1
|
Chia ZJ, Kumarapperuma H, Zhang R, Little PJ, Kamato D. Smad transcription factors as mediators of 7 transmembrane G protein-coupled receptor signalling. Acta Pharmacol Sin 2025; 46:795-804. [PMID: 39506064 PMCID: PMC11950520 DOI: 10.1038/s41401-024-01413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
The Smad transcription factors are well known for their role at the core of transforming growth factor-β (TGF-β) signalling. However, recent evidence shows that the Smad transcription factors play a vital role downstream of other classes of receptors including G protein-coupled receptors (GPCR). The versatility of Smad transcription factors originated from the two regions that can be differently activated by the TGF-β receptor superfamily or through the recruitment of intracellular kinases stimulated by other receptors classes such as GPCRs. The classic GPCR signalling cascade is further expanded to conditional adoption of the Smad transcription factor under the stimulation of Akt, demonstrating the unique involvement of the Smad transcription factor in GPCR signalling pathways in disease environments. In this review, we provide a summary of the signalling pathways of the Smad transcription factors as an important downstream mediator of GPCRs, presenting exciting opportunities for discovering new therapeutic targets for diseases.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hirushi Kumarapperuma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ruizhi Zhang
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
2
|
Du R, Wen L, Niu M, Zhao L, Guan X, Yang J, Zhang C, Liu H. Activin receptors in human cancer: Functions, mechanisms, and potential clinical applications. Biochem Pharmacol 2024; 222:116061. [PMID: 38369212 DOI: 10.1016/j.bcp.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Activins are members of the transforming growth factor-β (TGF-β) superfamily and act as key regulators in various physiological processes, such as follicle and embryonic development, as well as in multiple human diseases, including cancer. They have been established to signal through three type I and two type II serine/threonine kinase receptors, which, upon ligand binding, form a final signal-transducing receptor complex that activates downstream signaling and governs gene expression. Recent research highlighted the dysregulation of the expression or activity of activin receptors in multiple human cancers and their critical involvement in cancer progression. Furthermore, expression levels of activin receptors have been associated with clinicopathological features and patient outcomes across different cancers. However, there is currently a paucity of comprehensive systematic reviews of activin receptors in cancer. Thus, this review aimed to consolidate existing knowledge concerning activin receptors, with a primary emphasis on their signaling cascade and emerging biological functions, regulatory mechanisms, and potential clinical applications in human cancers in order to provide novel perspectives on cancer prognosis and targeted therapy.
Collapse
Affiliation(s)
- Ruochen Du
- First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Liqi Wen
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Jiao Yang
- Department of Anatomy, the Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Cell Biology and Genetics, the Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| |
Collapse
|
3
|
Srinivasan D, Arostegui M, Goebel EJ, Hart KN, Aykul S, Lees-Shepard JB, Idone V, Hatsell SJ, Economides AN. How Activin A Became a Therapeutic Target in Fibrodysplasia Ossificans Progressiva. Biomolecules 2024; 14:101. [PMID: 38254701 PMCID: PMC10813747 DOI: 10.3390/biom14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by episodic yet cumulative heterotopic ossification (HO) of skeletal muscles, tendons, ligaments, and fascia. FOP arises from missense mutations in Activin Receptor type I (ACVR1), a type I bone morphogenetic protein (BMP) receptor. Although initial findings implicated constitutive activity of FOP-variant ACVR1 (ACVR1FOP) and/or hyperactivation by BMPs, it was later shown that HO in FOP requires activation of ACVR1FOP by Activin A. Inhibition of Activin A completely prevents HO in FOP mice, indicating that Activin A is an obligate driver of HO in FOP, and excluding a key role for BMPs in this process. This discovery led to the clinical development of garetosmab, an investigational antibody that blocks Activin A. In a phase 2 trial, garetosmab inhibited new heterotopic bone lesion formation in FOP patients. In contrast, antibodies to ACVR1 activate ACVR1FOP and promote HO in FOP mice. Beyond their potential clinical relevance, these findings have enhanced our understanding of FOP's pathophysiology, leading to the identification of fibroadipogenic progenitors as the cells that form HO, and the discovery of non-signaling complexes between Activin A and wild type ACVR1 and their role in tempering HO, and are also starting to inform biological processes beyond FOP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aris N. Economides
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA; (D.S.); (M.A.); (E.J.G.); (K.N.H.); (S.A.); (J.B.L.-S.); (V.I.); (S.J.H.)
| |
Collapse
|
4
|
Adamczewska D, Słowikowska-Hilczer J, Walczak-Jędrzejowska R. The Fate of Leydig Cells in Men with Spermatogenic Failure. Life (Basel) 2022; 12:570. [PMID: 35455061 PMCID: PMC9028943 DOI: 10.3390/life12040570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
The steroidogenic cells in the testicle, Leydig cells, located in the interstitial compartment, play a vital role in male reproductive tract development, maintenance of proper spermatogenesis, and overall male reproductive function. Therefore, their dysfunction can lead to all sorts of testicular pathologies. Spermatogenesis failure, manifested as azoospermia, is often associated with defective Leydig cell activity. Spermatogenic failure is the most severe form of male infertility, caused by disorders of the testicular parenchyma or testicular hormone imbalance. This review covers current progress in knowledge on Leydig cells origin, structure, and function, and focuses on recent advances in understanding how Leydig cells contribute to the impairment of spermatogenesis.
Collapse
Affiliation(s)
| | | | - Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland; (D.A.); (J.S.-H.)
| |
Collapse
|
5
|
Czaja AJ. Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis. Dig Dis Sci 2022; 67:1163-1186. [PMID: 33835375 DOI: 10.1007/s10620-021-06968-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta and interleukin 10 have diverse immune inhibitory properties that have restored homeostatic defense mechanisms in experimental models of autoimmune disease. The goals of this review are to describe the actions of each cytokine, review their investigational use in animal models and patients, and indicate their prospects as interventions in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Transforming growth factor-beta expands the natural and inducible populations of regulatory T cells, limits the proliferation of natural killer cells, suppresses the activation of naïve CD8+ T cells, decreases the production of interferon-gamma, and stimulates fibrotic repair. Interleukin 10 selectively inhibits the CD28 co-stimulatory signal for antigen recognition and impairs antigen-specific activation of uncommitted CD4+ and CD8+ T cells. It also inhibits maturation of dendritic cells, suppresses Th17 cells, supports regulatory T cells, and limits production of diverse pro-inflammatory cytokines. Contradictory immune stimulatory effects have been associated with each cytokine and may relate to the dose and accompanying cytokine milieu. Experimental findings have not translated into successful early clinical trials. The recombinant preparation of each agent in low dosage has been safe in human studies. In conclusion, transforming growth factor-beta and interleukin 10 have powerful immune inhibitory actions of potential therapeutic value in autoimmune hepatitis. The keys to their therapeutic application will be to match their predominant non-redundant function with the pivotal pathogenic mechanism or cytokine deficiency and to avoid contradictory immune stimulatory actions.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Listik E, Horst B, Choi AS, Lee NY, Győrffy B, Mythreye K. A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors. PLoS One 2021; 16:e0249558. [PMID: 33819300 PMCID: PMC8021191 DOI: 10.1371/journal.pone.0249558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibins and activins are dimeric ligands belonging to the TGFβ superfamily with emergent roles in cancer. Inhibins contain an α-subunit (INHA) and a β-subunit (either INHBA or INHBB), while activins are mainly homodimers of either βA (INHBA) or βB (INHBB) subunits. Inhibins are biomarkers in a subset of cancers and utilize the coreceptors betaglycan (TGFBR3) and endoglin (ENG) for physiological or pathological outcomes. Given the array of prior reports on inhibin, activin and the coreceptors in cancer, this study aims to provide a comprehensive analysis, assessing their functional prognostic potential in cancer using a bioinformatics approach. We identify cancer cell lines and cancer types most dependent and impacted, which included p53 mutated breast and ovarian cancers and lung adenocarcinomas. Moreover, INHA itself was dependent on TGFBR3 and ENG/CD105 in multiple cancer types. INHA, INHBA, TGFBR3, and ENG also predicted patients' response to anthracycline and taxane therapy in luminal A breast cancers. We also obtained a gene signature model that could accurately classify 96.7% of the cases based on outcomes. Lastly, we cross-compared gene correlations revealing INHA dependency to TGFBR3 or ENG influencing different pathways themselves. These results suggest that inhibins are particularly important in a subset of cancers depending on the coreceptor TGFBR3 and ENG and are of substantial prognostic value, thereby warranting further investigation.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ben Horst
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alex Seok Choi
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nam. Y. Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Balázs Győrffy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
7
|
Martinez-Hackert E, Sundan A, Holien T. Receptor binding competition: A paradigm for regulating TGF-β family action. Cytokine Growth Factor Rev 2020; 57:39-54. [PMID: 33087301 DOI: 10.1016/j.cytogfr.2020.09.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The transforming growth factor (TGF)-β family is a group of structurally related, multifunctional growth factors, or ligands that are crucially involved in the development, regulation, and maintenance of animal tissues. In humans, the family counts over 33 members. These secreted ligands typically form multimeric complexes with two type I and two type II receptors to activate one of two distinct signal transduction branches. A striking feature of the family is its promiscuity, i.e., many ligands bind the same receptors and compete with each other for binding to these receptors. Although several explanations for this feature have been considered, its functional significance has remained puzzling. However, several recent reports have promoted the idea that ligand-receptor binding promiscuity and competition are critical features of the TGF-β family that provide an essential regulating function. Namely, they allow a cell to read and process multi-ligand inputs. This capability may be necessary for producing subtle, distinctive, or adaptive responses and, possibly, for facilitating developmental plasticity. Here, we review the molecular basis for ligand competition, with emphasis on molecular structures and binding affinities. We give an overview of methods that were used to establish experimentally ligand competition. Finally, we discuss how the concept of ligand competition may be fundamentally tied to human physiology, disease, and therapy.
