control. Both manipulations reduced TCR signaling intensity to various extents and thereby rendered those normally deleted self-reactive thymocytes to become positively selected and form a highly autoimmune TCR repertoire. The signal reduction more profoundly affected Treg development and function because their TCR signaling was further attenuated by Foxp3 that physiologically repressed the expression of TCR-proximal signaling molecules, including ZAP-70, upon TCR stimulation. Consequently, the TCR signaling intensity reduced to a critical range generated pathogenic autoimmune Tconv cells and concurrently impaired Treg development/function, leading to spontaneous occurrence of autoimmune/inflammatory diseases, such as autoimmune arthritis and inflammatory bowel disease. These results provide a general model of how altered TCR signaling evokes autoimmune disease.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Frontier Research in Tumor Immunology, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinji Maeda
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Nomura
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mara Anais Llamas-Covarrubias
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Institute of Research in Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Satoshi Tanaka
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Lin Jin
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ee Lyn Lim
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hiromasa Morikawa
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yohko Kitagawa
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shuji Akizuki
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinaga Ito
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chihiro Fujimori
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Tosei Murase
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Motomu Hashimoto
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Junichi Higo
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Rose Zamoyska
- Institute for Immunology and Infection Research, The University of Edinburgh, Edinburgh, UK
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Daron M Standley
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Noriko Sakaguchi
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Bhuyan ZA, Rahman MA, Maradana MR, Mehdi AM, Bergot AS, Simone D, El-Kurdi M, Garrido-Mesa J, Cai CBB, Cameron AJ, Hanson AL, Nel HJ, Kenna T, Leo P, Rehaume L, Brown MA, Ciccia F, Thomas R. Genetically encoded Runx3 and CD4 + intestinal epithelial lymphocyte deficiencies link SKG mouse and human predisposition to spondyloarthropathy. Clin Immunol 2023; 247:109220. [PMID: 36596403 DOI: 10.1016/j.clim.2022.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/02/2023]
Abstract
Disturbances in immune regulation, intestinal dysbiosis and inflammation characterize ankylosing spondylitis (AS), which is associated with RUNX3 loss-of-function variants. ZAP70W163C mutant (SKG) mice have reduced ZAP70 signaling, spondyloarthritis and ileitis. In small intestine, Foxp3+ regulatory T cells (Treg) and CD4+CD8αα+TCRαβ+ intraepithelial lymphocytes (CD4-IEL) control inflammation. TGF-β and retinoic acid (RA)-producing dendritic cells and MHC-class II+ intestinal epithelial cells (IEC) are required for Treg and CD4-IEL differentiation from CD4+ conventional or Treg precursors, with upregulation of Runx3 and suppression of ThPOK. We show in SKG mouse ileum, that ZAP70W163C or ZAP70 inhibition prevented CD4-IEL but not Treg differentiation, dysregulating Runx3 and ThPOK. TGF-β/RA-mediated CD4-IEL development, T-cell IFN-γ production, MHC class-II+ IEC, tissue-resident memory T-cell and Runx3-regulated genes were reduced. In AS intestine, CD4-IEL were decreased, while in AS blood CD4+CD8+ T cells were reduced and Treg increased. Thus, genetically-encoded TCR signaling dysfunction links intestinal T-cell immunodeficiency in mouse and human spondyloarthropathy.
Collapse
Affiliation(s)
- Zaied Ahmed Bhuyan
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - M Arifur Rahman
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Muralidhara Rao Maradana
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Ahmed M Mehdi
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Anne-Sophie Bergot
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Davide Simone
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Marya El-Kurdi
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Cheng Bang Benjamin Cai
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Amy J Cameron
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Aimee L Hanson
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Hendrik J Nel
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Tony Kenna
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland 4006, Australia
| | - Paul Leo
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland 4006, Australia
| | - Linda Rehaume
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Matthew A Brown
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Genomics England Ltd, Charterhouse Square, London, United Kingdom
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Ranjeny Thomas
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
15
|
Anto NP, Arya AK, Muraleedharan A, Shaik J, Nath PR, Livneh E, Sun Z, Braiman A, Isakov N. Cyclophilin A associates with and regulates the activity of ZAP70 in TCR/CD3-stimulated T cells. Cell Mol Life Sci 2022; 80:7. [PMID: 36495335 PMCID: PMC11072327 DOI: 10.1007/s00018-022-04657-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
The ZAP70 protein tyrosine kinase (PTK) couples stimulated T cell antigen receptors (TCRs) to their downstream signal transduction pathways and is sine qua non for T cell activation and differentiation. TCR engagement leads to activation-induced post-translational modifications of ZAP70, predominantly by kinases, which modulate its conformation, leading to activation of its catalytic domain. Here, we demonstrate that ZAP70 in TCR/CD3-activated mouse spleen and thymus cells, as well as human Jurkat T cells, is regulated by the peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin A (CypA) and that this regulation is abrogated by cyclosporin A (CsA), a CypA inhibitor. We found that TCR crosslinking promoted a rapid and transient, Lck-dependent association of CypA with the interdomain B region, at the ZAP70 regulatory domain. CsA inhibited CypA binding to ZAP70 and prevented the colocalization of CypA and ZAP70 at the cell membrane. In addition, imaging analyses of antigen-specific T cells stimulated by MHC-restricted antigen-fed antigen-presenting cells revealed the recruitment of ZAP70-bound CypA to the immunological synapse. Enzymatically active CypA downregulated the catalytic activity of ZAP70 in vitro, an effect that was reversed by CsA in TCR/CD3-activated normal T cells but not in CypA-deficient T cells, and further confirmed in vivo by FRET-based studies. We suggest that CypA plays a role in determining the activity of ZAP70 in TCR-engaged T cells and impact on T cell activation by intervening with the activity of multiple downstream effector molecules.
Collapse
Affiliation(s)
- Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Awadhesh Kumar Arya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amitha Muraleedharan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Jakeer Shaik
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Pulak Ranjan Nath
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Clinical and Translational Immunology Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-1857, USA
| | - Etta Livneh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Zuoming Sun
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
16
|
Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol 2022; 33:e13832. [PMID: 36003043 PMCID: PMC11077434 DOI: 10.1111/pai.13832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022]
Abstract
The main function of the thymus is to support the establishment of a wide repertoire of T lymphocytes capable of eliminating foreign pathogens, yet tolerant to self-antigens. Thymocyte development in the thymus is dependent on the interaction with thymic stromal cells, a complex mixture of cells comprising thymic epithelial cells (TEC), mesenchymal and endothelial cells. The exchange of signals between stromal cells and thymocytes is referred to as "thymic cross-talk". Genetic defects affecting either side of this interaction result in defects in thymic development that ultimately lead to a decreased output of T lymphocytes to the periphery. In the present review, we aim at providing a summary of inborn errors of immunity (IEI) characterized by T-cell lymphopenia due to defects of the thymic stroma, or to hematopoietic-intrinsic defects of T-cell development, with a special focus on recently discovered disorders. Additionally, we review the novel diagnostic tools developed to discover and study new genetic causes of IEI due to defects in thymic development. Finally, we discuss therapeutic approaches to correct thymic defects that are currently available, in addition to potential novel therapies that could be applied in the future.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Damen H, Tebid C, Viens M, Roy DC, Dave VP. Negative Regulation of Zap70 by Lck Forms the Mechanistic Basis of Differential Expression in CD4 and CD8 T Cells. Front Immunol 2022; 13:935367. [PMID: 35860252 PMCID: PMC9289233 DOI: 10.3389/fimmu.2022.935367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Lck and Zap70, two non-receptor tyrosine kinases, play a crucial role in the regulation of membrane proximal TCR signaling critical for thymic selection, CD4/CD8 lineage choice and mature T cell function. Signal initiation upon TCR/CD3 and peptide/MHC interaction induces Lck-mediated phosphorylation of CD3 ITAMs. This is necessary for Zap70 recruitment and its phosphorylation by Lck leading to full Zap70 activation. In its native state Zap70 maintains a closed conformation creating an auto-inhibitory loop, which is relieved by Lck-mediated phosphorylation of Y315/Y319. Zap70 is differentially expressed in thymic subsets and mature T cells with CD8 T cells expressing the highest amount compared to CD4 T cells. However, the mechanistic basis of differential Zap70 expression in thymic subsets and mature T cells is not well understood. Here, we show that Zap70 is degraded relatively faster in DP and mature CD4 T cells compared to CD8 T cells, and inversely correlated with relative level of activated Zap70. Importantly, we found that Zap70 expression is negatively regulated by Lck activity: augmented Lck activity resulting in severe diminution in total Zap70. Moreover, Lck-mediated phosphorylation of Y315/Y319 was essential for Zap70 degradation. Together, these data shed light on the underlying mechanism of Lck-mediated differential modulation of Zap70 expression in thymic subsets and mature T cells.
