1
|
Wang HY, Ren L, Yan Z, Zhou T, Liang Z. Neural basis of dysexecutive and visuospatial impairments in Parkinson's disease with MCI: a task-based fNIRS study. NPJ Parkinsons Dis 2025; 11:163. [PMID: 40506429 PMCID: PMC12162854 DOI: 10.1038/s41531-025-01013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/06/2025] [Indexed: 06/16/2025] Open
Abstract
Parkinson's disease with mild cognitive impairment (PD-MCI) includes various cognitive deficits, classified into two subtypes based on the "dual syndrome hypothesis": the executive-dominant dopamine pathway dysfunction impairing executive and language functions (PD-EL subtype), and the visuospatial-dominant non-dopaminergic dysfunction affecting visuospatial perception, attention, and memory (PD-VAM subtype). This study involved 182 participants (122 PD, 60 controls) undergoing cognitive assessments. Using PD-MCI Level II criteria, patients were categorized as PD with normal cognition (PD-NC, 48), PD-EL (34), or PD-VAM (40). Functional near-infrared spectroscopy measured brain activation during verbal fluency (executive) and line orientation (visuospatial) tasks. PD-EL showed lower word accuracy and reduced activation in dorsolateral/ventrolateral prefrontal cortices, supplementary motor area, and orbitofrontal cortex compared to PD-NC. PD-VAM had lower line orientation scores and reduced ventrolateral prefrontal activation. These findings suggest that PD-MCI subtypes may exhibit differential neural activation patterns reflecting their cognitive deficits, underscoring the need for targeted interventions and mechanistic research.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Neurology, Jining No. 1 People's Hospital, Shandong First Medical University, Jining, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Ren
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongrui Yan
- Department of Neurology, Jining No. 1 People's Hospital, Shandong First Medical University, Jining, China
| | - Tingting Zhou
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhanhua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Asadi A, Constantinidis C, Daliri MR. Functional role of cell classes in monkey prefrontal cortex after learning a working memory task. Commun Biol 2025; 8:703. [PMID: 40328904 PMCID: PMC12056203 DOI: 10.1038/s42003-025-08142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
The prefrontal cortex (PFC) is important for learning and performing working memory tasks. However, its precise role for spatial and non-spatial working memory, and the role of different cell types in the circuits that maintain working memory remain poorly understood. To investigate this issue, we analyzed single-unit recordings from the PFC of monkeys during the passive viewing phase before they learned the task rules and after learning, during the execution of active working memory tasks (spatial and feature). Through cluster analysis of extracellular spike waveform features, we identified two classes of narrow-spiking neurons (putative inhibitory cells) and two classes of broad-spiking neurons (putative pyramidal cells). These putative cell classes exhibited distinct physiological characteristics, including baseline firing rates, baseline neural firing variability, and visual stimulus-evoked responses. Neuronal response modulation varied heterogeneously across these cell classes after training and performing active tasks. Training and execution of spatial working memory resulted in higher activity in all class types, highlighting the involvement of diverse prefrontal circuits in spatial information processing. In contrast, feature working memory training and execution affected activity of broad-spiking cell classes alone, suggesting less involvement of a prefrontal circuit in the representation of feature information. We also revealed hitherto unknown, differential effects of training and task execution on different broad-spiking cell types. One broad-spiking neuron subtype exhibited significant response modulation, with increased baseline firing rate, stimulus-evoked responses, and working memory-related firing rates. Another broad-spiking subtype showed decreased baseline firing rate and variability, which may optimize neural coding efficiency. This study advances our understanding of the functional heterogeneity within the PFC and the specialized contributions of different neuronal subtypes to cognitive processes.
Collapse
Affiliation(s)
- Amirreza Asadi
- Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | | | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
3
|
Aliramezani M, Singh B, Constantinidis C, Daliri MR. Low-frequency local field potentials reveal integration of spatial and non-spatial information in prefrontal cortex. Neuroimage 2025; 310:121172. [PMID: 40147602 DOI: 10.1016/j.neuroimage.2025.121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
The prefrontal cortex (PFC) is critical for various aspects of executive functions, particularly working memory. The debate over whether the dorsal and ventral PFC should be viewed as unitary or heterogeneous in working memory has been ongoing. This study explored the specialization of the posterior dorsal, medial dorsal, and posterior ventral subdivisions of the lateral PFC in two macaque monkeys, focusing on the processing of the location and shape of stimuli during working memory tasks. In contrast to previous studies that focused on spike activity analysis, this article employed local field potential (LFP) power analysis. Results revealed that during the working memory periods, both the dorsal and ventral PFC exhibited significantly higher LFP power for feature stimuli compared to spatial stimuli in the low-frequency bands (∼2-23 Hz). Additionally, the impact of matching versus non-matching stimuli was consistent with repetition suppression in the medial dorsal and posterior ventral regions during the working memory period within the same frequency range. The major modulation of LFP power linked to incorrect decisions made by the monkeys was a sharp reduction in low-frequency LFP power. The similar LFP power patterns in the PFC subdivisions for spatial and feature stimuli throughout the analysis suggested that spatial and non-spatial inputs are integrated by the PFC, revealed by the low-frequency components of the LFP.
Collapse
Affiliation(s)
- Mohammad Aliramezani
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Mohammad Reza Daliri
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Neuroscience & Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran; Lead Contact, Iran.
| |
Collapse
|
4
|
Córdoba-Claros MA, Rubio-Garrido P, de Lima RRM, Morais PLAG, do Nascimento ES, Cavalcante JS, Clascá F. Projection Motifs and Wiring Logic of Medial Pulvinar Thalamocortical Axons in the Marmoset Monkey. J Neurosci 2025; 45:e1837242025. [PMID: 39919832 PMCID: PMC11984104 DOI: 10.1523/jneurosci.1837-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
The medial pulvinar thalamic nucleus (MPu) is an evolutionary novelty of the primate thalamus, prominently expanded in humans. Piecemeal data from studies in various monkey species indicate that MPu axons reach prefrontal, inferior parietal, cingulate, insular, or temporal areas; however, the precise wiring and functional logic of such brain-wide connections remain obscure. In marmoset monkeys (Callithrix jacchus) of both sexes, we visualized the axons originated from specific pulvinar domains by means of biotinylated dextran amine microinjections and compared them across multiple cases. In addition, by injecting retrograde tracers in the cortical areas targeted by the pulvinar axons, we investigated the organization of projection cells within MPu and the existence of long-range branched axons. Specific projection motifs reveal a caudal MPu subnucleus that innervates inferior and ventral temporal areas and a rostral MPu subnucleus that innervates temporal, ventral prefrontal, premotor, inferior posterior parietal, and cingulate areas. We demonstrate numerous MPu neurons that innervate through branched axons prefrontal and parietal or prefrontal and temporal areas; other cells with different projection patterns are closely intermingled with them. Our findings support the notion that MPu is a hub of the brain-wide networks that support complex visual and social cognition, sensory-guided reaching, working memory, and attention. Moreover, the finding of long-range branching MPu axons and dense terminal arborizations suggest that MPu cells may regulate functional connectivity among high-level cortical areas at different spatial scales. Besides, the anatomical "ground truth" provided by our study is relevant for functional imaging and distributed network modeling studies.
Collapse
Affiliation(s)
- María Angélica Córdoba-Claros
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Pablo Rubio-Garrido
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Ruthnaldo R M de Lima
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Paulo Leonardo A G Morais
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Expedito S do Nascimento
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Jeferson S Cavalcante
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Francisco Clascá
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| |
Collapse
|
5
|
Casile A, Cordier A, Kim JG, Cometa A, Madsen JR, Stone S, Ben-Yosef G, Ullman S, Anderson W, Kreiman G. Neural correlates of minimal recognizable configurations in the human brain. Cell Rep 2025; 44:115429. [PMID: 40096088 PMCID: PMC12045337 DOI: 10.1016/j.celrep.2025.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Inferring object identity from incomplete information is a ubiquitous challenge for the visual system. Here, we study the neural mechanisms underlying processing of minimally recognizable configurations (MIRCs) and their subparts, which are unrecognizable (sub-MIRCs). MIRCs and sub-MIRCs are very similar at the pixel level, yet they lead to a dramatic gap in recognition performance. To evaluate how the brain processes such images, we invasively record human neurophysiological responses. Correct identification of MIRCs is associated with a dynamic interplay of feedback and feedforward mechanisms between frontal and temporal areas. Interpretation of sub-MIRC images improves dramatically after exposure to the corresponding full objects. This rapid and unsupervised learning is accompanied by changes in neural responses in the temporal cortex. These results are at odds with purely feedforward models of object recognition and suggest a role for the frontal lobe in providing top-down signals related to object identity in difficult visual tasks.
Collapse
Affiliation(s)
- Antonino Casile
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy
| | - Aurelie Cordier
- Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiye G Kim
- Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Cometa
- MoMiLab, IMT School for Advanced Studies, 55100 Lucca, Italy
| | - Joseph R Madsen
- Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Scellig Stone
- Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Shimon Ullman
- Weizmann Institute, Rehovot, Israel; Center for Brains, Minds and Machines, Cambridge, MA 02142, USA
| | - William Anderson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabriel Kreiman
- Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Brains, Minds and Machines, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Mergan E, Zhu Q, Li X, Vogels R, Vanduffel W. Fast face-selective responses in prefrontal face patches of the macaque. Cell Rep 2025; 44:115389. [PMID: 40053452 PMCID: PMC11936873 DOI: 10.1016/j.celrep.2025.115389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Face processing models propose gradually more complex receptive field properties culminating in invariant representations in anterior inferotemporal cortex (aITC), leading to late socio-emotionally relevant encoding in pre- and orbitofrontal cortex (POC). Top-down facilitation models, however, predict that some lower-level POC neurons respond faster than aITC. To resolve this discrepancy, we recorded from 2,459 neurons in fMRI-defined POC and aITC face patches. POC patches are more heterogeneous, containing smaller fractions of face-selective neurons than aITC and a mixture of responses to faces and non-faces. In one POC patch, face responses are surprisingly fast, outpacing those in aITC. Moreover, its responses correlate inversely with stimulus spatial frequency. Hence, our extensive data, with a large diversity of POC neurons, support both models and suggest one POC face patch might be specialized in fast, low-level face processing, which may enable (partially) invariant face representations during subsequent processing stages in inferotemporal cortex (ITC).