Collapse
Affiliation(s)
- Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Anders Sundan
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway; Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Hematology, St. Olav's University Hospital, 7030, Trondheim, Norway.
| |
Collapse
|
8
|
Olsen OE, Hella H, Elsaadi S, Jacobi C, Martinez-Hackert E, Holien T. Activins as Dual Specificity TGF-β Family Molecules: SMAD-Activation via Activin- and BMP-Type 1 Receptors. Biomolecules 2020; 10:biom10040519. [PMID: 32235336 PMCID: PMC7225989 DOI: 10.3390/biom10040519] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Activins belong to the transforming growth factor (TGF)-β family of multifunctional cytokines and signal via the activin receptors ALK4 or ALK7 to activate the SMAD2/3 pathway. In some cases, activins also signal via the bone morphogenetic protein (BMP) receptor ALK2, causing activation of the SMAD1/5/8 pathway. In this study, we aimed to dissect how activin A and activin B homodimers, and activin AB and AC heterodimers activate the two main SMAD branches. We compared the activin-induced signaling dynamics of ALK4/7-SMAD2/3 and ALK2-SMAD1/5 in a multiple myeloma cell line. Signaling via the ALK2-SMAD1/5 pathway exhibited greater differences between ligands than signaling via ALK4/ALK7-SMAD2/3. Interestingly, activin B and activin AB very potently activated SMAD1/5, resembling the activation commonly seen with BMPs. As SMAD1/5 was also activated by activins in other cell types, we propose that dual specificity is a general mechanism for activin ligands. In addition, we found that the antagonist follistatin inhibited signaling by all the tested activins, whereas the antagonist cerberus specifically inhibited activin B. Taken together, we propose that activins may be considered dual specificity TGF-β family members, critically affecting how activins may be considered and targeted clinically.
Collapse
Affiliation(s)
- Oddrun Elise Olsen
- Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Hanne Hella
- Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Samah Elsaadi
- Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Carsten Jacobi
- Novartis Institutes for BioMedical Research Basel, Musculoskeletal Disease Area, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Toril Holien
- Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Correspondence: ; Tel.: +47-924-21-162
| |
Collapse
|
9
|
Kang JH, Jung MY, Choudhury M, Leof EB. Transforming growth factor beta induces fibroblasts to express and release the immunomodulatory protein PD-L1 into extracellular vesicles. FASEB J 2019; 34:2213-2226. [PMID: 31907984 DOI: 10.1096/fj.201902354r] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023]
Abstract
Transforming growth factor-beta (TGFβ) is an enigmatic protein with various roles in healthy tissue homeostasis/development as well as the development or progression of cancer, wound healing, fibrotic disorders, and immune modulation, to name a few. As TGFβ is causal to various fibroproliferative disorders featuring localized or systemic tissue/organ fibrosis as well as the activated stroma observed in various malignancies, characterizing the pathways and players mediating its action is fundamental. In the current study, we found that TGFβ induces the expression of the immunoinhibitory molecule Programed death-ligand 1 (PD-L1) in human and murine fibroblasts in a Smad2/3- and YAP/TAZ-dependent manner. Furthermore, PD-L1 knockdown decreased the TGFβ-dependent induction of extracellular matrix proteins, including collagen Iα1 (colIα1) and alpha-smooth muscle actin (α-SMA), and cell migration/wound healing. In addition to an endogenous role for PD-L1 in profibrotic TGFβ signaling, TGFβ stimulated-human lung fibroblast-derived PD-L1 into extracellular vesicles (EVs) capable of inhibiting T cell proliferation in response to T cell receptor stimulation and mediating fibroblast cell migration. These findings provide new insights and potential targets for a variety of fibrotic and malignant diseases.
Collapse
Affiliation(s)
- Jeong-Han Kang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mi-Yeon Jung
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Malay Choudhury
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Edward B Leof
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
10
|
Huard J, Bolia I, Briggs K, Utsunomiya H, Lowe WR, Philippon MJ. Potential Usefulness of Losartan as an Antifibrotic Agent and Adjunct to Platelet-Rich Plasma Therapy to Improve Muscle Healing and Cartilage Repair and Prevent Adhesion Formation. Orthopedics 2018; 41:e591-e597. [PMID: 30092110 DOI: 10.3928/01477447-20180806-05] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/23/2017] [Indexed: 02/03/2023]
Abstract
Postoperative tissue fibrosis represents a major complication in orthopedics. Transforming growth factor beta 1 is a key molecule in the development of postoperative fibrosis. High concentrations of transforming growth factor beta 1 have also been implicated in various diseases. Agents that counteract the actions of transforming growth factor beta 1 have been investigated as potential antifibrotic medications and as adjunct treatment to platelet-rich plasma injections (increased amounts of transforming growth factor beta 1) to improve their effectiveness and/or safety profile. Losartan blocks transforming growth factor beta 1 action and has attracted special interest in orthopedic research that focuses on how to reduce the risk of postoperative fibrosis. [Orthopedics. 2018; 41(5):e591-e597.].
Collapse
|
11
|
Santoro Belangero P, Antônio Figueiredo E, Cohen C, de Seixas Alves F, Hiromi Yanaguizawa W, Cardoso Smith M, Vicente Andreoli C, de Castro Pochini A, Teresa de Seixas Alves M, Ejnisman B, Cohen M, Ferreira Leal M. Changes in the expression of matrix extracellular genes and TGFB family members in rotator cuff tears. J Orthop Res 2018; 36:2542-2553. [PMID: 29614203 DOI: 10.1002/jor.23907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/18/2018] [Indexed: 02/04/2023]
Abstract
Lack of synthesis of extracellular matrix compounds may contribute to degeneration of the tendons. Thus, we aimed to evaluate the expression of extracellular matrix and TGFB family members in ruptured and non-ruptured tendons of the rotator cuff, as well as the effect of clinical factors on gene expression in tendon samples, and the relationship between histological findings and altered gene expression. Injured and non-injured supraspinatus tendon samples and subscapular non-injured tendon samples were collected from 38 patients with rotator cuff tears. Non-injured supraspinatus tendons were obtained from eight controls. Specimens were used for histological evaluation, quantification of collagen fibers, and mRNA and protein expression analyses. Increased COL1A1, COL1A2, COL3A1, COL5A1, FN1, TNC, and TGFBR1 mRNA expression was observed in the tear samples (p < 0.05). Duration of symptoms was correlated with the levels of collagen type I/III fibers (p = 0.032; ρ = 0.0447) and FN1 immunostaining (p = 0.031; ρ = 0.417). Smoking was associated with increased frequency of microcysts, myxoid degeneration, and COL5A1, FN1, TNC, and TGFB1 mRNA expression (p < 0.05). FN1 immunostaining was correlated with the number of years of smoking (p = 0.048; ρ = 0.384). Lower levels of collagen type I/III fibers were detected in samples with fissures (0 = 0.046). High frequency of microcysts was associated with increased COL5A1, FN1, and TNC expression (p < 0.05, for all comparisons). Neovascularization was associated with reduced FN1 (p = 0.035) and TGFBR1 expression (p = 0.034). Our findings show differential expression of matrix extracellular genes and TGFB family members in the degeneration process involved in rotator cuff tears. These molecular alterations are influenced by clinical factors. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2542-2553, 2018.