Collapse
Affiliation(s)
- Hassan Damen
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
| | - Christian Tebid
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
| | - Melissa Viens
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
| | - Denis-Claude Roy
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- Department of Medicine, University of Montreal, Montreal, QC, Canada
- *Correspondence: Denis-Claude Roy, ; Vibhuti P. Dave,
| | - Vibhuti P. Dave
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- *Correspondence: Denis-Claude Roy, ; Vibhuti P. Dave,
| |
Collapse
|
18
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
19
|
T and NK cell lymphoma cell lines do not rely on ZAP-70 for survival. PLoS One 2022; 17:e0261469. [PMID: 35077445 PMCID: PMC8789098 DOI: 10.1371/journal.pone.0261469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/02/2021] [Indexed: 11/19/2022] Open
Abstract
B-cell receptor (BCR) signalling is critical for the survival of B-cell lymphomas and is a therapeutic target of drugs such as Ibrutinib. However, the role of T-cell receptor (TCR) signalling in the survival of T/Natural Killer (NK) lymphomas is not clear. ZAP-70 (zeta associated protein-70) is a cytoplasmic tyrosine kinase with a critical role in T-cell receptor (TCR) signalling. It has also been shown to play a role in normal NK cell signalling and activation. High ZAP-70 expression has been detected by immunohistochemistry in peripheral T cell lymphoma (PTCL) and NK cell lymphomas (NKTCL). We therefore, studied the role of TCR pathways in mediating the proliferation and survival of these malignancies through ZAP-70 signalling. ZAP-70 protein was highly expressed in T cell lymphoma cell lines (JURKAT and KARPAS-299) and NKTCL cell lines (KHYG-1, HANK-1, NK-YS, SNK-1 and SNK-6), but not in multiple B-cell lymphoma cell lines. siRNA depletion of ZAP-70 suppressed the phosphorylation of ZAP-70 substrates, SLP76, LAT and p38MAPK, but did not affect cell viability or induce apoptosis in these cell lines. Similarly, while stable overexpression of ZAP-70 mediates increased phosphorylation of target substrates in the TCR pathway, it does not promote increased survival or growth of NKTCL cell lines. The epidermal growth factor receptor (EGFR) inhibitor Gefitinib, which has off-target activity against ZAP-70, also did not show any differential cell kill between ZAP-70 overexpressing (OE) or knockdown (KD) cell lines. Whole transcriptome RNA sequencing highlighted that there was very minimal differential gene expression in three different T/NK cell lines induced by ZAP-70 KD. Importantly, ZAP-70 KD did not significantly enrich for any downstream TCR related genes and pathways. Altogether, this suggests that high expression and constitutive signalling of ZAP-70 in T/NK lymphoma is not critical for cell survival or downstream TCR-mediated signalling and gene expression. ZAP-70 therefore may not be a suitable therapeutic target in T/NK cell malignancies.
Collapse
|
20
|
Latour S. Inherited immunodeficiencies associated with proximal and distal defects in T cell receptor signaling and co-signaling. Biomed J 2022; 45:321-333. [PMID: 35091087 PMCID: PMC9250091 DOI: 10.1016/j.bj.2022.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Université de Paris, Institut Imagine, Paris, France.
| |
Collapse
|
21
|
Ashouri JF, Lo W, Nguyen TTT, Shen L, Weiss A. ZAP70, too little, too much can lead to autoimmunity*. Immunol Rev 2021; 307:145-160. [PMID: 34923645 PMCID: PMC8986586 DOI: 10.1111/imr.13058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022]
Abstract
Establishing both central and peripheral tolerance requires the appropriate TCR signaling strength to discriminate self‐ from agonist‐peptide bound to self MHC molecules. ZAP70, a cytoplasmic tyrosine kinase, directly interacts with the TCR complex and plays a central and requisite role in TCR signaling in both thymocytes and peripheral T cells. By studying ZAP70 hypomorphic mutations in mice and humans with a spectrum of hypoactive or hyperactive activities, we have gained insights into mechanisms of central and peripheral tolerance. Interestingly, both hypoactive and hyperactive ZAP70 can lead to the development of autoimmune diseases, albeit through distinct mechanisms. Immature thymocytes and mature T cells rely on normal ZAP70 function to complete their development in the thymus and to modulate T cell responses in the periphery. Hypoactive ZAP70 function compromises key developmental checkpoints required to establish central tolerance, allowing thymocytes with potentially self‐reactive TCRs a greater chance to escape negative selection. Such ‘forbidden clones’ may escape into the periphery and may pose a greater risk for autoimmune disease development since they may not engage negative regulatory mechanisms as effectively. Hyperactive ZAP70 enhances thymic negative selection but some thymocytes will, nonetheless, escape negative selection and have greater sensitivity to weak and self‐ligands. Such cells must be controlled by mechanisms involved in anergy, expansion of Tregs, and upregulation of inhibitory receptors or signaling molecules. However, such potentially autoreactive cells may still be able to escape control by peripheral negative regulatory constraints. Consistent with findings in Zap70 mutants, the signaling defects in at least one ZAP70 substrate, LAT, can also lead to autoimmune disease. By dissecting the similarities and differences among mouse models of patient disease or mutations in ZAP70 that affect TCR signaling strength, we have gained insights into how perturbed ZAP70 function can lead to autoimmunity. Because of our work and that of others on ZAP70, it is likely that perturbations in other molecules affecting TCR signaling strength will be identified that also overcome tolerance mechanisms and cause autoimmunity. Delineating these molecular pathways could lead to the development of much needed new therapeutic targets in these complex diseases.