Collapse
Affiliation(s)
- Eline Mergan
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Qi Zhu
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium; Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.
| | - Xiaolian Li
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Rufin Vogels
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA.
| |
Collapse
|
7
|
De Risi M, Cavezza D, Torromino G, Capalbo A, Cundin XB, Di Martino R, Alvino FG, Iemolo A, Speranza L, Perrone-Capano C, Crispino M, Cirillo C, Luini A, Sacco F, Grumati P, De Leonibus E. Cortico-striatal circuit mechanisms drive the effects of D1 dopamine agonists on memory capacity in mice through cAMP/PKA signalling. Nat Commun 2025; 16:2615. [PMID: 40097401 PMCID: PMC11914583 DOI: 10.1038/s41467-025-57788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Working memory capacity (WMC), the number of items remembered in a short-time interval, is regulated by fronto-striatal dopamine (DA) and is reduced in schizophrenia. We investigated how excessive and insufficient D1 dopamine receptor stimulation impairs and expands WMC, focusing on the cAMP/PKA pathway in the fronto-striatal circuit. Low doses of the D1 agonist SKF 38393 enhance WMC by activating the striatum (mice remember more objects), while high doses, paradoxically, impair WMC, activating the same pathway in the medial prefrontal cortex (mPFC) but inhibiting it in the striatum. This impairment, arising from mPFC-driven recruitment of inhibitory striatal parvalbumin interneurons, can be prevented by optogenetic inhibition of the mPFC-striatal pathway. Low doses of SKF 38393 also rescue WMC deficits in a schizophrenia mouse model. These results highlight the need for a systems pharmacology approach that considers complex brain interactions and intracellular signalling pathways, rather than isolated drug-receptor interactions, to develop memory-enhancing treatments.
Collapse
MESH Headings
- Animals
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/physiology
- Cyclic AMP/metabolism
- Schizophrenia/physiopathology
- Schizophrenia/metabolism
- Schizophrenia/drug therapy
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Signal Transduction/drug effects
- Mice
- Dopamine Agonists/pharmacology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/physiology
- Male
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Mice, Inbred C57BL
- Optogenetics
- Interneurons/metabolism
- Interneurons/drug effects
- Disease Models, Animal
Collapse
Affiliation(s)
- Maria De Risi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli (Naples), Italy
| | - Diletta Cavezza
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giulia Torromino
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy
| | - Anita Capalbo
- Institute of Biochemistry and Cell Biology (IBBC), Naples, Italy
| | - Xabier Bujanda Cundin
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli (Naples), Italy
| | | | - Filomena Grazia Alvino
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
| | - Attilio Iemolo
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
| | - Luisa Speranza
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
| | - Carla Perrone-Capano
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli (Naples), Italy
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology (IBBC), Naples, Italy
| | - Francesca Sacco
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli (Naples), Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli (Naples), Italy
| | - Elvira De Leonibus
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy.
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli (Naples), Italy.
| |
Collapse
|
8
|
Tian LY, Garzón KU, Rouse AG, Eldridge MAG, Schieber MH, Wang XJ, Tenenbaum JB, Freiwald WA. Neural representation of action symbols in primate frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641276. [PMID: 40093053 PMCID: PMC11908170 DOI: 10.1101/2025.03.03.641276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
At the core of intelligence is proficiency in solving new problems, including those that differ dramatically from problems seen before. Problem-solving, in turn, depends on goal-directed generation of novel thoughts and behaviors1, which has been proposed to rely on internal representations of discrete units, or symbols, and processes that can recombine them into a large set of possible composite representations1-11. Although this view has been influential in formulating cognitive-level explanations of behavior, definitive evidence for a neuronal substrate of symbols has remained elusive. Here, we identify a neural population encoding action symbols-internal, recombinable representations of discrete units of motor behavior-localized to a specific area of frontal cortex. In macaque monkeys performing a drawing-like task designed to assess recombination of learned action symbols into novel sequences, we found behavioral evidence for three critical features that indicate actions have an underlying symbolic representation: (i) invariance over low-level motor parameters; (ii) categorical structure, reflecting discrete classes of action; and (iii) recombination into novel sequences. In simultaneous neural recordings across motor, premotor, and prefrontal cortex, we found that planning-related population activity in ventral premotor cortex encodes actions in a manner that, like behavior, reflects motor invariance, categorical structure, and recombination, three properties indicating a symbolic representation. Activity in no other recorded area exhibited this combination of properties. These findings reveal a neural representation of action symbols localized to PMv, and therefore identify a putative neural substrate for symbolic cognitive operations.
Collapse
Affiliation(s)
- Lucas Y Tian
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Center for Brains, Minds and Machines, MIT & Rockefeller University
| | - Kedar U Garzón
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
| | - Adam G Rouse
- Department of Neurosurgery, Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mark A G Eldridge
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Marc H Schieber
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua B Tenenbaum
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Brains, Minds and Machines, MIT & Rockefeller University
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Center for Brains, Minds and Machines, MIT & Rockefeller University
| |
Collapse
|
9
|
Panichello MF, Jonikaitis D, Oh YJ, Zhu S, Trepka EB, Moore T. Intermittent rate coding and cue-specific ensembles support working memory. Nature 2024; 636:422-429. [PMID: 39506106 PMCID: PMC11634780 DOI: 10.1038/s41586-024-08139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Persistent, memorandum-specific neuronal spiking activity has long been hypothesized to underlie working memory1,2. However, emerging evidence suggests a potential role for 'activity-silent' synaptic mechanisms3-5. This issue remains controversial because evidence for either view has largely relied either on datasets that fail to capture single-trial population dynamics or on indirect measures of neuronal spiking. We addressed this controversy by examining the dynamics of mnemonic information on single trials obtained from large, local populations of lateral prefrontal neurons recorded simultaneously in monkeys performing a working memory task. Here we show that mnemonic information does not persist in the spiking activity of neuronal populations during memory delays, but instead alternates between coordinated 'On' and 'Off' states. At the level of single neurons, Off states are driven by both a loss of selectivity for memoranda and a return of firing rates to spontaneous levels. Further exploiting the large-scale recordings used here, we show that mnemonic information is available in the patterns of functional connections among neuronal ensembles during Off states. Our results suggest that intermittent periods of memorandum-specific spiking coexist with synaptic mechanisms to support working memory.
Collapse
Affiliation(s)
- Matthew F Panichello
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Donatas Jonikaitis
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Yu Jin Oh
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Shude Zhu
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ethan B Trepka
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Courtney SM, Hinault T. Anatomical Connectivity Constrains Dynamic Functional Connectivity among Neural Systems: Implications for Cognition and Behavior. J Cogn Neurosci 2024; 36:2712-2724. [PMID: 38940735 DOI: 10.1162/jocn_a_02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Leslie Ungerleider had a tremendous impact across many different areas of cognitive neuroscience. Her ideas and her approach, as well as her findings, will continue to impact the field for generations to come. One of the most impactful aspects of her approach was her focus on the ways that anatomical connections constrain functional communications among brain regions. Furthermore, she emphasized that changes in these functional communications, whether from lesions to the anatomical connections or temporary modulations of the efficacy of information transmission resulting from selective attention, have consequences for cognition and behavior. By necessity, this short review cannot cover the vast amount of research that contributed to or benefited from Leslie's work. Rather, we focus on one line of research that grew directly from some of Leslie's early work and her mentoring on these important concepts. This research and the many other lines of research that arose from these same origins has helped develop our understanding of the visual system, and cognitive systems more generally, as collections of highly organized, specialized, dynamic, and interacting subsystems.
Collapse
|
11
|
Chunharas C, Wolff MJ, Hettwer MD, Rademaker RL. A gradual transition toward categorical representations along the visual hierarchy during working memory, but not perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.18.541327. [PMID: 37292916 PMCID: PMC10245673 DOI: 10.1101/2023.05.18.541327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability to stably maintain visual information over brief delays is central to healthy cognitive functioning, as is the ability to differentiate such internal representations from external inputs. One possible way to achieve both is via multiple concurrent mnemonic representations along the visual hierarchy that differ systematically from the representations of perceptual inputs. To test this possibility, we examine orientation representations along the visual hierarchy during perception and working memory. Human participants directly viewed, or held in mind, oriented grating patterns, and the similarity between fMRI activation patterns for different orientations was calculated throughout retinotopic cortex. During direct viewing of grating stimuli, similarity was relatively evenly distributed amongst all orientations, while during working memory the similarity was higher around oblique orientations. We modeled these differences in representational geometry based on the known distribution of orientation information in the natural world: The "veridical" model uses an efficient coding framework to capture hypothesized representations during visual perception. The "categorical" model assumes that different "psychological distances" between orientations result in orientation categorization relative to cardinal axes. During direct perception, the veridical model explained the data well. During working memory, the categorical model gradually gained explanatory power over the veridical model for increasingly anterior retinotopic regions. Thus, directly viewed images are represented veridically, but once visual information is no longer tethered to the sensory world there is a gradual progression to more categorical mnemonic formats along the visual hierarchy.