Collapse
Affiliation(s)
- Paulo Santoro Belangero
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Eduardo Antônio Figueiredo
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Carina Cohen
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Felipe de Seixas Alves
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil.,Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, São Paulo, 04038-032, Brazil
| | - Wânia Hiromi Yanaguizawa
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil.,Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, São Paulo, 04038-032, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, São Paulo, 04023-001, Brazil
| | - Carlos Vicente Andreoli
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Alberto de Castro Pochini
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | | | - Benno Ejnisman
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Moises Cohen
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Mariana Ferreira Leal
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil.,Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, São Paulo, 04023-001, Brazil
| |
Collapse
|
12
|
Olsen OE, Sankar M, Elsaadi S, Hella H, Buene G, Darvekar SR, Misund K, Katagiri T, Knaus P, Holien T. BMPR2 inhibits activin and BMP signaling via wild-type ALK2. J Cell Sci 2018; 131:jcs.213512. [PMID: 29739878 DOI: 10.1242/jcs.213512] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
TGF-β/BMP superfamily ligands require heteromeric complexes of type 1 and 2 receptors for ligand-dependent downstream signaling. Activin A, a TGF-β superfamily member, inhibits growth of multiple myeloma cells, but the mechanism for this is unknown. We therefore aimed to clarify how activins affect myeloma cell survival. Activin A activates the transcription factors SMAD2/3 through the ALK4 type 1 receptor, but may also activate SMAD1/5/8 through mutated variants of the type 1 receptor ALK2 (also known as ACVR1). We demonstrate that activin A and B activate SMAD1/5/8 in myeloma cells through endogenous wild-type ALK2. Knockdown of the type 2 receptor BMPR2 strongly potentiated activin A- and activin B-induced activation of SMAD1/5/8 and subsequent cell death. Furthermore, activity of BMP6, BMP7 or BMP9, which may also signal via ALK2, was potentiated by knockdown of BMPR2. Similar results were seen in HepG2 liver carcinoma cells. We propose that BMPR2 inhibits ALK2-mediated signaling by preventing ALK2 from oligomerizing with the type 2 receptors ACVR2A and ACVR2B, which are necessary for activation of ALK2 by activins and several BMPs. In conclusion, BMPR2 could be explored as a possible target for therapy in patients with multiple myeloma.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Oddrun Elise Olsen
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Department of Hematology, St. Olav's University Hospital, 7030 Trondheim, Norway
| | - Meenu Sankar
- School of Bioscience, University of Skövde, 541 28 Skövde, Sweden
| | - Samah Elsaadi
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hanne Hella
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Glenn Buene
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Sagar Ramesh Darvekar
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Department of Hematology, St. Olav's University Hospital, 7030 Trondheim, Norway
| | - Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Toril Holien
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway .,Department of Hematology, St. Olav's University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
13
|
Haupt J, Xu M, Shore EM. Variable signaling activity by FOP ACVR1 mutations. Bone 2018; 109:232-240. [PMID: 29097342 PMCID: PMC5866189 DOI: 10.1016/j.bone.2017.10.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/10/2017] [Accepted: 10/28/2017] [Indexed: 01/06/2023]
Abstract
Most patients with fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder of heterotopic ossification, have the same causative mutation in ACVR1, R206H. However, additional mutations within the ACVR1 BMP type I receptor have been identified in a small number of FOP cases, often in patients with disease of lesser or greater severity than occurs with R206H mutations. Genotype-phenotype correlations have been suggested in patients, resulting in classification of FOP mutations based on location within different receptor domains and structural modeling. However while each of the mutations induces increased signaling through the BMP-pSmad1/5/8 pathway, the molecular mechanisms underlying functional differences of these FOP variant receptors remained undetermined. We now demonstrate that FOP mutations within the ACVR1 receptor kinase domain are more sensitive to low levels of BMP than mutations in the ACVR1 GS domain. Our data additionally confirm responsiveness of cells with FOP ACVR1 mutations to both BMP and Activin A ligands. We also have determined that constructs with FOP ACVR1 mutations that are engineered without the ligand-binding domain retain increased BMP-pSmad1/5/8 pathway activation relative to wild-type ACVR1, supporting that the mutant receptors can function through ligand-independent mechanisms either directly through mutant ACVR1 or through indirect mechanisms.
Collapse
Affiliation(s)
- Julia Haupt
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Meiqi Xu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
LaBonty M, Yelick PC. Animal models of fibrodysplasia ossificans progressiva. Dev Dyn 2017; 247:279-288. [PMID: 29139166 DOI: 10.1002/dvdy.24606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
Fibrodysplasia Ossificans Progressiva is a rare human disease of heterotopic ossification. FOP patients experience progressive development of ectopic bone within fibrous tissues that contributes to a gradual loss of mobility and can lead to early mortality. Due to lack of understanding of the etiology and progression of human FOP, and the fact that surgical interventions often exacerbate FOP disease progression, alternative therapeutic methods are needed, including modeling in animals, to study and improve understanding of human FOP. In this review we provide an overview of the existing animal models of FOP and the key mechanistic findings from each. In addition, we highlight the specific advantages of a new adult zebrafish model, generated by our lab, to study human FOP. Developmental Dynamics 247:279-288, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Melissa LaBonty
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts.,Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Pamela C Yelick
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts.,Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
15
|
Hildebrand L, Stange K, Deichsel A, Gossen M, Seemann P. The Fibrodysplasia Ossificans Progressiva (FOP) mutation p.R206H in ACVR1 confers an altered ligand response. Cell Signal 2016; 29:23-30. [PMID: 27713089 DOI: 10.1016/j.cellsig.2016.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/23/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
Patients with Fibrodysplasia Ossificans Progressiva (FOP) suffer from ectopic bone formation, which progresses during life and results in dramatic movement restrictions. Cause of the disease are point mutations in the Activin A receptor type 1 (ACVR1), with p.R206H being most common. In this study we compared the signalling responses of ACVR1WT and ACVR1R206H to different ligands. ACVR1WT, but not ACVR1R206H inhibited BMP signalling of BMP2 or BMP4 in a ligand binding domain independent manner. Likewise, the basal BMP signalling activity of the receptor BMPR1A or BMPR1B was inhibited by ACVR1WT, but enhanced by ACVR1R206H. In comparison, BMP6 or BMP7 activated ACVR1WT and caused a hyper-activation of ACVR1R206H. These effects were dependent on an intact ligand binding domain. Finally, the neofunction of Activin A in FOP was tested and found to depend on the ligand binding domain for activating ACVR1R206H. We conclude that the FOP mutation ACVR1R206H is more sensitive to a number of natural ligands. The mutant receptor apparently lost some essential inhibitory interactions with its ligands and co-receptors, thereby conferring an enhanced ligand-dependent signalling and stimulating ectopic bone formation as observed in the patients.
Collapse
Affiliation(s)
- Laura Hildebrand
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| | - Katja Stange
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany; Leibniz Institute for Farm Animal Biology, Institute for Muscle Biology and Growth, Dummerstorf, Germany.
| | - Alexandra Deichsel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.
| | - Petra Seemann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| |
Collapse
|
16
|
The Discovery and Early Days of TGF-β: A Historical Perspective. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021865. [PMID: 27328871 DOI: 10.1101/cshperspect.a021865] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factors (TGFs) were discovered as activities that were secreted by cancer cells, and later by normal cells, and had the ability to phenotypically and reversibly transform immortalized fibroblasts. TGF-β distinguished itself from TGF-α because it did not bind to the same epidermal growth factor (EGF) receptor as TGF-α and, therefore, acted through different cell-surface receptors and signaling mediators. This review summarizes the discovery of TGF-β, the early developments in its molecular and biological characterization with its many biological activities in different cell and tissue contexts and its roles in disease, the realization that there is a family of secreted TGF-β-related proteins with many differentiation functions in development and activities in normal cell and tissue physiology, and the subsequent identification and characterization of the receptors and effectors that mediate TGF-β family signaling responses.
Collapse
|
17
|
Refaat B, Ashshi AM, El-Shemi AG, Azhar E. Activins and Follistatin in Chronic Hepatitis C and Its Treatment with Pegylated-Interferon-α Based Therapy. Mediators Inflamm 2015; 2015:287640. [PMID: 25969625 PMCID: PMC4417604 DOI: 10.1155/2015/287640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/12/2022] Open
Abstract
Pegylated-interferon-α based therapy for the treatment of chronic hepatitis C (CHC) is considered suboptimal as not all patients respond to the treatment and it is associated with several side effects that could lead to dose reduction and/or termination of therapy. The currently used markers to monitor the response to treatment are based on viral kinetics and their performance in the prediction of treatment outcome is moderate and does not combine accuracy and their values have several limitations. Hence, the development of new sensitive and specific predictor markers could provide a useful tool for the clinicians and healthcare providers, especially in the new era of interferon-free therapy, for the classification of patients according to their response to the standard therapy and only subscribing the novel directly acting antiviral drugs to those who are anticipated not to respond to the conventional therapy and/or have absolute contraindications for its use. The importance of activins and follistatin in the regulation of immune system, liver biology, and pathology has recently emerged. This review appraises the up-to-date knowledge regarding the role of activins and follistatin in liver biology and immune system and their role in the pathophysiology of CHC.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
| | - Ahmed Mohamed Ashshi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 6515, Egypt
| | - Esam Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Refaat B. Role of activins in embryo implantation and diagnosis of ectopic pregnancy: a review. Reprod Biol Endocrinol 2014; 12:116. [PMID: 25421645 PMCID: PMC4254208 DOI: 10.1186/1477-7827-12-116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022] Open
Abstract
Embryo implantation is a major prerequisite for the successful establishment of pregnancy. Ectopic implantation outside the intrauterine cavity and the development of ectopic pregnancy (EP) is a major cause of maternal morbidity and occasionally mortality during the first trimester. EP may be induced by failure of tubal transport and/or increased tubal receptivity. Activins, their type II receptors and follistatin have been localised in the human endometrial and tubal epithelium and they are major regulators of endometrial and tubal physiology during the menstrual cycle. Pathological expression of activins and their binding protein, follistatin, was observed in tissue and serum samples collected from EP. Several studies with different designs investigated the diagnostic value of a single measurement of serum activin-A in the differentiation between normal intrauterine and failing early pregnancy and the results are controversial. Nevertheless, the diagnostic value of activins in EP, including the other activin isoforms (activin-B and -AB) and follistatin, merits further research. This review appraises the data to date researching the role of activins in the establishment of normal pregnancy and, pathogenesis and diagnosis of tubal EP.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah, PO Box 7607, Saudi Arabia.