Collapse
Affiliation(s)
- Judith F. Ashouri
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Wan‐Lin Lo
- Division of Microbiology and Immunology Department of Pathology University of Utah Salt Lake City Utah USA
| | - Trang T. T. Nguyen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Lin Shen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Arthur Weiss
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
- Howard Hughes Medical Institute University of California, San Francisco San Francisco California USA
| |
Collapse
|
22
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Xu D, Lyon S, Bu CH, Hildebrand S, Choi JH, Zhong X, Liu A, Turer EE, Zhang Z, Russell J, Ludwig S, Mahrt E, Nair-Gill E, Shi H, Wang Y, Zhang D, Yue T, Wang KW, SoRelle JA, Su L, Misawa T, McAlpine W, Sun L, Wang J, Zhan X, Choi M, Farokhnia R, Sakla A, Schneider S, Coco H, Coolbaugh G, Hayse B, Mazal S, Medler D, Nguyen B, Rodriguez E, Wadley A, Tang M, Li X, Anderton P, Keller K, Press A, Scott L, Quan J, Cooper S, Collie T, Qin B, Cardin J, Simpson R, Tadesse M, Sun Q, Wise CA, Rios JJ, Moresco EMY, Beutler B. Thousands of induced germline mutations affecting immune cells identified by automated meiotic mapping coupled with machine learning. Proc Natl Acad Sci U S A 2021; 118:e2106786118. [PMID: 34260399 PMCID: PMC8285956 DOI: 10.1073/pnas.2106786118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Forward genetic studies use meiotic mapping to adduce evidence that a particular mutation, normally induced by a germline mutagen, is causative of a particular phenotype. Particularly in small pedigrees, cosegregation of multiple mutations, occasional unawareness of mutations, and paucity of homozygotes may lead to erroneous declarations of cause and effect. We sought to improve the identification of mutations causing immune phenotypes in mice by creating Candidate Explorer (CE), a machine-learning software program that integrates 67 features of genetic mapping data into a single numeric score, mathematically convertible to the probability of verification of any putative mutation-phenotype association. At this time, CE has evaluated putative mutation-phenotype associations arising from screening damaging mutations in ∼55% of mouse genes for effects on flow cytometry measurements of immune cells in the blood. CE has therefore identified more than half of genes within which mutations can be causative of flow cytometric phenovariation in Mus musculus The majority of these genes were not previously known to support immune function or homeostasis. Mouse geneticists will find CE data informative in identifying causative mutations within quantitative trait loci, while clinical geneticists may use CE to help connect causative variants with rare heritable diseases of immunity, even in the absence of linkage information. CE displays integrated mutation, phenotype, and linkage data, and is freely available for query online.
Collapse
Affiliation(s)
- Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Stephen Lyon
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chun Hui Bu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Aijie Liu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Emre E Turer
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Elena Mahrt
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hexin Shi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ying Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Duanwu Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tao Yue
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kuan-Wen Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jeffrey A SoRelle
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lijing Su
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Takuma Misawa
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - William McAlpine
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lei Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Roxana Farokhnia
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Andrew Sakla
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sara Schneider
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hannah Coco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gabrielle Coolbaugh
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Braden Hayse
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sara Mazal
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Dawson Medler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Brandon Nguyen
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Edward Rodriguez
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Andrew Wadley
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Priscilla Anderton
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Amanda Press
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lindsay Scott
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sydney Cooper
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tiffany Collie
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Baifang Qin
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jennifer Cardin
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rochelle Simpson
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meron Tadesse
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qihua Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219
- McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219
- McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390;
| |
Collapse
|
24
|
Su FY, Huang SC, Wei PC, Hsu PH, Li JP, Su LW, Hsieh YL, Hu CM, Hsu JL, Yang CY, Chung CY, Shew JY, Lan JL, Sytwu HK, Lee EYH, Lee WH. Redox sensor NPGPx restrains ZAP70 activity and modulates T cell homeostasis. Free Radic Biol Med 2021; 165:368-384. [PMID: 33460768 DOI: 10.1016/j.freeradbiomed.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Emerging evidences implicate the contribution of ROS to T cell activation and signaling. The tyrosine kinase, ζ-chain-associated protein of 70 kDa (ZAP70), is essential for T cell development and activation. However, it remains elusive whether a direct redox regulation affects ZAP70 activity upon TCR stimulation. Here, we show that deficiency of non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), a redox sensor, results in T cell hyperproliferation and elevated cytokine productions. T cell-specific NPGPx-knockout mice reveal enhanced T-dependent humoral responses and are susceptible to experimental autoimmune encephalomyelitis (EAE). Through proteomic approaches, ZAP70 is identified as the key interacting protein of NPGPx through disulfide bonding. NPGPx is activated by ROS generated from TCR stimulation, and modulates ZAP70 activity through redox switching to reduce ZAP70 recruitment to TCR/CD3 complex in membrane lipid raft, therefore subduing TCR responses. These results reveal a delicate redox mechanism that NPGPx serves as a modulator to curb ZAP70 functions in maintaining T cell homeostasis.
Collapse
Affiliation(s)
- Fang-Yi Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | - Pei-Chi Wei
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ju-Pi Li
- Division of Rheumatology and Immunology and Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Li-Wen Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yung-Lin Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jye-Lin Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Drug Development Research Center, China Medical University, Taichung, Taiwan
| | | | - Chen-Yen Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jin-Yuh Shew
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Joung-Liang Lan
- Division of Rheumatology and Immunology and Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Eva Y-Hp Lee
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Drug Development Research Center, China Medical University, Taichung, Taiwan; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
25
|
Shen L, Matloubian M, Kadlecek TA, Weiss A. A disease-associated mutation that weakens ZAP70 autoinhibition enhances responses to weak and self-ligands. Sci Signal 2021; 14:14/668/eabc4479. [PMID: 33531381 DOI: 10.1126/scisignal.abc4479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The cytoplasmic kinase ZAP70 is critical for T cell antigen receptor (TCR) signaling. The R360P mutation in ZAP70 is responsible for an early-onset familial autoimmune syndrome. The structural location and biochemical signaling effects of the R360P mutation are consistent with weakening of the autoinhibitory conformation of ZAP70. Mice with a ZAP70 R360P mutation and polyclonal TCR repertoires exhibited relatively normal T cell development but showed evidence of increased signaling. In addition, the R360P mutation resulted in enhanced follicular helper T cell expansion after LCMV infection. To eliminate the possibility of a TCR repertoire shift, the OTI transgenic TCR was introduced into R360P mice, which resulted in enhanced T cell responses to weaker stimuli, including weak agonists and a self-peptide. These observations suggest that disruption of ZAP70 autoinhibition by the R360P mutation enables increased mature T cell sensitivity to self-antigens that would normally be ignored by wild-type T cells, a mechanism that may contribute to the break of tolerance in human patients with R360P mutation.
Collapse
Affiliation(s)
- Lin Shen
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mehrdad Matloubian
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theresa A Kadlecek
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA. .,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
26
|
An allosteric hot spot in the tandem-SH2 domain of ZAP-70 regulates T-cell signaling. Biochem J 2020; 477:1287-1308. [PMID: 32203568 DOI: 10.1042/bcj20190879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
T-cell receptor (TCR) signaling is initiated by recruiting ZAP-70 to the cytosolic part of TCR. ZAP-70, a non-receptor tyrosine kinase, is composed of an N-terminal tandem SH2 (tSH2) domain connected to the C-terminal kinase domain. The ZAP-70 is recruited to the membrane through binding of tSH2 domain and the doubly phosphorylated ITAM motifs of CD3 chains in the TCR complex. Our results show that the tSH2 domain undergoes a biphasic structural transition while binding to the doubly phosphorylated ITAM-ζ1 peptide. The C-terminal SH2 domain binds first to the phosphotyrosine residue of ITAM peptide to form an encounter complex leading to subsequent binding of second phosphotyrosine residue to the N-SH2 domain. We decipher a network of noncovalent interactions that allosterically couple the two SH2 domains during binding to doubly phosphorylated ITAMs. Mutation in the allosteric network residues, for example, W165C, uncouples the formation of encounter complex to the subsequent ITAM binding thus explaining the altered recruitment of ZAP-70 to the plasma membrane causing autoimmune arthritis in mice. The proposed mechanism of allosteric coupling is unique to ZAP-70, which is fundamentally different from Syk, a close homolog of ZAP-70 expressed in B-cells.
