1
|
Krishnamoorthy N, Gajendrarao P, Eom SH, Kwon YJ, Cheong GW, Lee KW. Molecular modeling study of CodX reveals importance of N-terminal and C-terminal domain in the CodWX complex structure of Bacillus subtilis. J Mol Graph Model 2008; 27:1-12. [PMID: 18400533 DOI: 10.1016/j.jmgm.2008.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/17/2008] [Accepted: 01/27/2008] [Indexed: 11/27/2022]
Abstract
In Bacillus subtilis, CodW peptidase and CodX ATPase function together as a distinctive ATP-dependent protease called CodWX, which participates in protein degradation and regulates cell division. The molecular structure of CodX and the assembly structure of CodW-CodX have not yet been resolved. Here we present the first three-dimensional structure of CodX N-terminal (N) and C-terminal (C) domain including possible structure of intermediate (I) domain based on the crystal structure of homologous Escherichia coli HslU ATPase. Moreover, the biologically relevant CodWX (W(6)W(6)X(6)) octadecamer complex structure was constructed using the recently identified CodW-HslU hybrid crystal structure. Molecular dynamics (MD) simulation shows a reasonably stable structure of modeled CodWX and explicit behavior of key segments in CodX N and C domain: nucleotide binding residues, GYVG pore motif and CodW-CodX interface. Predicted structure of the possible I domain is flexible in nature with highly coiled hydrophobic region (M153-M206) that could favor substrate binding and entry. Electrostatic surface potential observation unveiled charge complementarity based CodW-CodX interaction pattern could be a possible native interaction pattern in the interface of CodWX. CodX GYVG pore motif structural features, flexible nature of glycine (G92 and G95) residues and aromatic ring conformation preserved Y93 indicated that it may follow the similar mode during the proteolysis mechanism as in the HslU closed state. This molecular modeling study uncovers the significance of CodX N and C domain in CodWX complex and provides possible explanations which would be helpful to understand the CodWX-dependent proteolysis mechanism of B. subtilis.
Collapse
Affiliation(s)
- Navaneethakrishnan Krishnamoorthy
- Department of Biochemistry, Division of Applied Life Sciences, BK21 Program, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
2
|
Rho SH, Park HH, Kang GB, Im YJ, Kang MS, Lim BK, Seong IS, Seol J, Chung CH, Wang J, Eom SH. Crystal structure ofBacillus subtilis CodW, a noncanonical HslV-like peptidase with an impaired catalytic apparatus. Proteins 2008; 71:1020-6. [DOI: 10.1002/prot.21758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Okano S, Shibata Y, Shiroza T, Abiko Y. Proteomics-based analysis of a counter-oxidative stress system in Porphyromonas gingivalis. Proteomics 2006; 6:251-8. [PMID: 16281182 DOI: 10.1002/pmic.200401338] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic pathogen associated with chronic periodontitis. Although anaerobic, P. gingivalis exhibits a high degree of aerotolerance, which enables it to survive within periodontal pockets. The aim of the present study was to examine the effect of oxidative stress on protein expression in P. gingivalis to obtain a better understanding of the mechanism underlying its aerotolerance. To accomplish this, P. gingivalis cells were grown under conditions of hemin limitation (0.01 microg/mL) to avoid the oxygen protective effect of hemin on oxidative stress. The proteins were then extracted from cultures either left untreated or subjected to oxidative stress and separated by 2-DE. The resultant protein expression profiles were examined by image scanning, and those found to differ depending on the presence or absence of aeration were subjected to MALDI-MS and then analyzed using the ORF database of P. gingivalis W83 from The Institute of Genomic Research. Oxidative stress was found to affect the expression of numerous proteins in P. gingivalis cells. In particular, the levels of HtpG, GroEL, DnaK, AhpC, TPR domain protein, and trigger factor were substantially increased.
Collapse
Affiliation(s)
- Soichiro Okano
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587 Chiba, Japan
| | | | | | | |
Collapse
|
4
|
Affiliation(s)
- Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Abstract
The ultimate mechanism that cells use to ensure the quality of intracellular proteins is the selective destruction of misfolded or damaged polypeptides. In eukaryotic cells, the large ATP-dependent proteolytic machine, the 26S proteasome, prevents the accumulation of non-functional, potentially toxic proteins. This process is of particular importance in protecting cells against harsh conditions (for example, heat shock or oxidative stress) and in a variety of diseases (for example, cystic fibrosis and the major neurodegenerative diseases). A full understanding of the pathogenesis of the protein-folding diseases will require greater knowledge of how misfolded proteins are recognized and selectively degraded.
Collapse
Affiliation(s)
- Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
6
|
Kang MS, Kim SR, Kwack P, Lim BK, Ahn SW, Rho YM, Seong IS, Park SC, Eom SH, Cheong GW, Chung CH. Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site. EMBO J 2003; 22:2893-902. [PMID: 12805205 PMCID: PMC162141 DOI: 10.1093/emboj/cdg289] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CodWX in Bacillus subtilis is an ATP-dependent, N-terminal serine protease, consisting of CodW peptidase and CodX ATPase. Here we show that CodWX is an alkaline protease and has a distinct molecular architecture. ATP hydrolysis is required for the formation of the CodWX complex and thus for its proteolytic function. Remarkably, CodX has a 'spool-like' structure that is formed by interaction of the intermediate domains of two hexameric or heptameric rings. In the CodWX complex, CodW consisting of two stacked hexameric rings (WW) binds to either or both ends of a CodX double ring (XX), forming asymmetric (WWXX) or symmetric cylindrical particles (WWXXWW). CodWX can also form an elongated particle, in which an additional CodX double ring is bound to the symmetric particle (WWXXWWXX). In addition, CodWX is capable of degrading EzrA, an inhibitor of FtsZ ring formation, implicating it in the regulation of cell division. Thus, CodWX appears to constitute a new type of protease that is distinct from other ATP-dependent proteases in its structure and proteolytic mechanism.