| |
Collapse
|
19
|
Holtzhausen A, Golzio C, How T, Lee YH, Schiemann WP, Katsanis N, Blobe GC. Novel bone morphogenetic protein signaling through Smad2 and Smad3 to regulate cancer progression and development. FASEB J 2013; 28:1248-67. [PMID: 24308972 DOI: 10.1096/fj.13-239178] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bone morphogenetic protein (BMP) signaling pathways have important roles in embryonic development and cellular homeostasis, with aberrant BMP signaling resulting in a broad spectrum of human disease. We report that BMPs unexpectedly signal through the canonical transforming growth factor β (TGF-β)-responsive Smad2 and Smad3. BMP-induced Smad2/3 signaling occurs preferentially in embryonic cells and transformed cells. BMPs signal to Smad2/3 by stimulating complex formation between the BMP-binding TGF-β superfamily receptors, activin receptor-like kinase (ALK)3/6, and the Smad2/3 phosphorylating receptors ALK5/7. BMP signaling through Smad2 mediates, in part, dorsoventral axis patterning in zebrafish embryos, whereas BMP signaling through Smad3 facilitates cancer cell invasion. Consistent with increased BMP-mediated Smad2/3 signaling during cancer progression, Smad1/5 and Smad 2/3 signaling converge in human cancer specimens. Thus, the signaling mechanisms used by BMPs and TGF-β superfamily receptors are broader than previously appreciated.
Collapse
Affiliation(s)
- Alisha Holtzhausen
- 1Duke University Medical Center, 450 Research Drive, LSRC B354, Box 91004, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Yasmin N, Bauer T, Modak M, Wagner K, Schuster C, Köffel R, Seyerl M, Stöckl J, Elbe-Bürger A, Graf D, Strobl H. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. ACTA ACUST UNITED AC 2013; 210:2597-610. [PMID: 24190429 PMCID: PMC3832935 DOI: 10.1084/jem.20130275] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bone morphogenetic protein 7 (BMP7) promotes the differentiation of Langerhans cells in the epidermis during prenatal development. Human Langerhans cell (LC) precursors populate the epidermis early during prenatal development and thereafter undergo massive proliferation. The prototypic antiproliferative cytokine TGF-β1 is required for LC differentiation from human CD34+ hematopoietic progenitor cells and blood monocytes in vitro. Similarly, TGF-β1 deficiency results in LC loss in vivo. However, immunohistology studies revealed that human LC niches in early prenatal epidermis and adult basal (germinal) keratinocyte layers lack detectable TGF-β1. Here we demonstrated that these LC niches express high levels of bone morphogenetic protein 7 (BMP7) and that Bmp7-deficient mice exhibit substantially diminished LC numbers, with the remaining cells appearing less dendritic. BMP7 induces LC differentiation and proliferation by activating the BMP type-I receptor ALK3 in the absence of canonical TGF-β1–ALK5 signaling. Conversely, TGF-β1–induced in vitro LC differentiation is mediated via ALK3; however, co-induction of ALK5 diminished TGF-β1–driven LC generation. Therefore, selective ALK3 signaling by BMP7 promotes high LC yields. Within epidermis, BMP7 shows an inverse expression pattern relative to TGF-β1, the latter induced in suprabasal layers and up-regulated in outer layers. We observed that TGF-β1 inhibits microbial activation of BMP7-generated LCs. Therefore, TGF-β1 in suprabasal/outer epidermal layers might inhibit LC activation, resulting in LC network maintenance.
Collapse
Affiliation(s)
- Nighat Yasmin
- Institute of Pathophysiology and Immunology, Center for Molecular Medicine and 2 Center for Medical Research, Medical University Graz, A-8036 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
SNP selection in genome-wide association studies via penalized support vector machine with MAX test. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:340678. [PMID: 24174989 PMCID: PMC3794570 DOI: 10.1155/2013/340678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/14/2013] [Accepted: 08/22/2013] [Indexed: 11/30/2022]
Abstract
One of main objectives of a genome-wide association study (GWAS) is to develop a prediction model for a binary clinical outcome using single-nucleotide polymorphisms (SNPs) which can
be used for diagnostic and prognostic purposes and for better understanding of the relationship between the disease and SNPs. Penalized support vector machine (SVM) methods have been widely used toward this end. However, since investigators often ignore the genetic models of SNPs, a final model results in a loss of efficiency in prediction of the clinical outcome. In order to overcome this problem, we propose a two-stage method such that the the genetic models of each SNP are identified using the MAX test and then a prediction model is fitted using a penalized SVM method. We apply the proposed method to various penalized SVMs and compare the performance of
SVMs using various penalty functions. The results from simulations and real GWAS data analysis show that the proposed method performs better than the prediction methods ignoring the genetic models in terms of prediction power and selectivity.
Collapse
|
22
|
Kamato D, Burch ML, Osman N, Zheng W, Little PJ. Therapeutic implications of endothelin and thrombin G-protein-coupled receptor transactivation of tyrosine and serine/threonine kinase cell surface receptors. J Pharm Pharmacol 2012; 65:465-73. [DOI: 10.1111/j.2042-7158.2012.01577.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
This review discusses the latest developments in G protein coupled receptor (GPCR) signalling related to the transactivation of cell surface protein kinase receptors and the therapeutic implications.
Key findings
Multiple GPCRs have been known to transactivate protein tyrosine kinase receptors for almost two decades. More recently it has been discovered that GPCRs can also transactivate protein serine/threonine kinase receptors such as that for transforming growth factor (TGF)-β. Using the model of proteoglycan synthesis and glycosaminoglycan elongation in human vascular smooth muscle cells which is a component of an in vitro model of atherosclerosis, the dual tyrosine and serine/threonine kinase receptor transactivation pathways appear to account for all of the response to the agonists, endothelin and thrombin.
Summary
The broadening of the paradigm of GPCR receptor transactivation explains the broad range of activities of these receptors and also the efficacy of GPCR antagonists in cardiovascular therapeutics. Deciphering the mechanisms of transactivation with the aim of identifying a common therapeutic target remains the next challenge.
Collapse
Affiliation(s)
- Danielle Kamato
- Discipline of Pharmacy, School of Medical Sciences, Australia
- Diabetes Complications Group, Metabolism, Exercise and Disease Program, Health Innovations Research Institute, RMIT University, Melbourne, Australia
| | - Micah L Burch
- Diabetes Complications Group, Metabolism, Exercise and Disease Program, Health Innovations Research Institute, RMIT University, Melbourne, Australia
- Department of Medicine, Monash University School of Medicine (Central and Eastern Clinical School, Alfred Health), Prahran VIC, Australia
| | - Narin Osman
- Discipline of Pharmacy, School of Medical Sciences, Australia
- Diabetes Complications Group, Metabolism, Exercise and Disease Program, Health Innovations Research Institute, RMIT University, Melbourne, Australia
| | - Wenhua Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peter J Little
- Discipline of Pharmacy, School of Medical Sciences, Australia
- Diabetes Complications Group, Metabolism, Exercise and Disease Program, Health Innovations Research Institute, RMIT University, Melbourne, Australia
- Department of Medicine, Monash University School of Medicine (Central and Eastern Clinical School, Alfred Health), Prahran VIC, Australia
| |
Collapse
|
23
|
Stem cell antigen-1 enhances tumorigenicity by disruption of growth differentiation factor-10 (GDF10)-dependent TGF-beta signaling. Proc Natl Acad Sci U S A 2011; 108:7820-5. [PMID: 21518866 DOI: 10.1073/pnas.1103441108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stem cell antigen (Sca)-1/Ly6A, a glycerophosphatidylinositol-linked surface protein, was found to be associated with murine stem cell- and progenitor cell-enriched populations, and also has been linked to the capacity of tumor-initiating cells. Despite these interesting associations, this protein's functional role in these processes remains largely unknown. To identify the mechanism underlying the protein's possible role in mammary tumorigenesis, Sca-1 expression was examined in Sca-1(+/EGFP) mice during carcinogenesis. Mammary tumor cells derived from these mice readily engrafted in syngeneic mice, and tumor growth was markedly inhibited on down-regulation of Sca-1 expression. The latter effect was associated with significantly elevated expression of the TGF-β ligand growth differentiation factor-10 (GDF10), which was found to selectively activate TGF-β receptor (TβRI/II)-dependent Smad3 phosphorylation. Overexpression of GDF10 attenuated tumor formation; conversely, silencing of GDF10 expression reversed these effects. Sca-1 attenuated GDF10-dependent TGF-β signaling by disrupting the heterodimerization of TβRI and TβRII receptors. These findings suggest a new functional role for Sca-1 in maintaining tumorigenicity, in part by acting as a potent suppressor of TGF-β signaling.
Collapse
|
24
|
Abstract
Interstitial fibrosis, associated with extensive accumulation of extracellular matrix constituents in the cortical interstitium, is directly correlated to progression of renal disease. The earliest histological marker of this progression is the accumulation in the interstitium of fibroblasts with the phenotypic appearance of myofibroblasts. These myofibroblasts are contractile cells that express alpha smooth muscle actin and incorporate it into intracellular stress fibres. Although fibroblasts are histologically visible in normal kidneys, there are relatively few of them and proximal tubular epithelial cells predominate. In progressive disease, however, the interstitium becomes filled with myofibroblasts. In this review, we will examine the phenotype and function of fibroblasts and myofibroblasts in the cortical interstitium and the processes that may modulate them.