Collapse
|
27
|
Chen J, Moore A, Ringshausen I. ZAP-70 Shapes the Immune Microenvironment in B Cell Malignancies. Front Oncol 2020; 10:595832. [PMID: 33194762 PMCID: PMC7653097 DOI: 10.3389/fonc.2020.595832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Zeta-chain-associated protein kinase-70 (ZAP-70) is a tyrosine kinase mainly expressed in T cells, NK cells and a subset of B cells. Primarily it functions in T cell receptor (TCR) activation through its tyrosine kinase activity. Aberrant expression of ZAP-70 has been evidenced in different B cell malignancies, with high expression of ZAP-70 in a subset of patients with Chronic Lymphocytic Leukemia (CLL), associating with unfavorable disease outcomes. Previous studies to understand the mechanisms underlying this correlation have been focused on tumor intrinsic mechanisms, including the activation of B cell receptor (BCR) signaling. Recent evidence also suggests that ZAP-70, intrinsically expressed in tumor cells, can modulate the cross-talk between malignant B cells and the immune environment, implying a more complex role of ZAP-70 in the pathogenesis of B cell malignancies. Meanwhile, the indispensible roles of ZAP-70 in T cell and NK cell activation also demonstrate that the autologous expression of ZAP-70 in the immune environment can be a central target in modulation of tumor immunity. Here we review the evidences of the link between ZAP-70 and tumor immunology in the microenvironment in B cell malignancies. Considering an emerging role of immunotherapies in treating these conditions, understanding the distinct molecular functions of ZAP-70 in a broader cellular context could ultimately benefit patient care.
Collapse
Affiliation(s)
| | | | - Ingo Ringshausen
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Sharifinejad N, Jamee M, Zaki-Dizaji M, Lo B, Shaghaghi M, Mohammadi H, Jadidi-Niaragh F, Shaghaghi S, Yazdani R, Abolhassani H, Aghamohammadi A, Azizi G. Clinical, Immunological, and Genetic Features in 49 Patients With ZAP-70 Deficiency: A Systematic Review. Front Immunol 2020; 11:831. [PMID: 32431715 PMCID: PMC7214800 DOI: 10.3389/fimmu.2020.00831] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Zeta-Chain Associated Protein Kinase 70 kDa (ZAP-70) deficiency is a rare combined immunodeficiency (CID) caused by recessive homozygous/compound heterozygous loss-of-function mutations in the ZAP70 gene. Patients with ZAP-70 deficiency present with a variety of clinical manifestations, particularly recurrent respiratory infections and cutaneous involvements. Therefore, a systematic review of ZAP-70 deficiency is helpful to achieve a comprehensive view of this disease. Methods: We searched PubMed, Web of Science, and Scopus databases for all reported ZAP-70 deficient patients and screened against the described eligibility criteria. A total of 49 ZAP-70 deficient patients were identified from 33 articles. For all patients, demographic, clinical, immunologic, and molecular data were collected. Results: ZAP-70 deficient patients have been reported in the literature with a broad spectrum of clinical manifestations including recurrent respiratory infections (81.8%), cutaneous involvement (57.9%), lymphoproliferation (32.4%), autoimmunity (19.4%), enteropathy (18.4%), and increased risk of malignancies (8.1%). The predominant immunologic phenotype was low CD8+ T cell counts (97.9%). Immunologic profiling showed defective antibody production (57%) and decreased lymphocyte responses to mitogenic stimuli such as phytohemagglutinin (PHA) (95%). Mutations of the ZAP70 gene were located throughout the gene, and there was no mutational hotspot. However, most of the mutations were located in the kinase domain. Hematopoietic stem cell transplantation (HSCT) was applied as the major curative treatment in 25 (51%) of the patients, 18 patients survived transplantation, while two patients died and three required a second transplant in order to achieve full remission. Conclusion: Newborns with consanguineous parents, positive family history of CID, and low CD8+ T cell counts should be considered for ZAP-70 deficiency screening, since early diagnosis and treatment with HSCT can lead to a more favorable outcome. Based on the current evidence, there is no genotype-phenotype correlation in ZAP-70 deficient patients.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Bernice Lo
- Sidra Medicine, Division of Translational Medicine, Research Branch, Doha, Qatar
| | - Mohammadreza Shaghaghi
- Johns Hopkins Hospital, Baltimore, MD, United States.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
29
|
Takeuchi Y, Hirota K, Sakaguchi S. Impaired T cell receptor signaling and development of T cell-mediated autoimmune arthritis. Immunol Rev 2020; 294:164-176. [PMID: 31944330 DOI: 10.1111/imr.12841] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022]
Abstract
Mutations of the genes encoding T-cell receptor (TCR)-proximal signaling molecules, such as ZAP-70, can be causative of immunological diseases ranging from T-cell immunodeficiency to T-cell-mediated autoimmune disease. For example, SKG mice, which carry a hypomorphic point mutation of the Zap-70 gene, spontaneously develop T-cell-mediated autoimmune arthritis immunopathologically similar to human rheumatoid arthritis (RA). The Zap-70 mutation alters the sensitivity of developing T cells to thymic positive/negative selection by self-peptides/MHC complexes, shifting self-reactive TCR repertoire to include a dominant arthritogenic specificity and also affecting thymic development and function of autoimmune suppressive regulatory T (Treg) cells. Polyclonal self-reactive T cells, including potentially arthritogenic T cells, thus produced by the thymus recognize self-peptide/MHC complexes on antigen-presenting cells (APCs) in the periphery and stimulate them to produce cytokines including IL-6 to drive the arthritogenic T cells to differentiate into arthritogenic T-helper 17 (Th17) cells. Insufficient Treg suppression or activation of APCs via microbial and other environmental stimuli evokes arthritis by activating granulocyte-macrophage colony-stimulating factor-secreting effector Th17 cells, mediating chronic bone-destructive joint inflammation by activating myeloid cells, innate lymphoid cells, and synoviocytes in the joint. These findings obtained from the study of SKG mouse arthritis are instrumental in understanding how arthritogenic T cells are produced, become activated, and differentiate into effector T cells mediating arthritis, and may help devising therapeutic measures targeting autoimmune pathogenic Th17 cells or autoimmune-suppressing Treg cells to treat and prevent RA.
Collapse
Affiliation(s)
- Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Anderson W, Thorpe J, Long SA, Rawlings DJ. Efficient CRISPR/Cas9 Disruption of Autoimmune-Associated Genes Reveals Key Signaling Programs in Primary Human T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:3166-3178. [PMID: 31722988 PMCID: PMC6904544 DOI: 10.4049/jimmunol.1900848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
Risk of autoimmunity is associated with multiple genetic variants. Genome-wide association studies have linked single-nucleotide polymorphisms in the phosphatases PTPN22 (rs2476601) and PTPN2 (rs1893217) to increased risk for multiple autoimmune diseases. Previous mouse studies of loss of function or risk variants in these genes revealed hyperactive T cell responses, whereas studies of human lymphocytes revealed contrasting phenotypes. To better understand this dichotomy, we established a robust gene editing platform to rapidly address the consequences of loss of function of candidate genes in primary human CD4+ T cells. Using CRISPR/Cas9, we obtained efficient gene disruption (>80%) of target genes encoding proteins involved in Ag and cytokine receptor signaling pathways including PTPN22 and PTPN2 Loss-of-function data in all genes studied correlated with previous data from mouse models. Further analyses of PTPN2 gene-disrupted T cells demonstrated dynamic effects, by which hyperactive IL-2R signaling promoted compensatory transcriptional events, eventually resulting in T cells that were hyporesponsive to IL-2. These results imply that altered phosphatase activity promotes evolving phenotypes based on Ag experience and/or other programming signals. This approach enables the discovery of molecular mechanisms modulating risk of autoimmunity that have been difficult to parse in traditional mouse models or cross-sectional human studies.