Collapse
Affiliation(s)
- Min Suk Kang
- NRL of Protein Biochemistry, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Takaya A, Suzuki M, Matsui H, Tomoyasu T, Sashinami H, Nakane A, Yamamoto T. Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar typhimurium infection of mice. Infect Immun 2003; 71:690-6. [PMID: 12540547 PMCID: PMC145356 DOI: 10.1128/iai.71.2.690-696.2003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on the pathogenesis of Salmonella enterica serovar Typhimurium infections in mice have revealed the presence of two prominent virulence characteristics-the invasion of the nonphagocytic cells to penetrate the intestinal epithelium and the proliferation within host phagocytic cells to cause a systemic spread and the colonization of host organs. We have recently demonstrated that the ATP-dependent Lon protease of S. enterica serovar Typhimurium negatively regulates the efficiency of invasion of epithelial cells and the expression of invasion genes (A. Takaya et al., J. Bacteriol. 184:224-232, 2002). This study was performed to reveal the contribution of the Lon protease to the virulence of S. enterica serovar Typhimurium in mice. Determination of 50% lethal doses for the lon disruption mutant and wild-type strain revealed that the mutant was highly attenuated when administered either orally or intraperitoneally to BALB/c mice. The mutant was also found to be able to reach extraintestinal sites but unable to proliferate efficiently within the spleen and cause lethal systemic disease of mice. Macrophage survival assays revealed that the lon disruption mutant could not survive or proliferate within murine macrophages. In addition, the mutant showed extremely increased susceptibility to hydrogen peroxide, which contributes to the bactericidal capacity of phagocytes. The mutant also showed increased sensitivity to acidic conditions. Taken together, the impaired ability of the lon disruption mutant to survive and grow in macrophages could be due to the enhanced susceptibility to the oxygen-dependent killing mechanism associated with respiratory burst and the low phagosomal pH. These results suggest that the Lon protease is essentially involved in the systemic infection of mice with S. enterica serovar Typhimurium, which can be fatal. Of further interest is the finding that the lon disruption mutant persists in the BALB/c mice for long periods without causing an overwhelming systemic infection.
Collapse
Affiliation(s)
- Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Seong IS, Kang MS, Choi MK, Lee JW, Koh OJ, Wang J, Eom SH, Chung CH. The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J Biol Chem 2002; 277:25976-82. [PMID: 12011053 DOI: 10.1074/jbc.m202793200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial HslVU ATP-dependent protease is a homolog of the eukaryotic 26 S proteasome. HslU ATPase forms a hexameric ring, and HslV peptidase is a dodecamer consisting of two stacked hexameric rings. In HslVU complex, the HslU and HslV central pores are aligned, and the proteolytic active sites are sequestered in an internal chamber of HslV, with access to this chamber restricted to small axial pores. Here we show that the C-terminal tails of HslU play a critical role in the interaction with and activation of HslV peptidase. A synthetic tail peptide of 10 amino acids could replace HslU in supporting the HslV-mediated hydrolysis of unfolded polypeptide substrates such as alpha-casein, as well as of small peptides, suggesting that the HslU C terminus is involved in the opening of the HslV pore for substrate entry. Moreover, deletion of 7 amino acids from the C terminus prevented the ability of HslU to form an HslVU complex with HslV. In addition, deletion of the C-terminal 10 residues prevented the formation of an HslU hexamer, indicating that the C terminus is required for HslU oligomerization. These results suggest that the HslU C-terminal tails act as a molecular switch for the assembly of HslVU complex and the activation of HslV peptidase.
Collapse
Affiliation(s)
- Ihn Sik Seong
- National Research Laboratory of Protein Biochemistry, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kitagawa M, Miyakawa M, Matsumura Y, Tsuchido T. Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2907-17. [PMID: 12071954 DOI: 10.1046/j.1432-1033.2002.02958.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To examine functions of two small heat shock proteins of Escherichia coli, IbpA and IbpB, we constructed His-IbpA and His-IbpB, in which a polyhistidine tag was fused to the N-terminals. Both purified His-IbpA and His-IbpB formed multimers, which have molecular masses of about 2.0-3.0 MDa and consist of about 100-150 subunits. They suppressed the inactivation of several enzymes including citrate synthase and 6-phosphogluconate dehydrogenase by heat, potassium superoxide, hydrogen peroxide and freeze-thawing, but not the inactivation of glyceraldehyde-3-phosphate dehydrogenase by hydrogen peroxide. Both His-IbpA and His-IbpB suppressed enzyme inactivation by various treatments and were also found to be associated with their non-native forms. However, both His-IbpA and His-IbpB were not able to reactivate enzymes inactivated by heat, oxidants or guanidine hydrochloride. When heated to 50 degrees C, each multimeric form of His-IbpA or His-IbpB was dissociated to form a monomer for His-IbpA, and an oligomer of about one-quarter size for His-IbpB. These structural changes were reversible, as both heated proteins regained the multimeric structures after incubation at 25 degrees C. However, when exposed to hydrogen peroxide or potassium superoxide, the large multimeric forms of His-IbpA and His-IbpB were maintained. The results suggest that His-IbpA and His-IbpB suppress the inactivation of enzymes and bind non-native proteins to protect their structures from heat and oxidants.
Collapse
Affiliation(s)
- Masanobu Kitagawa
- Department of Biotechnology, Faculty of Engineering, Kansai University, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
10
|
Takaya A, Tomoyasu T, Tokumitsu A, Morioka M, Yamamoto T. The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J Bacteriol 2002; 184:224-32. [PMID: 11741864 PMCID: PMC134781 DOI: 10.1128/jb.184.1.224-232.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An early step in the pathogenesis of Salmonella enterica serovar Typhimurium infection is bacterial penetration of the intestinal epithelium. Penetration requires the expression of invasion genes found in Salmonella pathogenicity island 1 (SPI1). These genes are controlled in a complex manner by regulators in SPI1, including HilA and InvF, and those outside SPI1, such as two-component regulatory systems and small DNA-binding proteins. We report here that the expression of invasion genes and the invasive phenotype of S. enterica serovar Typhimurium are negatively regulated by the ATP-dependent Lon protease, which is known to be a major contributor to proteolysis in Escherichia coli. A disrupted mutant of lon was able to efficiently invade cultured epithelial cells and showed increased production and secretion of three identified SPI1 proteins, SipA, SipC, and SipD. The lon mutant also showed a dramatic enhancement in transcription of the SPI1 genes hilA, invF, sipA, and sipC. The increases ranged from 10-fold to almost 40-fold. It is well known that the expression of SPI1 genes is also regulated in response to several environmental conditions. We found that the disruption of lon does not abolish the repression of hilA and sipC expression by high-oxygen or low-osmolarity conditions, suggesting that Lon represses SPI1 gene expression by a regulatory pathway independent of these environmental signals. Since HilA is thought to function as a central regulator of SPI1 gene expression, it is speculated that Lon may regulate SPI1 gene expression by proteolysis of putative factors required for activation of hilA expression.