Collapse
Affiliation(s)
- Soma Meran
- Institute of Nephrology, School of Medicine, University of Cardiff, Heath Park, UK
| | | |
Collapse
|
25
|
Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol 2008; 28:6889-902. [PMID: 18794361 DOI: 10.1128/mcb.01192-08] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) signals predominantly through a receptor complex comprising ALK5 and TbetaRII to activate receptor-regulated Smads (R-Smads) Smad2 and Smad3. In endothelial cells, however, TGF-beta can additionally activate Smad1 and Smad5. Here, we report that TGF-beta also strongly induces phosphorylation of Smad1/5 in many different normal epithelial cells, epithelium-derived tumor cells, and fibroblasts. We demonstrate that TbetaRII and ALK5, as well as ALK2 and/or ALK3, are required for TGF-beta-induced Smad1/5 phosphorylation. We show that the simultaneous activation of the R-Smads Smad2/3 and Smad1/5 by TGF-beta results in the formation of mixed R-Smad complexes, containing, for example, phosphorylated Smad1 and Smad2. The prevalence of these mixed R-Smad complexes explains why TGF-beta-induced Smad1/5 phosphorylation does not result in transcriptional activation via bone morphogenetic protein (BMP)-responsive elements, which bind activated Smad1/5-Smad4 complexes that are induced by BMP stimulation. Thus, TGF-beta induces two parallel pathways: one signaling via Smad2-Smad4 or Smad3-Smad4 complexes and the other signaling via mixed R-Smad complexes. Finally, we assess the function of the novel arm of TGF-beta signaling and show that TGF-beta-induced Smad1/5 activation is not required for the growth-inhibitory effects of TGF-beta but is specifically required for TGF-beta-induced anchorage-independent growth.
Collapse
|
26
|
Zhao H, Oka K, Bringas P, Kaartinen V, Chai Y. TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner. Dev Biol 2008; 320:19-29. [PMID: 18572160 DOI: 10.1016/j.ydbio.2008.03.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 03/18/2008] [Accepted: 03/20/2008] [Indexed: 01/01/2023]
Abstract
TGF-beta superfamily members signal through a heteromeric receptor complex to regulate craniofacial development. TGF-beta type II receptor appears to bind only TGF-beta, whereas TGF-beta type I receptor (ALK5) also binds to ligands in addition to TGF-beta. Our previous work has shown that conditional inactivation of Tgfbr2 in the neural crest cells of mice leads to severe craniofacial bone defects. In this study, we examine and compare the defects of TGF-beta type II receptor (Wnt1-Cre;Tgfbr2(fl/fl)) and TGF-beta type I receptor/Alk5 (Wnt1-Cre;Alk5(fl)(/fl)) conditional knockout mice. Loss of Alk5 in the neural crest tissue resulted in phenotypes not seen in the Tgfbr2 mutant, including delayed tooth initiation and development, defects in early mandible patterning and altered expression of key patterning genes including Msx1, Bmp4, Bmp2, Pax9, Alx4, Lhx6/7 and Gsc. Alk5 controls the survival of CNC cells by regulating expression of Gsc and other genes in the proximal aboral region of the developing mandible. We conclude that ALK5 regulates tooth initiation and early mandible patterning through a pathway independent of Tgfbr2. There is an intrinsic requirement for Alk5 signal in regulating the fate of CNC cells during tooth and mandible development.
Collapse
Affiliation(s)
- Hu Zhao
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
27
|
Bharathy S, Xie W, Yingling JM, Reiss M. Cancer-associated transforming growth factor beta type II receptor gene mutant causes activation of bone morphogenic protein-Smads and invasive phenotype. Cancer Res 2008; 68:1656-66. [PMID: 18339844 DOI: 10.1158/0008-5472.can-07-5089] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transforming growth factor beta (TGFbeta) plays a key role in maintaining tissue homeostasis by inducing cell cycle arrest, differentiation and apoptosis, and ensuring genomic integrity. Furthermore, TGFbeta orchestrates the response to tissue injury and mediates repair by inducing epithelial to mesenchymal transition and by stimulating cell motility and invasiveness. Although loss of the homeostatic activity of TGFbeta occurs early on in tumor development, many advanced cancers have coopted the tissue repair function to enhance their metastatic phenotype. How these two functions of TGFbeta become uncoupled during cancer development remains poorly understood. Here, we show that, in human keratinocytes, TGFbeta induces phosphorylation of Smad2 and Smad3 as well as Smad1 and Smad5 and that both pathways are dependent on the kinase activities of the type I and II TGFbeta receptors (T beta R). Moreover, cancer-associated missense mutations of the T beta RII gene (TGFBR2) are associated with at least two different phenotypes. One type of mutant (TGFBR2(E526Q)) is associated with loss of kinase activity and all signaling functions. In contrast, a second mutant (TGFBR2(R537P)) is associated with high intrinsic kinase activity, loss of Smad2/3 activation, and constitutive activation of Smad1/5. Furthermore, this TGFBR2 mutant endows the carcinoma cells with a highly motile and invasive fibroblastoid phenotype. This activated phenotype is T beta RI (Alk-5) independent and can be reversed by the action of a dual T beta RI and T beta RII kinase inhibitor. Thus, identification of such activated T beta RII receptor mutations in tumors may have direct implications for appropriately targeting these cancers with selective therapeutic agents.
Collapse
MESH Headings
- Bone Morphogenetic Proteins/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Keratinocytes/enzymology
- Mutation, Missense
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Recombinant Proteins/pharmacology
- Smad Proteins/metabolism
- Transfection
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Savita Bharathy
- Department of Internal Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | | | | | | |
Collapse
|
28
|
Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 2007; 185:146-56. [PMID: 17587820 DOI: 10.1159/000101315] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epithelial-mesenchymal cell transformation (EMT) is a critical process during development of the heart valves. Transition of endothelial cells into mesenchymal cells in the atrioventricular (AV) canal and the outflow tract regions of the heart form the cardiac cushions that eventually form the heart valves. Collagen gel invasion assay has aided in the identification of molecules that regulate EMT. Among those, transforming growth factor-beta (TGF-beta) ligands and receptors demonstrate a critical role during EMT. In the chick, TGF-beta ligands and some receptors have specific functions during EMT. TGF-beta2 mediates endothelial cell-cell activation and separation, and TGF-beta3 mediates cell invasion into the extracellular matrix. Receptors involved in the EMT process include TGF-beta receptor type II (TBRII), TBRIII, endoglin and the TBRI receptors, ALK2 and ALK5. In contrast, in the mouse model, TGF-beta2 is the only ligand involved in EMT. The TGF-beta2 null mouse has either increased EMT or a mesenchymal cell proliferation after EMT. However, functional studies of TGF-beta1 in vivo and in vitro showed that TGF-beta1 functions in the EMT of the mouse AV canal. Latent TGF-beta-binding protein (LTBP-1) and endoglin have a role in the EMT process. Therefore, TGF-betas mediate cardiac EMT in both embryonic species. Further studies will reveal the identification of ligand and receptor-specific activities.
Collapse
|
29
|
Craft CS, Romero D, Vary CPH, Bergan RC. Endoglin inhibits prostate cancer motility via activation of the ALK2-Smad1 pathway. Oncogene 2007; 26:7240-50. [PMID: 17496924 PMCID: PMC2199239 DOI: 10.1038/sj.onc.1210533] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endoglin is a transforming growth factor beta (TGFbeta) superfamily auxiliary receptor. We had previously shown that it suppressed prostate cancer (PCa) cell motility, and that its expression was lost during PCa progression. The mechanism by which endoglin inhibits PCa cell motility is unknown. Here we demonstrate that endoglin abrogates TGFbeta-mediated cell motility, but does not alter cell surface binding of TGFbeta. By measuring Smad-specific phosphorylation and Smad-responsive promoter activity, endoglin was shown to constitutively activate Smad1, with little-to-no effect upon Smad3. Knockdown of Smad1 increased motility and abrogated endoglin's effects. As type I activin receptor-like kinases (ALKs) are necessary for Smad activation, we went on to show that knockdown of ALK2, but not TGFbetaRI (ALK5), abrogated endoglin-mediated decreases in cell motility and constitutively active ALK2 was sufficient to restore a low-motility phenotype in endoglin deficient cells. These findings provide the first evidence that endoglin decreases PCa cell motility through activation of the ALK2-Smad1 pathway.