Collapse
Affiliation(s)
- Chaipat Chunharas
- Department of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Michael J Wolff
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt, Germany
| | - Meike D Hettwer
- Max Planck School of Cognition, Max Planck Institute of Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Rosanne L Rademaker
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt, Germany
| |
Collapse
|
12
|
Borra E, Gerbella M, Rozzi S, Luppino G. Neural substrate for the engagement of the ventral visual stream in motor control in the macaque monkey. Cereb Cortex 2024; 34:bhae354. [PMID: 39227311 DOI: 10.1093/cercor/bhae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
The present study aimed to describe the cortical connectivity of a sector located in the ventral bank of the superior temporal sulcus in the macaque (intermediate area TEa and TEm [TEa/m]), which appears to represent the major source of output of the ventral visual stream outside the temporal lobe. The retrograde tracer wheat germ agglutinin was injected in the intermediate TEa/m in four macaque monkeys. The results showed that 58-78% of labeled cells were located within ventral visual stream areas other than the TE complex. Outside the ventral visual stream, there were connections with the memory-related medial temporal area 36 and the parahippocampal cortex, orbitofrontal areas involved in encoding subjective values of stimuli for action selection, and eye- or hand-movement related parietal (LIP, AIP, and SII), prefrontal (12r, 45A, and 45B) areas, and a hand-related dysgranular insula field. Altogether these data provide a solid substrate for the engagement of the ventral visual stream in large scale cortical networks for skeletomotor or oculomotor control. Accordingly, the role of the ventral visual stream could go beyond pure perceptual processes and could be also finalized to the neural mechanisms underlying the control of voluntary motor behavior.
Collapse
Affiliation(s)
- Elena Borra
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Marzio Gerbella
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Stefano Rozzi
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Giuseppe Luppino
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| |
Collapse
|
13
|
Sun Y, Dang W, Jaffe RG, Constantinidis C. Local organization of spatial and shape information in the primate prefrontal cortex. Cereb Cortex 2024; 34:bhae384. [PMID: 39319440 PMCID: PMC11422719 DOI: 10.1093/cercor/bhae384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
The current understanding of sensory and motor cortical areas has been defined by the existence of topographical maps across the brain surface, however, higher cortical areas, such as the prefrontal cortex, seem to lack an equivalent organization, and only limited evidence of functional clustering of neurons with similar stimulus properties is evident in them. We thus sought to examine whether neurons that represent similar spatial and object information are clustered in the monkey prefrontal cortex and whether such an organization only emerges as a result of training. To this end, we analyzed neurophysiological recordings from male macaque monkeys before and after training in spatial and shape working memory tasks. Neurons with similar spatial or shape selectivity were more likely than chance to be encountered at short distances from each other. Some aspects of organization were present even in naïve animals, however other changes appeared after cognitive training. Our results reveal that prefrontal microstructure automatically supports orderly representations of spatial and object information.
Collapse
Affiliation(s)
- Yunyi Sun
- Department of Biostatistics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville TN 37203, United States
| | - Wenhao Dang
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville TN 37235, United States
| | - Rye G Jaffe
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville TN 37235, United States
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville TN 37235, United States
- Neuroscience Program, Vanderbilt University, 2201 West End Ave, Nashville TN 37235, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 211 Medical Center Dr, Nashville TN 37232, United States
| |
Collapse
|
14
|
Sun Y, Dang W, Jaffe RG, Constantinidis C. Local organization of spatial and shape information in the primate prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.26.554962. [PMID: 37693624 PMCID: PMC10491106 DOI: 10.1101/2023.08.26.554962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The current understanding of sensory and motor cortical areas has been defined by the existence of topographical maps across the brain surface, however, higher cortical areas, such as the prefrontal cortex, seem to lack an equivalent organization, and only limited evidence of functional clustering of neurons with similar stimulus properties is evident in them. We thus sought to examine whether neurons that represent similar spatial and object information are clustered in the monkey prefrontal cortex and whether such an organization only emerges as a result of training. To this end, we analyzed neurophysiological recordings from male macaque monkeys before and after training in spatial and shape working memory tasks. Neurons with similar spatial or shape selectivity were more likely than chance to be encountered at short distances from each other. Some aspects of organization were present even in naïve animals, however other changes appeared after cognitive training. Our results reveal that prefrontal microstructure automatically supports orderly representations of spatial and object information.
Collapse
|
15
|
Stoll FM, Rudebeck PH. Dissociable Representations of Decision Variables within Subdivisions of the Macaque Orbital and Ventrolateral Frontal Cortex. J Neurosci 2024; 44:e0464242024. [PMID: 38991790 PMCID: PMC11358530 DOI: 10.1523/jneurosci.0464-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
The ventral frontal cortex (VFC) in macaques is involved in many affective and cognitive processes and has a key role in flexibly guiding reward-based decision-making. VFC is composed of a set of anatomically distinct subdivisions that are within the orbitofrontal cortex, ventrolateral prefrontal cortex, and anterior insula. In part, because prior studies have lacked the resolution to test for differences, it is unclear if neural representations related to decision-making are dissociable across these subdivisions. Here we recorded the activity of thousands of neurons within eight anatomically defined subdivisions of VFC in male macaque monkeys performing a two-choice probabilistic task for different fruit juice outcomes. We found substantial variation in the encoding of decision variables across these eight subdivisions. Notably, ventrolateral Area 12l was unique relative to the other areas that we recorded from as the activity of single neurons integrated multiple attributes when monkeys evaluated the different choice options. Activity within Area 12o, in contrast, more closely represented reward probability and whether reward was received on a given trial. Orbitofrontal Area 11m/l contained more specific representations of the quality of the outcome that could be earned later on. We also found that reward delivery encoding was highly distributed across all VFC subdivisions, while the properties of the reward, such as its flavor, were more strongly represented in Areas 11m/l and 13m. Taken together, our work reveals the diversity of encoding within the various anatomically distinct subdivisions of VFC in primates.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
16
|
Pu S, Dang W, Qi XL, Constantinidis C. Prefrontal neuronal dynamics in the absence of task execution. Nat Commun 2024; 15:6694. [PMID: 39107317 PMCID: PMC11303542 DOI: 10.1038/s41467-024-50717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Prefrontal cortical activity represents stimuli in working memory tasks in a low-dimensional manifold that transforms over the course of a trial. Such transformations reflect specific cognitive operations, so that, for example, the rotation of stimulus representations is thought to reduce interference by distractor stimuli. Here we show that rotations occur in the low-dimensional activity space of prefrontal neurons in naïve male monkeys (Macaca mulatta), while passively viewing familiar stimuli. Moreover, some aspects of these rotations remain remarkably unchanged after training to perform working memory tasks. Significant training effects are still present in population dynamics, which further distinguish correct and error trials during task execution. Our results reveal automatic functions of prefrontal neural circuits allow transformations that may aid cognitive flexibility.
Collapse
Affiliation(s)
- Shusen Pu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Mathematics and Statistics, University of West Florida, Pensacola, FL, 32514, USA
| | - Wenhao Dang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Xue-Lian Qi
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Neuroscience Program, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
17
|
Levy R. The prefrontal cortex: from monkey to man. Brain 2024; 147:794-815. [PMID: 37972282 PMCID: PMC10907097 DOI: 10.1093/brain/awad389] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The prefrontal cortex is so important to human beings that, if deprived of it, our behaviour is reduced to action-reactions and automatisms, with no ability to make deliberate decisions. Why does the prefrontal cortex hold such importance in humans? In answer, this review draws on the proximity between humans and other primates, which enables us, through comparative anatomical-functional analysis, to understand the cognitive functions we have in common and specify those that distinguish humans from their closest cousins. First, a focus on the lateral region of the prefrontal cortex illustrates the existence of a continuum between rhesus monkeys (the most studied primates in neuroscience) and humans for most of the major cognitive functions in which this region of the brain plays a central role. This continuum involves the presence of elementary mental operations in the rhesus monkey (e.g. working memory or response inhibition) that are constitutive of 'macro-functions' such as planning, problem-solving and even language production. Second, the human prefrontal cortex has developed dramatically compared to that of other primates. This increase seems to concern the most anterior part (the frontopolar cortex). In humans, the development of the most anterior prefrontal cortex is associated with three major and interrelated cognitive changes: (i) a greater working memory capacity, allowing for greater integration of past experiences and prospective futures; (ii) a greater capacity to link discontinuous or distant data, whether temporal or semantic; and (iii) a greater capacity for abstraction, allowing humans to classify knowledge in different ways, to engage in analogical reasoning or to acquire abstract values that give rise to our beliefs and morals. Together, these new skills enable us, among other things, to develop highly sophisticated social interactions based on language, enabling us to conceive beliefs and moral judgements and to conceptualize, create and extend our vision of our environment beyond what we can physically grasp. Finally, a model of the transition of prefrontal functions between humans and non-human primates concludes this review.
Collapse
Affiliation(s)
- Richard Levy
- AP–HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Sorbonne Université, Institute of Memory and Alzheimer’s Disease, 75013 Paris, France
- Sorbonne Université, INSERM U1127, CNRS 7225, Paris Brain Institute- ICM, 75013 Paris, France
| |
Collapse
|
18
|
Arnsten AFT, Wang M, D’Esposito M. Dynamic Network Connectivity: from monkeys to humans. Front Hum Neurosci 2024; 18:1353043. [PMID: 38384333 PMCID: PMC10879414 DOI: 10.3389/fnhum.2024.1353043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Human brain imaging research using functional MRI (fMRI) has uncovered flexible variations in the functional connectivity between brain regions. While some of this variability likely arises from the pattern of information flow through circuits, it may also be influenced by rapid changes in effective synaptic strength at the molecular level, a phenomenon called Dynamic Network Connectivity (DNC) discovered in non-human primate circuits. These neuromodulatory molecular mechanisms are found in layer III of the macaque dorsolateral prefrontal cortex (dlPFC), the site of the microcircuits shown by Goldman-Rakic to be critical for working memory. This research has shown that the neuromodulators acetylcholine, norepinephrine, and dopamine can rapidly change the strength of synaptic connections in layer III dlPFC by (1) modifying the depolarization state of the post-synaptic density needed for NMDA receptor neurotransmission and (2) altering the open state of nearby potassium channels to rapidly weaken or strengthen synaptic efficacy and the strength of persistent neuronal firing. Many of these actions involve increased cAMP-calcium signaling in dendritic spines, where varying levels can coordinate the arousal state with the cognitive state. The current review examines the hypothesis that some of the dynamic changes in correlative strength between cortical regions observed in human fMRI studies may arise from these molecular underpinnings, as has been seen when pharmacological agents or genetic alterations alter the functional connectivity of the dlPFC consistent with the macaque physiology. These DNC mechanisms provide essential flexibility but may also confer vulnerability to malfunction when dysregulated in cognitive disorders.