Collapse
Affiliation(s)
- Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
11
|
Wang J, Song JJ, Seong IS, Franklin MC, Kamtekar S, Eom SH, Chung CH. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 2001; 9:1107-16. [PMID: 11709174 DOI: 10.1016/s0969-2126(01)00670-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The bacterial heat shock locus ATPase HslU is an AAA(+) protein that has structures known in many nucleotide-free and -bound states. Nucleotide is required for the formation of the biologically active HslU hexameric assembly. The hexameric HslU ATPase binds the dodecameric HslV peptidase and forms an ATP-dependent HslVU protease. RESULTS We have characterized four distinct HslU conformational states, going sequentially from open to closed: the empty, SO(4), ATP, and ADP states. The nucleotide binds at a cleft formed by an alpha/beta domain and an alpha-helical domain in HslU. The four HslU states differ by a rotation of the alpha-helical domain. This classification leads to a correction of nucleotide identity in one structure and reveals the ATP hydrolysis-dependent structural changes in the HslVU complex, including a ring rotation and a conformational change of the HslU C terminus. This leads to an amended protein unfolding-coupled translocation mechanism. CONCLUSIONS The observed nucleotide-dependent conformational changes in HslU and their governing principles provide a framework for the mechanistic understanding of other AAA(+) proteins.
Collapse
Affiliation(s)
- J Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kang MS, Lim BK, Seong IS, Seol JH, Tanahashi N, Tanaka K, Chung CH. The ATP-dependent CodWX (HslVU) protease in Bacillus subtilis is an N-terminal serine protease. EMBO J 2001; 20:734-42. [PMID: 11179218 PMCID: PMC145431 DOI: 10.1093/emboj/20.4.734] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2000] [Revised: 10/30/2000] [Accepted: 01/03/2001] [Indexed: 11/13/2022] Open
Abstract
HslVU is a two-component ATP-dependent protease, consisting of HslV peptidase and HslU ATPase. CodW and CodX, encoded by the cod operon in Bacillus subtilis, display 52% identity in their amino acid sequences to HslV and HslU in Escherichia coli, respectively. Here we show that CodW and CodX can function together as a new type of two-component ATP-dependent protease. Remarkably, CodW uses its N-terminal serine hydroxyl group as the catalytic nucleophile, unlike HslV and certain beta-type subunits of the proteasomes, which have N-terminal threonine functioning as an active site residue. The ATP-dependent proteolytic activity of CodWX is strongly inhibited by serine protease inhibitors, unlike that of HslVU. Replacement of the N-terminal serine of CodW by alanine or even threonine completely abolishes the enzyme activity. These results indicate that CodWX in B.subtilis represents the first N-terminal serine protease among all known proteolytic enzymes.
Collapse
Affiliation(s)
- Min Suk Kang
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Byung Kook Lim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Ihn Sik Seong
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Jae Hong Seol
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Nobuyuki Tanahashi
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Keiji Tanaka
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Chin Ha Chung
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| |
Collapse
|
13
|
Wang J, Song JJ, Franklin MC, Kamtekar S, Im YJ, Rho SH, Seong IS, Lee CS, Chung CH, Eom SH. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 2001; 9:177-84. [PMID: 11250202 DOI: 10.1016/s0969-2126(01)00570-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The bacterial heat shock locus HslU ATPase and HslV peptidase together form an ATP-dependent HslVU protease. Bacterial HslVU is a homolog of the eukaryotic 26S proteasome. Crystallographic studies of HslVU should provide an understanding of ATP-dependent protein unfolding, translocation, and proteolysis by this and other ATP-dependent proteases. RESULTS We present a 3.0 A resolution crystal structure of HslVU with an HslU hexamer bound at one end of an HslV dodecamer. The structure shows that the central pores of the ATPase and peptidase are next to each other and aligned. The central pore of HslU consists of a GYVG motif, which is conserved among protease-associated ATPases. The binding of one HslU hexamer to one end of an HslV dodecamer in the 3.0 A resolution structure opens both HslV central pores and induces asymmetric changes in HslV. CONCLUSIONS Analysis of nucleotide binding induced conformational changes in the current and previous HslU structures suggests a protein unfolding-coupled translocation mechanism. In this mechanism, unfolded polypeptides are threaded through the aligned pores of the ATPase and peptidase and translocated into the peptidase central chamber.
Collapse
Affiliation(s)
- J Wang
- Department of Molecular Biophysics, Biochemistry, 266 Whitney Avenue, Yale University, 06520, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kitagawa M, Matsumura Y, Tsuchido T. Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli. FEMS Microbiol Lett 2000; 184:165-71. [PMID: 10713416 DOI: 10.1111/j.1574-6968.2000.tb09009.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To investigate the function of Escherichia coli small heat shock proteins, IbpA and IbpB, we constructed ibpA-, ibpB- and ibpAB-overexpressing strains and also an ibpAB-disrupted strain. The ibpA-, ibpB- and ibpAB-overexpressing strains were found to be resistant not only to heat but also to superoxide stress. However, the ibpAB-disrupted strain was not more sensitive to these stresses than the wild-type strain. The heat sensitivity of a rpoH amber mutant was partially suppressed by the overexpression of plac::ibpAB. These results suggest that IbpA and IbpB may be involved in the resistances to heat and oxidative stress.
Collapse
Affiliation(s)
- M Kitagawa
- Department of Biotechnology and High Technology Research Center, Kansai University, Yamate-cho 3-3-35, Suita, Osaka, Japan
| | | | | |
Collapse
|
15
|
Papageorgakopoulou N, Vynios DH, Adamopoulos P, Stravropoulou C, Papapetropoulou M. Changes in protein composition and hydrolytic enzyme activity of Escherichia coli and Hafnia alvei grown in human fluids. Microbiol Res 2000; 154:363-368. [PMID: 10772159 DOI: 10.1016/s0944-5013(00)80011-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Growing of Escherichia coli and Hafnia alvei cells in several cell-free human fluids, such as normal serum, serum from diabetic patients, pleural, ascitic and spinal fluid, revealed that various biochemical changes occurred. Protein profile on SDS-PAGE as well as acid and alkaline phosphohydrolytic enzymes on native gels of cell extracts were affected after culturing of bacteria in the above fluids. Gelatinolytic and hyaluronolytic activity was of interest because both of them are histolytic enzymes. Although there was a potential appearance of gelatinolytic bands on gelatin-SDS-PAGE in cells starved in seawater, none of these activities were expressed in cells grown in human fluids. A hyaluronolytic activity of approximately 45 KDa was present in cells cultured in Mueller Hinton broth. This enzyme was decreased either in cells starved in seawater or in cells grown in human fluids to an almost invisible band on hyaluronan-SDS-PAGE.