Collapse
Affiliation(s)
- CS Craft
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, Northwestern University and the Robert H Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | - D Romero
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - CPH Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - RC Bergan
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, Northwestern University and the Robert H Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
30
|
Giehl K, Menke A. Moving on: Molecular mechanisms in TGFβ-induced epithelial cell migration. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Barrett JM, Rovedo MA, Tajuddin AM, Jilling T, Macoska JA, MacDonald J, Mangold KA, Kaul KL. Prostate cancer cells regulate growth and differentiation of bone marrow endothelial cells through TGFbeta and its receptor, TGFbetaRII. Prostate 2006; 66:632-50. [PMID: 16388503 DOI: 10.1002/pros.20370] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The underlying mechanisms permitting prostate cancer bone metastasis are poorly understood. We previously showed that the highly metastatic prostate cancer cell line, PC-3, inhibits bone marrow endothelial (HBME-1) cell growth in collagen gels and induces them to differentiate into cords, resembling angiogenesis in vivo. METHODS cDNA microarray analysis was performed to identify cytokines responsible for the effects of PC-3 cells on HBME-1 cells. Cytokine and neutralizing antibody studies were done to further investigate specific angiogenic factors, such as transforming growth factor beta (TGFbeta). TGFbeta RNA and protein were detected by real-time RT-PCR and enzyme-linked immunosorbent assay (ELISA) analysis to measure their production by prostate cancer cell lines. Conditioned media experiments using TGFbeta neutralizing antibodies were used to analyze TGFbeta activation by prostate cancer cells. RESULTS PC-3 conditioned media altered the expression of several TGFbeta-regulated or -associated genes in HBME-1 cells. Low concentrations of TGFbeta cytokines inhibited HBME-1 cell growth to a similar level as PC-3 conditioned media and partially induced differentiation. Inhibitors and neutralizing antibodies directed against TGFbeta isoforms and TGFbeta receptor type 2 (TGFbetaRII) reversed the growth inhibition of HBME-1 cells conferred by PC-3 conditioned media. Yet, only TGFbetaRII neutralizing antibodies significantly inhibited HBME-1 differentiation. Also, prostate cancer cell lines produced low levels of TGFbeta RNA and protein, and were shown to activate serum-derived TGFbeta. CONCLUSIONS These results suggest that prostate cancer cells mediate growth inhibition and differentiation of bone marrow endothelial cells both through production and activation of TGFbeta as well as alteration of TGFbetaRII-mediated signal transduction. This could contribute to the establishment and growth of bone metastases.
Collapse
Affiliation(s)
- Jeffrey M Barrett
- Interdepartmental Biological Sciences Program, Northwestern University, Evanston, Illinois 60201, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang X, Inoue S, Gu J, Miyoshi E, Noda K, Li W, Mizuno-Horikawa Y, Nakano M, Asahi M, Takahashi M, Uozumi N, Ihara S, Lee SH, Ikeda Y, Yamaguchi Y, Aze Y, Tomiyama Y, Fujii J, Suzuki K, Kondo A, Shapiro SD, Lopez-Otin C, Kuwaki T, Okabe M, Honke K, Taniguchi N. Dysregulation of TGF-beta1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc Natl Acad Sci U S A 2005; 102:15791-15796. [PMID: 16236725 PMCID: PMC1257418 DOI: 10.1073/pnas.0507375102] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Indexed: 11/18/2022] Open
Abstract
The core fucosylation (alpha1,6-fucosylation) of glycoproteins is widely distributed in mammalian tissues, and is altered under pathological conditions. To investigate physiological functions of the core fucose, we generated alpha1,6-fucosyltransferase (Fut8)-null mice and found that disruption of Fut8 induces severe growth retardation and death during postnatal development. Histopathological analysis revealed that Fut8(-/-) mice showed emphysema-like changes in the lung, verified by a physiological compliance analysis. Biochemical studies indicated that lungs from Fut8(-/-) mice exhibit a marked overexpression of matrix metalloproteinases (MMPs), such as MMP-12 and MMP-13, highly associated with lung-destructive phenotypes, and a down-regulation of extracellular matrix (ECM) proteins such as elastin, as well as retarded alveolar epithelia cell differentiation. These changes should be consistent with a deficiency in TGF-beta1 signaling, a pleiotropic factor that controls ECM homeostasis by down-regulating MMP expression and inducing ECM protein components. In fact, Fut8(-/-) mice have a marked dysregulation of TGF-beta1 receptor activation and signaling, as assessed by TGF-beta1 binding assays and Smad2 phosphorylation analysis. We also show that these TGF-beta1 receptor defects found in Fut8(-/-) cells can be rescued by reintroducing Fut8 into Fut8(-/-) cells. Furthermore, exogenous TGF-beta1 potentially rescued emphysema-like phenotype and concomitantly reduced MMP expression in Fut8(-/-) lung. We propose that the lack of core fucosylation of TGF-beta1 receptors is crucial for a developmental and progressive/destructive emphysema, suggesting that perturbation of this function could underlie certain cases of human emphysema.
Collapse
Affiliation(s)
- Xiangchun Wang
- Department of Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Imamichi Y, Waidmann O, Hein R, Eleftheriou P, Giehl K, Menke A. TGF beta-induced focal complex formation in epithelial cells is mediated by activated ERK and JNK MAP kinases and is independent of Smad4. Biol Chem 2005; 386:225-36. [PMID: 15843168 DOI: 10.1515/bc.2005.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Advanced malignancies often exhibit increased concentrations of transforming growth factor-beta (TGF beta), which has been suggested to promote invasion and metastasis. While inhibition of epithelial cell proliferation in response to TGF beta is mainly mediated by the well-characterised Smad pathway, the molecular mechanism leading to TGF beta-induced invasiveness and metastasis are largely unknown. To elucidate these mechanisms, we compared TGF beta1 signalling in MCF-7 and the Smad4-negative MDA-MB-468 breast cancer cells. Both cell lines react to TGF beta1 treatment with decreased subcortical actin and increased numbers of focal contacts. TGF beta1-induced cell migration was strongly dependent on the activation of extracellular signal-regulated kinase (ERK) and Jun N-terminal kinase (JNK). These mitogen-activated protein kinases were phosphorylated in response to TGF beta and subsequently translocated into focal contacts. Inhibition of the TGF beta type I receptor ALK5 slightly reduced phosphorylation of ERK in MCF-7 cells, but neither inhibited phosphorylation of ERK in MDA-MB-468 cells nor TGF beta1-induced migration of both cell lines. In contrast, ALK5 inhibition effectively blocked Smad2 phosphorylation. In addition to ERK and JNK, the monomeric GTPase RhoA was activated by TGF beta1 and necessary for TGF beta-induced migration. Taken together, our study identifies a role of ERK and JNK activation and association of activated MAPKs with focal complexes in TGF beta1-induced cell migration in epithelial cells. These TGF beta-dependent processes were mediated independently of Smad4.
Collapse
Affiliation(s)
- Yukiko Imamichi
- Department of Internal Medicine I, University of Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Chen HW, Chang YC, Lai YL, Chen YJ, Huang MJ, Leu YS, Fu YK, Wang LW, Hwang JJ. Change of plasma transforming growth factor-beta1 levels in nasopharyngeal carcinoma patients treated with concurrent chemo-radiotherapy. Jpn J Clin Oncol 2005; 35:427-32. [PMID: 16006572 DOI: 10.1093/jjco/hyi126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Our aim was to study the correlation between plasma transforming growth factor (TGF)-beta1 level and radiation-induced mucositis and dermatitis in nasopharyngeal carcinoma (NPC) patients. METHODS Blood samples obtained from patients treated with concurrent chemo-radiotherapy (CCRT) were divided into two groups according to the pre-treatment plasma TGF-beta1 level (> or =7.5 ng/ml as group 1 and < 7.5 ng/ml as group 2). Enzyme-linked immunosorbent assay (ELISA) was used for the measurement of the TGF-beta1 level. Radiation toxicity was evaluated according to Radiation Treatment Oncology Group criteria. Data were analyzed by the generalized estimation equation method. RESULTS TGF-beta1 levels of group 1 patients were decreased significantly (P = 0.002) at the end of the treatment. The rate of decrease was 0.12 ng/ml per fraction (P = 0.02). The average TGF-beta1 level in patients who suffered acute radiation morbidity (grade > or =2) was significantly higher (P = 0.0057) than that of those who suffered less (grade < 2). CONCLUSION A lower pre-treatment plasma TGF-beta1 level and the grade of radiation toxicity both appeared to contribute to the elevated plasma TGF-beta1 after CCRT.
Collapse
Affiliation(s)
- Hong-Wen Chen
- Department of Medical Radiation Technology & Institute of Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Desgrosellier JS, Mundell NA, McDonnell MA, Moses HL, Barnett JV. Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol 2005; 280:201-10. [PMID: 15766759 DOI: 10.1016/j.ydbio.2004.12.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 11/16/2004] [Accepted: 12/26/2004] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transformation (EMT) occurs during both development and tumorigenesis. Transforming growth factor beta (TGFbeta) ligands signal EMT in the atrioventricular (AV) cushion of the developing heart, a critical step in valve formation. TGFbeta signals through a complex of type I and type II receptors. Several type I receptors exist although activin receptor-like kinase (ALK) 5 mediates the majority of TGFbeta signaling. Here, we demonstrate that ALK2 is sufficient to induce EMT in the heart. Both ALK2 and ALK5 are expressed throughout the heart with ALK2 expressed abundantly in endocardial cells of the outflow tract (OFT), ventricle, and AV cushion. Misexpression of constitutively active (ca) ALK2 in non-transforming ventricular endocardial cells induced EMT, while caALK5 did not, thus demonstrating that ALK2 activity alone is sufficient to stimulate EMT. Smad6, an inhibitor of Smad signaling downstream of ALK2, but not ALK5, inhibited EMT in AV cushion endocardial cells. These data suggest that ALK2 activation may stimulate EMT in the AV cushion and that Smad6 may act downstream of ALK2 to negatively regulate EMT.