Collapse
Affiliation(s)
- Warren Anderson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
- Department of Pathology, University of Washington, Seattle, WA 98195
| | - Jerill Thorpe
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - S Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101;
- Department of Pediatrics, University of Washington, Seattle, WA 98109; and
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
31
|
Konantz M, Schürch C, Hanns P, Müller JS, Sauteur L, Lengerke C. Modeling hematopoietic disorders in zebrafish. Dis Model Mech 2019; 12:12/9/dmm040360. [PMID: 31519693 PMCID: PMC6765189 DOI: 10.1242/dmm.040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zebrafish offer a powerful vertebrate model for studies of development and disease. The major advantages of this model include the possibilities of conducting reverse and forward genetic screens and of observing cellular processes by in vivo imaging of single cells. Moreover, pathways regulating blood development are highly conserved between zebrafish and mammals, and several discoveries made in fish were later translated to murine and human models. This review and accompanying poster provide an overview of zebrafish hematopoiesis and discuss the existing zebrafish models of blood disorders, such as myeloid and lymphoid malignancies, bone marrow failure syndromes and immunodeficiencies, with a focus on how these models were generated and how they can be applied for translational research. Summary: This At A Glance article and poster summarize the last 20 years of research in zebrafish models for hematopoietic disorders, highlighting how these models were created and are being applied for translational research.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Christoph Schürch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Pauline Hanns
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Joëlle S Müller
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Loïc Sauteur
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland.,Division of Hematology, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| |
Collapse
|
32
|
De Martini W, Rahman R, Ojegba E, Jungwirth E, Macias J, Ackerly F, Fowler M, Cottrell J, Chu T, Chang SL. Kinases: Understanding Their Role in HIV Infection. WORLD JOURNAL OF AIDS 2019; 9:142-160. [PMID: 32257606 PMCID: PMC7118713 DOI: 10.4236/wja.2019.93011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antiviral drugs currently on the market primarily target proteins encoded by specific viruses. The drawback of these drugs is that they lack antiviral mechanisms that account for resistance or viral mutation. Thus, there is a pressing need for researchers to explore and investigate new therapeutic agents with other antiviral strategies. Viruses such as the human immunodeficiency virus (HIV) alter canonical signaling pathways to create a favorable biochemical environment for infectivity. We used Qiagen Ingenuity Pathway Analysis (IPA) software to review the function of several cellular kinases and the resulting perturbed signaling pathways during HIV infection such as NF-κB signaling. These host cellular kinases such as ADK, PKR, MAP3K11 are involved during HIV infection at various stages of the life cycle. Additionally IPA analysis indicated that these modified host cellular kinases are known to have interactions with each other especially AKT1, a serine/threonine kinase involved in multiple pathways. We present a list of cellular host kinases and other proteins that interact with these kinases. This approach to understanding the relationship between HIV infection and kinase activity may introduce new drug targets to arrest HIV infectivity.
Collapse
Affiliation(s)
- William De Martini
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Roksana Rahman
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Eduvie Ojegba
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Emily Jungwirth
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Jasmine Macias
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Frederick Ackerly
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Mia Fowler
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Tinchun Chu
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Sulie L. Chang
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
- Institute of NeuroImmune Pharmacology, South Orange, NJ, USA
| |
Collapse
|
33
|
Perez-Diez A, Liu X, Sheikh V, Roby G, Stroncek DF, Sereti I. Humanized mouse models reveal an immunologic classification of idiopathic CD4 lymphocytopenia subtypes. JCI Insight 2019; 4:127802. [PMID: 31341106 DOI: 10.1172/jci.insight.127802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
Idiopathic CD4 lymphocytopenia (ICL) is a clinically heterogeneous immunodeficiency disorder defined by low numbers of circulating CD4+ T cells and increased susceptibility to opportunistic infections. CD8+ T cells, NK, and/or B cells may also be deficient in some patients. To delineate possible pathogenic cellular mechanisms in ICL, we compared immune system development and function in NOD-RAGKO-γcKO (NRG) mice transplanted with hematopoietic stem cells from patients with ICL or healthy controls. CD34+ hematopoietic stem cells from healthy controls and patients with ICL reconstituted NRG mice equally well. In contrast, PBMC transfers into NRG mice identified 2 ICL engraftment phenotypes, reconstituting and nonreconstituting (NR), based on the absence or presence of donor lymphopenia. For patients in the NR group, the distribution of lymphocyte subsets was similar in the peripheral blood of both the patient and the corresponding humanized mice. The NR-ICL group could be further divided into individuals whose CD3+ T cells had defects in proliferation or survival. Thus, ICL cellular pathogenesis might be classified by humanized mouse models into 3 distinct subtypes: (a) T cell extrinsic, (b) T cell intrinsic affecting proliferation, and (c) T cell intrinsic affecting survival. Humanized mouse models of ICL help to delineate etiology and ultimately to guide development of individualized therapeutic strategies.
Collapse
Affiliation(s)
- Ainhoa Perez-Diez
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, and
| | - Xiangdong Liu
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, and
| | - Virginia Sheikh
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, and
| | - Gregg Roby
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, and
| | - David F Stroncek
- Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, and
| |
Collapse
|
34
|
Xie J, Han X, Zhao C, Canonigo-Balancio AJ, Yates JR, Li Y, Lillemeier BF, Altman A. Phosphotyrosine-dependent interaction between the kinases PKCθ and Zap70 promotes proximal TCR signaling. Sci Signal 2019; 12:12/577/eaar3349. [PMID: 30992398 DOI: 10.1126/scisignal.aar3349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein kinase C-θ (PKCθ) is an important component of proximal T cell receptor (TCR) signaling. We previously identified the amino-terminal C2 domain of PKCθ as a phosphotyrosine (pTyr)-binding domain. Using a mutant form of PKCθ that cannot bind pTyr (PKCθHR2A), we showed that pTyr binding by PKCθ was required for TCR-induced T cell activation, proliferation, and TH2 cell differentiation but not for T cell development. Using tandem mass spectrometry and coimmunoprecipitation, we identified the kinase ζ-associated protein kinase of 70 kDa (Zap70) as a binding partner of the PKCθ pTyr-binding pocket. Tyr126 of Zap70 directly bound to PKCθ, and the interdomain B residues Tyr315 and Tyr319 were indirectly required for binding to PKCθ, reflecting their role in promoting the open conformation of Zap70. PKCθHR2A-expressing CD4+ T cells displayed defects not only in known PKCθ-dependent signaling events, such as nuclear factor κB (NF-κB) activation and TH2 cell differentiation, but also in full activation of Zap70 itself and in the activating phosphorylation of linker of activation of T cells (LAT) and phospholipase C-γ1 (PLCγ1), signaling proteins that are traditionally considered to be activated independently of PKC. These findings demonstrate that PKCθ plays an important role in a positive feedback regulatory loop that modulates TCR-proximal signaling and, moreover, provide a mechanistic explanation for earlier reports that documented an important role for PKCθ in T cell Ca2+ signaling. This PKCθ-Zap70 interaction could potentially serve as a promising and highly selective immunosuppressive drug target in autoimmunity and organ transplantation.