Collapse
Affiliation(s)
- Amy F. T. Arnsten
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Min Wang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Mark D’Esposito
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
19
|
Zhou X, Liao PC, Xu Q. Reinvestigation of the Psychological Mechanisms of Construction Experience on Hazard Recognition Performance. HUMAN FACTORS 2024; 66:221-233. [PMID: 35225014 DOI: 10.1177/00187208211066666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The study aimed to reinvestigate psychological mechanisms of the influence of construction workers' experience on hazard recognition performance, with signal detection theory (SDT) and electroencephalogram (EEG) readings. BACKGROUND Existing evidence regarding the effect of experience on hazard recognition performance in the construction industry remains inconsistent. Behavior-wise, identification of dominant hazard recognition factors (sensitivity or response bias, or both) would help determine appropriate training strategies to improve hazard recognition. In terms of neuro-responses, induced gamma-band activity was expected to reflect the cognitive functions mediating the psychological effects of experience. METHOD Seventy-seven construction workers participated in a predesigned hazard recognition task, in which participants judged whether a hazard was present from a series of construction scenario pictures. We computed and compared the sensitivity and response bias of SDT and time-frequency representations of recorded EEG signals of the two experience-level groups. RESULTS Novice workers had higher hazard recognition rates. Behavior-wise, novices were more sensitive than more experienced workers. Compared with experienced workers, novices showed stronger gamma-band difference power (hazardous minus safe) in the left frontal and right posterior parietal areas during the hazard recognition process. CONCLUSION Novices performed better at hazard recognition, indicating their sensitivity to the hazards without a clear difference in response bias. Based on the EEG data, novices' sensitivity may be attributed to more efficient working memory and attentional control. APPLICATION There is a need for continuous refreshment of hazard recognition skills for experienced workers for safety interventions.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Department of Construction Management, Tsinghua University, Beijing, China
| | - Pin-Chao Liao
- Department of Construction Management, Tsinghua University, Beijing, China
| | - Qingwen Xu
- Department of Construction Management, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Thrower L, Dang W, Jaffe RG, Sun JD, Constantinidis C. Decoding working memory information from neurons with and without persistent activity in the primate prefrontal cortex. J Neurophysiol 2023; 130:1392-1402. [PMID: 37910532 PMCID: PMC11068397 DOI: 10.1152/jn.00290.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
Persistent activity of neurons in the prefrontal cortex has been thought to represent the information maintained in working memory, though alternative models have challenged this idea. Theories that depend on the dynamic representation of information posit that stimulus information may be maintained by the activity pattern of neurons whose firing rate is not significantly elevated above their baseline during the delay period of working memory tasks. We thus tested the ability of neurons that do and do not generate persistent activity in the prefrontal cortex of monkeys to represent spatial and object information in working memory. Neurons that generated persistent activity represented more information about the stimuli in both spatial and object working memory tasks. The amount of information that could be decoded from neural activity depended on the choice of decoder and parameters used but neurons with persistent activity outperformed non-persistent neurons consistently. Averaged across all neurons and stimuli, the firing rate did not appear clearly elevated above baseline during the maintenance of neural activity particularly for object working memory; however, this grand average masked neurons that generated persistent activity selective for their preferred stimuli, which carried the majority of stimulus information. These results reveal that prefrontal neurons that generate persistent activity maintain information more reliably during working memory.NEW & NOTEWORTHY Competing theories suggest that neurons that generate persistent activity or do not are primarily responsible for the maintenance of information, particularly regarding object working memory. Although the two models have been debated on theoretical terms, direct comparison of empirical results has been lacking. Analysis of neural activity in a large database of prefrontal recordings revealed that neurons that generate persistent activity were primarily responsible for the maintenance of both spatial and object working memory.
Collapse
Affiliation(s)
- Lilianna Thrower
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Wenhao Dang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Rye G Jaffe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Jasmine D Sun
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
21
|
Rauschecker JP, Afsahi RK. Anatomy of the auditory cortex then and now. J Comp Neurol 2023; 531:1883-1892. [PMID: 38010215 PMCID: PMC10872810 DOI: 10.1002/cne.25560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/29/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023]
Abstract
Using neuroanatomical investigations in the macaque, Deepak Pandya and his colleagues have established the framework for auditory cortex organization, with subdivisions into core and belt areas. This has aided subsequent neurophysiological and imaging studies in monkeys and humans, and a nomenclature building on Pandya's work has also been adopted by the Human Connectome Project. The foundational work by Pandya and his colleagues is highlighted here in the context of subsequent and ongoing studies on the functional anatomy and physiology of auditory cortex in primates, including humans, and their relevance for understanding cognitive aspects of speech and language.
Collapse
Affiliation(s)
- Josef P Rauschecker
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Rosstin K Afsahi
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
22
|
DiNicola LM, Sun W, Buckner RL. Side-by-side regions in dorsolateral prefrontal cortex estimated within the individual respond differentially to domain-specific and domain-flexible processes. J Neurophysiol 2023; 130:1602-1615. [PMID: 37937340 PMCID: PMC11068361 DOI: 10.1152/jn.00277.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023] Open
Abstract
A recurring debate concerns whether regions of primate prefrontal cortex (PFC) support domain-flexible or domain-specific processes. Here we tested the hypothesis with functional MRI (fMRI) that side-by-side PFC regions, within distinct parallel association networks, differentially support domain-flexible and domain-specialized processing. Individuals (N = 9) were intensively sampled, and all effects were estimated within their own idiosyncratic anatomy. Within each individual, we identified PFC regions linked to distinct networks, including a dorsolateral PFC (DLPFC) region coupled to the medial temporal lobe (MTL) and an extended region associated with the canonical multiple-demand network. We further identified an inferior PFC region coupled to the language network. Exploration in separate task data, collected within the same individuals, revealed a robust functional triple dissociation. The DLPFC region linked to the MTL was recruited during remembering and imagining the future, distinct from juxtaposed regions that were modulated in a domain-flexible manner during working memory. The inferior PFC region linked to the language network was recruited during sentence processing. Detailed analysis of the trial-level responses further revealed that the DLPFC region linked to the MTL specifically tracked processes associated with scene construction. These results suggest that the DLPFC possesses a domain-specialized region that is small and easily confused with nearby (larger) regions associated with cognitive control. The newly described region is domain specialized for functions traditionally associated with the MTL. We discuss the implications of these findings in relation to convergent anatomical analysis in the monkey.NEW & NOTEWORTHY Competing hypotheses link regions of prefrontal cortex (PFC) to domain-flexible or domain-specific processes. Here, using a precision neuroimaging approach, we identify a domain-specialized region in dorsolateral PFC, coupled to the medial temporal lobe and recruited for scene construction. This region is juxtaposed to, but distinct from, broader PFC regions recruited flexibly for cognitive control. Region distinctions align with broader network differences, suggesting that PFC regions gain dissociable processing properties via segregated anatomical projections.
Collapse
Affiliation(s)
- Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Wendy Sun
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| |
Collapse
|
23
|
Zhou T, Kawasaki K, Suzuki T, Hasegawa I, Roe AW, Tanigawa H. Mapping information flow between the inferotemporal and prefrontal cortices via neural oscillations in memory retrieval and maintenance. Cell Rep 2023; 42:113169. [PMID: 37740917 DOI: 10.1016/j.celrep.2023.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023] Open
Abstract
Interaction between the inferotemporal (ITC) and prefrontal (PFC) cortices is critical for retrieving information from memory and maintaining it in working memory. Neural oscillations provide a mechanism for communication between brain regions. However, it remains unknown how information flow via neural oscillations is functionally organized in these cortices during these processes. In this study, we apply Granger causality analysis to electrocorticographic signals from both cortices of monkeys performing visual association tasks to map information flow. Our results reveal regions within the ITC where information flow to and from the PFC increases via specific frequency oscillations to form clusters during memory retrieval and maintenance. Theta-band information flow in both directions increases in similar regions in both cortices, suggesting reciprocal information exchange in those regions. These findings suggest that specific subregions function as nodes in the memory information-processing network between the ITC and the PFC.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Keisuke Kawasaki
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan
| | - Takafumi Suzuki
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka 565-0871, Japan; Osaka University, Suita, Osaka 565-0871, Japan
| | - Isao Hasegawa
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Hisashi Tanigawa
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan.