Collapse
Affiliation(s)
- Jay S Desgrosellier
- Department of Pharmacology, Vanderbilt University Medical Center, Room 476 RRB, 2220 Pierce Avenue, Nashville, TN 37232-6600, USA
| | | | | | | | | |
Collapse
|
36
|
Ho J, de Guise C, Kim C, Lemay S, Wang XF, Lebrun JJ. Activin induces hepatocyte cell growth arrest through induction of the cyclin-dependent kinase inhibitor p15INK4B and Sp1. Cell Signal 2005; 16:693-701. [PMID: 15093610 DOI: 10.1016/j.cellsig.2003.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 11/12/2003] [Accepted: 11/14/2003] [Indexed: 01/07/2023]
Abstract
In this report, we examined the role of activin in the regulation of cell growth inhibition of human hepatocarcinoma cells. Using RNase protection assay for various cell cycle regulators and Western blotting experiments, we show that activin treatment of HepG2 cells leads to increased gene expression of the cyclin-dependent kinase inhibitor (CDKI) p15INK4B. Furthermore, transient co-transfection studies of the p15INK4B promoter/luciferase construct performed in HepG2 cells demonstrates that activin induction of the p15INK4B promoter is mediated through the Smad pathway. p15INK4B gene promoter mapping analysis revealed a 66-bp region within the proximal domain of the promoter, which contains a consensus site for the transcription factor Sp1, as critical for mediating the activin effect on p15INK4B gene expression. Finally, gel mobility shift experiments, using the Sp1 consensus site, revealed increased DNA binding of Sp1 in response to activin treatment of HepG2 cells, further confirming the involvement of Sp1 in activin-mediated p15INK4B gene promoter activation. Together, our data indicates an important role for the cyclin-dependent kinase inhibitor p15INK4B in activin-induced cell cycle arrest in liver cells.
Collapse
Affiliation(s)
- Joanne Ho
- Hormones and Cancer Research Unit, Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Canada H3A 1A1
| | | | | | | | | | | |
Collapse
|
37
|
Keah HH, Hearn MTW. A molecular recognition paradigm: promiscuity associated with the ligand-receptor interactions of the activin members of the TGF-β superfamily. J Mol Recognit 2005; 18:385-403. [PMID: 15948132 DOI: 10.1002/jmr.715] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The structure-function properties of the pleiotropic activins and their relationship to other members of the transforming growth factor-beta superfamily of proteins are described. In order to highlight the molecular promiscuity of these growth factors, emphasis has been placed on molecular features associated with the recognition by activin A and the bone morphogenic proteins of the corresponding extracellular domains of the ActRI and ActRII receptors. The available evidence suggests that the homodimeric activin A in its various functional roles has the propensity to fulfill key tasks in the regulation of mammalian cell behaviour, through coordination of numerous transcriptional and translational processes. Because of these profound effects, under physiologically normal conditions, activin A levels are closely controlled by a variety of binding partners, such as follistatin-288 and follistatin-315, alpha(2)-macroglobulin and other proteins. Moreover, the subunits of other members of the activin subfamily, such as activin B or activin C, are able to form heterodimers with the activin A subunit, thus providing a further avenue to positively or negatively control the physiological concentrations of activin A that are available for interaction with specific receptors and induction of cell signaling events. Based on data from X-ray crystallographic studies and homology modeling experiments, the molecular architecture of the ternary receptor-activin ligand complexes has been dissected, permitting rationalization in structural terms of the pattern of interactions that are the hallmark of this protein family.
Collapse
Affiliation(s)
- Hooi Hong Keah
- Centre for Green Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | | |
Collapse
|
38
|
Abstract
The transforming growth factor-beta (TGF-beta) superfamily of receptors comprises two groups of transmembrane serine-threonine kinase receptors, so called type I, and type II receptors, that are activated following engagement by members of the TGF-beta superfamily of ligands. These events specify diverse downstream responses that are differentially regulated by controlling access and activation of the ligands, their receptors and downstream substrates in different cell types. The purpose of this review is to describe the biochemical properties of these receptors, focusing specifically on the mechanisms regulating receptor/ligand interactions and activation in mammalian cells.
Collapse
Affiliation(s)
- Mark de Caestecker
- Division of Nephrology, S-3223 Medical Center North, 1161 21st Street S, Nashville, TN 37232-2372, USA.
| |
Collapse
|
39
|
Massagué J, Attisano L, Wrana JL. The TGF-beta family and its composite receptors. Trends Cell Biol 2004; 4:172-8. [PMID: 14731645 DOI: 10.1016/0962-8924(94)90202-x] [Citation(s) in RCA: 399] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In their search for regulators of animal growth and development, biologists have often come upon members of the transforming growth factor beta (TGF-beta) family and have realized that these are among the most versatile carriers of growth and differentiation signals. New evidence suggests that these factors signal through receptors with remarkable structures. Each receptor is a complex of two distantly related transmembrane serine/threonine kinases that are both essential for signalling. TGF-beta and related factors have at their disposal a repertoire of such receptors, a feature that could account for their multifunctional nature.
Collapse
Affiliation(s)
- J Massagué
- Howard Hughes Medical Institute and Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
40
|
Xu XB, Leng XS, He ZP, Liang ZQ. Smad4 antisense gene transfer into ito cells and suppressed extracellular matrix production. Shijie Huaren Xiaohua Zazhi 2003; 11:1690-1693. [DOI: 10.11569/wcjd.v11.i11.1690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate possible role of antisense Smad4 RNA in the regulation of Smad4 and ECM production in Ito cells after blockade of TGF-β1 signal transmission by antisense Smad4.
METHODS A rat Smad4 cDNA (2.5 kb) was inserted in reverse orientation into the adenoviral shuttle vector pAdv5SR (+), and so pAdvATSmad4 was obtained. PAdvATSmad4 was transfected, together with pJM17, into 293 cells by a liposome-mediated technique. We acquired the recombinant virus (AdvATSmad4) containing the anti-Smad4 gene by PCR detecting method. AdvATSmad4 was amplified and purified and then introduced into the rat Ito cell line CFSC.
RESULTS The presence of antisense Smad4 RNA was detected by RT-PCR. The expression of Smad4 and the production of extracellular matrix were markedly decreased in the antisense Smad4 transfected cultured cells by in situ hybridization and immunohistochemistry.
CONCLUSION Antisense RNA of Smad4 can be used successfully to inhibit Ito cell activation, endogenous Smad4 mRNA and extracellular matrix production, and may provide a basis for the development of anti-fibrosis gene therapy.
Collapse
Affiliation(s)
- Xin-Bao Xu
- Hepatobiliary Surgery Department, People's Hospital, Peking University, Beijing 100044, China
| | - Xi-Sheng Leng
- Hepatobiliary Surgery Department, People's Hospital, Peking University, Beijing 100044, China
| | - Zhen-Ping He
- Hepatobiliary Surgery Center, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhi-Qing Liang
- Maternity Department, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
41
|
Pedersen TX, Leethanakul C, Patel V, Mitola D, Lund LR, Danø K, Johnsen M, Gutkind JS, Bugge TH. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma. Oncogene 2003; 22:3964-76. [PMID: 12813470 DOI: 10.1038/sj.onc.1206614] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Keratinocytes undergo a dramatic phenotypic conversion during reepithelialization of skin wounds to become hyperproliferative, migratory, and invasive. This transient healing response phenotypically resembles malignant transformation of keratinocytes during squamous cell carcinoma progression. Here we present the first analysis of global changes in keratinocyte gene expression during skin wound healing in vivo, and compare these changes to changes in gene expression during malignant conversion of keratinized epithelium. Laser capture microdissection was used to isolate RNA from wound keratinocytes from incisional mouse skin wounds and adjacent normal skin keratinocytes. Changes in gene expression were determined by comparative cDNA array analyses, and the approach was validated by in situ hybridization. The analyses identified 48 candidate genes not previously associated with wound reepithelialization. Furthermore, the analyses revealed that the phenotypic resemblance of wound keratinocytes to squamous cell carcinoma is mimicked at the level of gene expression, but notable differences between the two tissue-remodeling processes were also observed. The combination of laser capture microdissection and cDNA array analysis provides a powerful new tool to unravel the complex changes in gene expression that underlie physiological and pathological remodeling of keratinized epithelium.
Collapse
Affiliation(s)
- Tanja Xenia Pedersen
- Proteases and Tissue Remodeling Unit, Oral & Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 211, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Olivey HE, Barnett JV, Ridley BD. Expression of the type III TGFbeta receptor during chick organogenesis. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 272:383-7. [PMID: 12704694 DOI: 10.1002/ar.a.10049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transforming growth factor beta (TGFbeta) is a regulator of embryonic development. The role of specific TGFbeta receptors is emerging, and a unique role for the type III TGFbeta receptor (TBRIII) has been suggested. We report the pattern of TBRIII expression in chicken embryos from 2 to 14 days in ovo.