Collapse
Affiliation(s)
- Jiji Xie
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chensi Zhao
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | | | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yingqiu Li
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Björn F Lillemeier
- Nomis Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
Castagnoli R, Delmonte OM, Calzoni E, Notarangelo LD. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Diseases: Current Status and Future Perspectives. Front Pediatr 2019; 7:295. [PMID: 31440487 PMCID: PMC6694735 DOI: 10.3389/fped.2019.00295] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Primary immunodeficiencies (PID) are disorders that for the most part result from mutations in genes involved in immune host defense and immunoregulation. These conditions are characterized by various combinations of recurrent infections, autoimmunity, lymphoproliferation, inflammatory manifestations, atopy, and malignancy. Most PID are due to genetic defects that are intrinsic to hematopoietic cells. Therefore, replacement of mutant cells by healthy donor hematopoietic stem cells (HSC) represents a rational therapeutic approach. Full or partial ablation of the recipient's marrow with chemotherapy is often used to allow stable engraftment of donor-derived HSCs, and serotherapy may be added to the conditioning regimen to reduce the risks of graft rejection and graft versus host disease (GVHD). Initially, hematopoietic stem cell transplantation (HSCT) was attempted in patients with severe combined immunodeficiency (SCID) as the only available curative treatment. It was a challenging procedure, associated with elevated rates of morbidity and mortality. Overtime, outcome of HSCT for PID has significantly improved due to availability of high-resolution HLA typing, increased use of alternative donors and new stem cell sources, development of less toxic, reduced-intensity conditioning (RIC) regimens, and cellular engineering techniques for graft manipulation. Early identification of infants affected by SCID, prior to infectious complication, through newborn screening (NBS) programs and prompt genetic diagnosis with Next Generation Sequencing (NGS) techniques, have also ameliorated the outcome of HSCT. In addition, HSCT has been applied to treat a broader range of PID, including disorders of immune dysregulation. Yet, the broad spectrum of clinical and immunological phenotypes associated with PID makes it difficult to define a universal transplant regimen. As such, integration of knowledge between immunologists and transplant specialists is necessary for the development of innovative transplant protocols and to monitor their results during follow-up. Despite the improved outcome observed after HSCT, patients with severe forms of PID still face significant challenges of short and long-term transplant-related complications. To address this issue, novel HSCT strategies are being implemented aiming to improve both survival and long-term quality of life. This article will discuss the current status and latest developments in HSCT for PID, and present data regarding approach and outcome of HSCT in recently described PID, including disorders associated with immune dysregulation.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Ottavia Maria Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Enrica Calzoni
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Luigi Daniele Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
36
|
Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev 2019; 287:202-225. [PMID: 30565241 PMCID: PMC6310041 DOI: 10.1111/imr.12725] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022]
Abstract
Human NK cells are innate immune effectors that play a critical roles in the control of viral infection and malignancy. The importance of their homeostasis and function can be demonstrated by the study of patients with primary immunodeficiencies (PIDs), which are part of the family of diseases known as inborn defects of immunity. While NK cells are affected in many PIDs in ways that may contribute to a patient's clinical phenotype, a small number of PIDs have an NK cell abnormality as their major immunological defect. These PIDs can be collectively referred to as NK cell deficiency (NKD) disorders and include effects upon NK cell numbers, subsets, and/or functions. The clinical impact of NKD can be severe including fatal viral infection, with particular susceptibility to herpesviral infections, such as cytomegalovirus, varicella zoster virus, and Epstein-Barr virus. While NKD is rare, studies of these diseases are important for defining specific requirements for human NK cell development and homeostasis. New themes in NK cell biology are emerging through the study of both known and novel NKD, particularly those affecting cell cycle and DNA damage repair, as well as broader PIDs having substantive impact upon NK cells. In addition, the discovery of NKD that affects other innate lymphoid cell (ILC) subsets opens new doors for better understanding the relationship between conventional NK cells and other ILC subsets. Here, we describe the biology underlying human NKD, particularly in the context of new insights into innate immune cell function, including a discussion of recently described NKD with accompanying effects on ILC subsets. Given the impact of these disorders upon human immunity with a common focus upon NK cells, the unifying message of a critical role for NK cells in human host defense singularly emerges.
Collapse
Affiliation(s)
- Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
37
|
Rissone A, Burgess SM. Rare Genetic Blood Disease Modeling in Zebrafish. Front Genet 2018; 9:348. [PMID: 30233640 PMCID: PMC6127601 DOI: 10.3389/fgene.2018.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023] Open
Abstract
Hematopoiesis results in the correct formation of all the different blood cell types. In mammals, it starts from specific hematopoietic stem and precursor cells residing in the bone marrow. Mature blood cells are responsible for supplying oxygen to every cell of the organism and for the protection against pathogens. Therefore, inherited or de novo genetic mutations affecting blood cell formation or the regulation of their activity are responsible for numerous diseases including anemia, immunodeficiency, autoimmunity, hyper- or hypo-inflammation, and cancer. By definition, an animal disease model is an analogous version of a specific clinical condition developed by researchers to gain information about its pathophysiology. Among all the model species used in comparative medicine, mice continue to be the most common and accepted model for biomedical research. However, because of the complexity of human diseases and the intrinsic differences between humans and other species, the use of several models (possibly in distinct species) can often be more helpful and informative than the use of a single model. In recent decades, the zebrafish (Danio rerio) has become increasingly popular among researchers, because it represents an inexpensive alternative compared to mammalian models, such as mice. Numerous advantages make it an excellent animal model to be used in genetic studies and in particular in modeling human blood diseases. Comparing zebrafish hematopoiesis to mammals, it is highly conserved with few, significant differences. In addition, the zebrafish model has a high-quality, complete genomic sequence available that shows a high level of evolutionary conservation with the human genome, empowering genetic and genomic approaches. Moreover, the external fertilization, the high fecundity and the transparency of their embryos facilitate rapid, in vivo analysis of phenotypes. In addition, the ability to manipulate its genome using the last genome editing technologies, provides powerful tools for developing new disease models and understanding the pathophysiology of human disorders. This review provides an overview of the different approaches and techniques that can be used to model genetic diseases in zebrafish, discussing how this animal model has contributed to the understanding of genetic diseases, with a specific focus on the blood disorders.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
38
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
39
|
Abstract
![]()
T cells
expressing tumor-specific T cell receptors are promising cancer therapeutic
agents, but safety control switches are needed to manage potential
side effects arising from overactivity. Here, we present the first
dual small molecule-gated ZAP70 signaling switch for the regulation
of T cell activity. We show that when an analogue-sensitive ZAP70
allele is fused to the engineered ligand binding domain of the estrogen
receptor, ERT2, its activity can be upregulated to an extent
by a metabolite of an FDA-approved tamoxifen, 4-hydroxy-tamoxifen,
and downregulated by an ATP analogue, 3-MB-PP1. The strength of early
T cell signaling can also be modulated by varying the concentrations
of activator and inhibitor, and the switch exhibits temporal control
on the time scale of minutes. Interestingly, the switch has the ability
to control CD69 and calcium levels in T cells but has limited capabilities
in the regulation of downstream cytokine release, suggesting further
investigation is needed before it can be implemented in adoptive T
cell therapy.