Collapse
|
16
|
Robertson GT, Kovach ME, Allen CA, Ficht TA, Roop RM. The Brucella abortus Lon functions as a generalized stress response protease and is required for wild-type virulence in BALB/c mice. Mol Microbiol 2000; 35:577-88. [PMID: 10672180 DOI: 10.1046/j.1365-2958.2000.01726.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding a Lon protease homologue has been cloned from Brucella abortus. The putative Brucella abortus Lon shares > 60% amino acid identity with its Escherichia coli counterpart and the recombinant form of this protein restores the capacity of an Escherichia coli lon mutant to resist killing by ultraviolet irradiation and regulate the expression of a cpsB:lacZ fusion to wild-type levels. A sigma32 type promoter was identified upstream of the predicted lon coding region and Northern analysis revealed that transcription of the native Brucella abortus lon increases in response to heat shock and other environmental stresses. ATP-dependent proteolytic activity was also demonstrated for purified recombinant Lon. To evaluate the capacity of the Brucella abortus Lon homologue to function as a stress response protease, the majority of the lon coding region was removed from virulent strain Brucella abortus 2308 via allelic exchange. In contrast to the parent strain, the Brucella abortus lon mutant, designated GR106, was impaired in its capacity to form isolated colonies on solid medium at 41 degrees C and displayed an increased sensitivity to killing by puromycin and H2O2. GR106 also displayed reduced survival in cultured murine macrophages and significant attenuation in BALB/c mice at 1 week post infection compared with the virulent parental strain. Beginning at 2 weeks and continuing for 6 weeks post infection, however, GR106 and 2308 displayed equivalent spleen and liver colonization levels in mice. These findings suggest that the Brucella abortus Lon homologue functions as a stress response protease that is required for wild-type virulence during the initial stages of infection in the mouse model, but is not essential for the establishment and maintenance of chronic infection in this host.
Collapse
Affiliation(s)
- G T Robertson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
17
|
Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem 1999; 274:26008-14. [PMID: 10473546 DOI: 10.1074/jbc.274.37.26008] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the 20 S proteasome is the proteolytic core of the 26 S proteasome, which degrades ubiquitinated proteins in an ATP-dependent process. Archaebacteria lack ubiquitin and 26 S proteasomes but do contain 20 S proteasomes. Many archaebacteria, such as Methanococcus jannaschii, also contain a gene (S4) that is highly homologous to the six ATPases in the 19 S (PA700) component of the eukaryotic 26 S proteasome. To test if this putative ATPase may regulate proteasome function, we expressed it in Escherichia coli and purified the 50-kDa product as a 650-kDa complex with ATPase activity. When mixed with the well characterized 20 S proteasomes from Thermoplasma acidophilum and ATP, this complex stimulated degradation of several unfolded proteins 8-25-fold. It also stimulated proteolysis by 20 S proteasomes from another archaebacterium and mammals. This effect required ATP hydrolysis since ADP and the nonhydrolyzable analog, 5'-adenylyl beta, gamma-imidophosphate, were ineffective. CTP and to a lesser extent GTP and UTP were also hydrolyzed and also stimulated proteolysis. We therefore named this complex PAN for proteasome-activating nucleotidase. However, PAN did not promote the degradation of small peptides, which, unlike proteins, should readily diffuse into the proteasome. This ATPase complex appears to have been the evolutionary precursor of the eukaryotic 19 S complex, before the coupling of proteasome function to ubiquitination.
Collapse
Affiliation(s)
- P Zwickl
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
18
|
Seong IS, Oh JY, Yoo SJ, Seol JH, Chung CH. ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS Lett 1999; 456:211-4. [PMID: 10452560 DOI: 10.1016/s0014-5793(99)00935-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HslVU is an ATP-dependent protease consisting of two multimeric components, the HslU ATPase and the HslV peptidase. To gain an insight into the role of HslVU in regulation of cell division, the reconstituted enzyme was incubated with SulA, an inhibitor of cell division in Escherichia coli, or its fusion protein with maltose binding protein (MBP). HslVU degraded both proteins upon incubation with ATP but not with its nonhydrolyzable analog, ATPgammaS, indicating that the degradation of SulA requires ATP hydrolysis. The pulse-chase experiment using an antibody raised against MBP-SulA revealed that the stability of SulA increased in hsl mutants and further increased in lon/hsl double mutants, indicating that SulA is an in vivo substrate of HslVU as well as of protease La (Lon). These results suggest that HslVU in addition to Lon plays an important role in regulation of cell division through degradation of SulA.
Collapse
Affiliation(s)
- I S Seong
- Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, South Korea
| | | | | | | | | |
Collapse
|
19
|
Yoo SJ, Kim HH, Shin DH, Lee CS, Seong IS, Seol JH, Shimbara N, Tanaka K, Chung CH. Effects of the cys mutations on structure and function of the ATP-dependent HslVU protease in Escherichia coli. The Cys287 to Val mutation in HslU uncouples the ATP-dependent proteolysis by HslvU from ATP hydrolysis. J Biol Chem 1998; 273:22929-35. [PMID: 9722513 DOI: 10.1074/jbc.273.36.22929] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To define the role of the Cys residues in the ATP-dependent HslVU protease, mutagenesis was performed to replace either Cys261 or Cys287 in HslU with Val and Cys159 in HslV with Ser or Ala. Whereas HslU/C261V could hydrolyze ATP and support the ATP-dependent proteolytic activity of HslV as well as the wild-type HslU, HslU/C287V could not hydrolyze ATP. Nevertheless, HslU/C287V could support the HslV-mediated proteolysis by forming the HslVU complex in the presence of ATP but not its absence, indicating that ATP binding but not its hydrolysis is essential for proteolysis. Whereas treatment of N-ethylmaleimide (NEM) resulted in dissociation of the oligomeric HslU into monomers, the C261V mutation, but not C287V, prevented the NEM effect. These results suggest that Cys261 is involved in oligomerization and that Cys287 is related to the ATPase function of HslU. NEM also dissociated the dodecameric HslV into monomers, and this effect could be prevented by either the C159S or C159A mutation, suggesting the involvement of Cys159 in oligomerization of HslV. Moreover, either mutation abolished both the basal and HslU-activated proteolytic activity of HslV and its ability to activate the HslU ATPase and to form the HslVU complex, indicating that Cys159 is essential for the proteolytic activity of HslV and its interaction with HslU. These results suggest that the Cys residues play an important role in maintaining the structure and function of the HslVU protease.