| |
Collapse
|
24
|
Li S, Rosen MC, Chang S, David S, Freedman DJ. Alterations of neural activity in the prefrontal cortex associated with deficits in working memory performance. Front Behav Neurosci 2023; 17:1213435. [PMID: 37915531 PMCID: PMC10616307 DOI: 10.3389/fnbeh.2023.1213435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
Working memory (WM), a core cognitive function, enables the temporary holding and manipulation of information in mind to support ongoing behavior. Neurophysiological recordings conducted in nonhuman primates have revealed neural correlates of this process in a network of higher-order cortical regions, particularly the prefrontal cortex (PFC). Here, we review the circuit mechanisms and functional importance of WM-related activity in these areas. Recent neurophysiological data indicates that the absence of these neural correlates at different stages of WM is accompanied by distinct behavioral deficits, which are characteristic of various disease states/normal aging and which we review here. Finally, we discuss emerging evidence of electrical stimulation ameliorating these WM deficits in both humans and non-human primates. These results are important for a basic understanding of the neural mechanisms supporting WM, as well as for translational efforts to developing therapies capable of enhancing healthy WM ability or restoring WM from dysfunction.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Matthew C. Rosen
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Suha Chang
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Samuel David
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - David J. Freedman
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
- Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
25
|
Rozzi S, Gravante A, Basile C, Cappellaro G, Gerbella M, Fogassi L. Ventrolateral prefrontal neurons of the monkey encode instructions in the 'pragmatic' format of the associated behavioral outcomes. Prog Neurobiol 2023; 229:102499. [PMID: 37429374 DOI: 10.1016/j.pneurobio.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
The prefrontal cortex plays an important role in coding rules and producing context-appropriate behaviors. These processes necessarily require the generation of goals based on current context. Indeed, instructing stimuli are prospectively encoded in prefrontal cortex in relation to behavioral demands, but the coding format of this neural representation is, to date, largely unknown. In order to study how instructions and behaviors are encoded in prefrontal cortex, we recorded the activity of monkeys (Macaca mulatta) ventrolateral prefrontal neurons in a task requiring to perform (Action condition) or withhold (Inaction condition) grasping actions on real objects. Our data show that there are neurons responding in different task phases, and that the neuronal population discharge is stronger in the Inaction condition when the instructing cue is presented, and in the Action condition in the subsequent phases, from object presentation to action execution. Decoding analyses performed on neuronal populations showed that the neural activity recorded during the initial phases of the task shares the same type of format with that recorded during the final phases. We propose that this format has a pragmatic nature, that is instructions and goals are encoded by prefrontal neurons as predictions of the behavioral outcome.
Collapse
Affiliation(s)
- Stefano Rozzi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | - Alfonso Gravante
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Claudio Basile
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Giorgio Cappellaro
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| |
Collapse
|
26
|
Romanski LM, Sharma KK. Multisensory interactions of face and vocal information during perception and memory in ventrolateral prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220343. [PMID: 37545305 PMCID: PMC10404928 DOI: 10.1098/rstb.2022.0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 08/08/2023] Open
Abstract
The ventral frontal lobe is a critical node in the circuit that underlies communication, a multisensory process where sensory features of faces and vocalizations come together. The neural basis of face and vocal integration is a topic of great importance since the integration of multiple sensory signals is essential for the decisions that govern our social interactions. Investigations have shown that the macaque ventrolateral prefrontal cortex (VLPFC), a proposed homologue of the human inferior frontal gyrus, is involved in the processing, integration and remembering of audiovisual signals. Single neurons in VLPFC encode and integrate species-specific faces and corresponding vocalizations. During working memory, VLPFC neurons maintain face and vocal information online and exhibit selective activity for face and vocal stimuli. Population analyses indicate that identity, a critical feature of social stimuli, is encoded by VLPFC neurons and dictates the structure of dynamic population activity in the VLPFC during the perception of vocalizations and their corresponding facial expressions. These studies suggest that VLPFC may play a primary role in integrating face and vocal stimuli with contextual information, in order to support decision making during social communication. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Lizabeth M. Romanski
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Keshov K. Sharma
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA
| |
Collapse
|
27
|
Rapan L, Froudist-Walsh S, Niu M, Xu T, Zhao L, Funck T, Wang XJ, Amunts K, Palomero-Gallagher N. Cytoarchitectonic, receptor distribution and functional connectivity analyses of the macaque frontal lobe. eLife 2023; 12:e82850. [PMID: 37578332 PMCID: PMC10425179 DOI: 10.7554/elife.82850] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/14/2023] [Indexed: 08/15/2023] Open
Abstract
Based on quantitative cyto- and receptor architectonic analyses, we identified 35 prefrontal areas, including novel subdivisions of Walker's areas 10, 9, 8B, and 46. Statistical analysis of receptor densities revealed regional differences in lateral and ventrolateral prefrontal cortex. Indeed, structural and functional organization of subdivisions encompassing areas 46 and 12 demonstrated significant differences in the interareal levels of α2 receptors. Furthermore, multivariate analysis included receptor fingerprints of previously identified 16 motor areas in the same macaque brains and revealed 5 clusters encompassing frontal lobe areas. We used the MRI datasets from the non-human primate data sharing consortium PRIME-DE to perform functional connectivity analyses using the resulting frontal maps as seed regions. In general, rostrally located frontal areas were characterized by bigger fingerprints, that is, higher receptor densities, and stronger regional interconnections. Whereas more caudal areas had smaller fingerprints, but showed a widespread connectivity pattern with distant cortical regions. Taken together, this study provides a comprehensive insight into the molecular structure underlying the functional organization of the cortex and, thus, reconcile the discrepancies between the structural and functional hierarchical organization of the primate frontal lobe. Finally, our data are publicly available via the EBRAINS and BALSA repositories for the entire scientific community.
Collapse
Affiliation(s)
- Lucija Rapan
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Sean Froudist-Walsh
- Center for Neural Science, New York UniversityNew YorkUnited States
- Bristol Computational Neuroscience Unit, Faculty of Engineering, University of BristolBristolUnited Kingdom
| | - Meiqi Niu
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Ting Xu
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
| | - Ling Zhao
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Thomas Funck
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Katrin Amunts
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| |
Collapse
|
28
|
Thrower L, Dang W, Jaffe RG, Sun JD, Constantinidis C. Decoding working memory information from persistent and activity-silent neurons in the primate prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550371. [PMID: 37546782 PMCID: PMC10402050 DOI: 10.1101/2023.07.25.550371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Persistent activity of neurons in the prefrontal cortex has been thought to represent the information maintained in working memory, though alternative models have recently challenged this idea. Activity-silent theories posit that stimulus information may be maintained by the activity pattern of neurons that do not produce firing rate significantly elevated about their baseline during the delay period of working memory tasks. We thus tested the ability of neurons that do and do not generate persistent activity in the prefrontal cortex of monkeys to represent spatial and object information in working memory. Neurons that generated persistent activity represented more information about the stimuli in both spatial and object working memory tasks. The amount of information that could be decoded from neural activity depended on the choice of decoder and parameters used but neurons with persistent activity outperformed non-persistent neurons consistently. Although averaged across all neurons and stimuli, firing rate did not appear clearly elevated above baseline during the maintenance of neural activity particularly for object working memory, this grant average masked neurons that generated persistent activity selective for their preferred stimuli, which carried the majority of information about the stimulus identity. These results reveal that prefrontal neurons with generate persistent activity constitute the primary mechanism of working memory maintenance in the cortex. NEW AND NOTEWORTHY Competing theories suggest that neurons that generate persistent activity or do not are primarily responsible for the maintenance of information, particularly regarding object working memory. While the two models have been debated on theoretical terms, direct comparison of empirical results have been lacking. Analysis of neural activity in a large database of prefrontal recordings revealed that neurons that generate persistent activity were primarily responsible for the maintenance of both spatial and object working memory.
Collapse
|
29
|
Zhou R, Xie X, Wang J, Ma B, Hao X. Why do children with autism spectrum disorder have abnormal visual perception? Front Psychiatry 2023; 14:1087122. [PMID: 37255685 PMCID: PMC10225551 DOI: 10.3389/fpsyt.2023.1087122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with severe impairment in social functioning. Visual information processing provides nonverbal cues that support social interactions. ASD children exhibit abnormalities in visual orientation, continuous visual exploration, and visual-spatial perception, causing social dysfunction, and mechanisms underlying these abnormalities remain unclear. Transmission of visual information depends on the retina-lateral geniculate nucleus-visual cortex pathway. In ASD, developmental abnormalities occur in rapid expansion of the visual cortex surface area with constant thickness during early life, causing abnormal transmission of the peak of the visual evoked potential (P100). We hypothesized that abnormal visual perception in ASD are related to the abnormal visual information transmission and abnormal development of visual cortex in early life, what's more, explored the mechanisms of abnormal visual symptoms to provide suggestions for future research.
Collapse
Affiliation(s)
- Rongyi Zhou
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinyue Xie
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaojiao Wang
- Henan Provincial People's Hospital, Henan Institute of Ophthalmology, Zhengzhou, China
| | - Bingxiang Ma
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Hao
- Renmin University of China, Beijing, China
| |
Collapse
|
30
|
Rahmati M, Curtis CE, Sreenivasan KK. Mnemonic representations in human lateral geniculate nucleus. Front Behav Neurosci 2023; 17:1094226. [PMID: 37234404 PMCID: PMC10206025 DOI: 10.3389/fnbeh.2023.1094226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
There is a growing appreciation for the role of the thalamus in high-level cognition. Motivated by findings that internal cognitive state drives activity in feedback layers of primary visual cortex (V1) that target the lateral geniculate nucleus (LGN), we investigated the role of LGN in working memory (WM). Specifically, we leveraged model-based neuroimaging approaches to test the hypothesis that human LGN encodes information about spatial locations temporarily encoded in WM. First, we localized and derived a detailed topographic organization in LGN that accords well with previous findings in humans and non-human primates. Next, we used models constructed on the spatial preferences of LGN populations in order to reconstruct spatial locations stored in WM as subjects performed modified memory-guided saccade tasks. We found that population LGN activity faithfully encoded the spatial locations held in memory in all subjects. Importantly, our tasks and models allowed us to dissociate the locations of retinal stimulation and the motor metrics of memory-guided saccades from the maintained spatial locations, thus confirming that human LGN represents true WM information. These findings add LGN to the growing list of subcortical regions involved in WM, and suggest a key pathway by which memories may influence incoming processing at the earliest levels of the visual hierarchy.