Collapse
Affiliation(s)
- Nicole M. L. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| | - Wilson W. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
40
|
Milner JD. TCR Signaling Abnormalities in Human Th2-Associated Atopic Disease. Front Immunol 2018; 9:719. [PMID: 29713322 PMCID: PMC5911486 DOI: 10.3389/fimmu.2018.00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/22/2018] [Indexed: 11/15/2022] Open
Abstract
Stimulation of naïve CD4 T cells with weak T cell receptor agonists even in the absence of T helper-skewing cytokines can result in IL-4 production which can drive a Th2 response. Evidence for the in vivo consequences of such a phenomenon can be found in a number of mouse models and, importantly, a series of monogenic human diseases associated with significant atopy which are caused by mutations in the T cell receptor signaling cascade. Such diseases can help understand how Th2 responses evolve in humans, and potentially provide insight into therapeutic interventions.
Collapse
Affiliation(s)
- Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
41
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
42
|
Lyons JJ, Milner JD. Primary atopic disorders. J Exp Med 2018; 215:1009-1022. [PMID: 29549114 PMCID: PMC5881472 DOI: 10.1084/jem.20172306] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Important insights from monogenic disorders into the immunopathogenesis of allergic diseases and reactions are discussed. Monogenic disorders have provided fundamental insights into human immunity and the pathogenesis of allergic diseases. The pathways identified as critical in the development of atopy range from focal defects in immune cells and epithelial barrier function to global changes in metabolism. A major goal of studying heritable single-gene disorders that lead to severe clinical allergic diseases is to identify fundamental pathways leading to hypersensitivity that can be targeted to provide novel therapeutic strategies for patients with allergic diseases, syndromic and nonsyndromic alike. Here, we review known single-gene disorders leading to severe allergic phenotypes in humans, discuss how the revealed pathways fit within our current understanding of the atopic diathesis, and propose how some pathways might be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Thurm C, Poltorak MP, Reimer E, Brinkmann MM, Leichert L, Schraven B, Simeoni L. A highly conserved redox-active Mx(2)CWx(6)R motif regulates Zap70 stability and activity. Oncotarget 2018; 8:30805-30816. [PMID: 28415650 PMCID: PMC5458169 DOI: 10.18632/oncotarget.16486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/16/2017] [Indexed: 11/25/2022] Open
Abstract
ζ-associated protein of 70 kDa (Zap70) is crucial for T-cell receptor (TCR) signaling. Loss of Zap70 in both humans and mice results in severe immunodeficiency. On the other hand, the expression of Zap70 in B-cell malignancies correlates with the severity of the disease. Because of its role in immune-related disorders, Zap70 has become a therapeutic target for the treatment of human diseases. It is well-established that the activity/expression of Zap70 is regulated by post-translational modifications of crucial amino acids including the phosphorylation of tyrosines and the ubiquitination of lysines. Here, we have investigated whether also oxidation of cysteine residues regulates Zap70 functions. We have identified C575 as a major sulfenylation site of Zap70. A C575A substitution results in protein instability, reduced activity, and increased dependency on the Hsp90/Cdc37 chaperone system. Indeed, Cdc37 overexpression reconstituted partially the expression but fully the function of Zap70C575A. C575 lies within a Mx(2)CWx(6)R motif which is highly conserved among almost all human tyrosine kinases. Mutation of any of the conserved amino acids, but not of a non-conserved residue preceding the cysteine, also results in Zap70 instability. Collectively, we have identified a new redox-active motif which is crucial for the regulation of Zap70 stability/activity. We believe that this motif has the potential to become a novel target for the development of therapeutic tools to modulate the expression/activity of kinases.
Collapse
Affiliation(s)
- Christoph Thurm
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany
| | - Mateusz P Poltorak
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany.,Current address: Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Elisa Reimer
- Viral Immune Modulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Melanie M Brinkmann
- Viral Immune Modulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lars Leichert
- Institute for Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany.,Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
44
|
Kugyelka R, Kohl Z, Olasz K, Prenek L, Berki T, Balogh P, Boldizsár F. Correction of T cell deficiency in ZAP-70 knock-out mice by simple intraperitoneal adoptive transfer of thymocytes. Clin Exp Immunol 2018; 192:302-314. [PMID: 29431868 DOI: 10.1111/cei.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 12/01/2022] Open
Abstract
The tyrosine kinase zeta chain-associated protein of 70 kDa (ZAP-70) plays a key role in T cell development and signalling. In the absence of ZAP-70, T cell development is arrested in the CD4+ CD8+ double-positive stage, thus ZAP-70 homozygous knockout (ZAP-70-/- ) mice have no mature T cells in their peripheral lymphoid organs and blood, causing severe immunodeficiency. We investigated the early kinetics and long-term effects of wild-type thymocyte transfer on T cell repopulation in ZAP-70-/- mice. We used a single intraperitoneal (i.p.) injection to deliver donor thymocytes to the recipients. Here, we show that after i.p. injection donor thymocytes leave the peritoneum through milky spots in the omentum and home to the thymus, where donor-originated CD4- CD8- double-negative thymocytes most probably restore T cell development and the disrupted thymic architecture. Subsequently, newly developed, donor-originated, single-positive αβ T cells appear in peripheral lymphoid organs, where they form organized T cell zones. The established chimerism was found to be stable, as donor-originated cells were present in transferred ZAP-70-/- mice as late as 8 months after i.p. injection. We demonstrate that a simple i.p. injection of ZAP-70+/+ thymocytes is a feasible method for the long-term reconstitution of T cell development in ZAP-70-deficient mice.