Collapse
Affiliation(s)
- S J Yoo
- Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim KI, Woo KM, Seong IS, Lee ZW, Baek SH, Chung CH. Mutational analysis of the two ATP-binding sites in ClpB, a heat shock protein with protein-activated ATPase activity in Escherichia coli. Biochem J 1998; 333 ( Pt 3):671-6. [PMID: 9677327 PMCID: PMC1219631 DOI: 10.1042/bj3330671] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 93 kDa ClpB (ClpB93) is a heat shock protein and has a protein-activated ATPase activity. To define the role of the two ATP-binding sites in ClpB93, site-directed mutagenesis was performed to replace Lys212 or Lys611 with Thr or Glu. All of the mutant proteins hydrolysed ATP at a higher rate than that seen with ClpB93 at ATP concentrations up to 2 mM. However, ClpB93 carrying mutations in both of the ATP-binding sites could not cleave ATP. Thus any of the two ATP-binding sites seems to be capable of supporting the ATPase activity of ClpB93. The ATPase activities of both ClpB93/K212T and ClpB93/K212E were gradually decreased when ATP concentrations were increased above 2 mM, unlike those of ClpB93, ClpB93/K611T and ClpB93/K611E, which showed a typical saturation curve. Furthermore ADP inhibited ATP hydrolysis by ClpB93/K212T and ClpB93/K212E more effectively than that by the latter proteins, suggesting that the mutations in the first ATP-binding site result in an increase in the affinity of ADP for the second site in ClpB93. In addition, all of the purified ClpB93 and its mutant forms behaved as an oligomer of 400-450 kDa on a Sephacryl S-300 gel-filtration column, whether or not ATP was present. Thus the binding of ATP to either of the two sites seems not to be essential for oligomerization of ClpB93. Although a low-copy plasmid carrying clpB93 could rescue the sensitivity of a clpB-null mutant cell at 52 degreesC, none of the plasmids carrying the mutations in the ATP-binding sites could. Furthermore, incubation at 52 degreesC resulted in a gradual loss of the ATPase activity of ClpB93 carrying the mutations in either of the two ATP-binding sites, but not of the parental ClpB93, indicating that the mutant proteins have a greater tendency to denature at this temperature than the parental ClpB93. These results suggest that both of the ATP-binding sites in ClpB have an important role in maintaining the thermotolerance of the protein and hence in the survival of Escherichia coli at high temperatures.
Collapse
Affiliation(s)
- K I Kim
- Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Porankiewicz J, Schelin J, Clarke AK. The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Mol Microbiol 1998; 29:275-83. [PMID: 9701820 DOI: 10.1046/j.1365-2958.1998.00928.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ClpP is the proteolytic subunit of the ATP-dependent Clp protease in eubacteria, mammals and plant chloroplasts. Cyanobacterial ClpP protein is encoded by a multigene family, producing up to four distinct isozymes. We have examined the importance of the first ClpP protein (ClpP1) isolated from the cyanobacterium Synechococcus sp. PCC 7942 for acclimation to ecologically relevant UV-B and low-temperature regimens. When the growth light of 50 mumol photons m-2 s-1 was supplemented with 0.5 W m-2 UV-B for 8 h, the constitutive level of ClpP1 rose eightfold after an initial lag of 1 h. Wild-type cells readily acclimated to this UV-B level, recovering after the initial stress to almost the same growth rate as that before UV-B exposure. Growth of a clpP1 null mutant (delta clpP1), however, was severely inhibited by UV-B, being eight times slower than the wild type after 8 h. In comparison, ClpP1 content increased 15-fold in wild-type cultures shifted from 37 degree C to 25 degree C for 24 h. Wild-type cultures readily acclimated to 25 degree C after 24 h, whereas the delta clpP1 strain did not and eventually lost viability with prolonged cold treatment. During acclimation to either UV-B or cold, photosynthesis in the wild type was initially inhibited upon the shift but then recovered. Photosynthesis in delta clpP1 cultures, however, was more severely inhibited by the stress treatment and failed to recover. Acclimation was also monitored by examining the exchange of photosystem II reaction centre D1 proteins that occurs in wild-type Synechococcus during conditions of excitation stress. During both cold and UV-B shifts, wild-type cultures replaced the acclimative form of D1 (D1:1) with the alternative D1 form 2 (D1:2) within the first hours. Once acclimated to either 25 degree C or 0.5 W m-2 UV-B, D1:2 was exchanged back for D1:1. In delta clpP1 cultures, this second exchange between D1 forms did not occur, with D1:2 remaining the predominant D1 form. Our results demonstrate that the ATP-dependent Clp protease is an essential component of the cold and UV-B acclimation processes of Synechococcus.
Collapse
Affiliation(s)
- J Porankiewicz
- Department of Plant Physiology, University of Umeå, Sweden
| | | | | |
Collapse
|
22
|
Chung CH, Yoo SJ, Seol JH, Kang MS. Characterization of energy-dependent proteases in bacteria. Biochem Biophys Res Commun 1997; 241:613-6. [PMID: 9434756 DOI: 10.1006/bbrc.1997.7735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C H Chung
- Department of Molecular Biology, College of Natural Sciences, Seoul National University, Korea
| | | | | | | |
Collapse
|
23
|
Weickert MJ, Curry SR. Turnover of recombinant human hemoglobin in Escherichia coli occurs rapidly for insoluble and slowly for soluble globin. Arch Biochem Biophys 1997; 348:337-46. [PMID: 9434746 DOI: 10.1006/abbi.1997.0410] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Co-expression of di-alpha-globin and beta-globin in Escherichia coli in the presence of exogenous heme yielded high levels of soluble, functional recombinant human hemoglobin (rHb1.1) and, under certain conditions, large amounts of insoluble globin protein. Insoluble rHb1.1 accumulated in large, amorphous inclusion bodies visible by electron microscopy. The half-life of soluble rHb1.1 in E. coli, measured by pulse-chase experiments, was at least 11 h for each globin subunit. The in vivo half-life for insoluble globin was about fivefold shorter than that for soluble rHb1.1. We expressed significant amounts of each subunit, di-alpha-globin and beta-globin, independently with exogenous heme. The half-life of the soluble subunits alone was approximately 1 and 4 h, respectively, shorter than when they were expressed together as rHb1.1. Individually, the insoluble di-alpha-globin subunit had a half-life of just under 1 h when exogenous heme was added, but under 20 min when exogenous heme was not provided. The greater persistence of insoluble subunits in the presence of heme indicated that heme may stabilize the insoluble globin protein. The soluble rHb1.1 persistence in the E. coli cytoplasm during long periods of stationary phase growth indicated that once assembled, rHb1.1 is extremely resistant to proteolysis.