Collapse
Affiliation(s)
- Masih Rahmati
- Department of Psychology, New York University, New York, NY, United States
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Clayton E. Curtis
- Department of Psychology, New York University, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Kartik K. Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
31
|
Korponay C. Snapping Out of Autopilot: Overriding Habits in Real Time and the Role of Ventrolateral Prefrontal Cortex. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:482-490. [PMID: 36137178 PMCID: PMC10023494 DOI: 10.1177/17456916221120033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Habits allow environmental and interoceptive cues to trigger behavior in an automatized fashion, making them liable to deployment in inappropriate or outdated contexts. Over the long term, repeated failure of a once-adaptive habit to satisfy current goals produces extinction learning that suppresses the habit's execution. Less attention has been afforded to the mechanisms underlying real-time habit suppression: the capacity to stop the execution of a cued habit that is goal conflicting. Here, I first posit a model by which goal-relevant stimuli can (a) bring unfolding habits and their projected outcomes into awareness, (b) prompt evaluation of the habit outcome with respect to current goals, and (c) trigger cessation of the habit response if it is determined to be goal conflicting. Second, I propose a modified stop-signal task to test this model of goal-directed stopping of habit execution. Finally, I marshal evidence indicating that the ventrolateral prefrontal cortex, situated at the nexus of salience detection, action-plan assessment, and motor inhibition networks, is uniquely positioned to coordinate the overriding of habitual behaviors in real time. In sum, this perspective presents a testable model and candidate neurobiological substrate for our capacity to "snap out of autopilot" and override goal-conflicting habits in real time.
Collapse
Affiliation(s)
- Cole Korponay
- Basic Neuroscience Division, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Harvard University
| |
Collapse
|
32
|
Soyuhos O, Baldauf D. Functional connectivity fingerprints of the frontal eye field and inferior frontal junction suggest spatial versus nonspatial processing in the prefrontal cortex. Eur J Neurosci 2023; 57:1114-1140. [PMID: 36789470 DOI: 10.1111/ejn.15936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Neuroimaging evidence suggests that the frontal eye field (FEF) and inferior frontal junction (IFJ) govern the encoding of spatial and nonspatial (such as feature- or object-based) representations, respectively, both during visual attention and working memory tasks. However, it is still unclear whether such contrasting functional segregation is also reflected in their underlying functional connectivity patterns. Here, we hypothesized that FEF has predominant functional coupling with spatiotopically organized regions in the dorsal ('where') visual stream whereas IFJ has predominant functional connectivity with the ventral ('what') visual stream. We applied seed-based functional connectivity analyses to temporally high-resolving resting-state magnetoencephalography (MEG) recordings. We parcellated the brain according to the multimodal Glasser atlas and tested, for various frequency bands, whether the spontaneous activity of each parcel in the ventral and dorsal visual pathway has predominant functional connectivity with FEF or IFJ. The results show that FEF has a robust power correlation with the dorsal visual pathway in beta and gamma bands. In contrast, anterior IFJ (IFJa) has a strong power coupling with the ventral visual stream in delta, beta and gamma oscillations. Moreover, while FEF is phase-coupled with the superior parietal lobe in the beta band, IFJa is phase-coupled with the middle and inferior temporal cortex in delta and gamma oscillations. We argue that these intrinsic connectivity fingerprints are congruent with each brain region's function. Therefore, we conclude that FEF and IFJ have dissociable connectivity patterns that fit their respective functional roles in spatial versus nonspatial top-down attention and working memory control.
Collapse
Affiliation(s)
- Orhan Soyuhos
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.,Center for Neuroscience, University of California, Davis, California, USA
| | - Daniel Baldauf
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
33
|
Bach-Morrow L, Boccalatte F, DeRosa A, Devos D, Garcia-Sanchez C, Inglese M, Droby A. Functional changes in prefrontal cortex following frequency-specific training. Sci Rep 2022; 12:20316. [PMID: 36434008 PMCID: PMC9700664 DOI: 10.1038/s41598-022-24088-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Numerous studies indicate a significant role of pre-frontal circuits (PFC) connectivity involving attentional and reward neural networks within attention deficit hyperactivity disorder (ADHD) pathophysiology. To date, the neural mechanisms underlying the utility of non-invasive frequency-specific training systems in ADHD remediation remain underexplored. To address this issue, we created a portable electroencephalography (EEG)-based wireless system consisting of a novel headset, electrodes, and neuro program, named frequency specific cognitive training (FSCT). In a double-blind, randomized, controlled study we investigated the training effects in N = 46 school-age children ages 6-18 years with ADHD. 23 children in experimental group who underwent FCST training showed an increase in scholastic performance and meliorated their performance on neuropsychological tests associated with executive functions and memory. Their results were compared to 23 age-matched participants who underwent training with placebo (pFSCT). Electroencephalogram (EEG) data collected from participants trained with FSCT showed a significant increase in 14-18 Hz EEG frequencies in PFC brain regions, activities that indicated brain activation in frontal brain regions, the caudate nucleus, and putamen. These results demonstrate that FSCT targets specific prefrontal and striatal areas in children with ADHD, suggesting a beneficial modality for non-invasive modulation of brain areas implicated in attention and executive functions.
Collapse
Affiliation(s)
| | - Francesco Boccalatte
- grid.240324.30000 0001 2109 4251Department of Pathology, NYU Langone Medical Center, New York, NY USA
| | - Antonio DeRosa
- grid.164295.d0000 0001 0941 7177Department of Mathematics, University of Maryland, College Park, MD USA
| | - David Devos
- grid.503422.20000 0001 2242 6780Department of Neurology, University Hospital, Univ of Lille, Lille, France
| | - Carmen Garcia-Sanchez
- grid.413396.a0000 0004 1768 8905Neuropsychology Unit, Neurology Service, Hospital de Sant Pau, Barcelona, Spain
| | - Matilde Inglese
- grid.59734.3c0000 0001 0670 2351Neurology Department, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Amgad Droby
- grid.59734.3c0000 0001 0670 2351Neurology Department, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
34
|
Dynamic and stable population coding of attentional instructions coexist in the prefrontal cortex. Proc Natl Acad Sci U S A 2022; 119:e2202564119. [PMID: 36161937 DOI: 10.1073/pnas.2202564119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A large body of recent work suggests that neural representations in prefrontal cortex (PFC) are changing over time to adapt to task demands. However, it remains unclear whether and how such dynamic coding schemes depend on the encoded variable and are influenced by anatomical constraints. Using a cued attention task and multivariate classification methods, we show that neuronal ensembles in PFC encode and retain in working memory spatial and color attentional instructions in an anatomically specific manner. Spatial instructions could be decoded both from the frontal eye field (FEF) and the ventrolateral PFC (vlPFC) population, albeit more robustly from FEF, whereas color instructions were decoded more robustly from vlPFC. Decoding spatial and color information from vlPFC activity in the high-dimensional state space indicated stronger dynamics for color, across the cue presentation and memory periods. The change in the color code was largely due to rapid changes in the network state during the transition to the delay period. However, we found that dynamic vlPFC activity contained time-invariant color information within a low-dimensional subspace of neural activity that allowed for stable decoding of color across time. Furthermore, spatial attention influenced decoding of stimuli features profoundly in vlPFC, but less so in visual area V4. Overall, our results suggest that dynamic population coding of attentional instructions within PFC is shaped by anatomical constraints and can coexist with stable subspace coding that allows time-invariant decoding of information about the future target.
Collapse
|
35
|
Armenta-Resendiz M, Assali A, Tsvetkov E, Cowan CW, Lavin A. Repeated methamphetamine administration produces cognitive deficits through augmentation of GABAergic synaptic transmission in the prefrontal cortex. Neuropsychopharmacology 2022; 47:1816-1825. [PMID: 35788684 PMCID: PMC9372065 DOI: 10.1038/s41386-022-01371-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
Methamphetamine (METH) abuse is associated with the emergence of cognitive deficits and hypofrontality, a pathophysiological marker of many neuropsychiatric disorders that is produced by altered balance of local excitatory and inhibitory synaptic transmission. However, there is a dearth of information regarding the cellular and synaptic mechanisms underlying METH-induced cognitive deficits and associated hypofrontal states. Using PV-Cre transgenic rats that went through a METH sensitization regime or saline (SAL) followed by 7-10 days of home cage abstinence combined with cognitive tests, chemogenetic experiments, and whole-cell patch recordings on the prelimbic prefrontal cortex (PFC), we investigated the cellular and synaptic mechanisms underlying METH-induce hypofrontality. We report here that repeated METH administration in rats produces deficits in working memory and increases in inhibitory synaptic transmission onto pyramidal neurons in the PFC. The increased PFC inhibition is detected by an increase in spontaneous and evoked inhibitory postsynaptic synaptic currents (IPSCs), an increase in GABAergic presynaptic function, and a shift in the excitatory-inhibitory balance onto PFC deep-layer pyramidal neurons. We find that pharmacological blockade of D1 dopamine receptor function reduces the METH-induced augmentation of IPSCs, suggesting a critical role for D1 dopamine signaling in METH-induced hypofrontality. In addition, repeated METH administration increases the intrinsic excitability of parvalbumin-positive fast spiking interneurons (PV + FSIs), a key local interneuron population in PFC that contributes to the control of inhibitory tone. Using a cell type-specific chemogenetic approach, we show that increasing PV + FSIs activity in the PFC is necessary and sufficient to cause deficits in temporal order memory similar to those induced by METH. Conversely, reducing PV + FSIs activity in the PFC of METH-exposed rats rescues METH-induced temporal order memory deficits. Together, our findings reveal that repeated METH exposure increases PFC inhibitory tone through a D1 dopamine signaling-dependent potentiation of inhibitory synaptic transmission, and that reduction of PV + FSIs activity can rescue METH-induced cognitive deficits, suggesting a potential therapeutic approach to treating cognitive symptoms in patients suffering from METH use disorder.