Collapse
Affiliation(s)
- R Kugyelka
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Z Kohl
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - K Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - L Prenek
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - T Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - P Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - F Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
45
|
Pai SY, Notarangelo LD. Congenital Disorders of Lymphocyte Function. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
46
|
Ngoenkam J, Schamel WW, Pongcharoen S. Selected signalling proteins recruited to the T-cell receptor-CD3 complex. Immunology 2018; 153:42-50. [PMID: 28771705 PMCID: PMC5721247 DOI: 10.1111/imm.12809] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
The T-cell receptor (TCR)-CD3 complex, expressed on T cells, determines the outcome of a T-cell response. It consists of the TCR-αβ heterodimer and the non-covalently associated signalling dimers of CD3εγ, CD3εδ and CD3ζζ. TCR-αβ binds specifically to a cognate peptide antigen bound to an MHC molecule, whereas the CD3 subunits transmit the signal into the cytosol to activate signalling events. Recruitment of proteins to specialized localizations is one mechanism to regulate activation and termination of signalling. In the last 25 years a large number of signalling molecules recruited to the TCR-CD3 complex upon antigen binding to TCR-αβ have been described. Here, we review knowledge about five of those interaction partners: Lck, ZAP-70, Nck, WASP and Numb. Some of these proteins have been targeted in the development of immunomodulatory drugs aiming to treat patients with autoimmune diseases and organ transplants.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Humans
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Proteins/metabolism
- Mutation
- Nerve Tissue Proteins/metabolism
- Oncogene Proteins/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Wiskott-Aldrich Syndrome Protein/metabolism
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Jatuporn Ngoenkam
- Department of Microbiology and ParasitologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Wolfgang W. Schamel
- Department of ImmunologyInstitute for Biology IIIFaculty of BiologyUniversity of FreiburgFreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Centre for Chronic Immunodeficiency (CCI)Medical Centre‐University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Sutatip Pongcharoen
- Centre of Excellence in Medical BiotechnologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
- Centre of Excellence in Petroleum, Petrochemicals and Advanced MaterialsFaculty of ScienceNaresuan UniversityPhitsanulokThailand
- Department of MedicineFaculty of MedicineNaresuan UniversityPhitsanulokThailand
| |
Collapse
|
47
|
Sullivan KD, Evans D, Pandey A, Hraha TH, Smith KP, Markham N, Rachubinski AL, Wolter-Warmerdam K, Hickey F, Espinosa JM, Blumenthal T. Trisomy 21 causes changes in the circulating proteome indicative of chronic autoinflammation. Sci Rep 2017; 7:14818. [PMID: 29093484 PMCID: PMC5665944 DOI: 10.1038/s41598-017-13858-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
Trisomy 21 (T21) causes Down syndrome (DS), but the mechanisms by which T21 produces the different disease spectrum observed in people with DS are unknown. We recently identified an activated interferon response associated with T21 in human cells of different origins, consistent with overexpression of the four interferon receptors encoded on chromosome 21, and proposed that DS could be understood partially as an interferonopathy. However, the impact of T21 on systemic signaling cascades in living individuals with DS is undefined. To address this knowledge gap, we employed proteomics approaches to analyze blood samples from 263 individuals, 165 of them with DS, leading to the identification of dozens of proteins that are consistently deregulated by T21. Most prominent among these proteins are numerous factors involved in immune control, the complement cascade, and growth factor signaling. Importantly, people with DS display higher levels of many pro-inflammatory cytokines (e.g. IL-6, MCP-1, IL-22, TNF-α) and pronounced complement consumption, resembling changes seen in type I interferonopathies and other autoinflammatory conditions. Therefore, these results are consistent with the hypothesis that increased interferon signaling caused by T21 leads to chronic immune dysregulation, and justify investigations to define the therapeutic value of immune-modulatory strategies in DS.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Donald Evans
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Ahwan Pandey
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | | | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Neil Markham
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Angela L Rachubinski
- JFK Partners/Developmental Pediatrics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Kristine Wolter-Warmerdam
- Anna and John J. Sie Center for Down Syndrome, Children's Hospital Colorado, Aurora, Colorado, 80045, USA
| | - Francis Hickey
- Anna and John J. Sie Center for Down Syndrome, Children's Hospital Colorado, Aurora, Colorado, 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA. .,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA. .,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80203, USA.
| | - Thomas Blumenthal
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA. .,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80203, USA. .,Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA.
| |
Collapse
|
48
|
Llamas-Guillén BA, Pastor N, López-Herrera G, González-Serrano ME, Valenzuela-Vázquez L, Bravo-Adame ME, Villanueva-Cabello TM, Gaytán P, Yañez J, Martinez-Duncker I, Ruiz-Fernández M, Veillette A, Espinosa-Padilla SE, Cruz-Munoz ME. Two novel mutations in ZAP70 gene that result in human immunodeficiency. Clin Immunol 2017; 183:278-284. [PMID: 28912049 DOI: 10.1016/j.clim.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/23/2017] [Accepted: 09/09/2017] [Indexed: 11/28/2022]
Affiliation(s)
| | - Nina Pastor
- Cell Dynamics Research Center-IICBA, Autonomous University of Morelos State, Mexico
| | | | | | | | | | | | - Paul Gaytán
- Biotechnology Institute, Autonomous National University of México, Mexico
| | - Jorge Yañez
- Biotechnology Institute, Autonomous National University of México, Mexico
| | | | | | | | | | - Mario Ernesto Cruz-Munoz
- School of Medicine, Autonomous University of Morelos State, Mexico; Diagnostic and Molecular Medicine Unit "Dr. Ruy Pérez Tamayo", Morelos Children Hospital, Mexico.
| |
Collapse
|
49
|
Marczynke M, Gröger K, Seitz O. Selective Binders of the Tandem Src Homology 2 Domains in Syk and Zap70 Protein Kinases by DNA-Programmed Spatial Screening. Bioconjug Chem 2017; 28:2384-2392. [PMID: 28767218 DOI: 10.1021/acs.bioconjchem.7b00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Members of the Syk family of tyrosine kinases arrange Src homology 2 (SH2) domains in tandem to allow the firm binding of immunoreceptor tyrosine-based interaction motifs (ITAMs). While the advantages provided by the bivalency enhanced interactions are evident, the impact on binding specificity is less-clear. For example, the spleen tyrosine kinase (Syk) and the ζ-chain-associated protein kinase (ZAP-70) recognize the consensus sequence pYXXI/L(X)6-8 pYXXI/L with near-identical nanomolar affinity. The nondiscriminatory recognition, on the one hand, poses a specificity challenge for the design of subtype selective protein binders and, on the other hand, raises the question as to how differential activation of Syk and ZAP-70 is ensured when both kinases are co-expressed. Herein, we identified the criteria for the design of binders that specifically address either the Syk or the Zap-70 tSH2 domain. Our approach is based on DNA-programmed spatial screening. Tyrosine-phosphorylated peptides containing the pYXXI/L motif were attached to oligonucleotides and aligned in tandem on a DNA template by means of nucleic acid hybridization. The distance between the pYXXI/L motifs and the orientation of strands were varied. The exploration exposed remarkably different recognition characteristics. While Syk tSH2 has a rather broad substrate scope, ZAP-70 tSH2 required a proximal arrangement of the phosphotyrosine ligands in defined strand orientation. The spatial screen led to the design of mutually selective, DNA-free binders, which discriminate Zap-70 and Syk tSH2 by 1 order of magnitude in affinity.
Collapse
Affiliation(s)
- Michaela Marczynke
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Katharina Gröger
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| |
Collapse
|
50
|
Shen N, He R, Liang Y, Xu J, He M, Ren Y, Gu X, Lai W, Xie Y, Peng X, Yang G. Expression and characterisation of a Sarcoptes scabiei protein tyrosine kinase as a potential antigen for scabies diagnosis. Sci Rep 2017; 7:9639. [PMID: 28852108 PMCID: PMC5575040 DOI: 10.1038/s41598-017-10326-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
Scabies is a disease that harms humans and other animals that is caused by the itch mite Sarcoptes scabiei burrowing into the stratum corneum of the skin. In the early stages of scabies, symptoms are often subclinical and there are no effective diagnostic methods. Herein, we cloned, expressed and characterised an S. scabiei protein tyrosine kinase (SsPTK) and evaluated its diagnostic value as a recombinant antigen in rabbit during the early stages of Sarcoptes infestation. The SsPTK protein is ~30 kDa, lacks a signal peptide, and shares high homology with a PTK from the rabbit ear mite Psoroptes ovis cuniculi. The protein was widely distributed at the front end of mites, particularly in the chewing mouthparts and legs. Indirect ELISA using recombinant SsPTK showed good diagnostic value, with 95.2% (40/42) sensitivity and 94.1% (48/51) specificity for detecting anti-PTK antibody in serum samples from naturally-infested rabbits. More importantly, PTK ELISA could diagnose infection in the early stages (infestation for 1 week) with an accuracy of 100% (24/24). SsPTK therefore shows potential as a sensitive antigen for the early diagnosis of parasitic mite infestation.
Collapse
Affiliation(s)
- Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yuqing Liang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Manli He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yongjun Ren
- Sichuan Animal Sciences Academy, Sichuan Chengdu, 610066, China
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Chengdu, 610066, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.
| |
Collapse
|