Collapse
|
24
|
Yoo SJ, Seol JH, Seong IS, Kang MS, Chung CH. ATP binding, but not its hydrolysis, is required for assembly and proteolytic activity of the HslVU protease in Escherichia coli. Biochem Biophys Res Commun 1997; 238:581-5. [PMID: 9299555 DOI: 10.1006/bbrc.1997.7341] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HslVU is an ATP-dependent protease consisting of two multimeric components: the HslU ATPase and the HslV peptidase. To gain an insight into the role of ATP hydrolysis in protein breakdown, we determined the insulin B-chain-degrading activity and assembly of HslVU in the presence of ATP and its nonhydrolyzable analogs. While beta,gamma-methylene-ATP could not support the proteolytic activity, beta,gamma-imido-ATP supported it to an extent less than 10% of that seen with ATP. Surprisingly, however, HslVU degraded insulin B-chain even more rapidly in the presence of ATPgammaS than with ATP. Furthermore, the ability of ATP and its analogs in supporting the proteolytic activity was closely correlated with their ability in supporting the oligomerization of HslU and the formation of the HslVU complex. However, ADP, which is capable of supporting the HslU oligomerization, could not support the HslVU complex formation or the proteolytic activity, suggesting that the conformation of the ADP-bound HslU oligomer is different from that of ATP-bound form. Thus, it appears that ATP-binding, but not its hydrolysis, is essential for assembly and proteolytic activity of HslVU.
Collapse
Affiliation(s)
- S J Yoo
- College of Natural Sciences, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | |
Collapse
|
25
|
Papageorgakopoulou N, Vynios DH, Karayanni K, Maras A, Papapetropoulou M. Electrophoretic analysis of hydrolytic enzymes of Escherichia coli cells starved in seawater and drinking water: comparison of gelatinolytic, caseinolytic, phosphohydrolytic and hyaluronolytic activities. Microbiol Res 1997; 152:299-305. [PMID: 9352666 DOI: 10.1016/s0944-5013(97)80044-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Starvation of four Escherichia coli clinical strains in seawater and drinking water for nine days revealed that various changes of hydrolytic enzymes were induced. Several gelatinolytic and caseinolytic activities differing in mol mass were detected both in seawater and drinking water starved cells by substrate gel electrophoresis. The major activities of gelatinase migrated with mol masses of approximately 170 kDa and approximately 45 kDa. On the contrary, hyaluronolytic activities were detected only in cells cultured in Mueller Hinton broth with average mol masses of 36 kDa and 45 kDa. Acid and alkaline phosphohydrolytic activities were detected by native electrophoresis. Both activities were decreased in number of bands in E. coli cells starved either in seawater or drinking water.
Collapse
|
26
|
Seol JH, Yoo SJ, Shin DH, Shim YK, Kang MS, Goldberg AL, Chung CH. The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-dependent proteinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1143-50. [PMID: 9288941 DOI: 10.1111/j.1432-1033.1997.01143.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HslVU in Escherichia coli a new two-component ATP-dependent protease composed of two heat-shock proteins, the HslU ATPase and the HslV peptidase which is related to proteasome beta-type subunits. Here we show that the reconstituted HslVU enzyme degrades not only certain hydrophobic peptides but also various polypeptides, including insulin B-chain, casein, and carboxymethylated lactalbumin. Maximal proteolytic activity was obtained with a 1:2 molar ratio of HslV (a 250-kDa complex) to HslU (a 450-kDa complex). By itself, HslV could slowly hydrolyze these polypeptides, but its activity was stimulated 20-fold by HslU in the presence of ATP. The ATPase activity of HslU was stimulated up to 50% by the protein substrates, but not by nonhydrolyzed proteins, and this stimulation further increased 2-3-fold in the presence of HslV. Concentrations of insulin B-chain that maximally stimulated the ATPase allowed maximal rates of the B-chain hydrolysis. Furthermore, addition of increasing amounts of ADP or N-ethylmaleimide reduced ATP and protein or peptide hydrolysis in parallel. Thus, HslVU is a protein-activated ATPase as well as an ATP-dependent proteinase, and these processes appear linked. Surprisingly, the protein and peptide substrates do not compete with each other for hydrolysis. Lactacystin strongly inhibits protein degradation, but has little effect on peptide hydrolysis, while the peptide aldehydes are potent inhibitors of hydrolysis of small peptides, but have little effect on proteins. Thus, the functional requirements for ATP-dependent hydrolysis of peptides and proteins appear different.
Collapse
Affiliation(s)
- J H Seol
- Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Yoo SJ, Shim YK, Seong IS, Seol JH, Kang MS, Chung CH. Mutagenesis of two N-terminal Thr and five Ser residues in HslV, the proteolytic component of the ATP-dependent HslVU protease. FEBS Lett 1997; 412:57-60. [PMID: 9257689 DOI: 10.1016/s0014-5793(97)00742-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HslVU in E. coli is a new type of ATP-dependent protease consisting of two heat shock proteins: the HslU ATPase and the HslV peptidase that has two repeated Thr residues at its N terminus, like certain beta-type subunit of the 20S proteasomes. To gain an insight into the catalytic mechanism of HslV, site-directed mutagenesis was performed to replace each of the Thr residues with Ser or Val and to delete the first or both Thr. Also each of the five internal Ser residues in HslV were replaced with Ala. The results obtained by the mutational analysis revealed that the N-terminal Thr acts as the active site nucleophile and that certain Ser residues, particularly Ser124 and Ser172, also contribute to the peptide hydrolysis by the HslVU protease. The mutational studies also revealed that both Thr, Ser103, and Ser172, but not Ser124, are involved in the interaction of HslV with HslU and hence in the activation of HslU ATPase as well as in the HslVU complex formation.