Collapse
Affiliation(s)
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
36
|
Mazzucato L. Neural mechanisms underlying the temporal organization of naturalistic animal behavior. eLife 2022; 11:e76577. [PMID: 35792884 PMCID: PMC9259028 DOI: 10.7554/elife.76577] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Naturalistic animal behavior exhibits a strikingly complex organization in the temporal domain, with variability arising from at least three sources: hierarchical, contextual, and stochastic. What neural mechanisms and computational principles underlie such intricate temporal features? In this review, we provide a critical assessment of the existing behavioral and neurophysiological evidence for these sources of temporal variability in naturalistic behavior. Recent research converges on an emergent mechanistic theory of temporal variability based on attractor neural networks and metastable dynamics, arising via coordinated interactions between mesoscopic neural circuits. We highlight the crucial role played by structural heterogeneities as well as noise from mesoscopic feedback loops in regulating flexible behavior. We assess the shortcomings and missing links in the current theoretical and experimental literature and propose new directions of investigation to fill these gaps.
Collapse
Affiliation(s)
- Luca Mazzucato
- Institute of Neuroscience, Departments of Biology, Mathematics and Physics, University of OregonEugeneUnited States
| |
Collapse
|
37
|
Sakamoto K, Kawaguchi N, Mushiake H. Shape and Rule Information Is Reflected in Different Local Field Potential Frequencies and Different Areas of the Primate Lateral Prefrontal Cortex. Front Behav Neurosci 2022; 16:750832. [PMID: 35645746 PMCID: PMC9137426 DOI: 10.3389/fnbeh.2022.750832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The lateral prefrontal cortex (LFPC) plays a crucial role in executive function by adaptively storing behavior-relevant information as working memory. Neural mechanisms associated with local field potentials (LFPs) may underlie the adaptive properties of the LFPC. Here, we analyzed how LFPs recorded from the monkey LFPC are modulated by the crucial factors of a shape manipulation task. In this task, the test shape is transformed by manipulating a lever to match the size and orientation of the sample shape. The subject is required to temporarily memorize the rules such as the arm-movement-manipulation relationship and the sample shape to generate the sequential behavior of operations. In the present study, we focused on task variables about shape and rules, and examined among which aspects distinguish the ventral and dorsal sides of the LFPC. We found that the transformed shape in the sample period strongly affected the theta and delta waves in the delay period on the ventral side, while the arm-manipulation assignment influenced the gamma components on the dorsal side. These findings suggest that area- and frequency-selective LFP modulations are involved in dynamically recruiting different behavior-relevant information in the LFPC.
Collapse
Affiliation(s)
- Kazuhiro Sakamoto
- Department of Neuroscience, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
- *Correspondence: Kazuhiro Sakamoto,
| | - Norihiko Kawaguchi
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
38
|
Ramezanpour H, Fallah M. The role of temporal cortex in the control of attention. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100038. [PMID: 36685758 PMCID: PMC9846471 DOI: 10.1016/j.crneur.2022.100038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/05/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Attention is an indispensable component of active vision. Contrary to the widely accepted notion that temporal cortex processing primarily focusses on passive object recognition, a series of very recent studies emphasize the role of temporal cortex structures, specifically the superior temporal sulcus (STS) and inferotemporal (IT) cortex, in guiding attention and implementing cognitive programs relevant for behavioral tasks. The goal of this theoretical paper is to advance the hypothesis that the temporal cortex attention network (TAN) entails necessary components to actively participate in attentional control in a flexible task-dependent manner. First, we will briefly discuss the general architecture of the temporal cortex with a focus on the STS and IT cortex of monkeys and their modulation with attention. Then we will review evidence from behavioral and neurophysiological studies that support their guidance of attention in the presence of cognitive control signals. Next, we propose a mechanistic framework for executive control of attention in the temporal cortex. Finally, we summarize the role of temporal cortex in implementing cognitive programs and discuss how they contribute to the dynamic nature of visual attention to ensure flexible behavior.
Collapse
Affiliation(s)
- Hamidreza Ramezanpour
- Centre for Vision Research, York University, Toronto, Ontario, Canada,School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada,VISTA: Vision Science to Application, York University, Toronto, Ontario, Canada,Corresponding author. Centre for Vision Research, York University, Toronto, Ontario, Canada.
| | - Mazyar Fallah
- Centre for Vision Research, York University, Toronto, Ontario, Canada,School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada,VISTA: Vision Science to Application, York University, Toronto, Ontario, Canada,Department of Psychology, Faculty of Health, York University, Toronto, Ontario, Canada,Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada,Corresponding author. Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
39
|
Assessment of executive functions in subjects with type 2 diabetes mellitus. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
40
|
Kapoor V, Dwarakanath A, Safavi S, Werner J, Besserve M, Panagiotaropoulos TI, Logothetis NK. Decoding internally generated transitions of conscious contents in the prefrontal cortex without subjective reports. Nat Commun 2022; 13:1535. [PMID: 35318323 PMCID: PMC8940963 DOI: 10.1038/s41467-022-28897-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
A major debate about the neural correlates of conscious perception concerns its cortical organization, namely, whether it includes the prefrontal cortex (PFC), which mediates executive functions, or it is constrained within posterior cortices. It has been suggested that PFC activity during paradigms investigating conscious perception is conflated with post-perceptual processes associated with reporting the contents of consciousness or feedforward signals originating from exogenous stimulus manipulations and relayed via posterior cortical areas. We addressed this debate by simultaneously probing neuronal populations in the rhesus macaque (Macaca mulatta) PFC during a no-report paradigm, capable of instigating internally generated transitions in conscious perception, without changes in visual stimulation. We find that feature-selective prefrontal neurons are modulated concomitantly with subjective perception and perceptual suppression of their preferred stimulus during both externally induced and internally generated changes in conscious perception. Importantly, this enables reliable single-trial, population decoding of conscious contents. Control experiments confirm significant decoding of stimulus contents, even when oculomotor responses, used for inferring perception, are suppressed. These findings suggest that internally generated changes in the contents of conscious visual perception are reliably reflected within the activity of prefrontal populations in the absence of volitional reports or changes in sensory input. The role of the prefrontal cortex in conscious perception is debated because of its involvement in task relevant behaviour, such as subjective perceptual reports. Here, the authors show that prefrontal activity in rhesus macaques correlates with subjective perception and the contents of consciousness can be decoded from prefrontal population activity even without reports.
Collapse
Affiliation(s)
- Vishal Kapoor
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany. .,International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China.
| | - Abhilash Dwarakanath
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany
| | - Shervin Safavi
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.,International Max Planck Research School, Tübingen, 72076, Germany
| | - Joachim Werner
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany
| | - Michel Besserve
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.,Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076, Tübingen, Germany
| | - Theofanis I Panagiotaropoulos
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany. .,Cognitive Neuroimaging Unit, CEA, DSV/I2BM, INSERM, Universite Paris-Sud, Universite Paris-Saclay, Neurospin Center, 91191, Gif/Yvette, France.
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.,International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China.,Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
41
|
McHale AC, Cho YT, Fudge JL. Cortical Granularity Shapes the Organization of Afferent Paths to the Amygdala and Its Striatal Targets in Nonhuman Primate. J Neurosci 2022; 42:1436-1453. [PMID: 34965977 PMCID: PMC8883863 DOI: 10.1523/jneurosci.0970-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
The prefrontal cortex (PFC) and insula, amygdala, and striatum form interconnected networks that drive motivated behaviors. We previously found a connectional trend in which granularity of the ventromedial and orbital PFC/insula predicted connections to the amygdala, and also the breadth of amygdalo-striatal efferents, including projections beyond the "classic" ventral striatum. To further interrogate connectional relationships among the cortex, amygdala, and striatum, and to further define the "limbic" (amygdala-recipient) striatum, we conducted tract tracing studies in two cohorts of macaques (male n = 14, female n = 1). We focused on the cortico-amygdalo-striatal (indirect) and cortico-"limbic" striatal (direct) paths originating in the entire PFC and insula. Larger datasets and a quantitative approach revealed "cortical rules" in which cortical granularity predicts the complexity and location of projections to both the basal nucleus of the amygdala and striatum. Remarkably, projections from "cortical-like" basal nucleus to the striatum followed similar patterns. In both "direct" and "indirect" paths to the "limbic" striatum, agranular cortices formed a "foundational," broad projection, and were joined by inputs from progressively more differentiated cortices. In amygdalo-striatal paths, the ventral basal nucleus was the "foundational" input, with progressively more dorsal basal nucleus regions gradually adding inputs as the "limbic" striatum extended caudally. Together, the "indirect" and "direct" paths followed consistent principles in which cortical granularity dictated the strength and complexity of projections at their targets. Cluster analyses independently confirmed these connectional trends, and also highlighted connectional features that predicted termination in specific subregions of the basal nucleus and "limbic" striatum.SIGNIFICANCE STATEMENT The "limbic" system broadly refers to brain circuits that coordinate emotional responses. Here, we investigate circuits of the amygdala, which are involved in coding the emotional value of external cues, and their influence on the striatum. Regions of prefrontal cortex (PFC) and insula form gradients of overlapping inputs to the amygdala's basal nucleus, which feed forward to the striatum. Direct cortical inputs to these "amygdala-recipient" striatal areas are surprisingly organized according to similar principles but subtly shift from the "classic" ventral striatum to the caudal ventral striatum. Together, these distinct subsystems, cortico-amygdalo-striatal circuits and direct cortico-striatal circuits, provide substantial opportunity for different levels of internal, sensory, and external experiences to be integrated within the striatum, a major motor-behavioral interface.