Collapse
Affiliation(s)
- Harold E Olivey
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
43
|
|
44
|
Schramm C, Protschka M, Köhler HH, Podlech J, Reddehase MJ, Schirmacher P, Galle PR, Lohse AW, Blessing M. Impairment of TGF-beta signaling in T cells increases susceptibility to experimental autoimmune hepatitis in mice. Am J Physiol Gastrointest Liver Physiol 2003; 284:G525-35. [PMID: 12466145 DOI: 10.1152/ajpgi.00286.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In autoimmune hepatitis, strong TGF-beta1 expression is found in the inflamed liver. TGF-beta overexpression may be part of a regulatory immune response attempting to suppress autoreactive T cells. To test this hypothesis, we determined whether impairment of TGF-beta signaling in T cells leads to increased susceptibility to experimental autoimmune hepatitis (EAH). Transgenic mice of strain FVB/N were generated expressing a dominant-negative TGF-beta type II receptor in T cells under the control of the human CD2 promoter/locus control region. On induction of EAH, transgenic mice showed markedly increased portal and periportal leukocytic infiltrations with hepatocellular necroses compared with wild-type mice (median histological score = 1.8 +/- 0.26 vs. 0.75 +/- 0.09 in wild-type mice; P < 0.01). Increased IFN-gamma production (118 vs. 45 ng/ml) and less IL-4 production (341 vs. 1,256 pg/ml) by mononuclear cells isolated from transgenic livers was seen. Impairment of TGF-beta signaling in T cells therefore leads to increased susceptibility to EAH in mice. This suggests an important role for TGF-beta in immune homeostasis in the liver and may teleologically explain TGF-beta upregulation in response to T cell-mediated liver injury.
Collapse
Affiliation(s)
- Christoph Schramm
- First Department of Medicine, Johannes Gutenberg-University, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schramm C, Herz U, Podlech J, Protschka M, Finotto S, Reddehase MJ, Köhler H, Galle PR, Lohse AW, Blessing M. TGF-beta regulates airway responses via T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1313-9. [PMID: 12538691 DOI: 10.4049/jimmunol.170.3.1313] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Allergic asthma is characterized by airway hyperreactivity, inflammation, and a Th2-type cytokine profile favoring IgE production. Beneficial effects of TGF-beta and conflicting results regarding the role of Th1 cytokines have been reported from murine asthma models. In this study, we examined the T cell as a target cell of TGF-beta-mediated immune regulation in a mouse model of asthma. We demonstrate that impairment of TGF-beta signaling in T cells of transgenic mice expressing a dominant-negative TGF-beta type II receptor leads to a decrease in airway reactivity in a non-Ag-dependent model. Increased serum levels of IFN-gamma can be detected in these animals. In contrast, after injection of OVA adsorbed to alum and challenge with OVA aerosol, transgenic animals show an increased airway reactivity and inflammation compared with those of wild-type animals. IL-13 levels in bronchoalveolar lavage fluid and serum as well as the number of inducible NO synthase-expressing cells in lung infiltrates were increased in transgenic animals. These results demonstrate an important role for TGF-beta signaling in T cells in the regulation of airway responses and suggest that the beneficial effects observed for TGF-beta in airway hyperreactivity and inflammation may be due to its regulatory effects on T cells.
Collapse
Affiliation(s)
- Christoph Schramm
- I. Medizinische Klinik, Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Barnett JV, Desgrosellier JS. Early events in valvulogenesis: a signaling perspective. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:58-72. [PMID: 12768658 DOI: 10.1002/bdrc.10006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The proper formation and function of the vertebrate heart requires a multitude of specific cell and tissue interactions. These interactions drive the early specification and assembly of components of the cardiovascular system that lead to a functioning system before the attainment of the definitive cardiac and vascular structures seen in the adult. Many of these adult structures are hypothesized to require both proper molecular and physical cues to form correctly. Unlike any other organ system in the embryo, the cardiovascular system requires concurrent function and formation for the embryo to survive. An example of this complex interaction between molecular and physical cues is the formation of the valves of the heart. Both molecular cues that regulate cell transformation, migration, and extracellular matrix deposition, and physical cues emanating from the beating heart, as well as hemodynamic forces, are required for valvulogenesis. This review will focus on molecules and emerging pathways that guide early events in valvulogenesis.
Collapse
Affiliation(s)
- Joey V Barnett
- Department of Pharmacology, Vanderbilt University Medical Center, Room 476, Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6600, USA.
| | | |
Collapse
|
47
|
Mo J, Fang SJ, Chen W, Blobe GC. Regulation of ALK-1 signaling by the nuclear receptor LXRbeta. J Biol Chem 2002; 277:50788-94. [PMID: 12393874 DOI: 10.1074/jbc.m210376200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The transforming growth factor beta (TGF-beta) receptor, ALK-1, is expressed specifically on endothelial cells and is essential for angiogenesis, as demonstrated by its targeted deletion in mice and its mutation in the human disease hereditary hemorrhagic telangiectasia. Although ALK-1 and another endothelial-specific TGF-beta receptor, endoglin, both bind TGF-beta with identical isoform specificity and form a complex together, neither has been shown to signal in response to TGF-beta, and the mechanism by which these receptors signal in endothelial cells remains unknown. Here we report the identification of the nuclear receptor liver X receptor beta (LXRbeta) as a modulator/mediator of ALK-1 signaling. The cytoplasmic domain of ALK-1 specifically binds to LXRbeta in vitro and in vivo. Expression of activated ALK-1 results in translocation of LXRbeta from the nuclear compartment to the cytoplasmic compartment. The interaction of activated ALK-1 with LXRbeta in the cytoplasmic compartment results in the specific phosphorylation of LXRbeta by ALK-1, primarily on serine residues. LXRbeta subsequently modulates signaling by ALK-1 and the closely related TGF-beta receptor, ALK-2, as demonstrated by specific and potent inhibition of ALK-1- and ALK-2-mediated transcriptional responses, establishing LXRbeta as a potential modulator/mediator of ALK-1/ALK-2 signaling.
Collapse
Affiliation(s)
- Jinyao Mo
- Department of Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Members of the TGF-beta superfamily, which includes TGF-betas, growth differentiation factors, bone morphogenetic proteins, activins, inhibins, and glial cell line-derived neurotrophic factor, are synthesized as prepropeptide precursors and then processed and secreted as homodimers or heterodimers. Most ligands of the family signal through transmembrane serine/threonine kinase receptors and SMAD proteins to regulate cellular functions. Many studies have reported the characterization of knockout and knock-in transgenic mice as well as humans or other mammals with naturally occurring genetic mutations in superfamily members or their regulatory proteins. These investigations have revealed that TGF-beta superfamily ligands, receptors, SMADs, and upstream and downstream regulators function in diverse developmental and physiological pathways. This review attempts to collate and integrate the extensive body of in vivo mammalian studies produced over the last decade.
Collapse
Affiliation(s)
- Hua Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
49
|
Abstract
STUDY DESIGN A retrospective analysis of previous BMP gene therapy and general gene therapy publications. OBJECTIVE To present the potential role of BMP gene therapy for the induction of osteogenesis and spinal fusion. SUMMARY OF BACKGROUND DATA A variety of viral and non-viral techniques have been utilized to insert foreign transgenes into cells, both in vivo and in vitro. These techniques are now being used to transduce cells with a BMP gene to express significant amounts of BMP. This secreted BMP can subsequently stimulate osteogenesis in a variety of locations, including in the paraspinal regions. METHODS A retrospective analysis of the literature. RESULTS Direct and ex vivo BMP gene therapy has been shown to successfully promote bone healing and regeneration in a variety of animal models. Long-term and regulated transgene expression are clear advantages of BMP gene delivery, compared to direct BMP application. To date, BMP gene delivery with adenoviral vectors have been the most effective approach for stimulating bone induction in vivo. CONCLUSIONS Although BMP gene therapy techniques have significant potential for the treatment of spine pathology, further preclinical and clinical research and development are required before this technology will have direct clinical applications.
Collapse
Affiliation(s)
- Tord D Alden
- Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
50
|
Chamberlain J. Transforming growth factor-beta: a promising target for anti-stenosis therapy. CARDIOVASCULAR DRUG REVIEWS 2002; 19:329-44. [PMID: 11830751 DOI: 10.1111/j.1527-3466.2001.tb00074.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is the general name for a family of cytokines which have widespread effects on many aspects of growth and development. The TGF-beta isoforms are produced by most cell types and exert a wide range of effects in a context-dependent autocrine, paracrine or endocrine fashion via interactions with distinct receptors on the cell surface. TGF-beta is involved in the wound healing process and, thus plays a significant role in the formation of a restenotic lesion after percutaneous transluminal coronary angioplasty (PTCA) or stenting. Perhaps because of its wide-ranging effects, TGF-beta is usually released from cells in a latent form, and its activation and signaling are complex. Manipulation of the TGF-beta1, TGF-beta2, and TGF-beta3 isoforms by inhibiting their expression, activation, or signaling reduces scarring and fibrosis in animal models. However, to date, few have reached clinical trial. This review summarizes current knowledge on the activation and signaling of TGF-beta, and focuses on the anti-TGF-beta strategies which may lead to clinical applications in the prevention of restenosis following PTCA or stenting.
Collapse
Affiliation(s)
- J Chamberlain
- Cardiovascular Research Group, Section of Medicine, University of Sheffield, Clinical Sciences Centre, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK.
| |
Collapse
|