Collapse
Affiliation(s)
- S J Yoo
- Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, South Korea
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
ClpA, a newly discovered ATP-dependent molecular chaperone, remodels bacteriophage P1 RepA dimers into monomers, thereby activating the latent specific DNA binding activity of RepA. We investigated the mechanism of the chaperone activity of ClpA by dissociating the reaction into several steps and determining the role of nucleotide in each step. In the presence of ATP or a nonhydrolyzable ATP analog, the initial step is the self-assembly of ClpA and its association with inactive RepA dimers. ClpA-RepA complexes form rapidly and at 0 degrees C but are relatively unstable. The next step is the conversion of unstable ClpA-RepA complexes into stable complexes in a time- and temperature-dependent reaction. The transition to stable ClpA-RepA complexes requires binding of ATP, but not ATP hydrolysis, because nonhydrolyzable ATP analogs satisfy the nucleotide requirement. The stable complexes contain approximately 1 mol of RepA dimer per mol of ClpA hexamer and are committed to activating RepA. In the last step of the reaction, active RepA is released upon exchange of ATP with the nonhydrolyzable ATP analog and ATP hydrolysis. Importantly, we discovered that one cycle of RepA binding to ClpA followed by ATP-dependent release is sufficient to convert inactive RepA to its active form.
Collapse
Affiliation(s)
- M Pak
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Shin DH, Yoo SJ, Shim YK, Seol JH, Kang MS, Chung CH. Mutational analysis of the ATP-binding site in HslU, the ATPase component of HslVU protease in Escherichia coli. FEBS Lett 1996; 398:151-4. [PMID: 8977096 DOI: 10.1016/s0014-5793(96)01223-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HslU is the ATPase component of the ATP-dependent HslVU protease in Escherichia coli. To gain an insight into the structure and function of HslU, site-directed mutagenesis was performed to generate a mutation in the ATP-binding site of the ATPase (i.e., to replace the Lys63 with Thr). Unlike the wild-type HslU, the mutant form (referred to as HslU/K63T) could not hydrolyze ATP or support the ATP-dependent hydrolysis of N-carbobenzoxy-Gly-Gly-Leu-7-amido-4-methyl coumarin by HslV. The wild-type HslU (a mixture of monomer and dimer) formed a multimer containing 6-8 subunits in the presence of either ATP or ADP, indicating that ATP-binding, but not its hydrolysis, is required for oligomerization of HslU. However, HslU/K63T remained as a monomer whether or not the adenine nucleotides were present. Furthermore, ATP or ADP could protect HslU, but not HslU/K63T, from degradation by trypsin. These results suggest that the mutation in the ATP-binding site results in prevention of the binding of the adenine nucleotides to HslU and hence in impairment of both oligomerization and ATPase function of HslU.
Collapse
Affiliation(s)
- D H Shin
- Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, South Korea
| | | | | | | | | | | |
Collapse
|
30
|
Komiyama N, Tame J, Nagai K. A hemoglobin-based blood substitute: transplanting a novel allosteric effect of crocodile Hb. Biol Chem 1996; 377:543-8. [PMID: 9067251 DOI: 10.1515/bchm3.1996.377.9.543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recombinant DNA technology has enabled the large scale production of human hemoglobin in bacteria and yeast. This has opened up a way to produce a hemoglobin-based blood substitute which could replace conventional blood transfusion in some situations. Using our understanding of the structure-function relationships and evolutionary history of hemoglobin it has been possible to improve the oxygen transport properties of the molecule and solve a number of problems associated with the use of natural hemoglobin as a cell-free blood substitute.
Collapse
Affiliation(s)
- N Komiyama
- MRC Laboratory of Molecular Biology, Cambridge, U.K
| | | | | |
Collapse
|
31
|
Matveyev VV, Usmanova AM, Morozova AV, Collins JH, Khaitlina SY. Purification and characterization of the proteinase ECP 32 from Escherichia coli A2 strain. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1296:55-62. [PMID: 8765229 DOI: 10.1016/0167-4838(96)00053-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The proteinase previously described as an unidentified component of E. coli A2 extracts which hydrolyses actin at a new cleavage site (Khaitlina et al. (1991) FEBS Lett. 279, 49) was isolated and further characterized. A chromatographic method of proteinase purification was developed by which a purity of more than 80% was attained. The enzyme was identified as a single, 32 kDa polypeptide (ECP 32) by SDS-PAGE and non-denaturing electrophoresis as well as by ion-exchange chromatography and gel filtration. The N-terminal sequence of ECP 32 was determined to be: AKTSSAGVVIRDIFL. The activity of ECP 32 is inhibited by o-phenanthroline, EDTA, EGTA and zincone. The EDTA-inactivated enzyme can be reactivated by cobalt, nickel and zinc ions. Based on these properties ECP 32 was classified as a metalloproteinase (EC 3.4.24). Limited proteolysis of skeletal muscle actin between Gly-42 and Val-43 was observed at enzyme substrate mass ratios of 1:25 to 1:3000. Two more sites between Ala-29 and Val-30, and between Ser-33 and Ile-34 were cleaved by ECP 32 in heat- or EDTA-inactivated actin. Besides actin, only histones and DNA-binding protein HU were found to be substrates of the proteinase, confirming its high substrate specificity. Its molecular mass, N-terminal sequence and enzymatic properties distinguish ECP 32 from any known metalloproteinases of E. coli, and we therefore conclude that it is a new enzyme.
Collapse
Affiliation(s)
- V V Matveyev
- Institute of Cytology, St. Petersburg, Russian Federation
| | | | | | | | | |
Collapse
|
32
|
Yoo SJ, Seol JH, Shin DH, Rohrwild M, Kang MS, Tanaka K, Goldberg AL, Chung CH. Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J Biol Chem 1996; 271:14035-40. [PMID: 8662828 DOI: 10.1074/jbc.271.24.14035] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The hslVU operon in Escherichia coli encodes two heat shock proteins, HslV, a 19-kDa protein homologous to beta-type subunits of the 20 S proteasomes, and HslU, a 50-kDa protein related to the ATPase ClpX. We have recently shown that HslV and HslU can function together as a novel ATP-dependent protease, the HslVU protease. We have now purified both proteins to apparent homogeneity from extracts of E. coli carrying the hslVU operon on a multicopy plasmid. HslU by itself cleaved ATP, and pure HslV is a weak peptidase degrading certain hydrophobic peptides. HslU dramatically stimulated peptide hydrolysis by HslV when ATP is present. With a 1:4 molar ratio of HslV to HslU, approximately a 200-fold increase in peptide hydrolysis was observed. HslV stimulated the ATPase activity of HslU 2-4-fold, but had little influence on the affinity of HslU to ATP. The nonhydrolyzable ATP analog, beta,gamma-methylene-ATP, did not support peptide hydrolysis. Other nucleotides (CTP, dATP) that were slowly hydrolyzed by HslU allowed some peptide hydrolysis. Therefore, ATP cleavage appears essential for the HslV activity. Upon gel filtration on a Sephacryl S-300 column, HslV behaved as a 250-kDa oligomer (i.e. 12-14 subunits), and HslU behaved as a 100-kDa protein (i.e. a dimer) in the absence of ATP, but as a 450-kDa multimer (8-10 subunits) in its presence. Therefore ATP appears necessary for oligomerization of HslU. Thus the HslVU protease appears to be a two-component protease in which HslV harbors the peptidase activity, while HslU provides an essential ATPase activity.