Collapse
Affiliation(s)
- A C McHale
- Department of Neuroscience, University of Rochester, Rochester NY 14642
| | - Y T Cho
- Department of Psychiatry, University of Rochester, Rochester, NY 14642
| | - J L Fudge
- Department of Neuroscience, University of Rochester, Rochester NY 14642
- Child Study Center and Department of Psychiatry, Yale University, New Haven, Connecticut 06519
| |
Collapse
|
42
|
Li X, Zhu Q, Vanduffel W. Submillimeter fMRI reveals an extensive, fine-grained and functionally-relevant scene-processing network in monkeys. Prog Neurobiol 2022; 211:102230. [DOI: 10.1016/j.pneurobio.2022.102230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
|
43
|
Conklin BD. Spectral characteristics of visual working memory in the monkey frontoparietal network. PSYCHOLOGY OF LEARNING AND MOTIVATION 2022. [DOI: 10.1016/bs.plm.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
45
|
Queiẞer JF, Jung M, Matsumoto T, Tani J. Emergence of Content-Agnostic Information Processing by a Robot Using Active Inference, Visual Attention, Working Memory, and Planning. Neural Comput 2021; 33:2353-2407. [PMID: 34412116 DOI: 10.1162/neco_a_01412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/18/2021] [Indexed: 11/04/2022]
Abstract
Generalization by learning is an essential cognitive competency for humans. For example, we can manipulate even unfamiliar objects and can generate mental images before enacting a preplan. How is this possible? Our study investigated this problem by revisiting our previous study (Jung, Matsumoto, & Tani, 2019), which examined the problem of vision-based, goal-directed planning by robots performing a task of block stacking. By extending the previous study, our work introduces a large network comprising dynamically interacting submodules, including visual working memory (VWMs), a visual attention module, and an executive network. The executive network predicts motor signals, visual images, and various controls for attention, as well as masking of visual information. The most significant difference from the previous study is that our current model contains an additional VWM. The entire network is trained by using predictive coding and an optimal visuomotor plan to achieve a given goal state is inferred using active inference. Results indicate that our current model performs significantly better than that used in Jung et al. (2019), especially when manipulating blocks with unlearned colors and textures. Simulation results revealed that the observed generalization was achieved because content-agnostic information processing developed through synergistic interaction between the second VWM and other modules during the course of learning, in which memorizing image contents and transforming them are dissociated. This letter verifies this claim by conducting both qualitative and quantitative analysis of simulation results.
Collapse
Affiliation(s)
| | - Minju Jung
- Brown University, Providence, RI 02912, U.S.A.
| | | | - Jun Tani
- Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| |
Collapse
|
46
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
47
|
Bedini M, Baldauf D. Structure, function and connectivity fingerprints of the frontal eye field versus the inferior frontal junction: A comprehensive comparison. Eur J Neurosci 2021; 54:5462-5506. [PMID: 34273134 PMCID: PMC9291791 DOI: 10.1111/ejn.15393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 02/01/2023]
Abstract
The human prefrontal cortex contains two prominent areas, the frontal eye field and the inferior frontal junction, that are crucially involved in the orchestrating functions of attention, working memory and cognitive control. Motivated by comparative evidence in non-human primates, we review the human neuroimaging literature, suggesting that the functions of these regions can be clearly dissociated. We found remarkable differences in how these regions relate to sensory domains and visual topography, top-down and bottom-up spatial attention, spatial versus non-spatial (i.e., feature- and object-based) attention and working memory and, finally, the multiple-demand system. Functional magnetic resonance imaging (fMRI) studies using multivariate pattern analysis reveal the selectivity of the frontal eye field and inferior frontal junction to spatial and non-spatial information, respectively. The analysis of functional and effective connectivity provides evidence of the modulation of the activity in downstream visual areas from the frontal eye field and inferior frontal junction and sheds light on their reciprocal influences. We therefore suggest that future studies should aim at disentangling more explicitly the role of these regions in the control of spatial and non-spatial selection. We propose that the analysis of the structural and functional connectivity (i.e., the connectivity fingerprints) of the frontal eye field and inferior frontal junction may be used to further characterize their involvement in a spatial ('where') and a non-spatial ('what') network, respectively, highlighting segregated brain networks that allow biasing visual selection and working memory performance to support goal-driven behaviour.
Collapse
Affiliation(s)
- Marco Bedini
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
48
|
Jobson DD, Hase Y, Clarkson AN, Kalaria RN. The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Commun 2021; 3:fcab125. [PMID: 34222873 PMCID: PMC8249104 DOI: 10.1093/braincomms/fcab125] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
Humans require a plethora of higher cognitive skills to perform executive functions, such as reasoning, planning, language and social interactions, which are regulated predominantly by the prefrontal cortex. The prefrontal cortex comprises the lateral, medial and orbitofrontal regions. In higher primates, the lateral prefrontal cortex is further separated into the respective dorsal and ventral subregions. However, all these regions have variably been implicated in several fronto-subcortical circuits. Dysfunction of these circuits has been highlighted in vascular and other neurocognitive disorders. Recent advances suggest the medial prefrontal cortex plays an important regulatory role in numerous cognitive functions, including attention, inhibitory control, habit formation and working, spatial or long-term memory. The medial prefrontal cortex appears highly interconnected with subcortical regions (thalamus, amygdala and hippocampus) and exerts top-down executive control over various cognitive domains and stimuli. Much of our knowledge comes from rodent models using precise lesions and electrophysiology readouts from specific medial prefrontal cortex locations. Although, anatomical disparities of the rodent medial prefrontal cortex compared to the primate homologue are apparent, current rodent models have effectively implicated the medial prefrontal cortex as a neural substrate of cognitive decline within ageing and dementia. Human brain connectivity-based neuroimaging has demonstrated that large-scale medial prefrontal cortex networks, such as the default mode network, are equally important for cognition. However, there is little consensus on how medial prefrontal cortex functional connectivity specifically changes during brain pathological states. In context with previous work in rodents and non-human primates, we attempt to convey a consensus on the current understanding of the role of predominantly the medial prefrontal cortex and its functional connectivity measured by resting-state functional MRI in ageing associated disorders, including prodromal dementia states, Alzheimer's disease, post-ischaemic stroke, Parkinsonism and frontotemporal dementia. Previous cross-sectional studies suggest that medial prefrontal cortex functional connectivity abnormalities are consistently found in the default mode network across both ageing and neurocognitive disorders such as Alzheimer's disease and vascular cognitive impairment. Distinct disease-specific patterns of medial prefrontal cortex functional connectivity alterations within specific large-scale networks appear to consistently feature in the default mode network, whilst detrimental connectivity alterations are associated with cognitive impairments independently from structural pathological aberrations, such as grey matter atrophy. These disease-specific patterns of medial prefrontal cortex functional connectivity also precede structural pathological changes and may be driven by ageing-related vascular mechanisms. The default mode network supports utility as a potential biomarker and therapeutic target for dementia-associated conditions. Yet, these associations still require validation in longitudinal studies using larger sample sizes.
Collapse
Affiliation(s)
- Dan D Jobson
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Yoshiki Hase
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre
and Brain Research New Zealand, University of Otago, Dunedin 9054,
New Zealand
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
49
|
Parr T, Rikhye RV, Halassa MM, Friston KJ. Prefrontal Computation as Active Inference. Cereb Cortex 2021; 30:682-695. [PMID: 31298270 PMCID: PMC7444741 DOI: 10.1093/cercor/bhz118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 12/22/2022] Open
Abstract
The prefrontal cortex is vital for a range of cognitive processes, including working memory, attention, and decision-making. Notably, its absence impairs the performance of tasks requiring the maintenance of information through a delay period. In this paper, we formulate a rodent task—which requires maintenance of delay-period activity—as a Markov decision process and treat optimal task performance as an (active) inference problem. We simulate the behavior of a Bayes optimal mouse presented with 1 of 2 cues that instructs the selection of concurrent visual and auditory targets on a trial-by-trial basis. Formulating inference as message passing, we reproduce features of neuronal coupling within and between prefrontal regions engaged by this task. We focus on the micro-circuitry that underwrites delay-period activity and relate it to functional specialization within the prefrontal cortex in primates. Finally, we simulate the electrophysiological correlates of inference and demonstrate the consequences of lesions to each part of our in silico prefrontal cortex. In brief, this formulation suggests that recurrent excitatory connections—which support persistent neuronal activity—encode beliefs about transition probabilities over time. We argue that attentional modulation can be understood as the contextualization of sensory input by these persistent beliefs.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, WC1N 3BG, UK
| | - Rajeev Vijay Rikhye
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael M Halassa
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Stanley Center for Psychiatric Genetics, Broad Institute, Cambridge, MA 02139, USA
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, WC1N 3BG, UK
| |
Collapse
|
50
|
Visual response of ventrolateral prefrontal neurons and their behavior-related modulation. Sci Rep 2021; 11:10118. [PMID: 33980932 PMCID: PMC8115110 DOI: 10.1038/s41598-021-89500-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/26/2021] [Indexed: 11/08/2022] Open
Abstract
The ventral part of lateral prefrontal cortex (VLPF) of the monkey receives strong visual input, mainly from inferotemporal cortex. It has been shown that VLPF neurons can show visual responses during paradigms requiring to associate arbitrary visual cues to behavioral reactions. Further studies showed that there are also VLPF neurons responding to the presentation of specific visual stimuli, such as objects and faces. However, it is largely unknown whether VLPF neurons respond and differentiate between stimuli belonging to different categories, also in absence of a specific requirement to actively categorize or to exploit these stimuli for choosing a given behavior. The first aim of the present study is to evaluate and map the responses of neurons of a large sector of VLPF to a wide set of visual stimuli when monkeys simply observe them. Recent studies showed that visual responses to objects are also present in VLPF neurons coding action execution, when they are the target of the action. Thus, the second aim of the present study is to compare the visual responses of VLPF neurons when the same objects are simply observed or when they become the target of a grasping action. Our results indicate that: (1) part of VLPF visually responsive neurons respond specifically to one stimulus or to a small set of stimuli, but there is no indication of a “passive” categorical coding; (2) VLPF neuronal visual responses to objects are often modulated by the task conditions in which the object is observed, with the strongest response when the object is target of an action. These data indicate that VLPF performs an early passive description of several types of visual stimuli, that can then be used for organizing and planning behavior. This could explain the modulation of visual response both in associative learning and in natural behavior.
Collapse
|