Collapse
Affiliation(s)
- S J Yoo
- Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bauer MW, Halio SB, Kelly RM. Proteases and glycosyl hydrolases from hyperthermophilic microorganisms. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:271-310. [PMID: 8791627 DOI: 10.1016/s0065-3233(08)60364-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M W Bauer
- Department of Chemical Engineering, North Carolina State University, Raleigh 27695-7905, USA
| | | | | |
Collapse
|
34
|
Benesová M, Durcová G, Kuzela S, Kutejová E, Psenák M. Spinach chloroplast ATP-dependent endopeptidase: Ti-like protease. PHYTOCHEMISTRY 1996; 41:65-69. [PMID: 8588875 DOI: 10.1016/0031-9422(95)00613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The soluble fraction of spinach chloroplast was used for purification and characterization of an ATP-dependent protease. Purification included Q Sepharose Fast Flow, hydroxylapatite and FPLC Superose 6 column chromatography. The isolated enzyme requires ATP and Mg2+ for stimulation and represents a ubiquitin independent serine protease, containing essential sulphydryl group(s). By using fluorogenic peptides a similarity of chloroplast protease to Escherichia coli Ti protease was observed. The chloroplast protease is immunochemically cross-reactive with the bacterial protease Ti.
Collapse
Affiliation(s)
- M Benesová
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
35
|
Pak M, Wickner SH. Pathways of protein remodeling by Escherichia coli molecular chaperones. GENETIC ENGINEERING 1996; 18:203-17. [PMID: 8785122 DOI: 10.1007/978-1-4899-1766-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Pak
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
36
|
Seol JH, Yoo SJ, Kang MS, Ha DB, Chung CH. The 65-kDa protein derived from the internal translational start site of the clpA gene blocks autodegradation of ClpA by the ATP-dependent protease Ti in Escherichia coli. FEBS Lett 1995; 377:41-3. [PMID: 8543014 DOI: 10.1016/0014-5793(95)01306-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ATP-dependent protease Ti consists of two different components: ClpA containing ATP-cleaving sites and ClpP having serine active sites for proteolysis. The clpA gene has dual translational start sites and therefore encodes two polypeptides with sizes of 84 and 65 kDa (referred to as ClpA84 and ClpA65, respectively). Here we show that ClpA84, but not ClpA65, is degraded in vitro by ClpP in the presence of ATP. The ClpP-mediated hydrolysis of ClpA84 could be prevented by casein, which is an excellent substrate of protease Ti (i.e. ClpA84/ClpP complex). Thus, it appears that free form of ClpA84 competes with casein for the degradation by ClpA/ClpP complex. Furthermore, ClpA65 inhibited the auto-degradation of ClpA84 by the complex. These results suggest that ClpA65 may play an important role in the control of the ClpA84 level and in turn in the regulation of ATP-dependent protein breakdown in E. coli.
Collapse
Affiliation(s)
- J H Seol
- Department of Molecular Biology, College of Natural Sciences, Seoul National University, South Korea
| | | | | | | | | |
Collapse
|
37
|
Il Kim K, Hee Baek S, Hong YM, Kang MS, Bong Ha D, Goldberg AL, Ha Chung C. Purification and Characterization of Protease Ci, a Cytoplasmic Metalloendoprotease in Escherichia coli. J Biol Chem 1995. [DOI: 10.1074/jbc.270.50.29799] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Seol JH, Baek SH, Kang MS, Ha DB, Chung CH. Distinctive roles of the two ATP-binding sites in ClpA, the ATPase component of protease Ti in Escherichia coli. J Biol Chem 1995; 270:8087-92. [PMID: 7713911 DOI: 10.1074/jbc.270.14.8087] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
ClpA is the ATPase component of the ATP-dependent protease Ti (Clp) in Escherichia coli and contains two ATP-binding sites. A ClpA variant (referred to as ClpAT) carrying threonine in place of the 169th methionine has recently been shown to be highly soluble but indistinguishable from the wild-type, 84-kDa ClpA in its ability to hydrolyze ATP and to support the casein-degrading activity of ClpP. Therefore, site-directed mutagenesis was performed to generate mutations in either of the two ATP-binding sites of ClpAT (i.e. to replace the Lys220 or Lys501 with Thr). ClpAT/K220T hydrolyzed ATP and supported the ClpP-mediated proteolysis 10-50% as well as ClpAT depending on ATP concentration, while ClpAT/K501T was unable to cleave ATP or to support the proteolysis. Without ATP, ClpAT and both of its mutant forms behaved as trimeric molecules as analyzed by gel filtration on a Sephacryl S-300 column. With 0.5 mM ATP, ClpAT and ClpAT/K501T became hexamers, but ClpAT/K220T remained trimeric. With 2 mM ATP, however, ClpAT/K220T also behaved as a hexamer. These results suggest that the first ATP-binding site of ClpA is responsible for hexamer formation, while the second is essential for ATP hydrolysis. When trimeric ClpAT/K220T was incubated with the same amount of hexameric ClpAT/K501T (i.e. at 0.5 mM ATP) and then subjected to gel filtration as above, a majority of ClpAT/K220T ran together with ClpAT/K501T as hexameric molecules. Furthermore, ClpAT/K501T in the mixture strongly inhibited the ability of ClpAT/K220T to cleave ATP and to support the ClpP-mediated proteolysis. Similar results were obtained in the presence of 2 mM ATP and also with the mixture with ClpAT. On the other hand, the ATPase activity of the mixture of ClpAT and ClpAT/K220T was significantly higher than the sum of that of each protein, particularly in the presence of 2 mM ATP, although its ability to support the proteolysis by ClpP remained unchanged. These results suggest that a rapid exchange of the subunits, possibly as a trimeric unit, occurs between the ClpAT proteins in the presence of ATP and leads to the formation of mixed hexameric molecules.
Collapse
Affiliation(s)
- J H Seol
- Department of Molecular Biology, College of Natural Sciences, Seoul National University, Korea
| | | | | | | | | |
Collapse
|
39
|
Seol JH, Yoo SJ, Kim KI, Kang MS, Ha DB, Chung CH. The 65-kDa protein derived from the internal translational initiation site of the clpA gene inhibits the ATP-dependent protease Ti in Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43903-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|